COMS E6998-9 F15

Lecture 16: Earth-Mover Distance

Administrivia, Plan

- Administrivia:
 NO CLASS next Tuesday 11/3 (holiday)
- Plan:
 - Earth-Mover Distance
- Scriber?

Earth-Mover Distance

- Definition:
 - Given two sets A, B of points in a metric space
 - EMD(A, B) = min cost bipartite matching between
 A and B
- Which metric space?
 Can be plane, l₂, l₁...
- Applications in image vision

Images courtesy of Kristen Grauman

Embedding EMD into ℓ_1

- Why ℓ_1 ?
- At least as hard as ℓ_1
 - Can embed $\{0,1\}^d$ into EMD with distortion 1
- ℓ_1 is richer than ℓ_2
- Will focus on integer grid $[\Delta]^2$:

Embedding EMD into ℓ_1

[Charikar'02, Indyk-Thaper'03]

• Theorem: Can embed EMD over $[\Delta]^2$ into ℓ_1 with distortion $O(\log \Delta)$. In fact, will construct a randomized $f: 2^{[\Delta]^2} \rightarrow \ell_1$ such that:

− for any $A, B ⊂ [Δ]^2$:

 $EMD(A,B) \le \mathbf{E}[||f(A) - f(B)||_1] \le O(\log \Delta) \cdot EMD(A,B)$

- time to embed a set of s points: $O(s \log \Delta)$.
- Consequences:
 - Nearest Neighbor Search: $O(c \log \Delta)$ approximation with $O(sn^{1+1/c})$ space, and $O(n^{1/c} \cdot s \log \Delta)$ query time.
 - Computation: $O(\log \Delta)$ approximation in $O(s \log \Delta)$ time
 - Best known: $1 + \epsilon$ approximation in $\tilde{O}(s)$ time [AS'12]

What if $|A| \neq |B|$?

- Suppose:
 - -|A| = a

$$-|B| = b < a$$

• Define

$$EMD_{\Delta}(A,B) = \Delta(a-b) + \min_{A',\pi} \sum_{a \in A'} d(a,\pi(a))$$

where

A' ranges over all subsets of A of size b $\pi: A' \rightarrow B$ ranges over all 1-to-1 mappings For optimal A', call $a \in A \setminus A'$ unmatched

Embedding EMD over small grid

- Suppose $\Delta = 3$
- *f*(*A*) has nine coordinates, counting # points in each integer point
 - f(A) = (2,1,1,0,0,0,1,0,0)
 - -f(B) = (1,1,0,0,2,0,0,0,1)
- Claim: $2\sqrt{2}$ distortion embedding

High level embedding

- Set in $[\Delta]^2$ box
- Embedding of set A:
 - take a quad-tree
 - grid of cell size $\Delta/3$
 - partition each cell in 3x3
 - recurse until of size 3x3
 - randomly shift it
 - Each cell gives a coordinate:
 - f (A)_c=#points in the
 cell c
- Want to prove $E\left[\left|\left|f(A) - f(B)\right|\right|_{1}\right] \approx EMD(A, B)$

COLUMBIA ENGLINEERING The Fu Foundation School of Engineering and Applied Science

f(A) = ...2210...0002...0011...0100...0000...f(B) = ...1202...0100...0011...0000...1100...

Main idea: intuition

- Decompose EMD over $[\Delta]^2$ into EMDs over smaller grids
- Recursively reduce to $\Delta = O(1)$

Decomposition Lemma

The Fu Foundation School of Engineering and Applied Science

For randomly-shifted cut-grid G of side length k, will prove: 1) $EMD_{\Delta}(A,B) \leq EMD_{k}(A_{1},B_{1}) + EMD_{k}(A_{2},B_{2}) + \cdots$ $+ k \cdot \overline{EMD_{\Delta/k}(AG, BG)}$ 2) $EMD_{\Delta}(A,B) \ge \frac{1}{3} E[EMD_{k}(A_{1},B_{1}) + EMD_{k}(A_{2},B_{2}) + \cdots]$ 3) $EMD_{\Delta}(A, B) \ge E[k \cdot EMD_{\Delta/k}(A_G, B_G)]$ The distortion will k follow by applying the lemma recursively to (A_G, B_G) Δ/k UMBIA ENGINEERING

1 (lower bound)

- Claim 1: for a randomly-shifted cut-grid G of side length k: $EMD_{\Delta}(A,B) \leq EMD_{k}(A_{1},B_{1}) + EMD_{k}(A_{2},B_{2}) + \cdots + \frac{k}{k} \cdot EMD_{\Delta/k}(A_{G},B_{G})$
- Construct a matching π for $EMD_{\Delta}(A, B)$ from the matchings on RHS as follows
- For each a∈A (suppose a∈A_i) it is either:
 1) matched in EMD(A_i, B_i) to some b∈B_i (if a ∈ A_i')
 - then $\pi(a) = b$ 2) or $a \notin A_i'$, and then it is matched in $EMD(A_G, B_G)$ to some $b \in B_i$ $(j \neq i)$
 - then $\pi(a) = b$

• Cost?

- 1) paid by $EMD(A_i, B_i)$ 2) Move *a* to center (Δ)
 - Charge to $EMD(A_i, B_i)$ Move from cell *i* to cell *j*

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

- Charge k to $EMD(A_G, B_G)$
- If |A| > |B|, extra |A| |B|pay $k \cdot \frac{\Delta}{k} = \Delta$ on LHS & RHS

2 & 3 (upper bound)

• Claims 2,3: for a randomly-shifted cut-grid G of side length k, we have:

2) $EMD_{\Delta}(A,B) \ge \frac{1}{3}E[EMD_{k}(A_{1},B_{1}) + EMD_{k}(A_{2},B_{2}) + \cdots]$

3) $EMD_{\Delta}(A, B) \ge E[k \cdot EMD_{\Delta/k}(A_G, B_G)]$

- Fix a matching π minimizing $EMD_{\Delta}(A, B)$ - Will construct matchings for each EMD on RHS
- Uncut pairs $(a, b) \in \pi$ are matched in respective (A, B)
- *Cut* pairs $(a, b) \in \pi$:
 - are unmatched in their mini-grids
 - are matched in (A_G, B_G)

3: Cost

• Claim 2:

- $3 \cdot EMD_{\Delta}(A, B) \ge \mathbf{E}[EMD_{\mathbf{k}}(A_1, B_1) + EMD_{\mathbf{k}}(A_2, B_2) + \cdots]$
- Uncut pairs (a, b) are matched in respective (A_i, B_i) - Total contribution from uncut pairs $\leq EMD_{\Delta}(A, B)$
- Consider a cut pair (a, b) at distance $a b = (d_x, d_y)$
 - (a, b) can contribute to RHS as they may be *unmatched* in their own mini-grids

$$- \Pr[(a,b) \operatorname{cut}] = 1 - \left(1 - \frac{d_x}{k}\right)_+ \left(1 - \frac{d_y}{k}\right)_+ \le \frac{d_x}{k} + \frac{d_y}{k} \le \frac{1}{k}||a - b||_2$$

- Expected contribution of (a, b) to RHS: $\leq \Pr[(a, b) \operatorname{cut}] \cdot 2k \leq 2 ||a - b||_2$
- Total expected cost contributed to RHS: $2 \cdot EMD_{\Delta}(A, B)$
- Total (cut $\hat{\mathbf{a}}$ uncut pairs): $3 \cdot EMD_{\Delta}(A, B)$

The Fu Foundation School of Engineering and Applied Science

3: Cost

• Claim:

 $-EMD_{\Delta}(A,B) \geq E[k \cdot EMD_{\Delta/k}(A_G,B_G)]$

- Uncut pairs: contribute zero to RHS!
- Cut pair: $(a, b) \in \pi$ with $a b = (d_x, d_y)$
 - if $|d_x| = xk + r_k$, and $|d_y| = yk + r_y$, then

- expected cost contribution to $\mathbf{k} \cdot EMD_{\Delta/\mathbf{k}}(A_G, B_G)$:

$$\leq \left(x + \frac{r_x}{k}\right) \cdot k + \left(y + \frac{r_y}{k}\right) \cdot k = d_x + d_y = \left|\left|a - b\right|\right|_2$$

k

• Total expected cost $\leq EMD_{\Delta}(A, B)$

ENGINEERING

The Fu Foundation School of Engineering and Applied Science

K

ĸ

Recurse on decomposition

• For randomly-shifted cut-grid *G* of side length *k*, we have: 1) $EMD_{\Delta}(A,B) \leq EMD_{k}(A_{1},B_{1}) + EMD_{k}(A_{2},B_{2}) + \cdots + \frac{k}{k} \cdot EMD_{\Delta/k}(AG,BG)$

2) $EMD_{\Delta}(A,B) \ge \frac{1}{3} E[EMD_{k}(A_{1},B_{1}) + EMD_{k}(A_{2},B_{2}) + \cdots]$ 3) $EMD_{\Delta}(A,B) \ge E[k \cdot EMD_{\Delta/k}(A_{G},B_{G})]$

- We applying decomposition recursively for k = 3
 - Choose randomly-shifted cut-grid G_1 on $[\Delta]^2$
 - Obtain many grids $[3]^2$, and a big grid $[\Delta/3]^2$
 - Then choose randomly-shifted cut-grid G_2 on $[\Delta/3]^2$
 - Obtain more grids $[3]^2$, and another big grid $[\Delta/9]^2$
 - Then choose randomly-shifted cut-grid G_3 on $[\Delta/9]^2$
 - ..
- Then, embed each of the small grids [3]² into ℓ₁, using O(1) distortion embedding, and concatenate the embeddings
 Each [3]² grid occupies 9 coordinates on ℓ₁ embedding

Proving recursion works

- Claim: embedding contracts distances by O(1): $EMD_{\Delta}(A, B) \leq \leq \sum_{i} EMD_{k}(A_{i}, Bi) + k \cdot EMD_{\Delta/k}(A_{G_{1}}, B_{G_{1}}) \leq \sum_{i} EMD_{k}(A_{i}, Bi) + k\sum_{i} EMD_{k}(A_{G_{1},i}, B_{G_{1},i}) + k \cdot EMD_{\Delta k^{2}}(A_{G_{2}}, B_{G_{2}}) \leq \dots \leq \leq \min \text{ of } EMD_{3} \text{ costs of } 3 \times 3 \text{ instances} \leq \frac{1}{2\sqrt{2}} ||f(A) - f(B)||_{1}$
- Claim: embedding distorts distances by $O(\log \Delta)$ in expectation: $(3 \log_k \Delta) \cdot EMD_{\Delta}(A, B)$ $\geq 3 \cdot EMD_{\Delta}(A, B) + (3 \log_k \frac{\Delta}{k}) \cdot EMD_{\Delta}(A, B)$ $\geq \mathbf{E}[\sum_i EMD_k(Ai, Bi) + (3 \log_k \frac{\Delta}{k}) \cdot k \cdot EMD_{\Delta/k}(A_{G_1}, B_{G_1})]$ $\geq \cdots$ $\geq \text{sum of } EMD_3 \text{ costs of } 3 \times 3 \text{ instances}$ $\geq ||f(A) - f(B)||_1$

Final theorem

- Theorem: can embed EMD over $[\Delta]^2$ into ℓ_1 with $O(\log \Delta)$ distortion in expectation.
- Notes:
 - Dimension required: $O(\Delta^2)$, but a set A of size s maps to a vector that has only $O(s \cdot \log \Delta)$ non-zero coordinates.
 - Time: can compute in $O(s \cdot \log \Delta)$
 - By Markov's, it's $O(\log \Delta)$ distortion with 90% probability
- Applications:
 - Can compute EMD(A, B) in time $O(s \cdot \log \Delta)$
 - NNS: $O(c \cdot \log \Delta)$ approximation, with $O(n^{1+1/c} \cdot s)$ space, and $O(n^{1/c} \cdot s \cdot \log \Delta)$ query time.