Quantum Entanglement,
Bell’s Theorem,
and Reality
in 12 minutes

Adam Marblestone

Perspectives on Science Research Symposium 2006
Research Mentor: Prof. Michel Devoret, Yale Applied Physics & Physics
Randomness in QM: Subjective or Objective?

- **Uncertainty Principle** predicts **incompatible observables** (e.g., position and momentum)

- Measuring one **randomizes** any subsequent measurement of the other

- But before the first measurement, don’t both have **definite values**?
But before the measurement, don’t both have definite values?

Partial Answer: **Bell’s Theorem** (JS Bell, 1964):

Two possibilities…
either:
Incompatible observables **don’t** both have definite values
or:
Incompatible observables **do** both have definite values, but, those values **depend on** simultaneous events, at far away locations
Quantum Entanglement

Interaction between two objects

Objects separate

Objects correlated after separation

Space

Time
Quantum Entanglement

If the interaction includes quantum entanglement, then: after separating, the objects are more strongly correlated than any separated non-quantum objects can be.
Making linear operations nonlinear, with entanglement

Box is a simple quantum computer. Need linear algebra to understand its operation. Therefore we make an analogy:

Quantum computational process →
Flow of information through **separate pipes** where the information is altered by **machinery**; followed by a **coupling stage**.

Quantum randomness in the computation →
Mice are stuck in the pipes. They cause random fluctuations in the pipe-machinery. But the box is designed to work anyway (it computes f).
Inside the black box: Pipes isolate input streams, then combine

INPUTS

A
B
C
D

“Black Box”
Computes function: \(f \)

f(A,B,C,D)

A → Pipe 1
B → Pipe 2
C → Pipe 3
D → Pipe 4

Combiner, L

f(A,B,C,D)
Inside the black box: Pipes isolate input streams, then combine

Assumption: Mouse behavior is deterministic

There are “random” fluctuations in the pipes from use to use, but, during any given use, each pipe outputs a definite function of its input.

(Note: Mouse behavior too complex to predict which function.)
There are “random” fluctuations in the pipes from use to use, but, during any given use each pipe outputs a definite function of its input.

During any single use:

Each pipe has one, determined output, for a given input.
There are “random” fluctuations in the pipes from use to use, but, during any given use each pipe outputs a definite function of its input.

L DESIGNED SO THAT:
No matter which functions G, H, I, J are: L outputs a linear function of A, B, C, D
L DESIGNED SO THAT: No matter what functions G, H, I, J are, L outputs a linear function of A, B, C, D

BUT: In our box, the mice have been entangled with one another in the past, and f becomes a nonlinear function of A, B, C, D

Even if we don’t change the nature of the combiner at all….
If the mice have been entangled with one another in the past, L outputs a nonlinear function of A, B, C, D... even though the mice never interact after the machine is constructed.
A PARADOX?

No matter what functions G, H, I, J are:
L always outputs a linear function of A, B, C, D

BUT: If the mice have prior entanglement,
L outputs a nonlinear function of A, B, C, D….
Even though the mice never interact after the machine is constructed

Made one key assumption:

“There are random fluctuations in the pipes from use to use, but, during any given use, each pipe outputs a definite function of its input.”

i.e., mouse behavior deterministic
A PARADOX?

Made one key assumption:

“There are random fluctuations in the pipes from use to use, but, at any given time, each pipe outputs a definite function of its input.”

Resolutions of Paradox?:

1) Behavior of mouse in one pipe is affected by input to other pipes. Therefore a pipe’s output is a function both of its own input and of the inputs to other pipes.
A PARADOX?

Made one key assumption:

“There are random fluctuations in the pipes from use to use, but, at any given time, each pipe outputs a definite function of its input.”

Resolutions of Paradox?:

1) Behavior of mouse in one pipe is affected by input to other pipes. Therefore a pipe’s output is a function both of its own input and of the inputs to other pipes.

Faster than light “causation”, without interaction. Only affects the random fluctuations in the pipes. Therefore doesn’t violate special relativity.
A PARADOX?

Made one key assumption:

“There are random fluctuations in the pipes from use to use, but, at any given time, each pipe outputs a definite function of its input.”

Resolutions of Paradox?:

1) Behavior of mouse in one pipe is affected by input to other pipes. Therefore a pipe’s output is a function both of its own input and of the inputs to other pipes.

Faster than light “causation”, without interaction. Only affects the random fluctuations in the pipes. Therefore doesn’t violate special relativity.

2) Behavior of mouse is non-deterministic. No definite function maps pipe input to pipe output. i.e., randomness in the computational process is objective
We’ve designed such a quantum-computational “box”, thus proving a variant of:

Bell’s Theorem:

Either:

1) The hidden determinants of measured values in one location are *instantaneously* affected by events elsewhere.

Or:

2) Quantum randomness is *objective*. There are no hidden determinants of the values of all observables ….