Limits to Computation

David Hilbert’s *Entscheidungsproblem* (1928)

Theorem (Church, Turing, 1936): These models of computation can’t solve every problem.

Proof: next!
David Hilbert’s *Entscheidungsproblem* (1928): can calculating machines give a yes or no answer to all mathematical questions?
Limits to Computation

David Hilbert’s *Entscheidungsproblem* (1928): can calculating machines give a yes or no answer to all mathematical questions?

Figure: Alonzo Church (1903-1995), lambda calculus

Figure: Alan Turing (1912-1954), Turing machines
Limits to Computation

David Hilbert’s *Entscheidungsproblem* (1928): can calculating machines give a yes or no answer to all mathematical questions?

Figure: Alonzo Church (1903-1995), lambda calculus

Figure: Alan Turing (1912-1954), Turing machines

Theorem (Church, Turing, 1936): These models of computation can’t solve every problem.
Limits to Computation

David Hilbert’s *Entscheidungsproblem* (1928): can calculating machines give a yes or no answer to all mathematical questions?

Figure: Alonzo Church (1903-1995), lambda calculus
Figure: Alan Turing (1912-1954), Turing machines

Theorem (Church, Turing, 1936): These models of computation can’t solve every problem. Proof: next!
First part of the proof: **Church-Turing thesis.**
Equivalence of Computation Methods

First part of the proof: **Church-Turing thesis.**

Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent.
First part of the proof: **Church-Turing thesis.** Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent. Turing-complete means capable of simulating Turing machines.
Equivalence of Computation Methods

First part of the proof: **Church-Turing thesis.** Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent. Turing-complete means capable of simulating Turing machines. Lambda calculus is Turing-complete (proof: later), and Turing machines can simulate lambda calculus.
Equivalence of Computation Methods

First part of the proof: **Church-Turing thesis.** Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent. Turing-complete means capable of simulating Turing machines. Lambda calculus is Turing-complete (proof: later), and Turing machines can simulate lambda calculus.

Some others:

- *Turing machines* are Turing-complete
Equivalence of Computation Methods

First part of the proof: **Church-Turing thesis.**

Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent. **Turing-complete** means capable of simulating Turing machines. Lambda calculus is Turing-complete (proof: later), and Turing machines can simulate lambda calculus. Some others:

- **Turing machines** are Turing-complete
- **Scheme** is Turing-complete
Equivalence of Computation Methods

First part of the proof: **Church-Turing thesis.** Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent. **Turing-complete** means capable of simulating Turing machines. Lambda calculus is Turing-complete (proof: later), and Turing machines can simulate lambda calculus. Some others:

- Turing machines are Turing-complete
- Scheme is Turing-complete
- Minecraft is Turing-complete
Equivalence of Computation Methods

First part of the proof: **Church-Turing thesis.** Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent. **Turing-complete** means capable of simulating Turing machines. Lambda calculus is Turing-complete (proof: later), and Turing machines can simulate lambda calculus.

Some others:

- **Turing machines** are Turing-complete
- **Scheme** is Turing-complete
- **Minecraft** is Turing-complete
- **Conway’s Game of Life** is Turing-complete
Equivalence of Computation Methods

First part of the proof: **Church-Turing thesis.** Any intuitive notion for a “computer” that you can come up with will be no more powerful than a Turing machine or than lambda calculus. That is, most models of computation are equivalent. **Turing-complete** means capable of simulating Turing machines. Lambda calculus is Turing-complete (proof: later), and Turing machines can simulate lambda calculus. Some others:

- **Turing machines** are Turing-complete
- **Scheme** is Turing-complete
- **Minecraft** is Turing-complete
- **Conway’s Game of Life** is Turing-complete
- **Wolfram’s Rule 110 cellular automaton** is Turing-complete
Are there problems which our notion of computing cannot solve?

Chelsea Voss
Lambda Calculus and Computation
Does not compute?

- Are there problems which our notion of computing cannot solve?
- Reworded: are there *functions* that cannot be computed?
Does not compute?

- Are there problems which our notion of computing cannot solve?
- Reworded: are there *functions* that cannot be computed?
- Consider functions which map integers to integers.
Are there problems which our notion of computing cannot solve?

Reworded: are there functions that cannot be computed?

Consider functions which map integers to integers.

Can write out a function f as the infinite list of integers $f(0), f(1), f(2)...$
Does not compute?

- Are there problems which our notion of computing cannot solve?
- Reworded: are there functions that cannot be computed?
- Consider functions which map integers to integers.
- Can write out a function f as the infinite list of integers $f(0)$, $f(1)$, $f(2)$...
- Any program text can be written as a single number, joining together this list
Suppose, for contradiction, you’ve made a program to compute each possible function.
Does not compute?

- Suppose, for contradiction, you’ve made a program to compute each possible function.
- Put them in a big table, one function per row, one input per column.
Does not compute?

- Suppose, for contradiction, you’ve made a program to compute each possible function
- Put them in a big table, one function per row, one input per column
- Diagonalize!

Theorem (Church, Turing): These models of computation can't solve every problem.
Does not compute?

- Suppose, for contradiction, you’ve made a program to compute each possible function.
- Put them in a big table, one function per row, one input per column.
- Diagonalize!
- We get a contradiction: here’s a function that’s not in your list.

Theorem (Church, Turing): These models of computation can’t solve every problem.
Does not compute?

- Suppose, for contradiction, you’ve made a program to compute each possible function
- Put them in a big table, one function per row, one input per column
- Diagonalize!
- We get a contradiction: here’s a function that’s not in your list.

Theorem (Church, Turing): *These models of computation can’t solve every problem.*
How many uncomputable problems?

- Countably infinite: \aleph_0

- Uncountably infinite: 2^{\aleph_0}

- The number of integers
- The number of binary strings
- The number of programs
- The number of functions mapping from integer to integer
- The number of sets of binary strings
- The number of problem specifications
How many uncomputable problems?

- Countably infinite: \aleph_0
 - The number of integers
How many uncomputable problems?

- Countably infinite: \aleph_0
 - The number of integers
 - The number of binary strings

- Uncountably infinite: 2^{\aleph_0}
 - The number of functions mapping from integer to integer
 - The number of sets of binary strings
 - The number of problem specifications
How many uncomputable problems?

- Countably infinite: \aleph_0
 - The number of integers
 - The number of binary strings
 - The number of programs

- Uncountably infinite: 2^{\aleph_0}
 - The number of functions mapping from integer to integer
 - The number of sets of binary strings
 - The number of problem specifications
How many uncomputable problems?

- Countably infinite: \aleph_0
 - The number of integers
 - The number of binary strings
 - The number of programs
- Uncountably infinite: 2^{\aleph_0}
How many uncomputable problems?

- Countably infinite: \aleph_0
 - The number of integers
 - The number of binary strings
 - The number of programs

- Uncountably infinite: 2^{\aleph_0}
 - The number of functions mapping from integer to integer
How many uncomputable problems?

- Countably infinite: \aleph_0
 - The number of integers
 - The number of binary strings
 - The number of programs

- Uncountably infinite: 2^{\aleph_0}
 - The number of functions mapping from integer to integer
 - The number of sets of binary strings
How many uncomputable problems?

- **Countably infinite:** \aleph_0
 - The number of integers
 - The number of binary strings
 - The number of programs

- **Uncountably infinite:** 2^{\aleph_0}
 - The number of functions mapping from integer to integer
 - The number of sets of binary strings
 - The number of problem specifications
Okay, but can you give me an example?
Okay, but can you give me an example?

- We’ve seen our programs create infinite lists and infinite loops
Okay, but can you give me an example?

- We’ve seen our programs create infinite lists and infinite loops
- Can we write a program to check if an expression will return a value?
Okay, but can you give me an example?

- We’ve seen our programs create infinite lists and infinite loops
- Can we write a program to check if an expression will return a value?

```
(define (halt? p)
  ; ...
)
```
Aside: what does this do?

\[
((\lambda (x) \,(x \,x))
\quad (\lambda (x) \,(x \,x)))
\]
Aside: what does this do?

\[
\begin{align*}
((\lambda (x) (x \ x)) \\ (\lambda (x) (x \ x))) \\
= ((\lambda (x) (x \ x)) \\ (\lambda (x) (x \ x)))
\end{align*}
\]
Aside: what does this do?

\[
((\lambda (x) \ (x \ x))
\quad (\lambda (x) \ (x \ x)))
\]

\[
= ((\lambda (x) \ (x \ x))
\quad (\lambda (x) \ (x \ x)))
\]

\[
= ((\lambda (x) \ (x \ x))
\quad (\lambda (x) \ (x \ x)))
\]
Aside: what does this do?

```
((lambda (x) (x x))
 (lambda (x) (x x)))

= ((lambda (x) (x x))
 (lambda (x) (x x)))

= ((lambda (x) (x x))
 (lambda (x) (x x)))

= ...
```
Does not compute: Halting Problem

Contradiction!

(define (troll)
 (if (halt? troll)
 ; if halts? says we halt, infinite-loop
 ((lambda (x) (x x)) (lambda (x) (x x)))
 ; if halts? says we dont, return a value
 #f))

Halting Problem is undecidable for Turing Machines and thus all programming languages. (Turing, 1936)

Want to learn more computability theory? See 18.400J/6.045J or 18.404J/6.840J (Sipser).
Contradiction!

(define (troll)
 (if (halt? troll)
 ; if halts? says we halt, infinite-loop
 ((lambda (x) (x x)) (lambda (x) (x x)))
 ; if halts? says we dont, return a value
 #f))
Contradiction!

(define (troll)
 (if (halt? troll)
 ; if halts? says we halt, infinite-loop
 ((lambda (x) (x x)) (lambda (x) (x x)))
 ; if halts? says we dont, return a value
 #f))

(halt? troll)
Contradiction!

(\(\text{define (troll)}\)
 \(\text{(if (halt? troll)}\)
 \(\text{; if halts? says we halt, infinite-loop}\)
 \((\text{lambda (x) (x x)) (lambda (x) (x x))})\)
 \(\text{; if halts? says we dont, return a value}\)
 \(\text{\#f})\))

(halt? troll)

Halting Problem is undecidable for Turing Machines and thus all programming languages. (Turing, 1936)
Does not compute: Halting Problem

Contradiction!

(define (troll)
 (if (halt? troll)
 ; if halts? says we halt, infinite-loop
 ((lambda (x) (x x)) (lambda (x) (x x)))
 ; if halts? says we dont, return a value
 \#f))

(halt? troll)

Halting Problem is undecidable for Turing Machines and thus all programming languages. (Turing, 1936)
Want to learn more computability theory? See 18.400J/6.045J or 18.404J/6.840J (Sipser).
What’s the minimal set of Scheme syntax that you need to achieve Turing-completeness?
The Source of Power

What’s the minimal set of Scheme syntax that you need to achieve Turing-completeness?

- define
- set!
- numbers
- strings
- if
- recursion
- cons
- booleans
- lambda
(define (cons a b)
 (lambda (c)
 (c a b)))
(define (cons a b)
 (lambda (c)
 (c a b)))

(define (car p)
 (p (lambda (a b) a)))
Cons cells?

(define (cons a b)
 (lambda (c)
 (c a b)))

(define (car p)
 (p (lambda (a b) a)))

(define (cdr p)
 (p (lambda (a b) b)))
Booleans?

(define true
 (lambda (a)
 (lambda (b)
 a)))

(define false
 (lambda (a)
 (lambda (b)
 b)))

(define if (lambda (test then else)
 ((test then) else))

Also try:

and, or, not
Booleans?

\[
\begin{align*}
\text{(define true} & \text{ (lambda (a))} \\
& \text{(lambda (b) a)))} \\
\text{(define false} & \text{ (lambda (a))} \\
& \text{(lambda (b) b)))}
\end{align*}
\]
Booleans?

(define true
 (lambda (a)
 (lambda (b)
 a)))))

(define false
 (lambda (a)
 (lambda (b)
 b)))

(define if (lambda (test then else)
 ((test then) else))
Booleans?

(define true
 (lambda (a)
 (lambda (b)
 a)))

(define false
 (lambda (a)
 (lambda (b)
 b)))

(define if (lambda (test then else)
 ((test then) else))

Also try: and, or, not
Number N: A procedure which takes in a successor function s and a zero z, and returns the successor applied to the zero N times.

- For example, 3 is represented as $(s (s (s z)))$, given s and z
- This technique: *Church numerals*
Numbers?

(define (church-0
 (lambda (s)
 (lambda (z)
 z)))

(define (church-1
 (lambda (s)
 (lambda (z)
 (s z))))

(define (church-2
 (lambda (s)
 (lambda (z)
 (s (s z)))))
Numbers?

(define (church-0
 (lambda (s)
 (lambda (z)
 z)))

(define (church-1
 (lambda (s)
 (lambda (z)
 (s z)))))
(define (church-0
 (lambda (s)
 (lambda (z)
 z)))))

(define (church-1
 (lambda (s)
 (lambda (z)
 (s z)))))

(define (church-2
 (lambda (s)
 (lambda (z)
 (s (s z))))))
(define (church-inc n)
 (lambda (s)
 (lambda (z)
 (s ((n s) z))))))
(define (church-inc n)
 (lambda (s)
 (lambda (z)
 (s ((n s) z)))))

(define (church-add a b)
 (lambda (s)
 (lambda (z)
 ((a s) ((b s) z)))))
Numbers?

```
(define (church-inc n)
  (lambda (s)
    (lambda (z)
      (s ((n s) z))))

(define (church-add a b)
  (lambda (s)
    (lambda (z)
      ((a s) ((b s) z)))))

(define (also-church-add a b)
  ((a church-inc) b)))
```
(define (church-inc n)
 (lambda (s)
 (lambda (z)
 (s ((n s) z))))))

(define (church-add a b)
 (lambda (s)
 (lambda (z)
 ((a s) ((b s) z))))))

(define (also-church-add a b)
 ((a church-inc) b)))

For fun: Write decrement, write multiply.
Let, define?

Use lambdas.
Let, define?

Use lambdas.

(define x 4)
(...stuff)
Use lambdas.

(define x 4)
(...stuff)

becomes...

((lambda (x)
 (...stuff)
) 4)
A problem arises!

(define (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))
)
A problem arises!

(define (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))

Why? (lambda (fact) ...) (...definition of fact...) fails! fact is not yet defined when called in its function body.
A problem arises!

(define (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))

Why? (lambda (fact) ...) (...definition of fact...) fails! fact is not yet defined when called in its function body. If we can’t name “fact” how do we use it in the recursive call?
Factorial again

Run it with a copy of itself.

```
(define (fact inner-fact n)
  (if (= n 0)
      1
      (* n
         (inner-fact inner-fact (- n 1)))))
```

Now, `(fact fact 4)` works!
Factorial again

Run it with a copy of itself.

(define (fact inner-fact n)
 (if (= n 0)
 1
 (* n
 (inner-fact inner-fact (- n 1)))))

Now, (fact fact 4) works!
Now without define

(fact fact 4) becomes:
Now without define

(fact fact 4) becomes:

(((lambda (fact n)
 (if (= n 0)
 1
 (* n (fact fact (- n 1)))))
(l lambda (fact n)
 (if (= n 0)
 1
 (* n (fact fact (- n 1)))))
4)
Messy. Can we do better?

Let’s define fact-inner as:

\[
\text{fact-inner}(\lambda (n) \begin{cases}
1 & \text{if } n = 0 \\
(n \times \text{fact-inner}(\lambda (\lambda (n) (- n 1)))) & \text{otherwise}
\end{cases})
\]

Huh - what’s \(\text{fact-inner}(\text{fact}) \)?

\(\text{fact-inner}(\text{fact}) = \text{fact} \).

A fixed point!
Messy. Can we do better?

Let’s define fact-inner as:

```
(lambda (fact)
  (lambda (n)
    (if (= n 0)
      1
      (* n (fact (- n 1))))))
```
Messy. Can we do better?

Let’s define fact-inner as:

\[
\text{(lambda (fact) (lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))))}
\]

Huh - what’s (fact-inner fact)?
Messy. Can we do better?

Let’s define fact-inner as:

\[
\text{(lambda (fact)
 (lambda (n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))))}
\]

Huh - what’s (fact-inner fact)? (fact-inner fact) = fact.
Messy. Can we do better?

Let's define fact-inner as:

\[
\text{(lambda (fact)
 (lambda (n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))))}
\]

Huh - what's (fact-inner fact)? (fact-inner fact) = fact. A fixed point!
Now let’s define \(Y \) as:

\[
\text{(lambda (f)}
\text{ \ ((lambda (g) (f (g g)))}
\text{ (lambda (g) (f (g g)))))}
\]

We’ll prove that \((Y \ f) = (f \ (Y \ f)) \)
Now let's define Y as:

\[(\lambda (f) \quad ((\lambda (g) (f (g \ g))) \quad ((\lambda (g) (f (g \ g)))))\]

We'll prove that \((Y \ f) = (f \ (Y \ f))\) – that we can use Y to create fixed points.
Producing Fixed Points

From the problem before: we want \((\text{fact-inner} \ \text{fact})\).
Producing Fixed Points

From the problem before: we want \((\text{fact-inner } \text{fact})\).

\[
\text{(define } \ Y \ \text{(lambda } (f) \\
\quad ((\text{lambda } (g) \ (f \ (g \ g))) \\
\quad \quad \text{(lambda } (g) \ (f \ (g \ g))))) \\
\text{)}
\]

;; For convenience:
;; \(H := \text{(lambda } (g) \ (f \ (g \ g)))\)

;; Is \((\text{fact-inner } \text{fact}) = (Y \ \text{fact-inner})\)?
;; \((Y \ \text{fact-inner})
;; = (H \ H) \quad \text{; (with } f = \text{fact-inner})
;; = (\text{fact-inner } (g \ g))
;; = (\text{fact-inner } (H \ H))
;; = (\text{fact-inner } (Y \ \text{fact-inner}))
;; = (\text{fact-inner } \text{fact}) \quad \text{; Success!}
Now we can define \texttt{fact} as follows:

\begin{verbatim}
(Y (lambda (fact-inner)
 (lambda (n)
 (if (= n 0)
 1
 (* n (fact-inner (- n 1)))))))
\end{verbatim}

Can create \texttt{fact} without using \texttt{define}!

Can create all of Scheme using just \texttt{lambda}!

Lambda calculus is Turing-complete!

Church-Turing thesis!
Now we can define fact as follows:

\[
(Y \ (\lambda (\text{fact-inner})
 \ (\lambda (n)
 \ (\text{if } (= n 0)
 \ 1
 \ (* n (\text{fact-inner} (- n 1)))))
))
\]
Now we can define fact as follows:

\[(Y \ (\lambda \ (\text{fact-inner}) \n \ (\lambda \ (n) \n \ (\text{if} \ (= \ n \ 0) \n \ 1 \n \ (* \ n \ (\text{fact-inner} \ (- \ n \ 1))))))))\]

Can create fact without using define!
Producing Fixed Points

Now we can define fact as follows:

$$(\text{Y} \ (\lambda (\text{fact-inner}) \ (\lambda (\text{n}) \ (\text{if} \ (= \text{n} \ 0) \ 1 \ (* \text{n} \ (\text{fact-inner} \ (- \text{n} \ 1))))))))$$

Can create fact without using define!
Can create all of Scheme using just λ!
Now we can define `fact` as follows:

\[
(Y \ (\lambda (\text{fact-inner})
\quad (\lambda (n)
\quad \ (\text{if} \ (\ = \ n \ 0)
\quad \ \ 1
\quad \ (* \ n \ (\text{fact-inner} \ (- \ n \ 1)))))))))
\]

Can create `fact` without using `define`!
Can create all of Scheme using just `lambda`!
Lambda calculus is Turing-complete!
Producing Fixed Points

Now we can define fact as follows:

\[(Y \ (\lambda (\text{fact-inner}) \ (
\lambda (n) \n \ \ (\text{if} \ (= n 0) \n \ \ 1
 \ \ (\ast n \ (\text{fact-inner} (- n 1))))))))\]

Can create fact without using define!
Can create all of Scheme using just lambda!
Lambda calculus is Turing-complete! Church-Turing thesis!
Fun links

- https://xkcd.com/505/
- http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
- https://youtu.be/1X21HQphy6I
- https://youtu.be/My8AsV7bA94
- https://youtu.be/xP5-iIeKXE8