
11

Lecture 16:

Earth-Mover Distance

COMS E6998-9 F15



Administrivia, Plan

• Administrivia:

– NO CLASS next Tuesday 11/3 (holiday)

• Plan:

– Earth-Mover Distance

• Scriber?
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Earth-Mover Distance

• Definition:

– Given two sets 𝐴, 𝐵 of points in a metric space

– 𝐸𝑀𝐷(𝐴, 𝐵) = min cost bipartite matching between 
𝐴 and 𝐵

• Which metric space?

– Can be plane, ℓ2, ℓ1…

• Applications in image vision

Images courtesy of Kristen Grauman



Embedding EMD into ℓ1

• Why ℓ1?

• At least as hard as ℓ1

– Can embed 0,1 𝑑 into EMD with distortion 1

• ℓ1 is richer than ℓ2

• Will focus on integer grid Δ 2:
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Embedding EMD into ℓ1

• Theorem: Can embed EMD over Δ 2 into ℓ1 with 
distortion 𝑂 log Δ . In fact, will construct a 
randomized 𝑓: 2 Δ 2

→ ℓ1 such that:
– for any 𝐴, 𝐵 ⊂ Δ 2: 

𝐸𝑀𝐷 𝐴, 𝐵 ≤ 𝑬 ||𝑓 𝐴 − 𝑓 𝐵 ||1 ≤ 𝑂 log Δ ⋅ 𝐸𝑀𝐷(𝐴, 𝐵)

– time to embed a set of 𝑠 points: 𝑂 𝑠 logΔ .

• Consequences:
– Nearest Neighbor Search: 𝑂(𝑐 logΔ ) approximation with 

𝑂(𝑠𝑛1+1/𝑐) space, and 𝑂(𝑛1/𝑐 ⋅ 𝑠 log Δ) query time.

– Computation: 𝑂(logΔ) approximation in 𝑂 𝑠 logΔ time
• Best known: 1 + 𝜖 approximation in  𝑂 𝑠 time [AS’12]

[Charikar’02, Indyk-Thaper’03]



What if 𝐴 ≠ |𝐵| ?

• Suppose:

– 𝐴 = 𝑎

– 𝐵 = 𝑏 < 𝑎

• Define 

𝐸𝑀𝐷∆ 𝐴, 𝐵 = Δ 𝑎 − 𝑏 + 𝑚𝑖𝑛𝐴′,𝜋  

𝑎∈𝐴′

𝑑(𝑎, 𝜋 𝑎 )

where

𝐴′ ranges over all subsets of 𝐴 of size 𝑏

𝜋: 𝐴′ → 𝐵 ranges over all 1-to-1 mappings

For optimal 𝐴′, call 𝑎 ∈ 𝐴\𝐴′ unmatched
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Embedding EMD over small grid
• Suppose  = 3

• 𝑓(𝐴) has nine coordinates, counting # points in 
each integer point

– 𝑓(𝐴) = (2,1,1,0,0,0,1,0,0)

– 𝑓(𝐵) = (1,1,0,0,2,0,0,0,1)

• Claim: 2 2 distortion embedding



High level embedding

• Set in Δ 2 box

• Embedding of set 𝐴:
– take a quad-tree

• grid of cell size Δ/3
• partition each cell in 3x3

• recurse until of size 3x3

– randomly shift it

– Each cell gives a 

coordinate:

𝑓 (𝐴)𝑐=#points in the 

cell 𝑐

• Want to prove
𝑬 𝑓 𝐴 − 𝑓 𝐵

1
≈ 𝐸𝑀𝐷(𝐴, 𝐵)
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𝑓 𝑨 = …2210…0002…0011…0100…0000…

𝑓 𝑩 = …1202…0100…0011…0000…1100…



Main idea: intuition

• Decompose EMD over 
[]2 into EMDs over 
smaller grids

• Recursively reduce to 
 = 𝑂(1)

+≈



Decomposition Lemma

• For randomly-shifted cut-grid 𝐺 of side length 𝑘, will prove:
1) 𝐸𝑀𝐷(𝐴, 𝐵) ≤ 𝐸𝑀𝐷𝑘(𝐴1, 𝐵1) + 𝐸𝑀𝐷𝑘(𝐴2, 𝐵2) + ⋯

+ 𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺, 𝐵𝐺)

2) 𝐸𝑀𝐷Δ 𝐴, 𝐵 ≥
1

3
𝑬[𝐸𝑀𝐷𝑘 𝐴1, 𝐵1 + 𝐸𝑀𝐷𝑘 𝐴2, 𝐵2 + ⋯]

3) 𝐸𝑀𝐷Δ 𝐴, 𝐵 ≥ 𝑬[𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺 , 𝐵𝐺)]

• The distortion will

follow by applying the lemma

recursively to (AG,BG)

/𝑘

𝑘



1 (lower bound)
• Claim 1: for a randomly-shifted cut-grid 𝐺 of side length 𝑘:

𝐸𝑀𝐷(𝐴, 𝐵) ≤ 𝐸𝑀𝐷𝑘(𝐴1, 𝐵1) + 𝐸𝑀𝐷𝑘(𝐴2, 𝐵2) + ⋯
+ 𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺 , 𝐵𝐺)

• Construct a matching 𝜋 for 𝐸𝑀𝐷Δ 𝐴, 𝐵 from the matchings on RHS as 
follows

• For each 𝑎𝐴 (suppose 𝑎𝐴𝑖) it is either:
1) matched in 𝐸𝑀𝐷(𝐴𝑖 , 𝐵𝑖) to some 𝑏𝐵𝑖 (if 𝑎 ∈ 𝐴𝑖′)

• then 𝜋 𝑎 = 𝑏

2) or 𝑎 ∉ 𝐴𝑖′, and then it is matched

in 𝐸𝑀𝐷(𝐴𝐺 , 𝐵𝐺) to some 𝑏𝐵𝑗 (𝑗 ≠ 𝑖)
• then 𝜋 𝑎 = 𝑏

• Cost? 
1) paid by 𝐸𝑀𝐷(𝐴𝑖 , 𝐵𝑖)
2) Move 𝑎 to center ()

• Charge to 𝐸𝑀𝐷(𝐴𝑖 , 𝐵𝑖)

Move from cell 𝑖 to cell 𝑗
• Charge 𝑘 to 𝐸𝑀𝐷(𝐴𝐺 , 𝐵𝐺)

• If 𝐴 > |𝐵|, extra |𝐴| − |𝐵|

pay 𝑘 ⋅
Δ

𝑘
= Δ on LHS & RHS

/𝑘

𝑘



2 & 3 (upper bound)

• Claims 2,3: for a randomly-shifted cut-grid 𝐺 of side length 
𝑘, we have:

2) 𝐸𝑀𝐷Δ 𝐴, 𝐵 ≥
1

3
𝑬[𝐸𝑀𝐷𝑘 𝐴1, 𝐵1 + 𝐸𝑀𝐷𝑘 𝐴2, 𝐵2 + ⋯]

3) 𝐸𝑀𝐷Δ 𝐴, 𝐵 ≥ 𝑬[𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺 , 𝐵𝐺)]

• Fix a matching 𝜋 minimizing 𝐸𝑀𝐷Δ(𝐴, 𝐵)
– Will construct matchings for each EMD on RHS

• Uncut pairs 𝑎, 𝑏 ∈ 𝜋 are matched in respective (𝐴, 𝐵)
• Cut pairs 𝑎, 𝑏 ∈ 𝜋 :

– are unmatched in their mini-grids

– are matched in (𝐴𝐺 , 𝐵𝐺)



3: Cost

• Claim 2: 
• 3 ⋅ 𝐸𝑀𝐷Δ 𝐴,𝐵 ≥ 𝑬[𝐸𝑀𝐷𝑘 𝐴1, 𝐵1 + 𝐸𝑀𝐷𝑘 𝐴2, 𝐵2 + ⋯]

• Uncut pairs (𝑎, 𝑏) are matched in respective (𝐴𝑖 , 𝐵𝑖)
– Total contribution from uncut pairs ≤ 𝐸𝑀𝐷Δ(𝐴, 𝐵)

• Consider a cut pair (𝑎, 𝑏) at distance 𝑎 − 𝑏 = (𝑑𝑥 , 𝑑𝑦)
– (𝑎, 𝑏) can contribute to RHS as they may be unmatched in their 

own mini-grids

– Pr[(𝑎, 𝑏) cut] = 1 − 1 −
𝑑𝑥

𝑘 +
1 −

𝑑𝑦

𝑘 +
≤

𝑑𝑥

𝑘
+

𝑑𝑦

𝑘
≤

1

𝑘
||𝑎 − 𝑏||2

– Expected contribution of (𝑎, 𝑏) to RHS:
≤Pr[(𝑎, 𝑏) cut] ⋅ 2𝑘 ≤ 2 𝑎 − 𝑏

2

– Total expected cost contributed to RHS:
2 ⋅ 𝐸𝑀𝐷Δ(𝐴, 𝐵)

• Total (cut & uncut pairs): 3 ⋅ 𝐸𝑀𝐷Δ(𝐴, 𝐵)

𝑑𝑥

𝑘



3: Cost

• Claim:

– 𝐸𝑀𝐷Δ 𝐴, 𝐵 ≥ 𝑬[𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺 , 𝐵𝐺)]

• Uncut pairs: contribute zero to RHS!

• Cut pair: 𝑎, 𝑏 ∈ 𝜋 with 𝑎 − 𝑏 = (𝑑𝑥, 𝑑𝑦)

– if 𝑑𝑥 = 𝑥𝑘 + 𝑟𝑘, and 𝑑𝑦 = 𝑦𝑘 + 𝑟𝑦 , then 

– expected cost contribution to 𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺 , 𝐵𝐺):

≤ 𝑥 +
𝑟𝑥

𝑘
⋅ 𝑘 + 𝑦 +

𝑟𝑦

𝑘
⋅ 𝑘 = 𝑑𝑥 + 𝑑𝑦 = 𝑎 − 𝑏

2

• Total expected cost ≤ 𝐸𝑀𝐷Δ(𝐴, 𝐵)
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Recurse on decomposition
• For randomly-shifted cut-grid 𝐺 of side length 𝑘, we have:

1) 𝐸𝑀𝐷(𝐴, 𝐵) ≤ 𝐸𝑀𝐷𝑘(𝐴1, 𝐵1) + 𝐸𝑀𝐷𝑘(𝐴2, 𝐵2) + ⋯

+ 𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺, 𝐵𝐺)

2) 𝐸𝑀𝐷Δ 𝐴, 𝐵 ≥
1

3
𝑬[𝐸𝑀𝐷𝑘 𝐴1, 𝐵1 + 𝐸𝑀𝐷𝑘 𝐴2, 𝐵2 + ⋯]

3) 𝐸𝑀𝐷Δ 𝐴, 𝐵 ≥ 𝑬[𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺 , 𝐵𝐺)]

• We applying decomposition recursively for 𝑘 = 3
– Choose randomly-shifted cut-grid 𝐺1 on []2

– Obtain many grids [3]2, and a big grid [/3]2

– Then choose randomly-shifted cut-grid 𝐺2 on [/3]2

– Obtain more grids [3]2, and another big grid [/9]2

– Then choose randomly-shifted cut-grid 𝐺3 on [/9]2

– …

• Then, embed each of the small grids [3]2 into ℓ1, using 𝑂(1)
distortion embedding, and concatenate the embeddings
– Each 3 2 grid occupies 9 coordinates on ℓ1 embedding
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Proving recursion works
• Claim: embedding contracts distances by 𝑂 1 :

𝐸𝑀𝐷(𝐴, 𝐵) ≤

≤ ∑𝑖 𝐸𝑀𝐷𝑘 𝐴𝑖, 𝐵𝑖 + 𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺1
, 𝐵𝐺1

)

≤ ∑𝑖 𝐸𝑀𝐷𝑘 𝐴𝑖, 𝐵𝑖 + 𝑘∑𝑖 𝐸𝑀𝐷𝑘 𝐴𝐺1,𝑖
, 𝐵𝐺1,𝑖

+𝑘 ⋅ 𝐸𝑀𝐷 Δ

𝑘2
𝐴𝐺2

, 𝐵𝐺2

≤ …
≤ sum of 𝐸𝑀𝐷3 costs of 3 × 3 instances 

≤
1

2 2
||𝑓 𝐴 − 𝑓 𝐵 ||1

• Claim: embedding distorts distances by 𝑂 log Δ in expectation:
3 log𝑘 Δ ⋅ 𝐸𝑀𝐷(𝐴, 𝐵)

≥ 3 ⋅ 𝐸𝑀𝐷(𝐴, 𝐵) + 3 log𝑘
Δ

𝑘
⋅ 𝐸𝑀𝐷Δ(𝐴, 𝐵)

≥ 𝐄[ ∑𝑖 𝐸𝑀𝐷𝑘(𝐴𝑖, 𝐵𝑖) + 3 log𝑘
Δ

𝑘
⋅ 𝑘 ⋅ 𝐸𝑀𝐷Δ/𝑘(𝐴𝐺1

, 𝐵𝐺1
) ]

≥ ⋯
≥ sum of 𝐸𝑀𝐷3 costs of 3 × 3 instances

≥ ||𝑓 𝐴 − 𝑓 𝐵 ||1



Final theorem
• Theorem: can embed EMD over [Δ]2 into ℓ1

with 𝑂(log Δ) distortion in expectation.

• Notes:
– Dimension required: 𝑂(Δ2), but a set 𝐴 of size 𝑠

maps to a vector that has only 𝑂(𝑠 ⋅ log Δ) non-
zero coordinates.

– Time: can compute in 𝑂(𝑠 ⋅ log )
– By Markov’s, it’s 𝑂(log Δ) distortion with 90% 

probability

• Applications:
– Can compute 𝐸𝑀𝐷(𝐴, 𝐵) in time 𝑂(𝑠 ⋅ log Δ)
– NNS: 𝑂(𝑐 ⋅ log Δ) approximation, with 𝑂(𝑛1+1/𝑐 ⋅

𝑠) space, and 𝑂(𝑛1/𝑐 ⋅ 𝑠 ⋅ log Δ) query time.


