
SPOT
(Systems Polynomial Optimization Tools)

Manual

Alexandre Megretski †∗

January 11, 2010

SPOT (Systems Polynomial Optimization Tools) is a MATLAB toolbox
written as an alternative implementation of SOSTools to be used in imple-
menting a class of nonlinear system identification algorithms. It was tested
with MATLAB 7.8.0 (R2009a). SPOT provides its own matrix multivariable
polynomial variable class msspoly for handling elementary polynomial oper-
ations, a special class mssprog for defining convex optimization problems (to
be solved by SeDuMi) in terms of polynomial identities and self-dual cones,
and a set of functions for identification of linear and nonlinear dynamical
systems.

1 Installation

POT is distributed in the form of compressed archives spotDDMMYY.zip,
where DDMMYY indicates the date of release (for example, pot110110.zip was
released on January 11, 2010).

Create directory spot and extract spotDDMMYY.zip into it. Start MAT-
LAB, and run spot install.m from the pot directory. The script sets the
path for POT, and compiles some binaries:

>> spot_install

Installing SPOT in C:\home\matlab\spot:

∗ †LIDS, EECS, MIT, ameg@mit.edu

updating the path...

compiling the binaries...

Done.

>>

Once SPOT is installed, you can check that it works by running spot chk.m:

>> spot_chk

2 Multivariable Polynomials

The @msspoly environment handles matrix polynomials in multiple variables.
Individual variables in @msspoly have identifiers which begin with a single
character, which may be followed by a non-negative integer number. While,
in principle, a variable identifier can begin with any MATLAB-recognized
character, the only ones which are safe to use in applications are the 52
Latin alphabet letters

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

Other characters can be used for automated variable definitions. For exam-
ple, in the mssprog environment (used to define convex optimization pro-
grams in terms of polynomial equations which are linear with respect to the
optimized (decision) variables, but have arbitrary dependence on other (ab-
stract) variables, the identifiers beginning with a “@” are reserved for hidden
decision variables, while the identifiers beginning with a “#” are reserved for
hidden abstract variables.

2.1 Defining @msspoly Variables

Use msspoly.m:

>> f=msspoly(’v’)

[v]

defines xx as an @msspoly polynomial f= f : f(v) = v. g=msspoly(’v’,k)

where k is a positive integer will define a k-by-1 vector of different variables,
as in

>> g=msspoly(’t’,3)

[t0]

[t1]

[t2]

Using g=msspoly(’v’,[a b]) prodices a vector of a variables with indexing
starting with b, as in

>> g=msspoly(’A’,[2 1])

[A1]

[A2]

2.2 “Free” and “Simple” @msspoly Variables

An @msspoly variable is called free if it is a matrix of independent scalar vari-
ables. An @msspoly variable is called simple if it is a column of independent
scalar variables and constants. For example, in

>> f1=msspoly(’x’,7);

>> f2=f1(1:6);

>> f3=reshape(f1,3,2);

>> f4=[f2;f2;1];

>> f5=f1*f1’;

the resulting free variables are f1, f2, f3, the simple variables are f1, f2,
f3, f4, while f5 is not free and not simple.

2.3 Handling @msspoly Variables

A number of functions of the @msspoly environment have the standard mean-
ing:

• ctranspose.m (as in z=x’)

• horzcat.m (as in z=[x y])

• minus.m (as in z=x-y)

• mtimes.m (as in z=x*y)

• plus.m (as in z=x+y)

• uminus.m (as in z=-x)

• uplus.m (as in z=+x)

• vertcat.m (as in z=[x;y])

• subsasgn.m (as in x(2)=y)

• reshape.m

• isempty.m

• isscalar.m

• length.m

• repmat.m

• size.m

• sum.m

Other functions are close to their expected definitions, with minor modifica-
tions or restrictions:

• decomp.m: decomposes an @msspoly variable into a vector of its free
variables, and matrices of degrees and coefficients of its terms;

• deg.m: gives the a single number degree; can be used with a second
argument, which must be a free @msspoly variable, in which case the
degree with respect to the independent variables listed in the second
argument is computed;

• diag.m: produces a diagonal @msspoly matrix when the input is a row
or a column; otherwise extracts the diagonal as a column vector;

• diff.m: the second (required) and third (optional) arguments must be
free @msspoly variables; with two arguments, the first argument must
be a column, and the result is the matrix of the partial derivatives of
the first argument with respect to the second; with three arguments,
the first argument can have arbitrary dimensions, and the result is
the derivative of the first argument with respect to the second in the
direction provided by the third;

• double.m: converts a constant @msspoly to double, otherwise returns
character ’?’;

• isfunction.m: the second argument must be a free @msspoly; true iff
the firts argument is a function of the second;

• mono.m: produces column vector of all monomials from the argument;

• mpower.m (as in z=x^y): argument y must be a non-negative integer;

• mrdivide.m (as in z=x/y): argument y must be a non-singular double;

• newton.m: applies Newton method iterations to try to solve approxi-
mately systems of polynomial equations;

• recomp.m: the inverse of decomp.m;

• subs.m: a restricted substitution routine, allows to replace, in the first
argument, the independent variables from the second argument (must
be a free @msspoly) by the corresponding components of the third
argument (must be a simple @msspoly);

• subsref.m (as in z=x(1:2) or z=x.n): for the first type of call, works
as expected; for the second, x.m and x.n return the dimensions, while
x.s returns the internal @msspoly structure of x (something that only
a developer of new @msspoly code would need);

• trace.m: the usual sum of the diagonal elements, but non-square ar-
guments are admissible, too.

3 MSS Programs

MSS stands for “Modified Sums of Squares”1 The @mssprog environment
allows its user to define matrix decision variables ranging over certain con-
vex sets which are, in SeDuMi terminology, self-dual cones, to impose linear
constraints in terms of polynomial identities, to call SeDuMi to optimize the
decision variables, and to extract the resulting optimal values.

1or for “Meager Sums of Squares”, “Magnificent Sums of Squares”, etc., just not “Al-
ternative Sums of Squares”, though that’s what it is.

3.1 @mssprog Operations

To initialize a blanc MSS program, use mssprog.m, as in

pr=mssprog;

The most straightforward way of adding items to an MSS program is by
using the ’.’ subsassignments:

• pr.free=x registers the elements of x as free (SeDuMi-style) decision
variables (x must be a free @msspoly);

• pr.pos=x registers the elements of x as positive (SeDuMi-style) decision
variables (x must be a free @msspoly);

• pr.lor=x registers the columns of x as Lorentz cone (SeDuMi-style)
decision variables (x must be a free @msspoly with at least two rows);

• pr.rlor=x registers the columns of x as rotated Lorentz cone (SeDuMi-
style) decision variables (x must be a free @msspoly with at least three
rows);

• pr.psd=x registers the elements of every column of x as the components
of positive semidefinite (SeDuMi-style) decision variables (x must be
a free @msspoly with nchoosek(m+1,2) rows to generate an m-by-m
symmetric matrix: use y=mss v2s(x(:,k) to re-shape the k-th column
of x into the corresponding symmetric matrix);

• pr.eq=x registers equality x==0 with MSS program pr (x must be an
@msspoly which is linear with respect to the vector of all independent
variables which are registered with pr as decision parameters);

• pr.sos=x registers the constraint that all scalar components of x must
be sums of squares of polynomials (x must be an @msspoly which is
linear with respect to the vector of all independent variables which are
registered with pr as decision parameters);

• pr.sss=x registers the constraint that all u’*x*u, where
u=msspoly(’#’,size(x,1)), must be a sum of squares (x must be a
square-sized @msspoly which is linear with respect to the vector of all
independent variables which are registered with pr as decision param-
eters);

• pr.sedumi=r calls SeDuMi to find the values of the decision variables
which minimize r (r must be a scalar @msspoly which is a linear func-
tion of the decision parameters).

To extract the optimized polynomials, use the ’()’ subsreferencing:

• y=pr(x): y is the result of substituting the optimized values of decision
variables into @msspoly x;

• y=pr({x}): same as double(pr(x)).

For example, the following code (contained in mss test3.m) finds the
minimal value of r for which the polynomial 4x4y6 + rx2− xy2 + y2 is a sum
of squares:

x=msspoly(’x’); % define the variables

y=msspoly(’y’);

r=msspoly(’r’);

q=4*(x^4)*(y^6)+r*(x^2)-x*(y^2)+y^2; % the SOS polynomial

pr=mssprog; % initialize MSS program

pr.free=r; % register r as free

pr.sos=q; % register sos constraint

pr.sedumi=r; % minimize r

pr({r}) % get the optimal r

4 System Identification

Functions from the nlid directory are designed to help solving nonlinear
system identification problems. Functions from the nlid directory treat the
linear time invariant (LTI) case.

4.1 Identification of Symmetric Passive Transfer Ma-
trices

Function ltid passive.m is a user interface to a number of algorithms to
aid in converting frequency samples of a marginally stable symmetric transfer
matrix (such as impedance of a passive circuit) to a reduced order state space
model.

4.2 Nonlinear System Identification

Currently, the following examples from the nlid directory appear to work:

• nlid io lti old test1.m: LTI system identification with POT;

• nlid miso0 test1.m: memoryless NL system identification;

• nlid fl test1.m: more powerful memoryless NL system identification.

