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Abstract We consider classical and entanglement-assisted versions of a distributed
computation scheme that computes nonlinear Boolean functions of a set of input bits
supplied by separated parties. Communication between the parties is restricted to take
place through a specific apparatus which enforces the constraints that all nonlinear,
nonlocal classical logic is performed by a single receiver, and that all communication
occurs through a limited number of one-bit channels. In the entanglement-assisted
version, the number of channels required to compute a Boolean function of fixed
nonlinearity can become exponentially smaller than in the classical version. We dem-
onstrate this exponential enhancement for the problem of distributed integer addition.

Keywords Quantum communication complexity · Locally nonlinear distributed
evaluation · Entanglement · Nonlinear Boolean functions

PACS 03.67.Hk · 03.67.Ac · 03.67.-a

1 Introduction

The study of quantum communication complexity [1,2,7] has drawn attention to
the feasibility using quantum protocols of certain classically impossible communi-
cation tasks. This is strikingly demonstrated by quantum pseudo-telepathy proto-
cols [3]. In quantum pseudo-telepathy, entanglement eliminates the classical need
for signaling between separated parties collaborating to perform a task. Crucially,
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48 A. H. Marblestone, M. Devoret

while entanglement substitutes for signaling in pseudo-telepathy scenarios, it does
not itself produce superluminal signaling [15]. Rather, entanglement and
communication are partially interchangeable resources. Here we demonstrate a new
exponential quantum-classical dichotomy in multi-party communication, in which
entanglement is partially interchangeable with nonlocal, nonlinear logic. We consider
classical and entanglement-assisted versions of a distributed computation scheme
that allows a single receiver to compute nonlinear Boolean functions of a set of
input bits supplied by spatially separated senders. Communication between all par-
ties is restricted to take place through a specific apparatus which enforces the con-
straints that all nonlinear, nonlocal classical logic is performed by the single
receiver, and that the senders communicate only with the receiver through a lim-
ited number of linear one-bit channels. In the entanglement-assisted version, where
local rotations on entangled qubits are performed and where the results of local
measurements on these qubits can be sent through the linear communication appa-
ratus, the number of channels required to compute a Boolean function of fixed non-
linearity can become exponentially smaller than in the classical version. Our
imposed handicap on the communication apparatus, which limits the amount of com-
munication and prevents the communication process itself from introducing non-
linearity into the Boolean function being distributedly evaluated, reveals a key
difference between the quantum and classical versions of the system: in the quan-
tum version, the nonlinearity index of the computable functions can grow expo-
nentially with the number of channels, whereas in the classical version it grows
linearly. We use the entanglement-assisted version to demonstrate distributed integer
addition in this setup using exponentially fewer channels than would classically be
necessary.

Although the use of a communication handicap to demonstrate this quantum-clas-
sical dichotomy is in a sense artificial, the specific communication setup used, which
we call locally nonlinear distributed evaluation, is quite natural for the purpose of
drawing attention to the distinction between linearity and nonlinearity in the commu-
nication process. In particular, it presents a fixed number of linear combinations of
the senders’ input bits to a receiver capable of executing arbitrary classical nonlinear
logic on bits locally accessible to her, while preventing the senders and the receiver
from performing any extraneous communication or nonlocal nonlinear logic. Using
this setup, nonlinearity in the communication process can be precisely quantified in
terms of the required number of one-bit channels. For distributed integer addition, the
required number of channels classically grows as the number of senders, whereas in
the quantum scenario it grows as the logarithm of the number of senders. Our results
should also apply to any other communication setup that imposes the same constraints,
i.e., the setup must present the receiver with a fixed number of linear combinations
of the senders’ input bits, while preventing any further communication between the
parties.

2 Linear and nonlinear boolean functions

For Boolean functions y(x0, x1, . . . , xk−1) of k Boolean variables, linearity is defined
to be the condition that there exist Boolean constants ci and b such that
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Exponential quantum enhancement for distributed addition with local nonlinearity 49

y(x0, x1, . . . , xk−1) = c0 · x0 ⊕ c1 · x1 ⊕ · · · ⊕ ck−1 · xk−1 ⊕ b (1)

where · denotes AND (product modulo 2) and ⊕ denotes XOR (sum modulo 2). Here
linearity and affinity are treated as synonymous. On the other hand, an arbitrary Bool-
ean function f of k bits is a polynomial of degree ≤ k in its inputs, with coefficients
in the set {0, 1}, addition given by ⊕ (XOR) and multiplication given by AND.

f (x0, · · · , xk−1) = [
A ⊕ A0 · x0 ⊕ A1 · x1 ⊕ · · · ⊕ Ak−1 · xk−1

]

⊕ (A01 · x0 · x1 ⊕ A02 · x0 · x2 ⊕ · · · ⊕ Ak−1k−2 · xk−1 · xk−2)

⊕ (2)

· · ·
⊕ (A012···k−1 · x0 · x1 · · · xk−1)

In this expression, brackets are placed around the linear part of the general function,
while the nonlinear parts are put in parenthesis. Note that some of the coefficients
Ai jk... may be zero. This way of writing an arbitrary Boolean function as a polynomial
is known as the algebraic normal form, or Zhegalkin polynomial. A crucial concept is
the order of nonlinearity of a Boolean function. The order of nonlinearity is sometimes
called the algebraic degree.

Definition 1 (Order of nonlinearity O( f ) of a Boolean function f ): the order of non-
linearity O( f ) of a Boolean function f is the degree of its Zhegalkin polynomial. In
other words, O( f ) is the maximum number of input bits combined in a multi-way
AND statement with non-zero coefficient in the algebraic normal form representation
(2) of f .

For example, the function f (a, b, c, d) = b · d ⊕ a · c ⊕ a · b · d has O( f ) = 3. It
will be of no surprise that Boolean functions with orders of nonlinearity ≤1 are called
linear (O( f ) = 0 implies that f is a constant), and that Boolean functions with orders
of nonlinearity >1 are called nonlinear. Nonlinear Boolean functions have algebraic
normal form representations that contain at least a two-way AND statement. We say
that a function f with order of nonlinearity O( f ) = n is n-nonlinear. Nonlinear
Boolean functions are essential for computation, since any family of classical logic
gates generating a Turing universal circuit model of computation must contain at least
one nonlinear gate, such as AND or OR (xORy = x̄ANDȳ = x ⊕ y ⊕ x · y).

3 Locally nonlinear distributed evaluation

In the sections that follow, we consider a distributed computation scheme with the
following properties, which define the notion of a locally nonlinear distributed eval-
uation. We call the scheme locally nonlinear because all nonlinear classical logic is
performed locally, by a single receiver.
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50 A. H. Marblestone, M. Devoret

Fig. 1 Locally nonlinear distributed evaluation uses a linear, unidirectional communication bus with a
fixed number of one-bit channels. In this example, there are three senders (Alice, Bob and Charlie) and
two channels. Each channel can carry only one bit to the receiver Olga. The symbol ⊕ indicates a classical
CNOT. Note the appearance of the four types of bits in this setup: input bits, sent bits, received bits and
output bits

Definition 2 Locally nonlinear distributed evaluation

1. Senders: There are N senders (Alice, Bob, Charlie, ...), each possessing one bit
from a collection of N bits

x0, x1, . . . , xN−1

The senders’ possessed bits x0, x1, . . . , xN−1 are called input bits for short.
2. Receiver: There is one receiver, Olga.
3. Linear, unidirectional communication bus: As shown in Fig. 1, each sender

may upload one single bit (vertical lines) to each of a fixed number m of separate
single-bit channels (horizontal lines) which reach Olga. The uploaded bits are
called sent bits to distinguish them from the senders’ input bits. The m bits that
Olga receives from the channels are called received bits to distinguish them from
sent bits and input bits. The uploading process is linear, relying only on the XOR
(i.e., CNOT) operation: the channels are initialized to zero, and if the value of
a channel is v before the i th sender uploads a bit ai to it, then the value of the
channel after the i th sender’s upload is v ⊕ ai . The value that Olga receives from
the channel is then

∑
⊕ ai = a0 ⊕ a2 ⊕ · · · ⊕ aN−1.

4. Separation of the senders: The value of a sent bit ai from the i th sender does not
depend on the values of the other senders’ input bits {xk |k �= i}. To fix ideas, we
may assume that each sender has access only to the value of her own input bit and
not to the values of the other senders’ input bits. In particular, we may assume that
the senders are mutually spacelike separated at the events at which they choose
their input bits, and that they do not communicate with one another subsequently.
The local realism of classical physics requires that, in a classical locally nonlinear
distributed evaluation, ai = pi (xi ), where xi is the i th sender’s input bit and pi is
some deterministic one-bit Boolean function of one bit. The function pi varies, in
general, from channel to channel, and from sender to sender. On the other hand,

123



Exponential quantum enhancement for distributed addition with local nonlinearity 51

in an entanglement-assisted locally nonlinear distributed evaluation, ai may be a
random bit obtained from the outcome of a quantum measurement on a qubit local
to the i th sender and entangled with qubits local to the other senders; otherwise the
structure of the communication bus is the same in the entanglement-assisted case.
Importantly, the uploading process is unidirectional: the senders do not receive
(download) any information from the channels, but only upload single bits using
the ⊕ operation.

5. Local nonlinear computation by the receiver: Olga’s goal is to compute a
sequence of m output bits

y0, y1, . . . , ym−1

which are functions of the senders’ input bits, using only the m received bits that
she receives from the m channels. The overall accomplishment of the group is
thus that Olga determines

⎡

⎢
⎢
⎣

y0
y1
· · ·

ym−1

⎤

⎥
⎥
⎦ = F

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

x0
x1
· · ·

xN−1

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ (3)

Sometimes we will focus on only one of the bits yq computed by Olga, treating
it as a function of the senders’ input bits. The bits that Olga computes are called
output bits, and it is important to distinguish them from input bits, sent bits and
received bits.

4 Classical restriction on the nonlinearity of locally nonlinear distributed
evaluation

In a classical world, the requirement that each sender has access only to her own input
bit implies that the bit ai uploaded by the i th sender to the j th channel must be a func-
tion of her input bit, and not of the other senders’ input bits. Thus, ai = (c ji · xi )⊕b ji

for some Boolean constants c ji and b ji . Even if an input ai is chosen “stochastically,”
it can be treated as a deterministic function of xi in any given instance; this is tan-
tamount to the assumption of “local realism” in classical physics. Olga thus receives
the bit

∑⊕
i ai = ∑⊕

i (c ji · xi ) ⊕ b ji from the j th channel. Olga is then free to locally
evaluate arbitrary nonlinear Boolean functions of these received bits, of which there
are m. Therefore,

yq = h

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝C0 ·

⎡

⎢⎢
⎣

x0
x1
· · ·

xN−1

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠ ⊕

⎡

⎢⎢
⎣

b00
b01
· · ·

b0(N−1)

⎤

⎥⎥
⎦ , . . . ,

⎛

⎜⎜
⎝Cm−1 ·

⎡

⎢⎢
⎣

x0
x1
· · ·

xN−1

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⊕

⎡

⎢⎢
⎣

b(m−1)0
b(m−1)1

· · ·
b(m−1)(N−1)

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠ (4)
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where h is an arbitrary Boolean function computed locally by Olga, the C j are constant
Boolean row vectors Cj = [

c j0 c j1 . . . c j (N−1)

]
, bi j is a constant Boolean matrix

and m is the number of channels. This leads to the following lemma.

Lemma 1 (Classical bound on the nonlinearity of a locally nonlinear distributed eval-
uation) In a locally nonlinear distributed evaluation with m channels, Olga’s output
yq , as given in (4), must have order of nonlinearity ≤m as a function of the senders’
input bits.

Proof The Boolean function h in (4) is a function of only m arguments, namely the
m received bits which Olga receives from the m channels. Each such received bit is
a linear function of the senders’ input bits xi . A Boolean function of m arguments
can have order of nonlinearity at most m. Therefore h can, in the algebraic normal
form representation, combine its arguments in at most an m-way AND statement.
Since each argument of h contains only terms linear in the xi , distributing AND over
XOR produces an expression with at most m-way ANDs of the xi . The reduction of
this expression to algebraic normal form merely deletes conjunctions whose constant
coefficients are 0 (e.g., 0 · x1 · x2 · x5 → 0), and eliminates repeated instances of a
single variable in conjunctions (e.g., x1 · x3 · x1 → x1 · x3), and therefore preserves
this property. ��

5 Preview of quantum-classical dichotomy in nonlinearity

We will show that in an entanglement-assisted locally nonlinear distributed evaluation
with m channels, Olga’s outputs yq can be 2m−1-nonlinear in the senders’ input bits.
This is an exponential enhancement in the ability of entanglement-assisted locally
nonlinear distributed evaluations to evaluate highly nonlinear Boolean functions, as
compared to classical locally nonlinear distributed evaluations, which are limited by
Lemma 1 to output bits that are at most m-nonlinear. This quantum-classical dichot-
omy will be the central result of this paper.

6 Classical impossibility of integer addition using locally nonlinear distributed
evaluation

To establish our quantum-classical dichotomy in nonlinearity, we now turn to a spe-
cific example: the problem of implementing integer addition using a locally nonlinear
distributed evaluation. Contrary to appearances, the computation of the bits of the
result of the integer addition of a series of bits, in contrast to the addition modulo-2,
is a nonlinear Boolean computation.

Definition 3 Locally nonlinear distributed integer addition
A locally nonlinear distributed evaluation implements binary integer addition if Olga’s
outputs yq are the binary digits sq the sum of the senders input bits, defined by

S =
∑

xi =
∑

2qsq (5)
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Note that S is a non-negative natural number. If there are N senders, note that the binary
representation of the sum (5) of the senders’ input bits can be given recursively as

s0 = S(mod2) = x0 ⊕ · · · ⊕ xN−1

s1 =
(

S − 20s0

21

)
(mod2)

s2 =
(

S − 21s1 − 20s0

22

)
(mod2) (6)

· · ·
sq =

(
S − ∑q−1

p=0 2psp

2q

)

(mod2)

It is easy to verify that all the bits s j of the integer sum, S, except for the least
significant bit s0, are nonlinear Boolean functions of the xi . In particular, the bit sq is
2q -nonlinear, since its algebraic normal form as a function of the xi can be written as

sq =
∑

⊕
[AND statements of length 2q with no repeated variables

or redundant permutations] (7)

For example, for the addition of three bits a, b and c we have a two-bit output s0 =
a ⊕ b ⊕ c and s1 = a · b ⊕ b · c ⊕ a · c, while for the addition of four bit a, b, c and
d we have s0 = a ⊕ b ⊕ c ⊕ d, s1 = a · b ⊕ b · c ⊕ c · d ⊕ a · c ⊕ a · d ⊕ b · d
and s2 = a · b · c · d. When there are N senders, the most significant bit in the binary
representation of the sum of the senders’ input bits is sL , where L = �log2(N )�. Here,
�r� denotes the integer part (“floor”) of a real number r . If N is a power of 2, then sL

is just the multi-way AND of the senders’ input bits, i.e., sL = x0 · · · xN−1.
Thus, the order of nonlinearity of the qth binary digit resulting from integer addi-

tion is exponentially nonlinear in q. Functions with exponential nonlinearity of this
sort cannot be computed efficiently using locally nonlinear distributed evaluations, as
is proved in the following theorem.

Theorem 1 (Classical restriction on locally nonlinear distributed integer addition):
Subject to local realism, locally nonlinear distributed integer addition is impossible
when the number of channels is equal to the number of output bits.

Proof By Lemma 1, Olga’s output yq , in a classical locally nonlinear distributed
evaluation, is at most m-nonlinear. For integer addition with N senders, there are only
�log2(N )� + 1 output bits, so

m = �log2(N )� + 1

Therefore, a classical locally nonlinear distributed evaluation of integer addition
would—if such a protocol existed—produce output bits that are at most �log2(N )�+1-
nonlinear in the xi . In contrast, correctly performing integer addition would require
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yq to be the function sq from (7), which is 2q -nonlinear in the xi . This would expo-
nentially violate Lemma 1: as q increases from 0 to m − 1 = �log2(N )�, we will
eventually have

2q > m = �log2(N )� + 1

so long as N > 2, which violates Lemma 1. In particular, consider the last digit sm−1
of the sum: sm−1 is 2m−1-nonlinear in the xi , and we have

2m−1 = 2�log2(N )� > m = �log2(N )� + 1

so long as N > 2, with an exponentially growing violation as N increases. Hence,
locally nonlinear distributed implementations of integer addition are impossible in
classical scenarios where the number of channels is equal to the number of output
bits. ��

7 Quantum-classical dichotomy in nonlinearity

We now show that an entanglement-assisted locally nonlinear distributed evaluation
can output the binary digits sq in the sum of the senders’ input bits, in contrast to the
classical case. This leads to the following theorem.

Theorem 2 (Quantum-classical dichotomy in nonlinearity) : an entanglement-
assisted locally nonlinear distributed evaluation can evaluate Boolean functions with
orders of nonlinearity exponentially greater than would be achievable in a classical
locally nonlinear distributed evaluation with the same number of channels. In particu-
lar, an entanglement-assisted locally nonlinear distributed evaluation with m channels
can output the last binary digit sm−1 in the sum of the sender’s input bits, which is a
2m−1-nonlinear function of the senders’ input bits. We have already shown, in con-
trast, that a locally nonlinear distributed evaluation with m channels, in a classical
world, can output Boolean functions with orders of nonlinearity at most m.

We now proceed to prove Theorem 2. To do so, we describe a quantum protocol
for implementing integer addition via an entanglement-assisted locally nonlinear dis-
tributed evaluation, based on the recursive formulae (6) for a given digit of the sum in
terms of less significant digits.

Our protocol bears close formal relations with several results in the existing liter-
ature. Most significantly, it is an extension of the quantum pseudo-telepathy protocol
known as Mermin’s Parity Game [4]. In Mermin’s Parity Game, a set of parties, indexed
by a number i , each receive single bits xi . Subject to the constraint that

∑
xi is even,

they are challenged to produce bits yi such that
∑

yi = 1
2

∑
xi (mod2), without any

communication occurring among the parties. This is impossible in a classical world,
but it is achievable with shared entanglement. Although the setup for locally nonlinear
distributed evaluation is quite different from the symmetric setup of Mermin’s Parity
Game, our integer addition protocol relies crucially on repeated applications of this
communication-free, entanglement-assisted operation to distributedly check the parity
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of one half of a distributed sum. Variants of this distributed parity check operation have
been used to help derive the the maximal detector efficiency below which quantum
correlations become indistinguishable from correlations achievable in local hidden
variables models, and the minimal amount of superluminal classical communication
which would be needed to simulate quantum correlations in local hidden variables
models [6]. The same distributed parity check operation has also been used in the
domain of quantum anonymous transmissions [8].

Mermin’s Parity Game is itself a generalization of Mermin’s famous “arguments
without inequalities” for quantum non-locality [12,13], which in turn built on the pio-
neering work of Greenberger, Horne and Zeilinger. These works have given rise to
an extensive literature on “XOR games,” such as [9] and [5]. Such works consider, in
scenarios distinct from the present locally nonlinear distributed evaluation setup, the
efficiency with which separated parties possessing local bits can generate inputs to
linear Boolean operations so as to approximate nonlinear Boolean functions of their
local bits. The present work can be considered as a contribution to this literature using
a novel communication setup and quantum protocol.

Our protocol also bears relations with various quantum voting protocols [10,11,17],
and can be considered to be a quantum voting protocol in and of itself. This stems
from the fact that only information about the sum of the senders’ input bits (i.e., the
“tally” of the senders’ “votes”) is encoded in the globally accessible classical variables
and quantum states utilized in the protocol. No further information, over and above
this sum, is encoded that would allow Olga or any of the senders to determine the
individual values of the senders’ input bits. The protocol’s reliance on local phase
rotations to produce global phase changes (see below) is reminiscent of the versatile
quantum phase estimation technique, the basis for many quantum algorithms [14].
In the phase estimation technique, this effect is used to transfer phases between two
registers. The recipient register is then processed using an inverse quantum discrete
Fourier transform.

Definition 4 Quantum locally nonlinear distributed adder

The protocol is an entanglement-assisted locally nonlinear distributed evaluation. The
scheme is identical to that of a classical locally nonlinear distributed evaluation, except
that the senders choose their sent bits on the basis of local measurements on the con-
stituent qubits of GHZ states shared among the senders and Olga. Olga computes
the output bits given the received bits using local qubit rotations and measurements
in addition to classical logic. This is in contrast to what occurs in a classical locally
nonlinear distributed evaluation, wherein each sender chooses her sent bits to be deter-
ministic functions of her input bit, and wherein Olga computes the output bits given
the received bits using only classical logic.
As introduced before, there are N senders and one receiver, Olga. The i th sender
possesses an input bit xi .
Entanglement resource: �log2(N )� copies of a (N+1)-qubit GHZ state: |0〉⊗(N+1)

+ |1〉⊗(N+1). One qubit from each copy of the GHZ state is given to each sender, and
one qubit from each copy of the GHZ state is given to Olga.
Communication resource: There are m = �log2(N )� + 1 one-bit channels of the
type shown in Fig. 1. A non-negative integer q indexes channels. Note that there are
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as many channels as there are bits in the integer sum, S, but that one fewer GHZ state
is used.

1 Preparation and uploading of the sent bits: Each sender uploads her input bit xi

to channel q = 0. The received bit from channel q = 0 is x0 ⊕ x1 ⊕ · · · ⊕ xN−1.
Note that no GHZ state is consumed during the use of channel q = 0.
The procedure for the other channels is less direct. For each channel q = 1, . . . , m−1,
a separate GHZ state is used, and all senders obey the following protocol.

a Local rotation by senders: The i th sender rotates her qubit in the qth GHZ
state about the z-axis by an angle

−π · xi

2q

so that the global state becomes

|0〉⊗(N+1) + ei π
2q

∑
xl |1〉⊗(N+1)

Note that in the last expression, the index l is a dummy variable indexing the
N senders.

b Local Hadamard by senders: The i th sender applies the H (Hadamard) gate
to her qubit, so that the global state becomes

(|0〉 + |1〉)⊗N ⊗ |0〉Olga + ei π
2q

∑
xl (|0〉 − |1〉)⊗N ⊗ |1〉Olga

=
⎛

⎝
∑

j

|eN j 〉 +
∑

j

|oN j 〉
⎞

⎠ ⊗ |0〉Olga

+ei π
2q

∑
xl

⎛

⎝
∑

j

|eN j 〉 −
∑

j

|oN j 〉
⎞

⎠ ⊗ |1〉Olga (8)

Here
∑

j |eN j 〉 is the sum over all N-qubit computational basis states with even
Hamming weight, and

∑
j |oN j 〉 is the sum over all N-qubit computational basis

states with odd Hamming weight.
c Local measurement and uploading by senders: Each sender measures her

qubit in the computational basis (z-direction) to obtain a result 0 or 1. These
measurement results become the sent bits uploaded to channel q. It is useful to
distinguish two cases. In Case 1, the senders’ measurements project the sub-
space spanned by the states of the senders’ qubits into a computational basis
state of even Hamming weight, Olga’s received bit from channel q is 0, and the
global state becomes

|eNk〉 ⊗
(
|0〉Olga + ei π

2q
∑

xl |1〉Olga

)

for some k. In Case 2, the senders’ measurements project the subspace spanned
by the states of the senders’ qubits into a computational basis state of odd
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Hamming weight, Olga’s received bit from channel q is 1 and the global state
becomes

|oNk〉 ⊗
(
|0〉Olga − ei π

2q
∑

xl |1〉Olga

)

for some k.

2 Olga’s computation of the output bits: Olga obtains the received bits from each
of the m channels. For channel q = 0, the senders have merely uploaded their input
bits to the channel, the received bit is x0 ⊕ x1 ⊕ · · · ⊕ xN−1, and Olga simply
produces this directly as her output bit y0. Note that y0 = s0, the desired least
significant bit in the sum of the senders’ input bits. Then, addressing each of the
channels q = 1, . . . , m − 1 in order, Olga performs the following operations using
her qubit from the corresponding GHZ state.

a Local rotation by Olga: Olga performs a rotation of her qubit about the z-axis
by an angle

αq ≡ −π ·
∑q−1

p=0 2p yp

2q

which she computes from her store of previous output bits. In Case 1, the global
state becomes

|eNk〉 ⊗
(

|0〉Olga + e
i
(
αq+ π

2q
∑

xl

)

|1〉Olga

)

whereas in Case 2 the global state becomes

|oNk〉 ⊗
(

|0〉Olga − e
i
(
αq+ π

2q
∑

xl

)

|1〉Olga

)

Inspecting the expression e
i
(
αq+ π

2q
∑

xl

)

, and comparing with (6), we see that

e
i
(
αq+ π

2q
∑

xl

)

= eiπsq = ±1

Using this simplification, we see that in Case 1, the global state becomes

|eNk〉 ⊗
(
|0〉Olga + eiπsq |1〉Olga

)

whereas in Case 2 the global state becomes

|oNk〉 ⊗
(
|0〉Olga − eiπsq |1〉Olga

)

123



58 A. H. Marblestone, M. Devoret

b Local Hadamard by Olga: Olga performs the H operation on her qubit.

1. If sq = 0, then in Case 1 the global state becomes |eNk〉 ⊗ |0〉Olga and in
Case 2 the global state becomes |oNk〉 ⊗ |1〉Olga .

2. If sq = 1, then in Case 1 the global state becomes |eNk〉 ⊗ |1〉Olga and in
Case 2 the global state becomes |oNk〉 ⊗ |0〉Olga .

c Local measurement and production of the qth output bit by Olga: Olga
measures her qubit in the computational basis (z-direction), obtaining a result
0 or 1. She computes the XOR of the measurement result with the received bit
from channel q and records this as the output bit yq .
1. If sq = 0, then in Case 1 the received bit is 0 and Olga’s measurement

result is 0 and in Case 2 the received bit is 1 and Olga’s measurement result
is 1. In either case yq = 0 = 0 ⊕ 0 = 1 ⊕ 1 = sq .

2. If sq = 1, then in Case 1 the received bit is 0 and Olga’s measurement
result is 1 and in Case 2 the received bit is 1 and Olga’s measurement result
is 0. In either case yq = 1 = 0 ⊕ 1 = 1 ⊕ 0 = sq .

Therefore Olga’s output bit yq faithfully reproduces the desired digit sq of the
sum of the senders’ input bits, and hence this protocol implements a locally
nonlinear distributed integer addition!

In the above protocol, the senders first upload to all m channels before Olga begins
performing quantum operations. In a second stage, the received bits from all m chan-
nels are used by Olga to locally compute the output bits. Alternatively, an iterative
entanglement-assisted protocol exists which accomplishes the same function using
the same communication constraints. In the iterative version, both the senders and
Olga perform local qubit rotations, Hadamards and measurements during each iter-
ation. Only one channel and at most one GHZ state are used per iteration (the first
iteration requires no GHZ state). The iterative version of the protocol produces one
correct output bit per iteration and leads to a somewhat simpler formal description.
The iterative and non-iterative versions are essentially equivalent descriptions of a sin-
gle protocol, due to symmetry with respect to the time-ordering of operations that are
performed at spacelike separation. We chose to use the above non-iterative description
here for ease of direct comparison with our description of the general locally nonlinear
distributed evaluation scheme, in which there is no natural notion of iterative cycles.

8 Conclusion

We have described an entanglement-assisted protocol for integer addition which oper-
ates subject to the same communication handicap as in a classical locally nonlinear
distributed evaluation. The output bits yq = sq in the entanglement-assisted protocol
can be 2m−1-nonlinear Boolean function of the senders’ input bits, where m is the
number of channels, whereas any classical locally nonlinear distributed evaluation
can output bits that are at most m-nonlinear Boolean functions of the senders’ input
bits. We have thus demonstrated an exponential enhancement in the efficiency with
which nonlinear Boolean functions can be computed in locally nonlinear distributed
evaluation protocols that are given access to local rotations and measurements on
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maximally-entangled multi-partite quantum states. The quantum protocol for locally
nonlinear distributed addition with N senders requires fine, non-Clifford group [16],
local controlled state vector rotations on the constituent qubits of a set of (N + 1)-qubit
GHZ states. A question for further research is whether, in more general distributed
computations, fine local controlled rotations on entangled qubits can enhance the com-
putational power of communication-sparse systems with local nonlinear logic linked
by linear communication channels. Can exponential or polynomial enhancement be
obtained for other functions? What determines the enhancement in general?

Acknowledgments AHM was supported by the Yale College Perspectives on Science summer research
fellowship in summer 2006. MD acknowledges partial support by Collège de France.

References

1. Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Nonlocal correlations as an
information-theoretic resource. Phys. Rev. A 71(2), 022101 (2005)

2. Brassard, G.: Quantum communication complexity. Found. Phys. 33(11), 1593–1616 (2003)
3. Brassard, G., Broadbent, A., Tapp, A.: Quantum pseudo-telepathy. Found. Phys. 35(11), 1877–

1907 (2005)
4. Brassard, G., Broadbent, A., Tapp, A.: Recasting Mermin’s multiplayer game into the framework of

pseudo-telepathy. Quantum Inf. Comput. 5(7), 538–550 (2005)
5. Brassard, G., Buhrman, H., Linden, N., Méthot, A., Tapp, A., Unger, F.: Limit on nonlocality in any

world in which communication complexity is not trivial. Phys. Rev. Lett. 96(25), (2006)
6. Buhrman, H., Høyer, P., Massar, S., Röhrig, H.: Combinatorics and quantum nonlocality. Phys. Rev.

Lett. 91(4), (2003)
7. Buhrman, H., van Dam, W., Høyer, P., Tapp, A.: Multiparty quantum communication complexity. Phys.

Rev. A 60(4), 2737–2741 (1999)
8. Christandl, M., Wehner, S.: Quantum anonymous transmissions. LNCS 3788, 217 (2005)
9. Cleve, R., Slofstra, W., Unger, F., Upadhyay, S.: Perfect parallel repetition theorem for quantum xor

proof systems. In: Twenty-Second Annual IEEE Conference on Computational Complexity (CCC’07),
pp. 109–114 (2007)

10. Dolev, S., Pitowsky, I., Tamir, B.: A quantum secret ballot. ArXiv preprint, arXiv/quant-ph/0602087
(2006)

11. Hillery, M., Ziman, M., Bužec, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys.
Lett. A 349, 75–81 (2005)

12. Mermin, D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys.
Rev. Lett. 65(15), 1838–1840 (1990)

13. Mermin, D.: What’s wrong with these elements of reality?. Phys. Today 43(6), 9 (1990)
14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University

Press, (2000)
15. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76(1),

93–123 (2004)
16. Rigetti, C., Mosseri, R., Devoret, M.: Geometric approach to digital quantum information. Quantum

Information Processing 3(6), 351–380 (2004)
17. Vaccaro, J.A., Spring , J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys.

Rev. A 75, 012333 (2007)

123


	Exponential quantum enhancement for distributed addition with local nonlinearity
	Abstract
	1 Introduction
	2 Linear and nonlinear boolean functions
	3 Locally nonlinear distributed evaluation
	4 Classical restriction on the nonlinearity of locally nonlinear distributed evaluation
	5 Preview of quantum-classical dichotomy in nonlinearity
	6 Classical impossibility of integer addition using locally nonlinear distributed evaluation
	7 Quantum-classical dichotomy in nonlinearity
	8 Conclusion
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


