COMS E6998-9 F15

Lecture 15: Least Square Regression Metric Embeddings

Administrivia, Plan

- PS2:
 - Pick up after class
- 120->144 auto extension

- Plan:
 - Least Squares Regression (finish)
 - Metric Embeddings
 - "reductions for distances"

Least Square Regression

- Problem:
 - $argmin_{x} ||Ax b||$
 - where A is $n \times d$ matrix
 - -b is a vector of dimension n
 - $-n \gg d$
- Usual (exact) solution:
 - Perform SVD (singular value decomposition) - Takes $O(nd^{\omega-1}) \approx O(nd^{1.373})$ time
- Faster?

Approximate LSR

• Approximate solution x':

 $-||Ax' - b|| \le (1 + \epsilon)||Ax^* - b||$

- Where x^* optimal solution
- Tool: dimension reduction for subspaces!
 - A map $\Pi: \mathfrak{R}^n \to \mathfrak{R}^k$ is (d, ϵ, δ) -subspace embedding if
 - For any linear subspace $P \subset \Re^n$ of dimension d, we have that

$$\Pr_{\Pi}\left[\forall p \in P : \frac{||\Pi(p)||}{||p||} \in (1 - \epsilon, 1 + \epsilon)\right] \ge 1 - \delta$$

- PS3-2: usual dimension reduction implies $(d, \epsilon, 0.1)$ for target dimension $k = O(d/\epsilon^2)$

Approximate Algorithm

• Algorithm:

- Let Π be $(d + 1, \epsilon, 0.1)$ -subspace embedding
- Solve $x' = \operatorname{argmin} ||\Pi A x \Pi b||$
- Theorem: $||Ax' b|| \le (1 + 3\epsilon)||Ax^* b||$

• Proof:

- $||\Pi Ax \Pi b|| = ||\Pi (Ax b)||$
- $P = \{Ax b \mid x \in \Re^d\}$ is a (subset of a) d + 1 dimensional linear subspace of \Re^n
- Hence Π preserves the norm of all Ax b
 - Up to $1 + \epsilon$ approximation each
 - with 90% probability (overall)

1)
$$||\Pi Ax^* - \Pi b|| \le (1 + \epsilon)||Ax^* - b||$$

2) $||\Pi Ax - \Pi b|| \ge (1 - \epsilon)||Ax - b||$ for any x
Hence $||Ax' - b|| \le \frac{1+\epsilon}{1-\epsilon}||Ax^* - b||$

Approx LSR algorithms

• Time:

$$- O(nd^{\omega-1}) \Rightarrow O(kd^{\omega-1}) = O_{\epsilon}(d^{\omega})$$

- Plus time to multiply by Π : $O(ndk) = O_{\epsilon}(nd^2)$
 - This is worse than before in fact...
- Can apply Fast dimension reduction!
 - Reduce time to:
 - $O(d \cdot (n \cdot \log n + d^3)) = O(nd \cdot \log n + d^4)$
 - First term near optimal
- Can do even faster:
 - Exist Π with 1 non-zero/column with $k = O(d^2/\epsilon^2)$
 - Exactly the one from problem 1 on PS2 !
 - Time becomes: $O_{\epsilon}(nnz(A) + d^3)$
- [Sarlos'06, Clarkson-Woodruff'13, Meng-Mahoney'13, Nelson-Nguyen'13]

Metric embeddings

Definition by example

Problem: Compute the diameter of a set S, of size n, living in d-dimensional l₁^d

- Say, for d = 2

- Trivial solution: $O(dn^2)$ time
- Will see: $O(2^d n)$ time
- Algorithm has two steps: 1. Map $f: \ell_1^d \to \ell_\infty^k$, where $k = 2^d$ such that, for any $x, y \in \ell_1^d$
 - $||x y||_1 = ||f(x) f(y)||_{\infty}$

ENGINEERING

The Fu Foundation School of Engineering and Applied Science

2. Solve the diameter problem in ℓ_{∞} on set f(S)

Step 1: Map from ℓ_1 to ℓ_∞

- Want map $f: \ell_1 \to \ell_\infty$ such that for $x, y \in \ell_1$ - $||x - y||_1 = ||f(x) - f(y)||_\infty$
- Define f(x) as follows: - 2^d coordinates indexed by $b = (b_1 b_2 \dots b_d)$ (binary representation) - $f(x)_b = \sum_i (-1)^{b_i} \cdot x_i$

• Claim:
$$||f(x) - f(y)||_{\infty} = ||x - y||_{1}$$

$$\|f(x) - f(y)\| = \max_{b} \sum_{i} (-1)^{b_{i}} \cdot (x_{i} - y_{i})$$
$$= \sum_{i} \max_{b_{i}} (-1)^{b_{i}} (x_{i} - y_{i})$$
$$= \sum_{i} |x_{i} - y_{i}|$$
$$= ||x - y||_{1}$$

Step 2: Diameter in ℓ_{∞}

- Claim: can compute diameter of n points living in ℓ_{∞}^{k} in O(nk) time.
- Proof:

diameter(S)= $\max_{p,q\in S} ||p-q||_{\infty}$

- $= \max_{x,y \in S} \max_{b} |p_b q_b|$
- $= \max_{b} \max_{p,q \in S} |p_b q_b|$

$$= \max_{b} (\max_{p \in S} p_b - \min_{q \in S} q_b)$$

- Hence, can compute in $O(k \cdot n)$ time.
- Combining the two steps, we have $O(2^d \cdot n)$ time for computing diameter in ℓ_1^d

General Theory: embeddings

• General motivation: given distance (metric) *M*, solve a computational problem *P* under *M*

Embeddings: landscape

• **Definition:** an embedding is a map $f: M \rightarrow H$ of a metric (M, d_M) into a host metric (H, ρ_H) such that for any $x, y \in M$:

 $d_{M(x, y)} \leq \rho_{H}(f(x), f(y)) \leq D \cdot d_{M}(x, y)$ where *D* is the distortion (approximation) of the embedding *f*.

- Embeddings come in all shapes and colors:
 - Source/host spaces *M*, *H*
 - Distortion D
 - Can be randomized: $\rho_H(f(x), f(y)) \approx d_M(x, y)$ with 1δ probability
 - Time to compute f(x)
- Types of embeddings:
 - From norm to the same norm but of *lower dimension* (dimension reduction)
 - From one norm (ℓ_2) into another norm (ℓ_1)
 - From non-norms (edit distance, Earth-Mover Distance) into a norm (ℓ_1)
 - From given finite metric (shortest path on a planar graph) into a norm (ℓ_1)
 - *H* not a metric but a computational procedure \leftarrow sketches

ℓ_2 into ℓ_1

- Theorem: can embed ℓ_2^d into ℓ_1^k for $k = O\left(\frac{d}{\epsilon^2}\right)$ and distortion $1 + \epsilon$
 - Map: $F(x) = \frac{1}{k}Gx$ for G = Gaussian $k \times d$
- Proof:
 - Idea similar to dimension reduction in ℓ_2 :
 - Claim: for any points $x, y \in \mathbb{R}^d$, let $\delta = ||x y||_2$, then:
 - $\Pr\left[\frac{||F(x)-F(y)||_1}{\delta} \in (1-\epsilon, 1+\epsilon)\right] \ge 1 e^{-\Omega(\epsilon^{-2}k)}$
 - Proof:
 - $F(x) F(y) = \frac{1}{k}G(x y)$
 - Distributed as $\frac{1}{k}(g_1\delta, g_2\delta, \dots, g_k\delta)$
 - Hence $||F(x) F(y)||_1 = \delta \cdot \frac{1}{k} \sum_i |g_i|$
 - (in dimension reduction we had $\frac{1}{k}\sum_i g_i^2$)
 - Also can prove that: $\frac{1}{k}\sum_i |g_i| = 1 \pm \epsilon$ with probability at least $1 e^{-\Omega(\epsilon^{-2}k)}$
 - Now apply the same argument as in subspace embedding to argue for the entire space \Re^d as long as $k \ge \Omega(d/\epsilon^2)$
- Morale: ℓ_1 is at least as "large/hard" as ℓ_2

Converse?

- Can we embed l₁ into l₂ with good approximation?
 No!
- [Enflo'69]: embedding $\{0,1\}^d$ into ℓ_2 (any dimension) must incur \sqrt{d} distortion
- Proof:
 - Suppose f is the embedding of $\{0,1\}^d$ into ℓ_2
 - Two distributions over pairs of points $x, y \in \{0,1\}^d$:
 - **F**: *x* random and $y = x \oplus \overline{1}$
 - C: $x = y \oplus e_i$ for random y and index i
 - Two steps:

•
$$E_{C} \left[\left| |x - y| \right|_{1}^{2} \right] \leq 1/d^{2} \cdot E_{F} \left[\left| |x - y| \right|_{1}^{2} \right]$$

• $E_{C} \left[\left| |f(x) - f(y)| \right|_{2}^{2} \right] \geq 1/d \cdot E_{F} \left[\left| |f(x) - f(y)| \right|_{2}^{2} \right]$
- (short diagonals)

– Implies $\Omega(\sqrt{d})$ lower bound!

• Morale: ℓ_1 is strictly larger than ℓ_2 !

Other distances?

- E.g, Earth-Mover Distance
- Definition:
 - Given two sets A, B of points in a metric space
 - EMD(A, B) = min cost bipartite matching between
 A and B
- Which metric space?

– Can be plane, ℓ_2, ℓ_1 ...

• Applications in image vision

Images courtesy of Kristen Grauman