6.5779 Lecture 5

Theorem (Last time):
If a state \(S = \langle 14 \rangle_{A_{1}B_{1}} \) wins CHSH w/ qwb. \(\omega^\text{CHSH} = \frac{3}{2} \)
then \(\exists \) local isometries \(V_A, V_B \)

\[
\| (V_A \otimes V_B) 14 \rangle - 1_{\text{EPR}} \|_{\text{aux}} \|^2 \leq O(\varepsilon^\frac{3}{2})
\]

\[
\| (V_A \otimes V_B) (A_0 \otimes I) 14 \rangle - (Z_0 I_{\text{EPR}}) \|_{\text{aux}} \|^2 \leq O(\varepsilon^{\frac{3}{2}})
\]

"Robust self-testing"

Self-testing more generally:
- We can self-test arbitrary bipartite \(14 \rangle_{AB} \), but not very robustly
 (Coladangelo, Goh, Scarani)
 \(\varepsilon - \text{close} \Rightarrow \varepsilon \cdot \text{poly}(d) \text{ close to } 14 \)
We can self-test many copies of (EPR)
Can self-test some multipartite states too (e.g. GHZ)
Self-testing arbitrary measurement?
Perfect completeness? (which states)
Robustness for general states
Are generic games self-tests?
(3 examples with non-unique q. strategy)

Another caveat: Self-testing is about the “nearby optimal” regime
0.854 - ε

What about \(\frac{3}{4} + \varepsilon \)
Kamienek: 19?
\[N \approx 0.764 \Rightarrow \text{some overlap} \]
\[\leq 0.756 \Rightarrow \text{no self-testing} \]

Valcarce et al. '20

Today: applications of CHSH game (\& self-testing)

#1: Quantum key distribution (QKD)

Bennett & Brassard '84 BB84

Goal: Alice & Bob want to generate a shared private random string "key"

Private quantum channel
Public classical channel
1. Alice \[\rightarrow \] Bob
 - X \[\rightarrow \] \[\begin{array}{c} |1\rangle \rightarrow |-1\rangle \rightarrow |0\rangle \rightarrow |1\rangle \end{array} \]

2. Alice reveals basis settings
 - Bob reveals basis settings

3. Out of rounds / same basis
 - Alice reveals state for \(|a\rangle \) of them

4. Use the other \(|a\rangle \) for your key

This is secure if Alice's and Bob's devices are not faulty

Attack: Photon number splitting!

In real world, Alice's qubits are photons
Photon source sometimes generates extra photon

Eve collects extra photons and can learn key

"Device independent security"

Ekert '91

1. Alice Bob

\[\frac{x^2 + y^2}{2} \]

2. Reveal bases

3. Pick a fraction of rounds and test CHSH

4. Out of remaining rounds equal bases \(\Rightarrow\) key
"Device-independent security proof"

Success in CHSH rounds

\[| \Psi \rangle_{AB} \sim | \text{EPR} \rangle_{AB} \perp \text{aux} \]

\[| \Psi \rangle_{ABE} \sim | \text{EPR} \rangle_{AB} \otimes | \text{joint} \rangle_{ABE} \]

\[\downarrow \]

Eve's measurement outcomes are uncorrelated w/ Alice & Bob's

"Monogamy of entanglement"
If A is highly entangled w/ B, then AB has low entanglement w/ everyone else
History:
- Ebert '91
- Mayers Yao 98
 introduced “self-testing” to quantum
- Vazirani & Vidick 12
 Play m rounds, can get 0.014m bits of key

What did entanglement buy us?
- Certifiable \leq CHSH
- Private \leq “monogamy”

Application #2:
Randomness expansion
random seed $\epsilon S, 13^n \rightarrow$ Rand expansion \rightarrow random string $\epsilon S, 13^n$

Classically: "pseudorandom generators"

Quantumly: Inherent randomness exists

CFSH \rightarrow certifiable randomness

Roger Colbeck '06 $n \rightarrow k n$
Colbeck & Kent '09
Pironio et al. '10 $n \rightarrow O(n^2)$
Vazirani Vidick '12 $n \rightarrow 2^n$
Miller Shi '14

seed s
In ideal strat $14 \rightarrow$ $\rightarrow 3 + \ldots$ random bits out

To get more expansion

$S \rightarrow$ PRG

2 random bits in \rightarrow 3 random bits out
Upper bound:
Coudron Vien Yuen
"non-adaptive" can expand at most 2^n

With adaptivity, get infinite randomness expansion!
Coudron Yuen '14
Vics self-testing 8 parties
Chung Shi Wu 4 parties
2 parties is open?

Noise-tolerant version?
Tolerant to realistic noise
General problem w/ self-testing

Other applications:
Self-testing is a "leash" on quantum devices
Delegated GC
Reichardt Unser Vazirani
- Serial repetition of CHSH
- Delegate a quantum circuit of size \(n \) using \(n8000 \) bits of communication

"Verifier on a leash"
Coladangelo Grolla Jeffrie Vidick '16

- Use a generalization of CHSH called Pauli Braiding Test
 Delegate size \(n \) circuit \(n/\ln\ln n \) resources

- Understanding "quantum correlations"
 Interactive proofs - quantum provers
Next time:
Detour to Magic Square game
Contextuality