COMS E6998-9 F15

Lecture 3: Frequency Moments: F_{2}, Heavy Hitters

The Fu Foundation School of Engineering and Applied Science

Administrivia, Plan

- Piazza: sign-up!
- PS1 releazed
- Scriber?
- Plan:
- Frequency Moments
- Heavy Hitters

Part 1: Frequency Moments

- Let f_{i} be frequency of i
- Lecture 1: count one f_{i}
- Lecture 2: count \# of non-zeros
- Moment 1:
$-\sum_{i} f_{i}$
- Estimator with low space?
- Just count

	Frequency
IP	3
1	2
2	0
3	9
4	0
5	0
\ldots	1
n	

- Moment 2:

$$
-\sum_{i} f_{i}^{2}
$$

$$
\sum_{i} f_{i}=15
$$

$$
\sum_{i} f_{i}^{2}=95
$$

$2^{\text {nd }}$ Moment: F_{2}
 [Alon-Matias-Szegedy 1996]

- Idea: Rademacher random variables hash function $r:[n] \rightarrow\{-1,+1\}$
- Algorithm (Tug-of-War): store $z=\sum_{i} r(i) \cdot f_{i}$
- Estimator: z^{2}

Algorithm TOW $\left(F_{2}\right)$:

- Init: $z=0$
- when see element i :

$$
z=z+r(i)
$$

Estimator:
z^{2}

- What if we have m ones ? sum of m random ± 1 's

Algorithm TOW $\left(F_{2}\right)$:

- Init: $z=0$
- when see element i :

$$
z=z+r(i)
$$

Estimator:
z^{2}

- How much is $z=\sum r(i)$ roughly ?
- Say, |z| ?
$-E[z]=0$
$-\operatorname{Var}[z]=m$
- Apply Chebyshev:
- $|z| \leq O(\sqrt{m})$ with constant probability
- In fact tight

Analysis

- $E\left[z^{2}\right]=\cdots$

$$
=\sum_{i} f_{i}^{2}
$$

Algorithm TOW $\left(F_{2}\right)$:

- Init: $z=0$
- when see element i :

$$
z=z+r(i)
$$

Estimator:
z^{2}

- Var $\left[z^{2}\right] \leq E\left[z^{4}\right]=\cdots$ $\leq O\left(\sum f_{i}^{2}\right)^{2}$
- Randomness?
$-O(\log n)$ for h that is 4 -wise independent
- Can apply the average trick:
- Take $k=O\left(\frac{1}{\epsilon^{2}}\right)$ counters
- Obtain: $1+\epsilon$ approximation in $O\left(\frac{1}{\epsilon^{2}} \log n\right)$ space

Linearity

- Important property

Algorithm TOW $\left(F_{2}\right)$:

- Init: $z=0$
- when see element i :

$$
z=z+r(i)
$$

Estimator:
z^{2}

$$
z=z^{\prime}+z^{\prime \prime}\left(\text { for } f=f^{\prime}+f^{\prime \prime}\right)
$$

Similarly for difference!

- Estimate for $\sum\left(f_{i}^{\prime}-f_{i}^{\prime \prime}\right)^{2}$

$$
\left(z^{\prime}-z^{\prime \prime}\right)^{2}
$$

- How about $\sum\left|f_{i}^{\prime}-f_{i}^{\prime \prime}\right|$?
- will see later in the class

General streaming model

- At each moment, an update is:
$\left(i, \delta_{i}\right)$: increase $i^{\text {th }}$ entry by δ_{i} (may be negative!)
- Linear algorithm S handles easily:
$-S\left(f+e_{i} \delta_{i}\right)=S(f)+S\left(e_{i} \delta_{i}\right)$
- We'll call S a sketch
- [Nguyen-Li-Woodruff' 14]: in fact any algorithm for general streamin might as well be linear!

Part 2: Heavy Hitters

- How about max frequency?

IP	Frequency
1	3
2	2
3	0
4	9
5	0
\ldots	0
n	1

- Will settle for an even more modest goal:
- can detect the max-frequency element if it is very heavy

Heavy Hitters: Iteration 1

[Charikar-Chen-FarachColton'04, Cormode-Muthukrishnan'05]

- Definition: i is ϕ-heavy if $f_{i} \geq \phi \sum_{j} f_{j}$
- Will find them in space $O(1 / \phi)$
- Idea: hash functions!
$-h:[n] \rightarrow[w]$ random
- Element i goes to bucket $h(i)$
- In a bucket?
- Sum frequencies there

Estimator for f_{i} ?

$$
\hat{f}_{i}=S(h(i))
$$

$$
\widehat{f}_{2}=2
$$

$$
\widehat{f}_{5}=3
$$

$$
\widehat{f}_{7}=2
$$

$$
\widehat{f_{11}}=2
$$

Iteration 1: analysis

- Let's analyze:
- Estimator of frequency for element i

$$
\begin{aligned}
\widehat{f}_{i} & =S(h(i)) \\
& =f_{i}+\sum_{\{j: h(j)=h(i)\}} f_{j}
\end{aligned}
$$

- How much extra "chaff" is there?

Iteration 1: extra chaff

- $s(h(i))=f_{i}+\sum_{\{j: h(j)=h(i)\}} f_{j}$
- Extra "chaff":

$$
-E[C]=\sum_{j} \operatorname{Pr}[h(j)=h(i)] \cdot f_{j}=\frac{\Sigma_{j \neq i} f_{j}}{w}
$$

- Is $S(h(i))$ an unbiased estimator?
- No!
- Bias is at most $\frac{\sum_{j} f_{j}}{w}:$ small for $f_{i} \gg \frac{\sum_{j} f_{j}}{w}$
- Done?
- Yes: by Markov $C \leq \frac{10 \sum_{j} f_{j}}{w}$ with 90% prob.

Iteration 1: really done?

- Estimator:

$$
\begin{aligned}
& \widehat{f}_{i}=S(h(i))=f_{i}+\sum_{\{j: h(j)=h(i)\}} f_{j} \\
&=f_{i}+C \\
& \text { where } C \leq O\left(\sum_{j} f_{j} / w\right) \text { with } 90 \% \text { prob } \\
& \text { - for } w=O\left(\frac{1}{\epsilon \phi}\right) \text {, and } f_{i} \geq \phi \sum_{j} f_{j} \\
& \quad C \leq \epsilon f_{i} \Rightarrow f_{i} \text { is a } 1+\epsilon \text { approximation! }
\end{aligned}
$$

- Issues?
- Only constant probability
- For many indices, it is an overestimate!

Fundamental issue: if i and j collide, can't know if it's i or j with high frequency;
but must have many collisions to reduce space

Iteration 2: CountMin

- Median trick!
- Use $L=O(\log n)$ hash tables with hash functions h_{j}

$$
\begin{aligned}
& \widehat{f_{2}}=2 \\
& \widehat{f_{5}}=3 \\
& \widehat{f_{7}}=1 \\
& \widehat{f_{11}}=2
\end{aligned}
$$

```
Algorithm CountMin:
```

Initialize (r, L):
array $S[L][W]$
L hash functions $h_{1} \ldots h_{L}$, into $\{1, \ldots \mathrm{w}\}$
Process(int i):
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{L}$; $\mathrm{j}++$)
$\mathrm{S}[j]\left[h_{j}(i)\right]+=1$;

Estimator:

```
foreach i in PossibleIP {
    f
    }
```


CountMin: analysis

- Consider an index i
- Each table gives
$-\widehat{f}_{i}=f_{i} \pm \epsilon \phi$ with 90% probability
- Median is a $\pm \epsilon \phi$ with $1-1 / n^{2}$ probability
- Apply union bound over all $i \in[n]$
- All are $\pm \epsilon \phi$, with 1 1/n probability
- Alternative estimator?
- Take MIN instead of median

```
```

Algorithm CountMin:

```
```

Algorithm CountMin:

```
```

Algorithm CountMin:
Initialize(r, L):
Initialize(r, L):
Initialize(r, L):
array S[L][W]
array S[L][W]
array S[L][W]
L hash functions }\mp@subsup{h}{1}{}···.\mp@subsup{h}{L}{}\mathrm{ , into {1,..w}
L hash functions }\mp@subsup{h}{1}{}···.\mp@subsup{h}{L}{}\mathrm{ , into {1,..w}
L hash functions }\mp@subsup{h}{1}{}···.\mp@subsup{h}{L}{}\mathrm{ , into {1,..w}
Process(int i):
Process(int i):
Process(int i):
for(j=0; j<L; j++)
for(j=0; j<L; j++)
for(j=0; j<L; j++)
S[j][hj(i)] += 1;
S[j][hj(i)] += 1;
S[j][hj(i)] += 1;
Estimator:
Estimator:
Estimator:
Estimator:
foreach i in PossibleIP {
\hat{f}
\hat{f}
\hat{f}
\hat{f}
} min

```
```

 } min
    ```
```

 } min
    ```
```

 } min
    ```
```


CountMin: overall

- Iterate over all i 's
- Heavy hitters: $\frac{\widehat{f_{i}}}{\sum f_{j}} \geq \phi$
- If $\frac{f_{i}}{\sum f_{j}} \leq \phi(1-\epsilon)$, not in the output
- If $\frac{f_{i}}{\sum f_{j}} \geq \phi(1+\epsilon)$,
reported as heavy hitter

```
Algorithm CountMin:
Initialize(r, L):
    array S[L][W]
    L hash functions }\mp@subsup{h}{1}{}\ldots\mp@subsup{h}{L}{}\mathrm{ , into {1,..W}
Process(int i):
    for(j=0; j<L; j++)
        S[j][ hj (i) ] += 1;
```


Estimator:

```
    foreach i in PossibleIP {
        \mp@subsup{f}{i}{}}=\mp@subsup{m@dian}{j}{(S[j][hj(i)]);
    }
    min
```

- Space: $O\left(\frac{\log ^{2} n}{\epsilon \phi}\right)$ bits
- Issues?
- Time: to iterate $\Omega(n)$

CountMin: time

- Can improve time; space degrades to $O\left(\frac{\log ^{3} n}{\epsilon \phi}\right)$ bits
- Idea: dyadic intervals
- Each level with its own sketch
- Find heavy hitters by following down the tree all the heavy hitters (in intermediary)

A variant: CountSketch

- Is CountMin linear?
- CountMin $\left(f^{\prime}+f^{\prime \prime}\right)$ from CountMin $\left(f^{\prime}\right)$ and CountMin($f^{\prime \prime}$) ?
- Just sum the two!
- sum the 2 arrays, assuming we use the same hash function h_{j}
- What about $f=f^{\prime}-f^{\prime \prime}$?
- "Heavy hitter": if $\left|f_{i}\right| \geq \phi \sum_{j}\left|f_{j}\right|=\phi \cdot| | f \|_{1}$
- "min" is an issue
- But median is still ok
- Ideas to improve it further?
- Use Tug of War r in each bucket => CountSketch
- Better in certain cases
- $2^{\text {nd }}$ moment:
- Tug-Of-War (sum of random ± 1 's)
- Linearity:
- Can add/subtract sketches easily
- Max-frequency:
- Can only do heavy hitters
- Hash functions to distribute elements
- CountMin
- https:/ /sites.google.com/site/countminsketch/
- CountSketch: CountMedian+TugOfWar

