Lecture 10:
Sketching
S3: Nearest Neighbor Search
Plan

• PS2 due yesterday, 7pm

• Sketching

• Nearest Neighbor Search

• Scriber?
Sketching

- \(S: \mathbb{R}^d \to \) short bit-strings
 - given \(S(x) \) and \(S(y) \), should be able to estimate some function of \(x \) and \(y \)
 - With 90% success probability (\(\delta = 0.1 \))
- \(l_2, l_1 \) norm: \(O(\epsilon^{-2}) \) words
- Decision version: given \(r \) in advance...
- **Lemma:** \(l_2, l_1 \) norm: \(O(\epsilon^{-2}) \) bits

\[
\begin{align*}
S &\quad 010110 \\
S &\quad 010101 \\
\end{align*}
\]

Distinguish between

\[||x - y|| \leq r \]
\[||x - y|| > (1 + \epsilon)r \]
Sketching: decision version

• Consider Hamming space: $x, y \in \{0,1\}^d$

• **Lemma**: for any $r > 0$, can achieve $O(1/\epsilon^2)$ -bit sketch.

• [on blackboard]
Conclusion

• Dimension reduction:
 – [Johnson-Lindenstrauss’84]:
 • a random linear projection into k dimensions
 • preserves $||x - y||_2$, up to $1 + \varepsilon$ approximation
 • with probability $\geq 1 - e^{-\Omega(\varepsilon^2 k)}$
 – Random linear projection:
 • Can be Gx where G is Gaussian, or ± 1 entry-wise
 • Hence: preserves distance between n points as long as $k = \Theta\left(\frac{1}{\varepsilon^2 \log n}\right)$
 • Can do faster than $O(dk)$ time
 • Using Fast Fourier Transform
 – In ℓ_1: no dimension reduction
 • But can do sketching
 • Using p-stable distributions (Cauchy for $p = 1$)
 • Sketching: decision version, constant $\delta = 0.1$:
 – For ℓ_1, ℓ_2, can do with $O\left(\frac{1}{\varepsilon^2}\right)$ bits!
Section 3:

Nearest Neighbor Search
Approximate NNS

\(c \)-approximate \(r \)-near neighbor: given a query point \(q \)

- assuming there is a point \(p^* \) within distance \(r \),
- report a point \(p' \in D \) s.t.
 \[\|p' - q\| \leq cr \]
NNS: approach 1

- **Boosted sketch:**
 - Let S = sketch for the decision version (90% success probability)
 - new sketch W:
 - keep $k = O(\log n)$ copies of S
 - estimator is the majority answer of the k estimators
 - Sketch size: $O(\epsilon^{-2} \log n)$ bits
 - Success probability: $1 - n^{-2}$ (Chernoff)

- **Preprocess:** compute sketches $W(p)$ for all the points $p \in D$

- **Query:** compute sketch $W(q)$, and compute distance to all points using sketch

- **Time:** improved from $O(nd)$ to $O(n\epsilon^{-2} \log n)$
NNS: approach 2

• Query time below n?

• **Theorem [KOR98]:** $O(d\varepsilon^{-2}\log n)$ query time and $n^{O(1/\varepsilon^2)}$ space for $1 + \varepsilon$ approximation.

• **Proof:**
 – Note that $W(q)$ has $w = O(\varepsilon^{-2}\log n)$ bits
 – Only 2^w possible sketches!
 – Store an answer for each of $2^w = n^{O(\varepsilon^{-2})}$ possible inputs

• In general:
 – if a distance has constant-size sketch, admits a poly-space NNS data structure!

• Space closer to linear?
 – approach 3 will require more specialized sketches...