Lecture 10: Sketching S3: Nearest Neighbor Search

The Fu Foundation School of Engineering and Applied Science

Plan

- PS2 due yesterday, 7pm
- Sketching
- Nearest Neighbor Search

- Scriber?

Sketching

- $S: \Re^{d} \rightarrow$ short bit-strings
- given $S(x)$ and $S(y)$, should be able to estimate some function of x and y
- With 90% success probability $(\delta=0.1)$
- ℓ_{2}, ℓ_{1} norm: $O\left(\epsilon^{-2}\right)$ words
- Decision version: given r in advance...
- Lemma: ℓ_{2}, ℓ_{1} norm: $O\left(\epsilon^{-2}\right)$ bits

Distinguish between
$\|x-y\| \leq r$
$\|x-y\|>(1+\epsilon) r$

Sketching: decision version

- Consider Hamming space: $x, y \in\{0,1\}^{d}$
- Lemma: for any $r>0$, can achieve $O\left(1 / \epsilon^{2}\right)$-bit sketch.
- [on blackboard]

Conclusion

- Dimension reduction:
- [Johnson-Lindenstrauss'84]:
- a random linear projection into k dimensions
- preserves $\|x-y\|_{2}$, up to $1+\epsilon$ approximation
- with probability $\geq 1-e^{-\Omega\left(\epsilon^{2} k\right)}$
- Random linear projection:
- Can be $G x$ where G is Gaussian, or ± 1 entry-wise
- Hence: preserves distance between n points as long as $k=$ $\Theta\left(\frac{1}{\epsilon^{2}} \log n\right)$
- Can do faster than $O(d k)$ time
- Using Fast Fourier Transform
- In ℓ_{1} : no dimension reduction
- But can do sketching
- Using p-stable distributions (Cauchy for $p=1$)
- Sketching: decision version, constant $\delta=0.1$:
- For ℓ_{1}, ℓ_{2}, can do with $O\left(\frac{1}{\epsilon^{2}}\right)$ bits!

Section 3:

Nearest Neighbor Search

Approximate NNS

$c^{\text {- -approximate }} r$-near neighbor: given a query point q

- assuming there is a point p^{*} within distance r,
- report a point $p^{\prime} \in D$ s.t. $\left\|p^{\prime}-q\right\| \leq c r$

- Boosted sketch:
- Let S = sketch for the decision version (90\% success probability)
- new sketch W :
- keep $k=O(\log n)$ copies of S
- estimator is the majority answer of the k estimators
- Sketch size: $O\left(\epsilon^{-2} \log n\right)$ bits
- Success probability: $1-n^{-2}$ (Chernoff)
- Preprocess: compute sketches $W(p)$ for all the points $p \in D$
- Query: compute sketch $W(q)$, and compute distance to all points using sketch
- Time: improved from $O(n d)$ to $O\left(n \epsilon^{-2} \log n\right)$

NNS: approach 2

- Query time below n ?
- Theorem [KOR98]: $O\left(d \epsilon^{-2} \log n\right)$ query time and $n^{o\left(1 / \epsilon^{2}\right)}$ space for $1+\epsilon$ approximation.
- Proof:
- Note that $W(q)$ has $w=O\left(\epsilon^{-2} \log n\right)$ bits
- Only 2^{w} possible sketches!
- Store an answer for each of $2^{w}=n^{o\left(\epsilon^{-2}\right)}$ possible inputs
- In general:
- if a distance has constant-size sketch, admits a polyspace NNS data structure!
- Space closer to linear?
- approach 3 will require more specialized sketches...

