Lecture 11: Nearest Neighbor Search

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Plan

- Distinguished Lecture
 - Quantum Computing
 - Oct 19, 11:30am, Davis Aud in CEPSR

- Nearest Neighbor Search
- Scriber?

Sketching

- $W: \mathfrak{R}^d \rightarrow \text{short bit-strings}$
 - given W(x) and W(y), can distinguish between:
 - Close: $||x y|| \le r$
 - Far: ||x y|| > cr
 - With high success probability: only $\delta = 1/n^3$ failure prob.
- ℓ_2 , ℓ_1 norm: $O(\epsilon^{-2} \cdot \log n)$ bits

NNS: approaches

- Sketch *W*: uses $k = O(e^{-2} \cdot \log n)$ bits
- 1: Linear scan++
 - Precompute W(p) for $p \in D$
 - Given q, compute W(q)
 - For each $p \in D$, estimate distance using W(q), W(p)
- 2: Exhaustive storage++
 - For each possible $\sigma \in \{0,1\}^k$
 - compute $A[\sigma] = \text{point } p \in D \text{ s.t. } ||W(p) \sigma||_1 < t$
 - On query q, output A[W(q)]

- Space:
$$2^{k} = n^{O(1/\epsilon^{2})}$$

Near-linear space and sub-linear query time?

Locality Sensitive Hashing [Indyk-Motwani '98]

Random hash function h on R^d satisfying:

for close pair (when $||q - p|| \le r$) $P_1 = \Pr[h(q) = h(p)]$ is "not-so-small" for far pair (when ||q - p'|| > cr) $P_2 = \Pr[h(q) = h(p')]$ is "small"

Use several hash tables

$$n^{\rho}$$
, where $\rho = \frac{\log 1/P_1}{\log 1/P_2}$

Cr

 $\|q-p\|$

Р

Ρ

r

LSH for Hamming space

• Hash function g is usually a concatenation of "primitive" functions:

$$-g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$$

- Fact 1: $\rho_g = \rho_h$
- Example: Hamming space {0,1}^d
 - $-h(p) = p_j$, i.e., choose j^{th} bit for a random j
 - -g(p) chooses k bits at random
 - $-\Pr[h(p) = h(q)] = 1 \frac{Ham(p,q)}{d}$

$$-P_1 = 1 - \frac{r}{d} \approx e^{-r/d}$$
$$-P_1 = 1 - \frac{cr}{d} \approx e^{-cr/d}$$

$$P_2 = 1 - \frac{1}{d} \approx$$

$$-\rho = \frac{\log 1/P_1}{\log 1/P_2} = \frac{r/d}{cr/d} = \frac{1}{c}$$

Full Algorithm

• Data structure is just $L = n^{\rho}$ hash tables: - Each hash table uses a fresh random function $g_i(p) = \langle h_{i,1}(p), \dots, h_{i,k}(p) \rangle$

 $g_i(p) = \langle n_{i,1}(p), \dots, n_{i,k}(p) \rangle$

- Hash all dataset points into the table

- Query:
 - Check for collisions in each of the hash tables
 - until we encounter a point within distance cr
- Guarantees:
 - Space: $O(nL) = O(n^{1+\rho})$, plus space to store points
 - Query time: $O(L \cdot (k + d)) = O(n^{\rho} \cdot d)$ (in expectation)
 - 50% probability of success.

Choice of parameters k, L ?

- L hash tables with $g(p) = \langle h_1(p), \dots, h_k(p) \rangle$ set k s.t.
- Pr[collision of *far* pair] = $P_2^k = 1/n$
- Pr[collision of *close* pair] = $P_1^{\overline{k}} = (P_2^{\rho})^k = 1/n^{\rho}$ - Success probability for a hash table: P_1^k

bability

 P_1

 P_2

- $L = O(1/P_1^k)$ tables should suffice
- Runtime as a function of P_1, P_2 ?
 - $O\left(\frac{1}{P_1^k}\left(timeToHash + nP_2^k\right)\right)$

 P_{1}^{2} -

 P_{2}^{2}

• Hence $L = O(n^{\rho})$

k = 1

k = 2

distance

CY

Analysis: correctness

- Let p* be an r-near neighbor
 If does not exists, algorithm can output anything
- Algorithm fails when:
 - near neighbor p^* is not in the searched buckets $g_1(q), g_2(q), \dots, g_L(q)$
- Probability of failure:
 - Probability q, p^* do not collide in a hash table: $\leq 1 P_1^k$
 - Probability they do not collide in L hash tables at most

$$\left(1-P_1^k\right)^L = \left(1-\frac{1}{n^\rho}\right)^{n^\rho} \le 1/e$$

Analysis: Runtime

- Runtime dominated by:
 - Hash function evaluation: $O(L \cdot k)$ time
 - Distance computations to points in buckets
- Distance computations:
 - Care only about far points, at distance > cr
 - In one hash table, we have
 - Probability a far point collides is at most $P_2^k = 1/n$
 - Expected number of far points in a bucket: $n \cdot \frac{1}{n} = 1$
 - Over L hash tables, expected number of far points is L
- Total: $O(Lk) + O(Ld) = O(n^{\rho}(\log n + d))$ in expectation

LSH in practice

- If want exact NNS, what is *c*?
 - Can choose any parameters L, k
 - Correct as long as $(1 P_1^k)^L \le 0.1$
 - Performance:
 - trade-off between # tables and false positives
 - will depend on dataset "quality"

fewer false

safety not

fewer tables

LSH Algorithms

	Space	Time	Exponent	<i>c</i> = 2	Reference
Hamming	$n^{1+ ho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98]
space			$\rho \ge 1/c$		[MNP'06, OWZ'11]

Euclidean	$n^{1+ ho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98, DIIM'04]
space			$\rho\approx 1/c^2$	$\rho = 1/4$	[AI'06]
			$\rho \ge 1/c^2$		[MNP'06, OWZ'11]

Table does not include:

- 0(nd) additive space
- $O(d \cdot \log n)$ factor in query time

LSH Zoo (ℓ_1)

- Hamming distance [IM'98]
 - h: pick a random coordinate(s)
- \$\empsilon_1\$ (Manhattan) distance [Al'06]
 \$h\$: cell in a randomly shifted grid
- Jaccard distance between sets:

$$J(A,B) = \frac{A \cap B}{A \cup B}$$

- h: pick a random permutation π on the universe

 $h(A) = \min_{a \in A} \pi(a)$ min-wise hashing [Bro'97] Claim: Pr[collision]=J(A,B)

LSH for Euclidean distance

[Datar-Immorlica-Indyk-Mirrokni 04]

- LSH function h(p):
 - pick a random line ℓ , and quantize
 - project point into ℓ

$$-h(p) = \left\lfloor \frac{p \cdot \ell}{w} + b \right\rfloor$$

- ℓ is a random Gaussian vector
- *b* random in [0,1]
- w is a parameter (e.g., 4)
- **Claim:** $\rho = 1/c$