COMS E6998-9 F15

Lecture 16: Earth-Mover Distance

The Fu Foundation School of Engineering and Applied Science

Administrivia, Plan

- Administrivia:
- NO CLASS next Tuesday 11/3 (holiday)
- Plan:
- Earth-Mover Distance
- Scriber?

Earth-Mover Distance

- Definition:
- Given two sets A, B of points in a metric space
$-E M D(A, B)=$ min cost bipartite matching between A and B
- Which metric space?
- Can be plane, $\ell_{2}, \ell_{1} \ldots$
- Applications in image vision

Embedding EMD into ℓ_{1}

- Why ℓ_{1} ?
- At least as hard as ℓ_{1}
- Can embed $\{0,1\}^{d}$ into EMD with distortion 1
- ℓ_{1} is richer than ℓ_{2}
- Will focus on integer grid $[\Delta]^{2}$:

Embedding EMD into ℓ_{1}

[Charikar'02, Indyk-Thaper’03]

- Theorem: Can embed EMD over $[\Delta]^{2}$ into ℓ_{1} with distortion $O(\log \Delta)$. In fact, will construct a randomized $f: 2^{[\Delta]^{2}} \rightarrow \ell_{1}$ such that:
- for any $A, B \subset[\Delta]^{2}$:
$E M D(A, B) \leq E\left[\|f(A)-f(B)\|_{1}\right] \leq O(\log \Delta) \cdot E M D(A, B)$
- time to embed a set of s points: $O(s \log \Delta)$.
- Consequences:
- Nearest Neighbor Search: $O(c \log \Delta)$ approximation with $O\left(s n^{1+1 / c}\right)$ space, and $O\left(n^{1 / c} \cdot s \log \Delta\right)$ query time.
- Computation: $O(\log \Delta)$ approximation in $O(s \log \Delta)$ time
- Best known: $1+\epsilon$ approximation in $\tilde{O}(s)$ time [AS'12]

What if $|A| \neq|B|$?

- Suppose:
$-|A|=a$
$-|B|=b<a$
- Define
$E M D_{\Delta}(A, B)=\Delta(a-b)+\min _{A \prime, \pi} \sum_{a \in A^{\prime}} d(a, \pi(a))$
where
A^{\prime} ranges over all subsets of A of size b $\pi: A^{\prime} \rightarrow B$ ranges over all 1-to-1 mappings For optimal A^{\prime}, call $a \in A \backslash A^{\prime}$ unmatched

Embedding EMD over small grid

- Suppose $\Delta=3$
- $f(A)$ has nine coordinates, counting \# points in each integer point

$$
\begin{aligned}
& -f(A)=(2,1,1,0,0,0,1,0,0) \\
& -f(B)=(1,1,0,0,2,0,0,0,1)
\end{aligned}
$$

- Claim: $2 \sqrt{2}$ distortion embedding

High level embedding

- Set in $[\Delta]^{2}$ box
- Embedding of set A :
- take a quad-tree
- grid of cell size $\Delta / 3$
- partition each cell in 3×3
- recurse until of size 3×3
- randomly shift it
- Each cell gives a coordinate:
$f(A)_{c}=\#$ points in the cell c
- Want to prove
$E\left[\|f(A)-f(B)\|_{1}\right] \approx E M D(A, B)$

$$
\begin{aligned}
& f(A)=\ldots . .210 \ldots 0002 \ldots 0011 \ldots 0100 \ldots 000 \ldots \\
& f(B)=\ldots 1202 \ldots 0100 \ldots 0011 \ldots 0000 \ldots 1100 \ldots
\end{aligned}
$$

Main idea: intuition

- Decompose EMD over $[\Delta]^{2}$ into EMDs over smaller grids
- Recursively reduce to $\Delta=O(1)$

COLUMBIA|ENGINEERING
The Fu Foundation School of Engineering and Applied Science

Decomposition Lemma

- For randomly-shifted cut-grid G of side length k, will prove:

1) $E M D_{\Delta}(A, B) \leq \frac{E M D_{k}\left(A_{1}, B_{1}\right)+E M D_{k}\left(A_{2}, B_{2}\right)}{+k \cdot \sqrt{E M D_{\Delta / k}(A G, B G)}}+\cdots$
2) $E M D_{\Delta}(A, B) \geq \frac{1}{3} E\left[E M D_{k}\left(A_{1}, B_{1}\right)+E M D_{k}\left(A_{2}, B_{2}\right)+\cdots\right]$
3) $E M D_{\Delta}(A, B) \geq \boldsymbol{E}\left[k \cdot E M D_{\Delta / k}\left(A_{G}, B_{G}\right)\right]$

- The distortion will
follow by applying the lemma recursively to $\left(\mathrm{A}_{\mathrm{G}}, \mathrm{B}_{\mathrm{G}}\right)$

1 (lower bound)

- Claim 1: for a randomly-shifted cut-grid G of side length k :

$$
\begin{gathered}
E M D_{\Delta}(A, B) \leq E M D_{k}\left(A_{1}, B_{1}\right)+E M D_{k}\left(A_{2}, B_{2}\right)+\cdots \\
+k \cdot E M D_{\Delta / k}\left(A_{G}, B_{G}\right)
\end{gathered}
$$

- Construct a matching π for $E M D_{\Delta}(A, B)$ from the matchings on RHS as follows
- For each $a \in A$ (suppose $a \in A_{i}$) it is either:

1) matched in $\operatorname{EMD}\left(A_{i}, B_{i}\right)$ to some $b \in B_{i}$ (if $a \in A_{i}{ }^{\prime}$)

- then $\pi(a)=b$

2) or $a \notin A_{i}{ }^{\prime}$, and then it is matched in $E M D\left(A_{G}, B_{G}\right)$ to some $b \in B_{j}(j \neq i)$

- then $\pi(a)=b$
- Cost?

1) paid by $E M D\left(A_{i}, B_{i}\right)$
2) Move a to center (Δ)

- Charge to $\operatorname{EMD}\left(A_{i}, B_{i}\right)$

Move from cell i to cell j

- Charge k to $E M D\left(A_{G}, B_{G}\right)$
- If $|A|>|B|$, extra $|A|-|B|$
pay $k \cdot \frac{\Delta}{k}=\Delta$ on LHS \& RHS

2 \& 3 (upper bound)

- Claims 2,3: for a randomly-shifted cut-grid G of side length k, we have:

2) $E M D_{\Delta}(A, B) \geq \frac{1}{3} \boldsymbol{E}\left[E M D_{k}\left(A_{1}, B_{1}\right)+E M D_{k}\left(A_{2}, B_{2}\right)+\cdots\right]$
3) $E M D_{\Delta}(A, B) \geq E\left[k \cdot E M D_{\Delta / k}\left(A_{G}, B_{G}\right)\right]$

- Fix a matching π minimizing $E M D_{\Delta}(A, B)$
- Will construct matchings for each EMD on RHS
- Uncut pairs $(a, b) \in \pi$ are matched in respective (A, B)
- Cut pairs $(a, b) \in \pi$:
- are unmatched in their mini-grids
- are matched in $\left(A_{G}, B_{G}\right)$

- Claim 2:
- $3 \cdot E M D_{\Delta}(A, B) \geq E\left[E M D_{k}\left(A_{1}, B_{1}\right)+E M D_{k}\left(A_{2}, B_{2}\right)+\cdots\right]$
- Uncut pairs (a, b) are matched in respective $\left(A_{i}, B_{i}\right)$
- Total contribution from uncut pairs $\leq E M D_{\Delta}(A, B)$
- Consider a cut pair (a, b) at distance $a-b=\left(d_{x}, d_{y}\right)$
- (a, b) can contribute to RHS as they may be unmatched in their own mini-grids
$-\operatorname{Pr}[(a, b) \mathrm{cut}]=1-\left(1-\frac{d_{x}}{k}\right)_{+}\left(1-\frac{d_{y}}{k}\right)_{+} \leq \frac{d_{x}}{k}+\frac{d_{y}}{k} \leq \frac{1}{k}\|a-b\|_{2}$
- Expected contribution of (a, b) to RHS:

$$
\leq \operatorname{Pr}[(a, b) \mathrm{cut}] \cdot 2 k \leq 2\|a-b\|_{2}
$$

- Total expected cost contributed to RHS:
$2 \cdot E M D_{\Delta}(A, B)$
- Total (cut \& uncut pairs): $3 \cdot{ }_{k}^{E M D_{\Delta}}(A, B)$
- Claim:
$-E M D_{\Delta}(A, B) \geq \boldsymbol{E}\left[k \cdot E M D_{\Delta / k}\left(A_{G}, B_{G}\right)\right]$
- Uncut pairs: contribute zero to RHS!
- Cut pair: $(a, b) \in \pi$ with $a-b=\left(d_{x}, d_{y}\right)$
- if $\left|d_{x}\right|=x k+r_{k}$, and $\left|d_{y}\right|=y k+r_{y}$, then
- expected cost contribution to $k \cdot E M D_{\Delta / k}\left(A_{G}, B_{G}\right)$:

$$
\leq\left(x+\frac{r_{x}}{k}\right) \cdot k+\left(y+\frac{r_{y}}{k}\right) \cdot k=d_{x}+d_{y}=\left||a-b| \|_{2}\right.
$$

- Total expected cost $\leq E M D_{\Delta}(A, B)$

Recurse on decomposition

- For randomly-shifted cut-grid G of side length k, we have:

1) $E M D_{\Delta}(A, B) \leq E M D_{k}\left(A_{1}, B_{1}\right)+E M D_{k}\left(A_{2}, B_{2}\right)+\cdots$

$$
+k \cdot E M D_{\Delta / k}(A G, B G)
$$

2) $E M D_{\Delta}(A, B) \geq \frac{1}{3} \boldsymbol{E}\left[E M D_{k}\left(A_{1}, B_{1}\right)+E M D_{k}\left(A_{2}, B_{2}\right)+\cdots\right]$
3) $E M D_{\Delta}(A, B) \geq E\left[k \cdot E M D_{\Delta / k}\left(A_{G}, B_{G}\right)\right]$

- We applying decomposition recursively for $k=3$
- Choose randomly-shifted cut-grid G_{1} on $[\Delta]^{2}$
- Obtain many grids [3] ${ }^{2}$, and a big grid $[\Delta / 3]^{2}$
- Then choose randomly-shifted cut-grid G_{2} on $[\Delta / 3]^{2}$
- Obtain more grids [3] ${ }^{2}$, and another big grid $[\Delta / 9]^{2}$
- Then choose randomly-shifted cut-grid G_{3} on $[\Delta / 9]^{2}$
- Then, embed each of the small grids [3] ${ }^{2}$ into ℓ_{1}, using $O(1)$ distortion embedding, and concatenate the embeddings
- Each [3] ${ }^{2}$ grid occupies 9 coordinates on ℓ_{1} embedding

Proving recursion works

- Claim: embedding contracts distances by $O(1)$:

$$
\begin{aligned}
& E M D_{\Delta}(A, B) \leq \\
& \leq \sum_{i} E M D_{k(A}\left(A_{i}, B i\right)+k \cdot E M D_{\Delta / k}\left(A_{G_{1}}, B_{G_{1}}\right) \\
& \leq \sum_{i} E M D_{k}\left(A_{i}, B i\right)+k \sum_{i} E M D_{k}\left(A_{G_{1}, i}, B_{G_{1}, i}\right) \\
& \quad+k \cdot E M D_{\frac{\Delta}{}}\left(A_{G_{2}}, B_{G_{2}}\right) \\
& \leq \ldots \\
& \leq \text { sum of } E M D_{3} \text { costs of } 3 \times 3 \text { instances } \\
& \leq \frac{1}{2 \sqrt{2}}\|f(A)-f(B)\|_{1}
\end{aligned}
$$

- Claim: embedding distorts distances by $O(\log \Delta)$ in expectation:
$\left(3 \log _{k} \Delta\right) \cdot E M D_{\Delta}(A, B)$
$\geq 3 \cdot E M D_{\Delta}(A, B)+\left(3 \log _{k} \frac{\Delta}{k}\right) \cdot E M D_{\Delta}(A, B)$
$\geq \mathbf{E}\left[\sum_{i} E M D_{k}(A i, B i)+\left(3 \log _{k} \frac{\Delta}{k}\right) \cdot k \cdot E M D_{\Delta / k}\left(A_{G_{1}}, B_{G_{1}}\right)\right]$
$\geq \ldots$
\geq sum of $E M D_{3}$ costs of 3×3 instances
$\geq\|f(A)-f(B)\|_{1}$
- Theorem: can embed EMD over $[\Delta]^{2}$ into ℓ_{1} with $O(\log \Delta)$ distortion in expectation.
- Notes:
- Dimension required: $O\left(\Delta^{2}\right)$, but a set A of size s maps to a vector that has only $O(s \cdot \log \Delta)$ nonzero coordinates.
- Time: can compute in $O(s \cdot \log \Delta)$
- By Markov's, it's $O(\log \Delta)$ distortion with 90% probability
- Applications:
- Can compute $E M D(A, B)$ in time $O(s \cdot \log \Delta)$
- NNS: $O(c \cdot \log \Delta)$ approximation, with $O\left(n^{1+1 / c}\right.$. $s)$ space, and $O\left(n^{1 / c} \cdot s \cdot \log \Delta\right)$ query time.

