Lecture 3: Frequency Moments: F_2, Heavy Hitters
Administrivia, Plan

- Piazza: sign-up!
- PS1 releazed
- Scriber?

Plan:
- Frequency Moments
- Heavy Hitters
Part 1: Frequency Moments

- Let f_i be frequency of i
 - Lecture 1: count one f_i
 - Lecture 2: count # of non-zeros

- Moment 1:
 - $\sum_i f_i$
 - Estimator with low space?
 - Just count

- Moment 2:
 - $\sum_i f_i^2$

\[
\sum_i f_i = 15
\]
\[
\sum_i f_i^2 = 95
\]
2nd Moment: F_2

[Alon-Matias-Szegedy 1996]

- **Idea**: Rademacher random variables
 hash function $r: [n] \rightarrow \{-1, +1\}$

- **Algorithm (Tug-of-War)**:
 store $z = \sum_i r(i) \cdot f_i$

- **Estimator**: z^2

Algorithm TOW (F_2):
- Init: $z = 0$
- when see element i:
 $z = z + r(i)$

Estimator:
z^2
Rademacher r.v.

- What if we have m ones?
 - sum of m random ± 1’s

- How much is $z = \sum r(i)$ roughly?
 - Say, $|z|$?
 - $E[z] = 0$
 - $Var[z] = m$
 - Apply Chebyshev:
 - $|z| \leq O(\sqrt{m})$ with constant probability
 - In fact tight

Algorithm TOW (F_2):
- Init: $z = 0$
- when see element i:
 - $z = z + r(i)$
- Estimator:
 - z^2
Analysis

- $E[z^2] = \ldots = \sum_i f_i^2$

- $Var[z^2] \leq E[z^4] = \ldots \leq O\left(\sum f_i^2\right)^2$

- Randomness?
 - $O(\log n)$ for h that is 4-wise independent

- Can apply the average trick:
 - Take $k = O\left(\frac{1}{\epsilon^2}\right)$ counters
 - Obtain: $1 + \epsilon$ approximation in $O\left(\frac{1}{\epsilon^2 \log n}\right)$ space

Algorithm TOW (F_2):
- Init: $z = 0$
- when see element i:
 $z = z + r(i)$

Estimator:
z^2
Linearity

• Important property

Algorithm TOW (F_2):
• Init: $z = 0$
• when see element i: $z = z + r(i)$
Estimator: z^2

$z = z' + z''$ (for $f = f' + f''$)
Similarly for difference!

- Estimate for $\sum (f_i' - f_i'')^2$

 $(z' - z'')^2$

- How about $\sum |f_i' - f_i'''|$?
 – will see later in the class
General streaming model

• At each moment, an update is:
 \((i, \delta_i)\) : increase \(i^{th}\) entry by \(\delta_i\) (may be negative!)

• Linear algorithm \(S\) handles easily:
 \(- S(f + e_i\delta_i) = S(f) + S(e_i\delta_i)\)
 \(- We’ll call \(S\) a sketch\)

• [Nguyen-Li-Woodruff’14]: in fact any algorithm for general streaming might as well be linear!
Part 2: Heavy Hitters

• How about max frequency?

• Impossible to approximate in sublinear space!

• Will settle for an even more modest goal:
 – can detect the max-frequency element if it is very heavy

<table>
<thead>
<tr>
<th>IP</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>𝑛</td>
<td>1</td>
</tr>
</tbody>
</table>
Heavy Hitters: Iteration 1

[Charikar-Chen-FarachColton’04, Cormode-Muthukrishnan’05]

- **Definition:** i is ϕ-heavy if $f_i \geq \phi \sum_j f_j$
- **Will find them in space** $O(1/\phi)$
- **Idea:** hash functions!
 - $h: [n] \rightarrow [w]$ random
 - Element i goes to bucket $h(i)$
 - In a bucket?
 - Sum frequencies there

Estimator for f_i?

$$\hat{f}_i = S(h(i))$$

- $\hat{f}_2 = 2$
- $\hat{f}_5 = 3$
- $\hat{f}_7 = 2$
- $\hat{f}_{11} = 2$
Iteration 1: analysis

• Let’s analyze:
 – Estimator of frequency for element i
 \[
 \hat{f}_i = S(h(i)) = f_i + \sum_{\{j : h(j) = h(i)\}} f_j
 \]

• How much extra “chaff” is there?
Iteration 1: extra chaff

- \(S(h(i)) = f_i + \sum_{\{j: h(j) = h(i)\}} f_j \)
- Extra “chaff”:
 - \(E[C] = \sum_j \Pr[h(j) = h(i)] \cdot f_j = \frac{\sum_{j\neq i} f_j}{w} \)
- Is \(S(h(i)) \) an unbiased estimator?
 - No!
 - Bias is at most \(\frac{\sum_j f_j}{w} \): small for \(f_i \gg \frac{\sum_j f_j}{w} \)
- Done?
 - Yes: by Markov \(C \leq \frac{10 \sum_j f_j}{w} \) with 90% prob.
Iteration 1: really done?

• Estimator:
\[
\hat{f}_i = S(h(i)) = f_i + \sum_{\{j: h(j) = h(i)\}} f_j \\
= f_i + C
\]
where \(C \leq O(\sum_j f_j / w) \) with 90% prob

– for \(w = O\left(\frac{1}{\epsilon \phi}\right) \), and \(f_i \geq \phi \sum_j f_j \)

\[
C \leq \epsilon f_i \Rightarrow \hat{f}_i \text{ is a } 1 + \epsilon \text{ approximation!}
\]

• Issues?
 – Only constant probability
 – For many indices, it is an overestimate!

Fundamental issue: if \(i \) and \(j \) collide, can’t know if it’s \(i \) or \(j \) with high frequency;
but must have many collisions to reduce space
Iteration 2: **CountMin**

- **Median trick!**
 - Use $L = O(\log n)$ hash tables with hash functions h_j

```
Algorithm CountMin:

Initialize(r, L):
    array S[L][w]
    L hash functions $h_1 \ldots h_L$, into {1,...w}

Process(int i):
    for(j=0; j<L; j++)
        S[j][ h_j(i) ] += 1;

Estimator:
    foreach i in PossibleIP {
        $\hat{f}_i = median_j(S[j][h_j(i)])$;
    }
```
Algorithm CountMin:

Initialize \((r, L)\):
- array \(S[L][w]\)
- \(L\) hash functions \(h_1 \ldots h_L\), into \(\{1, \ldots w\}\)

Process \((\text{int } i)\):
- for \((j=0; j<L; j++)\)
 - \(S[j][h_j(i)] += 1;\)

Estimator:
- foreach \(i \in \text{PossibleIP}\) {
 - \(\hat{f}_i = \text{median}_j(S[j][h_j(i)]);\)
 - \(\text{min} \)
}

CountMin: analysis

- Consider an index \(i\)
- Each table gives
 - \(\hat{f}_i = f_i \pm \epsilon \phi\) with 90% probability
- Median is a \(\pm \epsilon \phi\) with \(1 - 1/n^2\) probability
 - Apply union bound over all \(i \in [n]\)
 - All are \(\pm \epsilon \phi\), with \(1 - 1/n\) probability
- Alternative estimator?
 - Take \(\text{MIN}\) instead of median
CountMin: overall

• Iterate over all i’s

• Heavy hitters: $\frac{f_i}{\sum f_j} \geq \phi$
 – If $\frac{f_i}{\sum f_j} \leq \phi(1 - \epsilon)$, not in the output
 – If $\frac{f_i}{\sum f_j} \geq \phi(1 + \epsilon)$, reported as heavy hitter

• Space: $O \left(\frac{\log^2 n}{\epsilon \phi} \right)$ bits

• Issues?
 – Time: to iterate $\Omega(n)$

Algorithm CountMin:

Initialize(r, L):
 array $S[L][w]$
 L hash functions $h_1 \ldots h_L$, into $\{1, \ldots w\}$

Process(int i):
 for($j=0$; $j<L$; $j++$)
 $S[j][h_j(i)] += 1$;

Estimator:
 foreach i in PossibleIP {
 $\hat{f}_i = \text{median}_j(S[j][h_j(i)])$;
 } min
CountMin: time

• Can improve time; space degrades to $O\left(\frac{\log^3 n}{\epsilon \phi}\right)$ bits
• **Idea:** dyadic intervals
 – Each level with its own sketch
 – Find heavy hitters by following down the tree all the heavy hitters (in intermediary)
A variant: CountSketch

- Is CountMin linear?
 - CountMin($f' + f''$) from CountMin(f') and CountMin(f'')?
 - Just sum the two!
 - sum the 2 arrays, assuming we use the same hash function h_j

- What about $f = f' - f''$?
 - “Heavy hitter”: if $|f_i| \geq \phi \sum_j |f_j| = \phi \cdot ||f||_1$
 - “min” is an issue
 - But median is still ok
 - Ideas to improve it further?
 - Use Tug of War r in each bucket => CountSketch
 - Better in certain cases
Recap

• 2nd moment:
 – Tug-Of-War (sum of random ±1’s)

• Linearity:
 – Can add/subtract sketches easily

• Max-frequency:
 – Can only do heavy hitters
 – Hash functions to distribute elements
 – CountMin
 • https://sites.google.com/site/countminsketch/
 – CountSketch: CountMedian+TugOfWar