Abstract

This toolbox is a subset of SPOT currently used for determining non-
linear models satisfying variaous stability properties from time domain
data. We generally have inputs u(t) € R™ and outputs y(t) € R™¥ for a
set of trials. Most of the tools require approximate “states” of the system,
z(t) € R™ | and the toolbox provides some simple functions for computing
state surrogates.

This manual is in alpha. It is incomplete and a work in progress.
Please report bugs to Mark M. Tobenkin <mmt at mit dot edu>.

1 Introduction

Not yet supported:
e Continuous time models (dealing with the subtleties of derivative estima-

tion).

1.1 Quick Start
The general work flow consists of the following:
1. Create an ridata object from input / output data.

2. Generate candidate states if states are not directly measured, and estimate
derivatives for CT models.

3. Construct and ripmodel structure, choosing model type and order.

4. Add constraints and objectives to the model, sub-selecting representative
data.

5. Run the optimization.
6. Simulate the model and compare to validation data.
The following is an example of a DT fitting procedure contained in spot/rid/simple_dt_example.m:

load simple_dt_example;
data = ridata({Ytrain,Ytest},{Utrain,Utest},{Ttrain,Ttest});
[data,g] = states(data,’time-delay’,2,2);

train = trials(data,1);
test = trials(data,2);

model = ripmodel(data,1,[7 1],g); % —-- True system outside
% model class.

%model = lse_obj(model,data); %-- Equation Error.

dsel = unf_select(data,200); %-- Representative subset of samples.

model = rie_obj(model,dsel); %-- Local Robust Identification Error.

model = model.optimize();
val = model.validate(data);

2 ridata — Time Domain Data

The ridata data structure stores time domain data for identification. The
structure stores a set of M trials. The following table describes the member
variables:

Name | Dim. ‘ Desc.
Input-Output Data
nu scalar Input dimension, nonnegative integer.
ny scalar Output dimension, positive integer.
N 1 x M | Trial lengths, positive integers.
D scalar The number of samples (equal to sum(N)).
T 1 xD Concatenated sample times.
Y ny x D | Concatenated output samples.
U nu X D | Concatenated input samples.

State Space Data

nx scalar State dimension, nonnegative integer.

X nx X D | State samples, all trials if nx non-zero, empty otherwise.
nx x D | Update samples, all trials if nx non-zero, empty otherwise.

dT scalar Scalar. dT = 0 indiciates a CT model, dT < 0 unspecified.

At a minimum, each trial consists of a vector of sample times, T, a sequence of

outputs, Y, and a sequence of inputs U. Additionally, a trial may have a sequence

of state estimates, X, and a sequence of update information, V. For CT models,

the update information approximates the derivative of the states, %:c(t), and for

DT models the update information is imply the state at the next time sample.
The following methods construct an ridata:

d = ridata(Y,U,T)
d = ridata(Y,U,T,X,V,dT)

The scalar dT can either be 0, indicating that V is the derivative of X, or a
positive scalar, indicating a DT data set. All arguments other than dT can
either be a cell array or matricies. If they are matricies the data is assumed to
be from a single trial and then the following table relates their dimensions:

T 1x N
Y ny X N
U Ny X N
XV | ng xN

If the arguments are cell arrays they must all have identical dimensions, and
each entry is considered a single trial. The corresponding cell entries must be
related as above, and the same n,, n,,n, must be used for every entry.

2.1 Selecting and Combining Data

There are several methods for refining and combining ridata objects.

2.1.1 merge

The merge function combines two ridata objections by taking the union of
their trials, so long as ny,nu and nx are the same for both. Usage:

dmerged = merge(dl,d2);

where d1 and d2 are ridata objects.

2.1.2 +trials

The trials function returns an ridata with only the specified trials of the
original ridata.

dsub = trials(dorig,trialnos);

The argument dorig is an ridata. The trialnos must be an array of positive
integers less than dorig.M. The result, dsub, is an ridata with length(trialnos)
trials corresponding in the indicies in trialnos. They will be listed in the order
trialnos(:).

2.1.3 select

The select function allows the user to specify a subset of points across all trials
to form a new ridata. Each data-point is placed in a separate trial of length 1.

dsel = select(d,sel);

Here d is an ridat and sel is an array of indicies between 1 and d.D. The
result dsel is an ridata with length(sel) trials each containing a single data-
point corresponding to the index in sel.

2.1.4 unf_select

The unf_select function returns a fixed number of samples taken from all trials
based on a uniform data-space coverage strategy.

dsampled = unf_select(d,K);
dsampled = unf_select(d,K,dist);

Here d is an ridata and K is a positive integer. The resulding ridata,
dsampled, will have K trials of duration 1.

The argument dist is a distance function. This should be a function of two
arguments, say x and A. x is a column vector of the form [y ; ul if states
have not been specified and [y ; u ; x ; v] if they have. The matrix A has
columns which are drawn from the same space as x. The function should return
a row vector which is the distance from x to each column of A.

The default dist is the squared ¢5 norm, normalized by the standard devi-
ation of each coordinate of each element.

In general unf_select should be applied after states have been determined
(see Section 2.2).

2.2 Generating State Estimates

There are several methods in the toolbox for providing estimates of the latent
state of system. Most of these are simply linear projections of past input-output
history.

For CT models, estimating the derivative of a system presents another chal-
lenge. In general, numerical differentiation is too noisy. Several smoothing
algorithms are provided for easing this task. To specify a smoothing algorithm,
there is an options data structure.

options.numerical_diff = ’...’;
options.numerical_diff_arguments = {};

2.2.1 Time Delay Embedding

The simplest state estimate for discrete time systems is the “time-delay” em-
bedding, that is taking the last k& samples of the output to be the state.

[dnew,g] = states(d,’time-delay’,ky);
[dnew,g] = states(d,’time-delay’,ky,options);
[dnew,g] = states(d,’time-delay’,ky,ku,options);

Here d is an ridata object without states. The state of the system becomes:

y(t)
o(t) = y(t.— 1)
y(t —ky)
The default is ky == 0. The input becomes:

u(t+1)
u(t)

u(t) =

u(t - ku)

The default ku == 0. If the options.feedthrough == 0 then the u(t+1) term
is not included. Necessarily this operation reduces the length of the trials in
ridata.

The returned value dnew includes the states and potentially augmented in-
puts. The variable g is a function such that:

all(dnew.Y(:,i) == g(dnew.X(:,1),dnew.U(:,1))),
i.e. g is the known function mapping state to output.

2.2.2 Linear Filter Bank

For both CT and DT one can use a linear filter bank to approximate states:

dnew = states(d,’linear-filter’,G,muY);
dnew = states(d,’linear-filter’,G,muY,H,mul);
dnew = states(d,’linear-filter’,...,options);

Here G and H are transfer function objects. The output of G will be the states
and the output of H will be the new inputs. The filter G will be applied to the
elements of y(t) — muY trial-by-trial. Similarly, H will be applied to u(¢) — muU.
In general, to calculate the updates each trial will be shortened by one
sample.
If G (resp. H) is single-input it will be applied to each output (resp. input)
in turn. Otherwise, G must have d.ny inputs and H must have d.nu inputs.

2.2.3 Orthogonal Filter Bank

For both CT and DT one can use a linear filter bank to approximate states:

[dnew,g] = states(d,’orth-filter’,domain,Gpoles);

[dnew,g] = states(d,’orth-filter’,domain,Gpoles,muY);

[dnew,g] = states(d,’orth-filter’,domain,Gpoles,muY,Hpoles);
[dnew,g] = states(d,’orth-filter’,domain,Gpoles,muY,Hpoles,mul);
[dnew,g] states(d, ’orth-filter’,...,options);

Here domain is one of the strings *CT’ or ’DT’. The argument Gpoles is a list
of poles (be sure they are stable for the appropriate time domain!). These poles
are used to generate a filter with appropriately orthogonal impulse responses in
the frequency domain. Here muY is a mean to be subtracted off of the output
data (default 0). Similarly, Hpoles and muU are used to construct a filter for
augmenting the inputs. If unspecified, the input is not augmented.

The options structure has the same interpretation as in Section 2.2.2.

The output dnew is the new ridata and the variable g is a function such
that:

all(dnew.Y(:,i) == g(dnew.X(:,1),dnew.U(:,1))),

i.e. g is the known function mapping state to output.

3 rimodel

When first instantiated, an rimodel provides facilities for selecting a model
structure, solving for an optimized fit and then validating and simulating the
models response to inputs.

3.1 Functions for Undetermined rimodel
3.1.1 optimize

After an appropriate objective has been defined, optimize determines the op-
timal model parameters.

mdet = optimize(mundet);

Here mundet is an undetermined model and mdet is the model determined as
the optimal solution.

3.2 Functions for Determined rimodel
3.2.1 simulate

The function simulate determines the response to an input:
[ts,ys,xs] = simulate(model,u,tspan,x0);

The simulation function returns ts, a vector of 1 x N ascending time-steps, ys,
a matrix of ny x N output samples, and xs, a matrix of nx x N state samples.

The argument model is a determined model. The argument u is the input.
This is a function from a scalar ¢, with tspan(1) < ¢ < tspan(end), to vectors
of size 1 x nu for CT models and an nu x N array for DT models.

The argument tspan is either a 1 x 2 ascending array of time-steps for CT
models, or a 1 x N array. For the former, the values returned will be at the
time-steps specified by the variable step integrator. For the latter the values
returned will be the response at the specified elements of tspan. For DT models,
the values returned will always be for incrementing time-steps.

Finally, x0 is the nx x 1 initial condition vector.

3.2.2 validate

The function validate simulates the model on the input and initial conditions
for a set of trials.

valdata = validate(model,data);
valdata = validate(model,data,options);

Here data is an ridata of M trials. The dimension of the input output and state
must match that of the model. For each trial, the response of the model to

the identical input and initial condition is computed. These trials are stored se-
quentially in valdata. A common use case is to separate training and validation
data sets using the trials function of ridata.

The options structure supports plotting options. If options.plot ==
then a separate figure for each trial is plotted containg several relevant compar-
isons of the results.

3.3 ripmodel — Implicit Polynomial Models

For continuous time (CT) data the ripmodel fits models of the form:

%e(aﬁ(t)) = fl(),ult), yt) =g(x(t),ul(t))

and in the discrete time (DT) case:

e(z(t+ 1)) = flz(t),u(®), yt) = g(x(t), u(t)),

where ¢ : R™ +— R™ f : R" x R" — R" and g : R" x R™ — R™ are
polynomials or rational functions with fixed denominators. For the models to
be well posed, the Jacobian of e(-) must be invertible in the CT case, and the
function e(-) must be invertible in the DT case.

The ripmodel can be constructed as follows:

= ripmodel (data,edeg,fdeg,gdeg);
ripmodel (data,edeg,fdeg,gdeg,options);
= ripmodel(data,edeg,fdeg,gfun);
= ripmodel(data,edeg,fdeg,gfun,options);

8 B B B
]

The first argument, data, informs the model of the domain (CT vs. DT) and
dimensions of the problem. Further, these data-points are used to decide on
an appropriate rescaling of the input-output and state domains for numerical
accuracy. This data should cover the regions over which you plan to model the
dynamics.

The argument edeg is a positive integer, indicating the maximum total de-
gree of e(z) as a polynomial in € R™. For f(z,u) and g(z,u) two numbers
must be specified as the degrees for z and u. Thus fdeg and gdeg should each
be a two integer array. Optionally, g(z,u) can be fixed by passing a function,
gfun, of two arguments. Only a limited set of operations are supported inside
this function (simple arithmetic etc).

To enable fixed deonominator rational models, set options.rational = 1.
This option will only work when the degree of e(x) and f(x,u) in x are specified
to be odd. This is most useful for restricting continuous time models to disallow
finite escape, and to enable global stability requirements.

To require global stability, set options.globally_stable = 1.

3.3.1 rie_bound
3.3.2 rie_obj

The rie_obj method adds a local Robust Identification Error objective to the
objective function:

mnew = rie_obj(m,data);
mnew = rie_obj(m,data,w);

Here m is an ripmodel and data is an ridata object. The returned model mnew
will have an objective augmented as described below. The local RIE objective
at each data-point is weighted by w which is 1 x data.D. The default weight is
1.

3.3.3 1lse_obj

The 1se_obj method adds a least-squares minimization to the objective func-
tion. This really should only be used in conjunction with more sophisticated
objectives and constraints offered by the toolbox. This is currently a very slow
way to solve LS problems (recasting them as a SOCP):

mnew = lse_obj(m,data);
mnew = lse_obj(m,data,w);

Here m is an ripmodel and data is an ridata object. The returned model mnew
will have an objective augmented as described below. w is a 1 X data.D array of
weights which default to 1.

For DT models, the following term is added to the objective:

> uli)lle(vi) = fli,u)|

i=1

and for CT models, the following;:

D

> wli)

i=1

2

de

O (ﬂfz)vz - f(iﬂz', Ul)

where (v;, x;,u;) are the corresponding samples in ridata. For both domains,
if the output map is not fixed, the following will be added to the objective:

D

Zw(i)\\yi — gz, ui) |2,

=1

where again (y;,u;) are from the samples in ridata.
As an example:

mnew = lse_obj(m,select(data,1000));

would select 1000 data points from data and

4 Thanks

This work is supported by National Science Foundation Grant No. 0835947 and
the Los Alamos ISAMI program.

References

[1] Mark M. Tobenkin, I. R. Manchester, J. Wang, A. Megretski and R.
TEdrake. Convex Optimization Approaches to Nonlinear System Identifi-
cation.. arXiv:1009.1670v1.

