Lecture 12:

More LSH Data-dependent hashing

\author{
Columbia Engineering

The Fu Foundation School of Engineering and Applied Science

}
 \square

Announcements \& Plan

- PS3:
- Released tonight, due next Fri 7pm
- Class projects: think of teams!
- I'm away until Wed
- Office hours on Thu after class
- Kevin will teach on Tue
- Evaluation on courseworks next week
- LSH: better space
- Data-dependent hashing
- Scriber?

Time-Space Trade-offs (Euclidean)

space
low
query time

Space	Time	Comment	Reference

$\approx n$	n^{σ}	$\sigma=2.09 / c$	$[$ Ind'01, Pan'06]
		$\sigma=0\left(1 / c^{2}\right)$	$[$ Al'06 $]$

medium
high
low

$n^{1+\rho}$	n^{ρ}	$\rho=1 / c$	$[$ IM'98, DIIM'04]
		$\rho=1 / c^{2}$	$[$ Al'06]
		$\rho \geq 1 / c^{2}$	$\left[\mathrm{MNP}^{\prime} 06\right.$, OWZ'11]
$n^{1+o\left(1 / c^{2}\right.}$	$\omega(1)$ memory lookups	$\left[P T W^{\prime} 08\right.$, PTW'10]	

1 mem lookup

$n^{4 / \epsilon^{2}}$	0 dogn) $c=1+\epsilon$	[KOR'98, IM'98, Pan'06]
$n^{o\left(1 / \epsilon^{2}\right)}$	$\omega(1)$ memory lookups	[AIP'06]

Near-linear Space for $\{0,1\}^{d}$

[Indyk'01, Panigrahy'06]

Sample a few buckets in the same hash table!

- Setting:
- Close: $r=\frac{d}{2 c} \Rightarrow P_{1}=1-\frac{1}{2 c}$
- Far: $c r=\frac{d}{2} \Rightarrow P_{2}=\frac{1}{2}$
- Algorithm:
- Use one hash table with $k=\frac{\log n}{\log 1 / P_{2}}=\alpha \cdot \ln n$
- On query q :
- compute $w=g(q) \in\{0,1\}^{k}$
- Repeat $R=n^{\sigma}$ times:
- w^{\prime} : flip each w_{j} with probability $1-P_{1}$
- look up bucket $g\left(w^{\prime}\right)$ and compute distance to all points there
- If found an approximate near neighbor, stop

Near-linear Space

- Theorem: for $\sigma=\Theta\left(\frac{\log c}{c}\right)$, we have:
- $\operatorname{Pr[find~an~approx~near~neighbor]~} \geq 0.1$
- Expected runtime: $O\left(n^{\sigma}\right)$
- Proof:
- Let p^{*} be the near neighbor: $\left\|q-p^{*}\right\| \leq r$
$-w=g(q), t=\left\|w-g\left(p^{*}\right)\right\|_{1}$
- Claim 1: $\operatorname{Pr}_{g}\left[t \leq \frac{k}{c}\right] \geq \frac{1}{2}$
- Claim 2: $\operatorname{Pr}_{g, w^{\prime}}\left[w^{\prime}=g(p) \left\lvert\,\|q-p\|_{1} \geq \frac{d}{2}\right.\right] \leq \frac{1}{n}$
- Claim 3: $\operatorname{Pr}\left[w^{\prime}=g\left(p^{*}\right) \mid\right.$ Claim 1] $\geq 2 n^{-\sigma}$
- If $w^{\prime}=g\left(p^{*}\right)$ at least for one w^{\prime}, we are guaranteed to output either p^{*} or an approx. near neighbor

Beyond LSH

Space	Time	Exponent	$c=2$	Reference

Hamming space	$n^{1+\rho}$	n^{ρ}	$\rho=1 / c$	$\rho=\mathbf{1} / \mathbf{2}$	$\left[1 \mathrm{M}^{\prime} 98\right]$
			$\rho \geq 1 / c$		$\left[\mathrm{MNP}^{\prime} 06\right.$, OWZ'11]
	$n^{1+\rho}$	n^{ρ}	$\rho \approx \frac{1}{2 c-1}$	$\rho=\mathbf{1} / \mathbf{3}$	$\left[\mathrm{AINR}^{\prime} 14, \mathrm{AR}^{\prime} 15\right]$

Euclidean | |
| :--- | :--- | :--- | :--- | :--- |
| space |

$\left.\begin{array}{ll|l|l|l|}1+\rho & n^{\rho} & \rho \approx 1 / c^{2} & \rho=\mathbf{1} / \mathbf{4} & {\left[\mathrm{Al}^{\prime} 06\right]} \\
\hline & & \rho \geq 1 / c^{2} & & {\left[\mathrm{MNP}^{\prime} 06, \text { OWZ'11] }\right.} \\
\hline\end{array}\right\}$ LSH

$n^{1+\rho}$	n^{ρ}	$\rho \approx \frac{1}{2 c^{2}-1}$	$\rho=\mathbf{1} / \mathbf{7}$
	$\left[A I N R^{\prime} 14, \mathrm{AR}^{\prime} 15\right]$		

[^0]
New approach?

Data-dependent hashing

- A random hash function, chosen after seeing the given dataset
- Efficiently computable

Construction of hash function

[A.-Indyk-Nguyen-Razenshteyn'14, A.-Razenshteyn'15]

- Warning: hot off the press!
- Two components:
- Nice geometric structure
- Reduction to such structure
has better LSH
\longleftarrow data-dependent

Nice geometric structure

- Like a random dataset on a sphere
- s.t. random points at distance $\approx c r$
- Query:
- At angle 45' from near-neighbor

[Pictures curtesy of Ilya Razenshteyn]

Alg 1: Hyperplanes

[Charikar'02]

- Sample unitr uniformly, hash p into $\operatorname{sgn}\langle r, p\rangle$
$-\operatorname{Pr}[h(p)=h(q)]=1-\alpha / \pi$,
- where α is the angle between p and q
- $P_{1}=3 / 4$
- $P_{2}=1 / 2$
- $\rho \approx 0.42$

Alg 2: Voronoi

[A.-Indyk-Nguyen-Razenshteyn'14] based on [Karger-Motwani-Sudan'94]

- Sample T i.i.d. standard d dimensional Gaussians

$$
g_{1}, g_{2}, \ldots, g_{T}
$$

- Hash p into

$$
h(p)=\operatorname{argmax}_{1 \leq i \leq T}\left\langle p, g_{i}\right\rangle
$$

- $T=2$ is simply Hyperplane LSH

Hyperplane vs Voronoi

- Hyperplane with $k=6$ hyperplanes
- Means we partition space into $2^{6}=64$ pieces
- Voronoi with $T=2^{k}=64$ vectors
$-\rho=0.18$
- grids vs spheres

- 1. Via sketches
- 2. Locality Sensitive Hashing
- Random space partitions
- Better space bound
- Even near-linear!
- Data-dependent hashing even better
- Used in practice a lot these days
- The following was not presented in the lecture

Reduction to nice structure (HL)

- Idea: iteratively decrease the radius of minimum enclosing ball
- Algorithm:
- find dense clusters
- with smaller radius
- large fraction of points
- recurse on dense clusters
- apply VoronoiLSH on the rest
- recurse on each "cap"
- eg, dense clusters might reappear

Why ok?

- no dense clusters
- like "random dataset" with radius $=100 \mathrm{cr}$
- even better!

$$
\text { radius }=99 \mathrm{cr}
$$

Hash function

- Described by a tree (like a hash table)

*picture not to scale\&dimensior

Dense clusters

- Current dataset: radius R
- A dense cluster:
- Contains $n^{1-\delta}$ points
- Smaller radius: $\left(1-\Omega\left(\epsilon^{2}\right)\right) R$
- After we remove all clustès:
- For any point on the surface, there are at most $n-\delta$ points within distance $(\sqrt{2}-\epsilon) R>\epsilon$ trade-off
- The other points are essentially orthogonal!
- When applying Cap Carving with parameters $\left(P_{1}, P_{2}\right)$:
) trade-off
- Empirical number of far pts colliding with query: $\mathrm{RP}_{2}+$ $n^{1-\delta}$
- As long as $n P_{2} \gg n^{1-\delta}$, the "impurity" doesn't matter!
- During query:
- Recurse in all clusters
- Just in one bucket in VoronoiLSH
- Will look in >1 leaf!
- How much branching?
- Claim: at most $\left(n^{\delta}+1\right)^{0}$
- Each time we branch
- at most n^{δ} clusters (+1)
- a cluster reduces radius by $\Omega\left(\epsilon^{2}\right)$
- cluster-depth at most $100 / \Omega\left(\epsilon^{2}\right)$
- Progress in 2 ways:
- Clusters reduce radius
- CapCarving nodes reduce the \# of far points (empiri δ trade-off
- A tree succeeds with probability $\geq n^{-\frac{1}{2 c^{2}-1}-o(1)}$

Fast preprocessing

- How to find the dense clugcers fast?
- Step 1: reduce to $O\left(n^{2}\right)$ time.
- Enough to consider centers that are data points
- Step 2: reduce to near-linear time.
- Down-sample!
- Ok because we want clusters of size $n^{1-\delta}$
- After downsampling by a factor of \sqrt{n}, a cluster is still somewhat heavy.

Other details

- In the analysis,
- Instead of working with "probability of collision with far point" P_{2}, work with "empirical estimate" (the actual number)
- A little delicate: interplay with "probability of collision with close point", P_{1}
- The empirical P_{2} important only for the bucket where the query falls into
- Need to condition on collision with close point in the above empirical estimate
- In dense clusters, points may appear inside the balls
- whereas VoronoiLSH works for points on the sphere
- need to partition balls into thin shells (introduces more branching)

[^0]: COLUMBIA|ENGINEERING
 The Fu Foundation School of Engineering and Applied Science

