Project topic due today by email
let me know over Thanksgiving break if you think you want to present

Last time: Paul: Braiding Test
A pub verifier can force \(A \) \& \(B \)
to share \(\ket{EPR^\otimes n} \) and measure \(X(a), Z(b) \)

Today: Delegated quantum computation using \(\text{PBT} \)
[Grilo '17]
Prelude: a slight extension of PT

Instead of measuring $X(\theta)$ to obtain $y \in \{0, 1\}$

Ask for X back measurement on each qubit i s.t. $a_i = 1$

be $90/13^n$ extremal

$y = \langle b, a \rangle$

Obs: Pauli measurements on EPR are computationally easy to simulate

A hard problem for BQP

Warmup: $P \leq NP$

Circuit C

transcript

\[
\begin{array}{c}
\text{Prover} \quad t \leq 0, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{Verifier} \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{false, } 0, 1, \ldots, 0 \\
\end{array}
\begin{array}{c}
\text{true, } 1, \ldots, 0 \\
\end{array}
\]
Aside: This is how you show 3SAT or graph coloring are NP-complete.

You can do a quantum version of this: $BQP \subseteq QMA$.

Q. circuit C

Trying to show that C accepts $|0\rangle$ with $P \geq 0.9$.

$14_c^\uparrow \rightarrow 0$

Prover

g. transcript Verifier

$14_c^\uparrow = \frac{1}{\sqrt{T}} \sum_{t=1}^{T} |1_t^\uparrow) 14_t^\uparrow)$

History state (Feynman-Kitaev)
Can check history state by measuring H_c - "history Hamiltonian"

- If $|G10\rangle$ accepts $\forall p > 0.9$
 then $\langle \psi_c \mid H_c \mid \psi_c \rangle \leq E_c$

- If $|G10\rangle$ accepts $\forall p < 0.1$
 then $\forall \langle 14 \rangle$, $\langle 4 \mid H_c \mid 4 \rangle \geq E_s$

$E_s - E_c \approx \frac{1}{\text{poly}(n)}$

$H_c = \sum_i H_i$

$H_{\text{input}_j} = 10\rangle\langle 01 \rangle \otimes 1i\rangle\langle i1 |$

$H_{\text{prop.}} = \frac{1}{2} (1_{t+1} \otimes I - 1_t \otimes U_t)$

$= (1_{t+1} \otimes I - \langle t1 \otimes U_t^+ \rangle)$
\[|\psi_c\rangle \rightarrow \text{span}\{|H\rangle, |H + D2\rangle\}

\begin{align*}
|t\rangle & \equiv |\psi_4\rangle + \text{i} t_4 |\psi_3\rangle
\end{align*}

\[H_{\text{output}} = |T\rangle\langle T|_{\text{each}} \otimes |\text{NO}\rangle\langle \text{NO}|_{\text{output}} \]

By some clever tricks, you write \[H = \sum H_c \uparrow \]

\text{tensor product of } X, Z, I

BAP + QMA

|\psi\rangle \text{ on } \rho_{15}(n) \text{ qubits}

Q. From

Q. From

Q. From

\[|\psi\rangle \rightarrow \text{Want to convert to} \]

Q. From

Cl. Verify

Want to convert to

Q. From

Q. From

\[H_c \]

Cl. Verify
Quantum Teleportation:

Enter: \(|v\rangle \in \mathbb{C}^2 \)

Bell basis: \(\frac{1}{\sqrt{2}} (|10
angle + |01\rangle) \)

Alice: \(|EPR\rangle \)

Bob's XZ basis: \(\{ |EPR\rangle, |I0EPR\rangle, |I0EPR\rangle, |I0EPR\rangle \} \)

Suppose Bob wants to measure \(X_0Z \)

Obs: \(|\psi\rangle \)

Suppose Bob measures \(X \), then apply \(\sigma_X \).

Turn but he can measure first, \(\text{comet} \) is \(X \).

Bob measures \(X \), \(\langle 41X14 | 41X14 \rangle = \langle 41X14 | 41X14 \rangle = \langle 41X14 | 41X14 \rangle = \langle 41X14 | 41X14 \rangle \)

Obs: 41

Obs: 14

Alice and Bob share a quantum state \(|\psi\rangle \) which is entangled.
Conjecture is Z

\[\langle \psi | Z \times Z | \psi \rangle = -\langle \psi | X \times X \rangle \]
so B. has to flip outcome

same for case \(X \times Z \)

Consequence

A \(\rightarrow \) EPR \(\rightarrow \) B

-intervention

\(| \psi \rangle \rightarrow \) measurement outcome

Cl. verifier corrects the measurement outcomes

Putting it all together:

\(\text{BQP} \subseteq \text{MIP} \)

Circuit \(C \) on \(n \) qubits

\[H_c \text{ on } \text{poly}(n) \text{ qubits} \]

\[t \cdot \text{poly}(n) \gg n \]
1. \(\text{EPR}^{\text{obs}} \)

2. "Energy test"

- \(V \) samples in locations in \(1 \ldots t \) and sends them to Alice

- Samples a Pauli operator \(\sigma_i \) sends to Bob

- Receive correction \(\sigma_i \) from Alice, measurement outcomes from \(B' \)

Conclusions: \(V \)'s result from energy test is obtained from measuring \(\sigma_i \) on what \(|\psi\rangle \) A chose to teleport

\[H_c = \sum_i H_i \]

- Accept if outcome is \(-1 \), reject if \(+1 \)

\[\text{Pr}(V\text{accept}) \propto \langle 41 | H_c | 14 \rangle \]
Yes: \(\exists 1 \psi_c \), \(\langle 4_c | H_c | 4_c \rangle \leq E_c \)

No: \(\forall 1 \psi \), \(\langle 4 | H_c | 4 \rangle \geq E_s \)

\(\Rightarrow \) If \(C \) accepts w.h.p., \(\exists \) strat for \(A, B \) that is accepted in the protocol \(w/ P \geq P_c \) \(\text{depends on } E_c \)

If \(C \) rejects w.h.p., \(\forall \) strat for \(A, B \), \(p_{\text{accept}} \leq P_s \) \(\text{depends on } E_s \)

Ultimately, want \(P_c \geq \frac{2}{3} \), \(P_s \leq \frac{1}{3} \)

Can achieve using
- "amplification" of \(H_c \) by taking \(H_c \otimes k \)
- parallel repetition of protocol
We showed $\text{BQP} \leq \text{MIP}^*$

- Note: this is trivially true b/c $\text{BQP} \leq \text{PSPACE} = \text{IP}$
- However: this protocol has efficient provers

- One-round protocol relativistically secure
- **Disadvantage**: polynomial overhead
 of size n
 protocol requires $\text{poly}(Cn)$
 Bottleneck is \mathbb{F}_C

Verifier on a leash gets
a protocol with $O(Cn \log n)$ resources
required

- **Not blind**: Alice has to know
 what C is

- **Two provers**: (Mahadev and
 follow up this address)