Lecture 5: Precision Sampling (cont), Streaming for Graphs

- Precision Sampling (continuation)
- Streaming for graphs
- Scriber?

Precision Sampling: Algorithm

- Precision Sampling Lemma: can get with 90\% success:
- O(1) additive error and 1.5 multiplicative error:

$$
S / 1.5-O(1)<\tilde{S}<1.5 \cdot S+O(1)
$$

- with average cost equal to $O(\log n)$
- Algorithm:
- Choose each $u_{i} \in \operatorname{Exp}(1)$ i.i.d.
- Estimator: $\tilde{S}=\max _{i} \tilde{a}_{i} / u_{i}$.
- Proof of correctness:

- Claim 1: $\max a_{i} / u_{i} \sim \sum a_{i} / \operatorname{Exp}(1)$
- Hence, $\max \tilde{a}_{i} / u_{i}=\frac{\sum a_{i}}{\operatorname{Exp}(1)} \pm 1$
- Claim 2: Avg cost $=O(\log n)$
p-moments via Prec. Sampling
- Theorem: linear sketch for p-moment with O (1) approximation, and $O\left(n^{1-2 / p} \log ^{O(1)} n\right)$ space (with 90% success probability).
- Sketch:
- Pick random $r_{i} \in\{ \pm 1\}$, and $u_{i} \sim \operatorname{Exp}(1)$
- let $y_{i}=f_{i} \cdot r_{i} / u_{i}^{1 / p}$

$$
u \sim e^{-u}
$$

- Hash into a hash table S,

$$
w=O\left(n^{1-\frac{2}{p}} \log ^{O(1)} n\right) \text { cells }
$$

- Estimator:
$-\max _{j}|S[j]|^{p}$
- Sketch S is linear

Correctness of estimation

- Theorem: $\max |S[j]|^{p}$ is $O(1)$ approximation with 90% probability, with

$$
w=O\left(n^{1-2 / p} \log ^{O(1)} n\right) \text { cells }
$$

- Proof:
- Use Precision Sampling Lem.
$-a_{i}=\left|f_{i}\right|^{p}$
- $\sum a_{i}=\sum\left|f_{i}\right|^{p}=F_{p}$
$-\tilde{a}_{i} / u_{i}=|S[h(i)]|^{p}$
- Need to show $\left|a_{i}-\tilde{a}_{i}\right|$ small
- more precisely: $\left|\frac{\tilde{a}_{i}}{u_{i}}-\frac{a_{i}}{u_{i}}\right| \leq \epsilon F_{p}$

Correctness 2

- Claim: $\left|S[h(i)]^{p}-f_{i}^{p} / u_{i}\right| \leq O\left(\epsilon F_{p}\right)$
- Consider cell $z=h(i)$
- $S[z]=\frac{f_{i} r_{i}}{u_{i}^{1 / p}}+C$
- How much chaff C is there?
$-C=\sum_{j \neq i^{*}} y_{j} \cdot \chi[h(j)=z]$
- $E\left[C^{2}\right]=\cdots \leq\|y\|^{2} / w$
- What is $\|y\|^{2}$?

$$
y_{i}=f_{i} \cdot r_{i} / u_{i}^{1 / p}
$$

where $r_{i} \in\{ \pm 1\}$ u_{i} exponential r.v.

- $E_{u}\|y\|^{2} \leq\|f\|^{2} \cdot E\left[\frac{1}{u^{2 / p}}\right]=\|f\|^{2} \cdot O(\log n)$
- $\|f\|^{2} \leq n^{1-2 / p}\|f\|_{p}^{2}$
- By Markov's: $C^{2} \leq\|f\|_{p}^{2} \cdot n^{1-2 / p} \cdot O(\log n) / w$ with probability $>90 \%$
- Set $w=\frac{1}{\epsilon^{2 / p}} n^{1-2 / p} \cdot O(\log n)$, then
$-|C|^{p} \leq\|f\|_{p}^{p} \cdot \epsilon=\epsilon F_{p}$
- Claim: $\left|S[h(i)]^{p}-f_{i}^{p} / u_{i}\right| \leq O\left(\epsilon F_{p}\right)$
- $S[h(i)]^{p}=\left(\frac{f_{i}}{u_{i}^{1 / p}}+C\right)^{p}$
- where $C=\sum_{j \neq i^{*}} y_{j} \cdot \chi[h(j)=h(i)]$
- Proved:
$-E\left[C^{2}\right] \leq\|y\|^{2} / w$
- this implies $C^{p} \leq \epsilon F_{p}$ with 90% for fixed i
- But need for all i !
- Want: $C^{2} \leq \beta\|y\|^{2} / w$ with high probability for some smallish β
- Can indeed prove for $\beta=O\left(\log ^{2} n\right)$ with strong concentration inequality (Bernstein).

Recap: frequency moments

- p-moment for $p>2$
- Via Precision Sampling
- Estimate of sum from poor estimates

Streaming for Graphs

Columbia Engineering

Streaming for Graphs

- Graph G
- n vertices
- m edges
- Stream: list of edges
(e.g., on a hard drive)

$$
(0,0)(0, \bullet)(\bullet, 0)(\bullet, 0)(0,0)(0,0)
$$

Graphs

- Web
- Social graphs
- Phone calls
- Maps
- Geographical data

Why streaming for graphs?

- Want to run graph algorithms
- graph stored on hard drive
- A linear scan on hard MUCH more efficient than random access
- Usual algorithms are usually random-access

- think Breadth-First-Search
$(0,0)(\bullet, 0)(\bullet, 0)(0,0)(0,0)(0, \bullet)$
- Most of usual-suspect algorithms use randomaccess
- Questions:
- Connectivity
- Distances (similarities) between nodes
- PageRank (stationary distribution of random walk)
- Counting \# of triangles (measure of clusterability)
- Various other statistics
- Matchings
- Graph partitioning
- ...

Parameters for graph algorithms

- Size of the workspace:
- Aim: to use $\sim n$ space
E.g., for web can have
$n=1 \cdot 10^{9}$ nodes
$m=100 \cdot 10^{9}$ edges
- or $\mathrm{O}(n \cdot \log n)$
- Still much less than m (that could be up to n^{2})
$-\ll n$ is usually not achievable

Problem 1: connectivity

- Check whether the graph is connected?
- in $O(n)$ space
- Idea:
- Store minimum spanning tree
- Algorithm:
- Keep a subgraph H (starts empty)
- when see an edge (i, j):
- If (i, j) does not create a cycle in H, add it to H
- Space: $\leq n-1$ edges only
- Can use H for:
- Connectivity between 2 nodes
- \# connected components

Problem 2: distance

- Given s, t, compute the distance between them
- Up to approximation α, odd integer
- Modification of the previous algorithm:
- Keep a subgraph H
- On edge (i, j) : if $d_{H}(i, j)>\alpha$, add (i, j) to H
- Space?
- All cycles in H have length $\geq \alpha+2$
- Thm [Bollobas]: then $|H| \leq O\left(n^{1+\frac{2}{\alpha+1}}\right)$
- Few other results known!

Detour: Bollobas Theorem

- Thm [Bollobas]: If all cycles of length $\geq \alpha+$ 2 then $|H| \leq O\left(n^{1+\frac{2}{\alpha+1}}\right)$
- Simplified case: all nodes of degree d
- Proof:
- Suppose: $\alpha=2 k-1$
- Explore a vertex v
- At depth k : all nodes differ!
- Hence $d^{k} \leq n$
- Or $d \leq n^{1 / k}$
$-m \leq n^{1+1 / k}=n^{1+\frac{2}{\alpha+1}}$

