Lists, higher order procedures, and symbols
6.037 - Structure and Interpretation of Computer Programs

Alex Vandiver (alexmv)
Massachusetts Institute of Technology

Lecture 2

Administivia

- Project 0 was due today
- Reminder: Project 1 due at 7pm on Tuesday
- Mail to 6.037-psets@mit.edu
- If you didn’t sign up on Tuesday, let us know

Types

(+ 5 10) => 15
(+ "hi" 15) =>
 *: expects type <number> as 1st argument,
 given: "hi"; other arguments were: 15

- Addition is not defined for strings
- Only works for things of type number
- Scheme checks types for simple built-in functions

Simple data types

Everything has a type:
- Number
- String
- Boolean
- Procedures?
 - Is the type of not the same type as +?
What about procedures?

- Procedures have their own types, based on arguments and return value
- $\text{number} \rightarrow \text{number}$ means “takes one number, returns a number”

Type examples

$(+ \ 5 \ 10) \rightarrow 15$

$(+ \ "hi" \ 15) \rightarrow$

*: expects type <number> as 1st argument,
given: "hi"; other arguments were: 15

- What is the type of $+$?
- $\text{number, number} \rightarrow \text{number}$

(mostly)

Type examples

Expression:

15
"hi"
square
>

...is of type:

number
string
number \rightarrow number
number, number \rightarrow boolean

- Type of a procedure is a contract
- If the operands have the specified types, the procedure will result in a value of the specified type
- Otherwise, its behavior is undefined

More complicated examples

$(\lambda (a \ b \ c) \
(\text{if} \ (> \ a \ 0) \ (+ \ b \ c) \ (- \ b \ c)))$

number, number, number \rightarrow number

$(\lambda (p) \
(\text{if} \ p \ "hi" \ "bye"))$

boolean \rightarrow string

$(\lambda (x) \
(* \ 3.14 \ (* \ 2 \ 5)))$

any \rightarrow number
Patterns across procedures

Procedural abstraction is finding patterns, and making procedures of them:

- (* 17 17)
- (* 42 42)
- (* x x)
- ...
- (lambda (x) (* x x))

- $1 + 2 + ... + 100$
- $1 + 4 + 9 + ... + 100^2$
- $1 + \frac{1}{3^2} + \frac{1}{5^2} + ... + \frac{1}{99^2} \approx \frac{\pi^2}{8}$

Summation

(define (sum-integers a b)
(if (> a b) 0
 (+ a (sum-integers (+ 1 a) b))))

(define (sum-squares a b)
(if (> a b) 0
 (+ (square a) (sum-squares (+ 1 a) b))))

(define (pi-sum a b)
(if (> a b) 0
 (+ (/ 1 (square a))
 (pi-sum (+ 2 a) b))))

(define (sum term a next b)
(if (> a b) 0
 (+ (term a)
 (sum term (next a) next b))))

Complex types

What is the type of this procedure?

(number → number), number, (number → number), number → number

- What type is the output?
- How many arguments does it have?
- What is the type of each argument?

Higher-order procedures take a procedure as an argument, or return one as a value
Higher-order procedures

\[
\sum_{k=a}^{b} k = a \sum_{k=1}^{a-1} \sum_{k=1}^{a-1} \sum_{k=1}^{a-1} \ldots
\]

(define (sum-integers a b)
 (if (> a b) 0
 (+ a
 (sum-integers (+ 1 a) b))))

(define (sum term a next b)
 (if (> a b) 0
 (+ (term a)
 (sum term (next a) next b))))

(define (new-sum-integers a b)
 (sum (lambda (x) x)
 a
 (lambda (x) (+ x 1))
 b))

Alex Vandiver (MIT)
Lists, higher order procedures, and symbols
Lecture 2 13 / 65

Higher-order procedures

\[
\sum_{k=a}^{b} k^2 = \frac{\pi^2}{6} - \sum_{k=a}^{b} k
\]

(define (sum-squares a b)
 (if (> a b) 0
 (+ (square a)
 (sum-squares (+ 1 a) b))))

(define (sum term a next b)
 (if (> a b) 0
 (+ (term a)
 (sum term (next a) next b))))

(define (new-sum-squares a b)
 (sum square a (lambda (x) (+ x 1)) b))

Alex Vandiver (MIT)
Lists, higher order procedures, and symbols
Lecture 2 14 / 65

Returning procedures

\[
\sum_{k=a}^{b} \frac{1}{k^2} \approx \frac{\pi^2}{8}
\]

(define (pi-sum a b)
 (if (> a b) 0
 (+ (/ 1 (square a))
 (pi-sum (+ 2 a) b))))

(define (sum term a next b)
 (if (> a b) 0
 (+ (term a)
 (sum term (next a) next b))))

(define (new-pi-sum a b)
 (sum (lambda (x) (/ 1 (square x))) a
 (lambda (x) (+ x 2)) b))

(define (add1 x) (+ x 1))

(define (new-sum-squares a b) (sum square a add1 b))

(define (new-pi-sum a b)
 (sum (lambda (x) (/ 1 (square x))) a
 (lambda (x) (+ x 2)) b))

(define (add2 x) (+ x 2))

(define (new-pi-sum a b)
 (sum (lambda (x) (/ 1 (square x))) a
 add2 b))

Alex Vandiver (MIT)
Lists, higher order procedures, and symbols
Lecture 2 15 / 65

Alex Vandiver (MIT)
Lists, higher order procedures, and symbols
Lecture 2 16 / 65
Returning procedures

(define (add1 x) (+ x 1))
(define (add2 x) (+ x 2))

(define incrementby (lambda (n) ...))
(define add1 (incrementby 1))
(define add2 (incrementby 2))
(define add37.5 (incrementby 37.5))

(type of incrementby:
 number → (number → number)
)

Procedural abstraction

(define sqrt (lambda (x) (try 1 x)))
(define try (lambda (guess x)
 (if (good-enough? guess x)
 guess
 (try (improve guess x) x)))))
(define good-enough? (lambda (guess x)
 (< (abs (- (square guess) x)) 0.001)))
(define improve (lambda (guess x)
 (average guess (/ x guess)))))

(define average (lambda (a b)
 (/ (+ a b) 2))))
Summary of types

- A type is a set of values
- Every value has a type
- Procedure types (types which include $\to\to$) indicate:
 - Number of arguments required
 - Type of each argument
 - Type of the return value
- They provide a mathematical theory for reasoning efficiently about programs
- Useful for preventing some common types of errors
- Basis for many analysis and optimization algorithms

Compound data

- Need a way of (procedure for) gluing data elements together into a unit that can be treated as a simple data element
- Need ways of (procedures for) getting the pieces back out
- Need a contract between “glue” and “unglue”
- Ideally want this “gluing” to have the property of closure:
 “The result obtained by creating a compound data structure can itself be treated as a primitive object and thus be input to the creation of another compound object.”

Pairs (cons cells)

- (cons $\langle a \rangle$ $\langle b \rangle$) \to $\langle p \rangle$
- Where $\langle a \rangle$ and $\langle b \rangle$ are expressions that map to $\langle a\text{-val} \rangle$ and $\langle b\text{-val} \rangle$
- Returns a pair $\langle p \rangle$ whose car-part is $\langle a\text{-val} \rangle$ and whose cdr-part is $\langle b\text{-val} \rangle$
- (car $\langle p \rangle$) \to $\langle a\text{-val} \rangle$
- (cdr $\langle p \rangle$) \to $\langle b\text{-val} \rangle$

Pairs are tasty

- (define pl (cons 4 (+ 3 2)))
- (car pl) ; \to 4
- (cdr pl) ; \to 5
Pairs are a data abstraction

- **Constructor**
 \((\text{cons } A \ B) \mapsto \text{Pair}\langle A, B \rangle \)

- **Accessors**
 \((\text{car } \text{Pair}\langle A, B \rangle) \mapsto A \)
 \((\text{cdr } \text{Pair}\langle A, B \rangle) \mapsto B \)

- **Contract**
 \((\text{car } (\text{cons } A \ B)) \mapsto A \)
 \((\text{cdr } (\text{cons } A \ B)) \mapsto B \)

- **Operations**
 \((\text{pair? } Q) \) returns \#t if \(Q \) evaluates to a pair, \#f otherwise

- **Abstraction barrier**

Building data abstractions

- (define (make-point x y) (cons x y))
- (define (point-x point) (car point))
- (define (point-y point) (cdr point))

- (define p1 (make-point 2 3))
- (define p2 (make-point 4 1))

What type is make-point?

- number, number \mapsto \text{Point}

Building data abstractions

- (define make-point cons)
- (define point-x car)
- (define point-y cdr)

- (define p1 (make-point 2 3))
- (define p2 (make-point 4 1))

Once we build a pair, we can treat it as if it were a primitive.

Pairs have the property of closure — we can use a pair anywhere we would expect to use a primitive data element:

\((\text{cons } (\text{cons } 1 \ 2) \ 3) \)
Building on earlier abstraction

Point abstraction

- (define (make-point x y) (cons x y))
- (define (point-x point) (car point))
- (define (point-y point) (cdr point))
- (define p1 (make-point 2 3))
- (define p2 (make-point 4 1))

Segment abstraction

- (define (make-seg pt1 pt2) (cons pt1 pt2))
- (define (start-point seg) (car seg))
- (define (end-point seg) (cdr seg))
- (define s1 (make-seg p1 p2))

Using data abstractions

- (define p1 (make-point 2 3))
- (define p2 (make-point 4 1))
- (define s1 (make-seg p1 p2))

- (define (stretch-point pt scale) (make-point (* scale (point-x pt)) (* scale (point-y pt))))

What type is `stretch-point`?

Point, number \(\rightarrow\) Point

Using data abstractions

- (define p1 (make-point 2 3))
- (define p2 (make-point 4 1))
- (define s1 (make-seg p1 p2))

- (define (stretch-seg seg scale) (make-seg (stretch-point (start-point seg) scale) (stretch-point (end-point seg) scale)))

- (define (seg-length seg) (sqrt (+ (square (- (point-x (start-point seg)) (point-x (end-point seg)))) (square (- (point-y (start-point seg)) (point-y (end-point seg)))))))
Using data abstractions

```
(define p1 (make-point 2 3))
(define p2 (make-point 4 1))
(define s1 (make-seg p1 p2))

(define (stretch-point pt scale)
  (make-point (* scale (point-x pt))
               (* scale (point-y pt))))
```

```
stretch-point p1 2) -> (4 . 6)
p1 -> (2 . 3)
```

Abstractions have two communities

- **Builders**
 (define (make-point x y) (cons x y))
 (define (point-x point) (car point))

- **Users**
 (* scale (point-x pt))

- Frequently the same person

Pairs are a data abstraction

- **Constructor**
 (cons A B)↦Pair<A,B>

- **Accessors**
 (car Pair<A,B>)↦A
 (cdr Pair<A,B>)↦B

- **Contract**
 (car (cons A B))↦A
 (cdr (cons A B))↦B

- **Operations**
 (pair? Q) returns #t if Q evaluates to a pair, #f otherwise

- **Abstraction barrier**

Rational number abstraction

- **A rational number is a ratio a/d**
- **Addition:**
 \[
 \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}
 \]
 \[
 \frac{2}{3} + \frac{1}{4} = \frac{2 \cdot 4 + 3 \cdot 1}{12} = \frac{11}{12}
 \]

- **Multiplication:**
 \[
 \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}
 \]
 \[
 \frac{2}{3} \cdot \frac{1}{3} = \frac{2 \cdot 1}{3 \cdot 3} = \frac{2}{9}
 \]
Rational number abstraction

- **Constructor**

 \(\text{make-rat: integer, integer -> Rat} \)

 \(\text{(make-rat } n \text{ } d) \rightarrow r \)

- **Accessors**

 \(\text{numer, denom: Rat -> integer} \)

 \(\text{(numer } r \text{)} \)
 \(\text{(denom } r \text{)} \)

- **Contract**

 \(\text{(numer } (\text{make-rat } n \text{ } d) \rightarrow n \)\)
 \(\text{(denom } (\text{make-rat } n \text{ } d) \rightarrow d \)\)

- **Operations**

 \((+\text{rat } x \text{ } y) \)
 \((*\text{rat } x \text{ } y) \)

- **Abstraction barrier**

Implementation

\(\text{; Rat = Pair<integer, integer>} \)

\(\text{(define } (\text{make-rat } n \text{ } d) \rightarrow (\text{cons } n \text{ } d)) \)

\(\text{(define } \text{(numer } r \rightarrow \text{car } r) \)

\(\text{(define } \text{(denom } r \rightarrow \text{cdr } r) \)

Additional operators

\(\text{; What is the type of } +\text{rat? } \text{Rat, Rat -> Rat} \)

\(\text{(define } (+\text{rat } x \text{ } y) \)

\(\text{(make-rat } (+ \text{ (* (numer } x \text{ } (denom } y)) \)

\(\text{ (* (numer } y \text{ } (denom } x))) \)

\(\text{ (* (denom } x \text{ } (denom } y)))) \)

\(\text{; The type of } +\text{rat: } \text{Rat, Rat -> Rat} \)

\(\text{(define } (*\text{rat } x \text{ } y) \)

\(\text{(make-rat } (* \text{ (numer } x \text{ } (numer } y)) \)

\(\text{ (* (denom } x \text{ } (denom } y)))) \)

Using our system

\(\text{(define one-half } (\text{make-rat } 1 \text{ } 2)) \)

\(\text{(define three-fourths } (\text{make-rat } 3 \text{ } 4)) \)

\(\text{(define new } (+\text{rat one-half three-fourths}) \)

\(\text{(numer } new) \rightarrow ? \)

\(\text{(denom } new) \rightarrow ? \)

\text{We get } \frac{10}{8} \text{, not the simplified } \frac{5}{4} \)
Rationalizing implementation

\[
\text{(define (gcd a b)}
\quad (\text{if (= b 0)}
\quad \quad a
\quad \quad (\text{gcd b (remainder a b)})))
\]

\[
\text{(define (make-rat n d)}
\quad (\text{cons n d}))
\]

\[
\text{(define (numer r)}
\quad (\text{car r}))
\]

\[
\text{(define (denom r)}
\quad (\text{cdr r}))
\]

Remove common factors when accessed

Rationalizing implementation

\[
\text{(define (gcd a b)}
\quad (\text{if (= b 0)}
\quad \quad a
\quad \quad (\text{gcd b (remainder a b)})))
\]

\[
\text{(define (make-rat n d)}
\quad (\text{cons} \ (\text{/ n (gcd n d)})
\quad \quad \ (\text{/ d (gcd n d)}))
\]

\[
\text{(define (numer r)}
\quad (\text{car r}))
\]

\[
\text{(define (denom r)}
\quad (\text{cdr r}))
\]

Remove common factors when created

Grouping together larger collections

We want to group a set of rational numbers

\[
(\text{cons r1 r2})
\]

Conventional interfaces — lists

- A list is a type that can hold an arbitrary number of ordered items.
- Formally, a list is a sequence of pairs with the following properties:
 - The car-part of a pair holds an item
 - The cdr-part of a pair holds the rest of the list
 - The list is terminated by the empty list: ()
- Lists are closed under cons and cdr
Lists and pairs as pictures

\[(\text{cons} \ <e1> \ <e2>)\]

\[(\text{list} \ <e1> \ <e2> \ \ldots \ <e_n>)\]

\[(\text{list} \ 1 \ \text{2} \ \text{3} \ \text{4}) \quad \rightarrow \quad (\text{1} \ \text{2} \ \text{3} \ \text{4})\]

\[(\text{null?} \ <z>) \quad \rightarrow \quad \text{#t} \quad \text{if} \quad <z> \quad \text{evaluates to empty list}\]

Cons’ing up lists

\[(\text{define} \ \text{1thru4} \ (\text{list} \ \text{1} \ \text{2} \ \text{3} \ \text{4}))\]
\[(\text{define} \ \text{2thru7} \ (\text{list} \ \text{2} \ \text{3} \ \text{4} \ \text{5} \ \text{6} \ \text{7}))\]

\[(\text{define} \ (\text{enumerate} \ \text{from} \ \text{to})\]
\[\quad \text{(if} \ (\text{> to} \ \text{from})\]
\[\quad \text{'()}\]
\[\quad \text{(cons} \ \text{from} \ (\text{enumerate} \ (+ \ \text{from} \ \text{to})))\]

Cdr’ing down lists

\[(\text{define} \ (\text{length} \ \text{lst})\]
\[\quad \text{(if} \ (\text{null?} \ \text{lst})\]
\[\quad \text{'0}\]
\[\quad (+ \ \text{1} \ (\text{length} \ (\text{cdr} \ \text{lst})))\)]\)

\[(\text{define} \ (\text{append} \ \text{list1} \ \text{list2})\]
\[\quad \text{(if} \ (\text{null?} \ \text{list1})\]
\[\quad \text{list2}\]
\[\quad \text{(cons} \ (\text{car} \ \text{list1})\]
\[\quad \text{(append} \ (\text{cdr} \ \text{list1})\]
\[\quad \text{list2}))\]

Sequences of cons cells
Better, and safer, to abstract:
\[(\text{define} \ \text{first} \ \text{car})\]
\[(\text{define} \ \text{rest} \ \text{cdr})\]
\[(\text{define} \ \text{adjoin} \ \text{cons})\]

... but we don't for lists and pairs
Transforming lists

(define (square-list lst)
 (if (null? lst)
 ()
 (cons (square (car lst))
 (square-list (cdr lst)))))
(define (double-list lst)
 (if (null? lst)
 ()
 (cons (* 2 (car lst))
 (double-list (cdr lst)))))
(define (map proc lst)
 (if (null? lst)
 ()
 (cons (proc (car lst))
 (map proc (cdr lst)))))

Map

(define (map proc lst)
 (if (null? lst)
 ()
 (cons (proc (car lst))
 (map proc (cdr lst)))))

What is the type of map?

(A ↦ B), List<A> ↦ List

Choosing just part of a list

(define (filter pred lst)
 (cond ((null? lst) ()
 ((pred (car lst))
 (cons (car lst)
 (filter pred (cdr lst))))
 (else (filter pred (cdr lst))))))
(filter even? (list 1 2 3 4 5 6))
-> (2 4 6)

What is the type of filter?

(A ↦ Boolean), List<A> ↦ List<A>

Data Types in Scheme

- Conventional
 - Numbers: 29, −35, 1.34, 1.2e5
 - Characters and Strings: #\a "this is a string"
 - Booleans: #t, #f
 - Vectors: #(1 2 3 "hi" 3.7)
- Scheme-specific
 - Procedures: value of +, result of evaluating (lambda (x) x)
 - Pairs and lists: (42 , 8), (1 1 2 3 5 8 13)
 - Symbols: pi, *, x, foo, hello-world
Symbols

- So far, we've seen them as the names of variables
 - (define foo (+ bar 2))
- But, in Scheme, all data types are first class, so we should be able to:
 - Pass symbols as arguments to procedures
 - Return them as values of procedures
 - Associate them as values of variables
 - Store them in data structures
 - For example: (chocolate caffeine sugar)

How do we refer to Symbols?

- Evaluation rule for symbols
 - Value of a symbol is the value it is associated with in the environment.
 - We associate symbols with values using the special form `define`
 - (define pi 3.1415926535)
 - (+ pi 2 r)
 - But how do we get to the symbol itself?
 - (define baz pi)
 - `baz` → 3.1415926535

Referring to Symbols

- Say your favorite color
- Say “your favorite color”
- In the first case, we want the meaning associated with the expression
- In the second, we want the expression itself
- We use the concept of quotation in Scheme to distinguish between these two cases

New special form: `quote`

- We want a way to tell the evaluator: “I want the following object as whatever it is, not as an expression to be evaluated”
 - `(quote foo)` → `foo`
 - `(define baz (quote pi))` → `undefined`
 - `baz → pi`
 - `(+ pi baz)` → `ERROR`
 - `+` expects type `<number>` as 2nd argument, given: `pi`; other arguments were: `3.1415926535`
Syntactic sugar

- The Reader (part of the Read-Eval-Print Loop, REPL) knows a short-cut
- When it sees 'pi it acts just like it had read (quote pi)
- The latter is what is actually evaluated
- Examples:
 - 'pi → pi
 - '17 → 17
 - "Hello world" → "Hello world"
 - '(1 2 3) → (1 2 3)

Making list structures with symbols

(list (quote brains) (quote caffeine) (quote sugar))
; -> (brains caffeine sugar)
(list 'brains 'caffeine 'sugar)
; -> (brains caffeine sugar)
'(brains caffeine sugar)
; -> (brains caffeine sugar)
(define x 42) (define y '(x y z))
(list (list 'foo 'bar) (list x y)
(list 'baz 'quux 'squee))
; -> ((foo bar) (42 (x y z))
(baz quux squee))
'(define x 42)
(list '+ x 3) ; -> (list '+ x 3)
(list 'foo 'bar) (list x y)
(list 'baz 'quux 'squee))
; -> ((foo bar) (42 (x y z))
(baz quux squee))

Confusing examples

(define x 20)
(+ x 3) ; -> 23
'(+ x 3) ; -> (+ x 3)
(list (quote +) x '3) ; -> (+ 20 3)
(list '+ x 3) ; -> (+ 20 3)
(list + x 3) ; -> (#<procedure:+> 20 3)

Operations on symbols

- symbol? has type anytype → boolean, returns #t for symbols
 - (symbol? (quote foo)) → #t
 - (symbol? 'foo) → #t
 - (symbol? 4) → #f
 - (symbol? '(1 2 3)) → #f
 - (symbol? foo) → It depends on what value foo is bound to
- eq? tests the equality of symbols
An aside: Testing for equality

- `eq?` tests if two things are exactly the same object in memory. Not for strings or numbers.
- `=` tests the equality of numbers
- `equal?` tests if two things print the same—symbols, numbers, strings, lists of those, lists of lists

```
((- 4 10)          ; -> #f
 (- 4 4)          ; -> #t
 (equal? 4 4)     ; -> #t
 (equal? (/ 1 2) 0.5) ; -> #f
 (eq? 4 4)        ; -> #t
 (eq? (expt 2 70) (expt 2 70)) ; -> #f

(= "foo" "foo")     ; -> Error!
(eq? "foo" "foo")   ; -> #f
(equal? "foo" "foo") ; -> #t

(eq? '(1 2) '(1 2)) ; -> #f
(equal? '(1 2) '(1 2)) ; -> #t
(define a '(1 2))    
(define b '(1 2))    
(eq? a b)            ; -> #f
(define a b)         
(eq? a b)            ; -> #t
```

Tagged data

- Attaching a symbol to all data values that indicates the type
- Can now determine if something is the type you expect

```
(define (make-point x y)
  (list 'point x y))

(define (make-rat n d)
  (list 'rat x y))

(define (point? thing)
  (and (pair? thing)
       (eq? (car thing) 'point)))

(define (rat? thing)
  (and (pair? thing)
       (eq? (car thing) 'rat)))
```

Benefits of tagged data

- **Data-directed programming** - decide what to do based on type
- **Defensive programming** - Determine if something is the type you expect, give a better error

```
(define (stretch thing scale)
  (if (point? thing)
      (stretch-point thing scale)
      (stretch-seg thing scale)))
```

```
(define (stretch-point pt)
  (if (not (point? pt))
      (error "stretch-point passed a non-point:" pt)
      ;; ...carry on
  )
```
Recitation time!