Lecture 11: Nearest Neighbor Search

- Distinguished Lecture
- Quantum Computing
- Oct 19, 11:30am, Davis Aud in CEPSR
- Nearest Neighbor Search
- Scriber?

Sketching

- $W: \mathbb{R}^{d} \rightarrow$ short bit-strings
- given $W(x)$ and $W(y)$, can distinguish between:
- Close: $\|x-y\| \leq r$
- Far: $\|x-y\|>c r$
- With high success probability: only $\delta=1 / n^{3}$ failure prob.
- ℓ_{2}, ℓ_{1} norm: $O\left(\epsilon^{-2} \cdot \log n\right)$ bits

Yes: close, $\|x-y\| \leq r$ No: far, $\|x-y\|>(1+\epsilon) r$

- Sketch W : uses $k=O\left(\epsilon^{-2} \cdot \log n\right)$ bits
- 1: Linear scan++
- Precompute $W(p)$ for $p \in D$
- Given q, compute W (q)
- For each $p \in D$, estimate distance using $W(q), W(p)$
- 2: Exhaustive storage++
- For each possible $\sigma \in\{0,1\}^{k}$
- compute $A[\sigma]=$ point $p \in D$ s.t. $\|W(p)-\sigma\|_{1}<t$
- On query q, output $A[W(q)]$
- Space: $2^{k}=n^{O\left(1 / \epsilon^{2}\right)}$

Near-linear space and sub-linear query time?

Locality Sensitive Hashing

[Indyk-Motwani'98]

Random hash function h on R^{d}

 satisfying:for close pair (when $\|q-p\| \leq r$)
$P_{1}=\operatorname{Pr}[h(q)=h(p)]$ is "not-so-small"
for far pair (when $\left\|q-p^{\prime}\right\|>c r$)
$P_{2}=\operatorname{Pr}\left[h(q)=h\left(p^{\prime}\right)\right]$ is "small"

Use several hash tables

n^{ρ}, where $\rho=\frac{\log 1 / P_{1}}{\log 1 / P_{2}}$

LSH for Hamming space

- Hash function g is usually a concatenation of "primitive" functions:

$$
-g(p)=\left\langle h_{1}(p), h_{2}(p), \ldots, h_{k}(p)\right\rangle
$$

- Fact 1: $\rho_{g}=\rho_{h}$
- Example: Hamming space $\{0,1\}^{d}$
$-h(p)=p_{j}$, i.e., choose $j^{t h}$ bit for a random j
$-g(p)$ chooses k bits at random
$-\operatorname{Pr}[h(p)=h(q)]=1-\frac{\operatorname{Ham}(p, q)}{d}$
$-P_{1}=1-\frac{r}{d} \approx e^{-r / d}$
$-P_{2}=1-\frac{c r}{d} \approx e^{-c r / d}$
$-\rho=\frac{\log 1 / P_{1}}{\log 1 / P_{2}}=\frac{r / d}{c r / d}=\frac{1}{c}$

Full Algorithm

- Data structure is just $L=n^{\rho}$ hash tables:
- Each hash table uses a fresh random function

$$
g_{i}(p)=\left\langle h_{i, 1}(p), \ldots, h_{i, k}(p)\right\rangle
$$

- Hash all dataset points into the table
- Query:
- Check for collisions in each of the hash tables
- until we encounter a point within distance cr
- Guarantees:
- Space: $O(n L)=O\left(n^{1+\rho}\right)$, plus space to store points
- Query time: $O(L \cdot(k+d))=O\left(n^{\rho} \cdot d\right)$ (in expectation)
- 50\% probability of success.

Choice of parameters k, L ?

- L hash tables with $g(p)=\left\langle h_{1}(p), \ldots, h_{k}(p)\right\rangle$ set k s.t.
- $\operatorname{Pr}\left[\right.$ collision of far pair] $=P_{2}^{k}=1 / n$
- $\operatorname{Pr}\left[\right.$ collision of close pair] $=P_{1}^{k}=\left(P_{2}^{\rho}\right)^{k}=1 / n^{\rho}$
- Success probability for a hash table: P_{1}^{k}
- $L=O\left(1 / P_{1}^{k}\right)$ tables should suffice
- Runtime as a function of P_{1}, P_{2} ?
$-O\left(\frac{1}{P_{1}^{k}}\left(\right.\right.$ timeToHash $\left.\left.+n P_{2}^{k}\right)\right)$
- Hence $L=O\left(n^{\rho}\right)$

Analysis: correctness

- Let p^{*} be an r-near neighbor
- If does not exists, algorithm can output anything
- Algorithm fails when:
- near neighbor p^{*} is not in the searched buckets $g_{1}(q), g_{2}(q), \ldots, g_{L}(q)$
- Probability of failure:
- Probability q, p^{*} do not collide in a hash table: \leq $1-P_{1}^{k}$
- Probability they do not collide in L hash tables at most

$$
\left(1-P_{1}^{k}\right)^{L}=\left(1-\frac{1}{n^{\rho}}\right)^{n^{\rho}} \leq 1 / e
$$

Analysis: Runtime

- Runtime dominated by:
- Hash function evaluation: $O(L \cdot k)$ time
- Distance computations to points in buckets
- Distance computations:
- Care only about far points, at distance > cr
- In one hash table, we have
- Probability a far point collides is at most $P_{2}^{k}=1 / n$
- Expected number of far points in a bucket: $n \cdot \frac{1}{n}=1$
- Over L hash tables, expected number of far points is L
- Total: $O(L k)+O(L d)=O\left(n^{\rho}(\log n+d)\right)$ in expectation

LSH in practice

- If want exact NNS, what is c ? fewer tables - Can choose any parameters L, k
- Correct as long as $\left(1-P_{1}^{k}\right)^{L} \leq 0.1$
- Performance:
- trade-off between \# tables and false positives
- will depend on dataset "quality"

LSH Algorithms

Space	Time	Exponent	$\boldsymbol{c}=2$	Reference

Hamming space	$n^{1+\rho}$	n^{ρ}	$\rho=1 / c$	$\rho=1 / 2$	$\left[\mathrm{IM}^{\prime} 98\right]$
			$\rho \geq 1 / c$		$\left[\mathrm{MNP}^{\prime} 06\right.$, OWZ'11]

Euclidean space	$n^{1+\rho}$	n^{ρ}	$\rho=1 / c$	$\rho=1 / 2$	$\left[\mathrm{IM}^{\prime} 98\right.$, DIIM'04]
			$\rho \approx 1 / c^{2}$	$\rho=1 / 4$	$\left[\mathrm{Al}^{\prime} 06\right]$
			$\rho \geq 1 / c^{2}$		$\left[\mathrm{MNP}^{\prime} 06\right.$, OWZ'11]

Table does not include:

- $O(n d)$ additive space
- $O(d \cdot \log n)$ factor in query time
- Hamming distance [IM'98]
- h : pick a random coordinate(s)

- ℓ_{1} (Manhattan) distance [Al'06]
- h : cell in a randomly shifted grid
- Jaccard distance between sets:
$-J(A, B)=\frac{A \cap B}{A \cup B}$
- h : pick a random permutation π on the universe

$$
h(A)=\min _{a \in A} \pi(a)
$$

min-wise hashing [Bro'97]
Claim: $\operatorname{Pr}[$ collision $]=J(A, B)$
\{be,not,or,to\} \{not,or,to, sketch\}
be to
$\pi=\mathrm{be}, \mathrm{to}$, sketch,or,not

LSH for Euclidean distance

[Datar-Immorlica-Indyk-Mirrokni 04]

- LSH function $h(p)$:
- pick a random line ℓ, and quantize
- project point into ℓ
$-h(p)=\left\lfloor\frac{p \cdot \ell}{w}+b\right\rfloor$
- ℓ is a random Gaussian vector
- b random in [0,1]
- w is a parameter (e.g., 4)
- Claim: $\rho=1 / c$

