

Convergent Multifidelity Optimization using Bayesian Model Calibration

13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference September 14, 2010

Andrew March & Karen Willcox

Motivation

- Engineering problems often have objective functions or constraints that are "expensive" to evaluate
- Derivatives are commonly not available and may not be easy to estimate accurately

Multifidelity Surrogates

- Definition: High-Fidelity
 - The best model of reality that is available and affordable, the analysis that is used to validate the design.
- Definition: Low(er)-Fidelity
 - A method with unknown accuracy that estimates metrics of interest but requires lesser resources than the high-fidelity analysis.

Hierarchical Models

Approximation

Models

Reduced Physics

Coarsened Mesh

Regression Model

Main Messages

- Bayesian model calibration offers an efficient framework for multifidelity optimization.
- Does not require high-fidelity gradient estimates.
- Can reduce the number of high-fidelity function evaluations compared with other multifidelity methods, even those using gradients.
- Provides a flexible and robust alternative to nesting when there are multiple low-fidelity models.

Motivation-Calibration Methods

- First-order consistent trust-region methods:
 - Efficient when derivatives are available or can be approximated efficiently
 - Calibrated surrogate models are only used for one iteration

- Pattern-search methods:
 - High-fidelity information can be reused
 - Can be slow to converge

- Reuse high-fidelity information from iteration to iteration
- Can be quite efficient in practice
- Heuristic, no guarantee they converge to an optimum

Bayesian Model Calibration

 Define a surrogate model of the high-fidelity function:

$$m_k(\mathbf{x}) \equiv f_{low}(\mathbf{x}) + e_k(\mathbf{x}) \approx f_{high}(\mathbf{x})$$

- The error model, e(x):
 - Is a radial basis function model
 - Interpolates $f_{\text{high}}(\mathbf{x})$ $f_{\text{low}}(\mathbf{x})$ exactly at all selected calibration points
 - Based on Wild et al. 2009

• Define trust region at iteration *k*:

$$B_k = \left\{ \mathbf{x} \in \mathfrak{R}^n : \left\| \mathbf{x} - \mathbf{x}_k \right\| \le \Delta_k \right\}$$

Combining Multiple Lower-Fidelities

- Calibrate all lower-fidelity models to the high-fidelity function using radial basis function error model
- Use a maximum likelihood estimator to predict the high-fidelity function value (Essentially a Kalman Filter)

Definition: Fully Linear Model

• Definition: For all \mathbf{x} within a trust region of size $\Delta_k \in (0, \Delta_{max}]$, a fully linear model, $m_k(\mathbf{x})$, satisfies

$$\left\| \nabla f_{high}(\mathbf{x}) - \nabla m_k(\mathbf{x}) \right\| \le \kappa_g \Delta_k$$

for a Lipschitz constant κ_q , and

$$\left| f_{high}(\mathbf{x}) - m_k(\mathbf{x}) \right| \le \kappa_f \Delta_k^2$$

with a Lipschitz constant κ_{f}

Fully linear model error bounds:

Initial Error Bound

Added Calibration Point

Reduced Trust Region Size

Function Evaluation Points

- RBF model has sufficient local behavior to guarantee convergence
- Considerable reuse of high-fidelity information
 - It captures some global behavior
- First-order trust region approaches only look at the center of the current trust region

Bayesian Model Calibration Approach

First-Order Trust Region Approach

Initial Trust-Region Finite **Difference Points**

2nd Iteration Finite **Difference Points**

2 Constrained Formulations

Method 1:

 High-fidelity objective without available derivatives subject to constraints with available derivatives:

- Fully linear surrogates
 - Objective Function
- Constraints
 - Penalty method initially
 - Explicitly at termination

Method 2:

 High-fidelity objective subject to a high-fidelity constraint and constraints with available derivatives:

- Fully linear surrogates
 - Objective Function
 - High-fidelity constraint
- Constraints
 - Method 1 to find a feasible starting point
 - Interior point method to find optimum

Method 1: (Constraint Derivatives Available)

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_{high}(\mathbf{x})$$
 — Derivatives unavailable

s.t.
$$g(\mathbf{x}) \le 0$$

$$h(\mathbf{x}) = 0$$
Derivatives available

Method Summary

Quadratic penalty function:

$$\hat{\phi}(\mathbf{x}, \sigma_k) = m_k(\mathbf{x}) + \frac{\sigma_k}{2} \left[\mathbf{h}(\mathbf{x})^T \mathbf{h}(\mathbf{x}) + \mathbf{g}^+(\mathbf{x})^T \mathbf{g}^+(\mathbf{x}) \right]$$

Two trust-region subproblems:

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_{high}(\mathbf{x})$$
 Derivatives unavailable $s.t.$ $g(\mathbf{x}) \leq 0$ Derivatives available $h(\mathbf{x}) = 0$

$$\min_{\mathbf{s}_{k} \in \mathbb{R}^{n}} m_{k}(\mathbf{x}_{k} + \mathbf{s}_{k})$$

$$s.t. \quad g(\mathbf{x}_{k} + \mathbf{s}_{k}) \leq 0$$

$$h(\mathbf{x}_{k} + \mathbf{s}_{k}) = 0$$

$$\|\mathbf{s}_{k}\| \leq \Delta_{k}$$
or
$$s.t. \quad \|\mathbf{s}_{k}\| \leq \Delta_{k}$$

Possibly incompatible

Hessian norm unbounded

- Impose a sufficient decrease condition: $\lim_{k\to\infty} \Delta_k = 0$
- Termination:
 - Fully linear model: $\|\nabla f_{high}(\mathbf{x}) \nabla m_k(\mathbf{x})\| \to 0$; $|f_{high}(\mathbf{x}) m_k(\mathbf{x})| \to 0$
 - Subproblem 1 is nearly equivalent to the original problem

Method 2: (Constraint Derivatives Unavailable)

$$\min_{\mathbf{x} \in \Re^n} f_{high}(\mathbf{x})$$
 Derivatives unavailable $s.t.$ $g(\mathbf{x}) \leq 0$ Derivatives available $h(\mathbf{x}) = 0$ Derivatives unavailable $c_{high}(\mathbf{x}) \leq 0$ Derivatives unavailable

- Finding a feasible staring point
- Finding a high-fidelity optimum

Finding a Feasible Starting Point

Two fully linear surrogate models:

$$m_k(\mathbf{x}) \approx f_{high}(\mathbf{x})$$
 $\overline{m}_k(\mathbf{x}) \approx c_{high}(\mathbf{x})$

Find an initial feasible point:

$$\min_{\mathbf{x} \in \mathbb{R}^n} c_{high}(\mathbf{x})$$
s.t. $g(\mathbf{x}) \le 0$

$$h(\mathbf{x}) = 0$$

Constraint may not be bounded from below:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \max \{ c_{high}(\mathbf{x}) + d, 0 \}^2$$
s.t. $g(\mathbf{x}) \le 0$

$$h(\mathbf{x}) = 0$$

• Only need to iterate until $c_{high}(\mathbf{x}) \leq 0$ and other constraints satisfied

Finding the Optimum

Trust region subproblem:

$$\min_{\mathbf{s}_k \in \mathbb{R}^n} m_k(\mathbf{x}_k + \mathbf{s}_k)$$
s.t. $g(\mathbf{x}_k + \mathbf{s}_k) \le 0$

$$h(\mathbf{x}_k + \mathbf{s}_k) = 0$$

$$\overline{m}_k(\mathbf{x}_k + \mathbf{s}_k) \le 0$$

$$\|\mathbf{s}_k\| \le \Delta_k$$

Trial point acceptance:

$$\mathbf{x}_{k+1} = \begin{cases} \mathbf{x}_k + \mathbf{s}_k & f_{high}(\mathbf{x}_k) \ge f_{high}(\mathbf{x}_k + \mathbf{s}_k) \text{ and } c_{high}(\mathbf{x}_k + \mathbf{s}_k) \le 0 \\ \mathbf{x}_k & \text{otherwise} \end{cases}$$

• Trust region size update:

$$\Delta_{k+1} = \begin{cases} \min\{2\Delta_k, \Delta_{\max}\} & f_{high}(\mathbf{x}_k) - f_{high}(\mathbf{x}_k + \mathbf{s}_k) \ge a\Delta_k \text{ and } c_{high}(\mathbf{x}_k + \mathbf{s}_k) \le 0\\ 0.5\Delta_k & \text{otherwise} \end{cases}$$

- Termination:
 - Trust region subproblem nearly equivalent to original problem when trust region is small.

Supersonic Airfoil Test Problem

- Biconvex airfoil in supersonic flow
 - α = 2°, M_{∞} =1.5
 - (t/c) = 5%

	Linear Panels	Shock Expansion	Cart3D
CL	0.1244	0.1278	0.12498
% Difference	0.46%	2.26%	0.00%
\mathbf{C}^{D}	0.0164	0.0167	0.01666
% Difference	1.56%	0.24%	0.00%

Approximate Objective Function

- 11 parameters
 - Angle of attack
 - 10 surface spline points
- Minimize drag
 - s.t. t/c≥5%, all positive thickness
- Similar performance to derivative-based multifidelity methods

High-Fidelity	Low-Fidelity	SQP	First-Order TR	RBF, ξ=2	RBF, ξ=ξ*
Shock-Expansion	Panel Method	314 (-)	110 (-65%)	73 (-77%)	68 (-78%)
Cart3D	Panel Method	359* (-)	109 (-70%)	80 (-78%)	79 (-78%)

Multifidelity Objective and Constraint

- Max Lift/Drag (multifidelity)
- subject to: Drag≤0.01 (multifidelity)
 - t/c≥5% and positive thickness

	High-Fidelity	Low-Fidelity	SQP	First-Order TR	RBF, ξ=2	RBF, ξ=ξ*
Objective	Cart3D	Panel Method	1168* (-)	97 (-92%)	104 (-91%)	112 (-90%)
Constraint	Cart3D	Panel Method	2335* (-)	97 (-96%)	115 (-95%)	128 (-94%)

*Cart3D optimization sensitive to scaling and finite differences

	High-Fidelity	Low-Fidelity	SQP	First-Order TR	RBF, ξ=2	RBF, ξ=ξ*
Objective	Shock-Exp	Panel Method	773 (-)	132 (-83%)	93 (-88%)	90 (-88%)
Constraint	Shock-Exp	Panel Method	773 (-)	132 (-83%)	97 (-87%)	96 (-88%)

Conclusion

- Explained the need for convergent high-fidelity derivative-free methods
- Motivated the use of Bayesian model calibration methods for multifidelity optimization
- Demonstrated convergence of a constrained multifidelity optimization algorithm using Bayesian model calibration
 - Does not require high-fidelity gradient estimates
 - Has performance comparable to other gradient-based methods
 - Showed the method can be used with multiple lowfidelity models without nesting

Acknowledgements

- The authors gratefully acknowledge support from NASA Langley Research Center contract NNL07AA33C technical monitor Natalia Alexandrov.
- A National Science Foundation graduate research fellowship.
- Michael Aftosmis and Marian Nemec for support with Cart3D.

Questions?

