COMS E6998-9 F15

Lecture 15: Least Square Regression Metric Embeddings

㪉 Columbia Engineering The Fu Foundation School of Engineering and Applied Science

Administrivia, Plan

- PS2:
- Pick up after class
- 120->144 auto extension
- Plan:
- Least Squares Regression (finish)
- Metric Embeddings
- "reductions for distances"
- Problem:
$-\operatorname{argmin}_{x}\|A x-b\|$
- where A is $n \times d$ matrix
$-b$ is a vector of dimension n
$-n \gg d$
- Usual (exact) solution:
- Perform SVD (singular value decomposition)
- Takes $O\left(n d^{\omega-1}\right) \approx O\left(n d^{1.373}\right)$ time
- Faster?

Approximate LSR

- Approximate solution x^{\prime} :
$-\left\|A x^{\prime}-b\right\| \leq(1+\epsilon)\left\|A x^{*}-b\right\|$
- Where x^{*} optimal solution
- Tool: dimension reduction for subspaces!
- A map $\Pi: \Re^{n} \rightarrow \mathfrak{R}^{k}$ is (d, ϵ, δ)-subspace embedding if
- For any linear subspace $P \subset \Re^{n}$ of dimension d, we have that

$$
\underset{\Pi}{\operatorname{Pr}}\left[\forall p \in P: \frac{\|\Pi(p)\|}{\|p\|} \in(1-\epsilon, 1+\epsilon)\right] \geq 1-\delta
$$

- PS3-2: usual dimension reduction implies ($d, \epsilon, 0.1$) for target dimension $k=O\left(d / \epsilon^{2}\right)$

Approximate Algorithm

- Algorithm:
- Let Π be ($d+1, \epsilon, 0.1$)-subspace embedding
- Solve $x^{\prime}=\operatorname{argmin}\|\Pi A x-\Pi b\|$
- Theorem: $\left\|A x^{\prime}-b\right\| \leq(1+3 \epsilon)\left\|A x^{*}-b\right\|$
- Proof:
$-\|\Pi A x-\Pi b\|=\|\Pi(A x-b)\|$
$-P=\left\{A x-b \mid x \in \Re^{d}\right\}$ is a (subset of a) $d+1$ dimensional linear subspace of \mathfrak{R}^{n}
- Hence Π preserves the norm of all $A x-b$
- Up to $1+\epsilon$ approximation each
- with 90% probability (overall)

1) $\left|\left|\Pi A x^{*}-\Pi b\right|\right| \leq(1+\epsilon)| | A x^{*}-b| |$
2) $\|\Pi A x-\Pi b\| \geq(1-\epsilon)\|A x-b\|$ for any x

Hence $\left\|A x^{\prime}-b\right\| \leq \frac{1+\epsilon}{1-\epsilon}\left\|A x^{*}-b\right\|$

Approx LSR algorithms

- Time:
$-O\left(n d^{\omega-1}\right) \Rightarrow O\left(k d^{\omega-1}\right)=O_{\epsilon}\left(d^{\omega}\right)$
- Plus time to multiply by $\Pi: O(n d k)=O_{\epsilon}\left(n d^{2}\right)$
- This is worse than before in fact...
- Can apply Fast dimension reduction!
- Reduce time to:
- $O\left(d \cdot\left(n \cdot \log n+d^{3}\right)\right)=O\left(n d \cdot \log n+d^{4}\right)$
- First term near optimal
- Can do even faster:
- Exist Π with 1 non-zero/column with $k=O\left(d^{2} / \epsilon^{2}\right)$
- Exactly the one from problem 1 on PS2!
- Time becomes: $O_{\epsilon}\left(n n z(A)+d^{3}\right)$
- [Sarlos'06, Clarkson-Woodruff'13, MengMahoney'13, Nelson-Nguyen'13]

Metric embeddings

Definition by example

- Problem: Compute the diameter of a set S, of size n, living in d-dimensional ℓ_{1}^{d}
- Say, for $d=2$
- Trivial solution: $O\left(d n^{2}\right)$ time
- Will see: $O\left(2^{d} n\right)$ time
- Algorithm has two steps:

1. Map $f: \ell_{1}^{d} \rightarrow \ell_{\infty}^{k}$, where $k=2^{d}$ such that, for any $x, y \in \ell_{1}^{d}$

- $\|x-y\|_{1}=\|f(x)-f(y)\|_{\infty}$

2. Solve the diameter problem in ℓ_{∞} on set $f(S)$

Step 1: Map from ℓ_{1} to ℓ_{∞}

- Want map $f: \ell_{1} \rightarrow \ell_{\infty}$ such that for $x, y \in \ell_{1}$
$-\|x-y\|_{1}=\|f(x)-f(y)\|_{\infty}$
- Define $f(x)$ as follows:
- 2^{d} coordinates indexed by $b=\left(b_{1} b_{2} \ldots b_{d}\right)$ (binary representation)
- $f(x)_{b}=\sum_{i}(-1)^{b_{i}} \cdot x_{i}$
- Claim: $\|f(x)-f(y)\|_{\infty}=\|x-y\|_{1}$

$$
\begin{aligned}
\|f(x)-f(y)\| & =\max _{b} \sum_{i}(-1)^{b_{i}} \cdot\left(x_{i}-y_{i}\right) \\
& =\sum_{i} \max _{b_{i}}(-1)^{b_{i}}\left(x_{i}-y_{i}\right) \\
& =\sum_{i}\left|x_{i}-y_{i}\right| \\
& =\|x-y\|_{1}
\end{aligned}
$$

Step 2: Diameter in ℓ_{∞}

- Claim: can compute diameter of n points living in ℓ_{∞}^{k} in $O(n k)$ time.
- Proof:

$$
\begin{aligned}
\operatorname{diameter}(S) & =\max _{p, q \in S}\|p-q\|_{\infty} \\
& =\max _{x, y \in S} \max _{b}\left|p_{b}-q_{b}\right| \\
& =\max _{b} \max _{p, q \in S}\left|p_{b}-q_{b}\right| \\
& =\max _{b}\left(\max _{p \in S} p_{b}-\min _{q \in S} q_{b}\right)
\end{aligned}
$$

- Hence, can compute in $O(k \cdot n)$ time.
- Combining the two steps, we have $O\left(2^{d} \cdot n\right)$ time for computing diameter in ℓ_{1}^{d}

General Theory: embeddings

- General motivation: given distance (metric) M, solve a computational problem P under M

Hamming distance, ℓ_{1}
Euclidean distance (ℓ_{2})
Edit distance between two strings
Earth-Mover (transportation) Distance

Compute distance between two points

Nearest Neighbor Search

Diameter/Close-pair of set S
Clustering, MST, etc

Reduce problem $<P$ under hard metric> to
£ \subset under simpler metric>

Embeddings: landscape

- Definition: an embedding is a map $f: M \rightarrow H$ of a metric $\left(M, d_{M}\right)$ into a host metric $\left(H, \rho_{H}\right)$ such that for any $x, y \in M$:
$d_{M(x, y)} \leq \rho_{H}(f(x), f(y)) \leq D \cdot d_{M}(x, y)$
where D is the distortion (approximation) of the embedding f.
- Embeddings come in all shapes and colors:
- Source/host spaces M,H
- Distortion D
- Can be randomized: $\rho_{H}(f(x), f(y)) \approx d_{M}(x, y)$ with $1-\delta$ probability
- Time to compute $f(x)$
- Types of embeddings:
- From norm to the same norm but of lower dimension (dimension reduction)
- From one norm $\left(\ell_{2}\right)$ into another norm (ℓ_{1})
- From non-norms (edit distance, Earth-Mover Distance) into a norm (ℓ_{1})
- From given finite metric (shortest path on a planar graph) into a norm (ℓ_{1})
- H not a metric but a computational procedure \leftarrow sketches

ℓ_{2} into ℓ_{1}

- Theorem: can embed ℓ_{2}^{d} into ℓ_{1}^{k} for $k=O\left(\frac{d}{\epsilon^{2}}\right)$ and distortion $1+\epsilon$
- Map: $F(x)=\frac{1}{k} G x$ for $G=$ Gaussian $k \times d$
- Proof:
- Idea similar to dimension reduction in ℓ_{2} :
- Claim: for any points $x, y \in \mathfrak{R}^{d}$, let $\delta=\|x-y\|_{2}$, then:
- $\operatorname{Pr}\left[\frac{\|F(x)-F(y)\|_{1}}{\delta} \in(1-\epsilon, 1+\epsilon)\right] \geq 1-e^{-\Omega\left(\epsilon^{-2} k\right)}$
- Proof:
- $F(x)-F(y)=\frac{1}{k} G(x-y)$
- Distributed as $\frac{1}{k}\left(g_{1} \delta, g_{2} \delta, \ldots, g_{k} \delta\right)$
- Hence $\|F(x)-F(y)\|_{1}=\delta \cdot \frac{1}{k} \sum_{i}\left|g_{i}\right|$
- (in dimension reduction we had $\frac{1}{k} \sum_{i} g_{i}^{2}$)
- Also can prove that: $\frac{1}{k} \sum_{i}\left|g_{i}\right|=1 \pm \epsilon$ with probability at least $1-e^{-\Omega\left(\epsilon^{-2} k\right)}$
- Now apply the same argument as in subspace embedding to argue for the entire space \Re^{d} as long as $k \geq \Omega\left(d / \epsilon^{2}\right)$
- Morale: ℓ_{1} is at least as "large/hard" as ℓ_{2}

Converse?

- Can we embed ℓ_{1} into ℓ_{2} with good approximation?
- No!
- [Enflo'69]: embedding $\{0,1\}^{d}$ into ℓ_{2} (any dimension) must incur \sqrt{d} distortion
- Proof:
- Suppose f is the embedding of $\{0,1\}^{d}$ into ℓ_{2}
- Two distributions over pairs of points $x, y \in\{0,1\}^{d}$:
- F: x random and $y=x \oplus \overline{1}$
- C: $x=y \oplus e_{i}$ for random y and index i
- Two steps:
- $E_{C}\left[| | x-y \|_{1}^{2}\right] \leq 1 / d^{2} \cdot E_{F}\left[| | x-y \|_{1}^{2}\right]$
- $E_{C}\left[| | f(x)-f(y) \|_{2}^{2}\right] \geq 1 / d \cdot E_{F}\left[| | f(x)-f(y) \|_{2}^{2}\right]$ - (short diagonals)
- Implies $\Omega(\sqrt{d})$ lower bound!
- Morale: ℓ_{1} is strictly larger than ℓ_{2} !

Other distances?

- E.g, Earth-Mover Distance
- Definition:
- Given two sets A, B of points in a metric space
$-E M D(A, B)=$ min cost bipartite matching between A and B
- Which metric space?
- Can be plane, $\ell_{2}, \ell_{1} \ldots$
- Applications in image vision

