Lecture 10: Sketching S3: Nearest Neighbor Search

Plan

- PS2 due yesterday, 7pm
- Sketching
- Nearest Neighbor Search

• Scriber?

Sketching

- $S: \mathfrak{R}^d \to \text{short bit-strings}$
 - given S(x) and S(y), should be able to estimate some function of x and y
 - With 90% success probability ($\delta = 0.1$)
- ℓ_2 , ℓ_1 norm: $O(\epsilon^{-2})$ words
- Decision version: given r in advance...
- Lemma: ℓ_2 , ℓ_1 norm: $O(\epsilon^{-2})$ bits

Sketching: decision version

- Consider Hamming space: $x, y \in \{0,1\}^d$
- Lemma: for any r > 0, can achieve $O(1/\epsilon^2)$ -bit sketch.

• [on blackboard]

Conclusion

- Dimension reduction:
 - [Johnson-Lindenstrauss'84]:
 - a random linear projection into k dimensions
 - preserves $||x y||_2$, up to $1 + \epsilon$ approximation
 - with probability $\geq 1 e^{-\Omega(\epsilon^2 k)}$
 - Random linear projection:
 - Can be Gx where G is Gaussian, or ± 1 entry-wise
 - Hence: preserves distance between n points as long as $k = \Theta\left(\frac{1}{\epsilon^2}\log n\right)$
 - Can do faster than O(dk) time
 - Using Fast Fourier Transform
- In ℓ_1 : no dimension reduction
 - But can do sketching
 - Using p-stable distributions (Cauchy for p = 1)
- Sketching: decision version, constant $\delta = 0.1$:

- For
$$\ell_1$$
, ℓ_2 , can do with $O\left(\frac{1}{\epsilon^2}\right)$ bits!

Section 3:

Nearest Neighbor Search

Approximate NNS ^{c-approximate} *r*-near neighbor: given a query point *q*

- assuming there is a point p^* within distance r,
- report a point $p' \in D$ s.t. $||p' - q|| \leq cr$

NNS: approach 1

- Boosted sketch:
 - Let S = sketch for the decision version (90% success probability)
 - new sketch W:
 - keep $k = O(\log n)$ copies of S
 - estimator is the majority answer of the k estimators
 - Sketch size: $O(\epsilon^{-2} \log n)$ bits
 - Success probability: $1 n^{-2}$ (Chernoff)
- Preprocess: compute sketches W(p) for all the points $p \in D$
- Query: compute sketch W(q), and compute distance to all points using sketch
- Time: improved from O(nd) to $O(ne^{-2}\log n)$

NNS: approach 2

- Query time below *n* ?
- Theorem [KOR98]: $O(d\epsilon^{-2}\log n)$ query time and $n^{O(1/\epsilon^2)}$ space for $1 + \epsilon$ approximation.
- Proof:
 - Note that W(q) has $w = O(e^{-2} \log n)$ bits
 - Only 2^w possible sketches!
 - Store an answer for each of $2^w = n^{O(\epsilon^{-2})}$ possible inputs
- In general:
 - if a distance has constant-size sketch, admits a polyspace NNS data structure!
- Space closer to linear?
 - approach 3 will require more specialized sketches...