COMS E6998-9 F15

Lecture 17: Sublinear-time algorithms

Administrivia, Plan

- Admin:
- My office hours after class (CSB517)
- Plan:
- Finalize embeddings
- Sublinear-time algorithms
- Projects
- Scriber?

Embeddings of various metrics into ℓ_{1}

Metric	Upper bound
Earth-mover distance $(s-$-sized sets in 2D plane)	$O(\log s)$
[Cha02, ITO3]	

edit(1234567,
7123456) $=2$

Non-embeddability into ℓ_{1}

Distortion D implies sketch (decision version) with $O(D)$ approximation and $O(1)$ size! (implies NNS)

OPEN to get better for pretty much all these distances!

Earth-mover distance (s-sized sets in 2D plane)	[Cha02, IT03]	$\Omega(\sqrt{\log s})$	[NS07]
Earth-mover distance (s-sized sets in $\{0,1\}^{d}$)	$s \cdot \log d)$ [AIK08]	$\Omega(\log s)$	[KN05]
Edit distance over $\{0,1\}^{d}$ (\#indels to transform $x->y$)	$2^{\tilde{O}(\sqrt{\log d)}}$ [ORO5]	[KN05,KRO6]	
Ulam (edit distance between permutations)	$O(\log d) \quad$ [CK06]	$\widetilde{\Omega}(\log d)$	[AKO
Block edit distance	$\tilde{o}(\log d)$	4/3	[Cor03]

Sublinear-time algorithms

- Can we get away with not even looking at all data?
- Just use a sample...
- Where do we get samples?
- stored on disk, passing through a router, etc
- Data comes as a sample
- Observation of a "natural" phenomenon

Two types of algorithms

- Classic:
- Output an answer, approximately
- E.g.: number of triangles in a graph!
- Property testing:
- Does object O have blah property or not
- E.g.: does graph have a triangle or not
- Distribution testing: $0=$ distribution
- Need a new notion of approximation
- Problem:
- given m samples $x_{1}, \ldots x_{m} \in\{1,2, \ldots n\}$, from D
- do they come from a uniform distribution?
- Hard to solve precisely:
- Uniform except 6 has probability 10^{-50} higher than normal
- Do we care about 10^{-50} ?
- Use approximation...

Approximation: total variation

- Goal: distinguish between
- exactly uniform
- sufficiently non-uniform:
- ε-far: $\left\|D-U_{n}\right\|_{1} \geq \epsilon$
- Why ℓ_{1} distance?
- Equivalent to Total Variation distance:
- How to distinguish distributions A, B with 1 sample?
- a test: is a set $T \subset[n]$
- Check whether a sample $x \in T$
- Distinguishing probability: $\left|\operatorname{Pr}_{A}[x \in T]-\operatorname{Pr}_{B}[x \in T]\right|$
- We want the best such test:

$$
T V(A, B)=\max _{T \subset[n]}\left|\operatorname{Pr}_{A}[x \in T]-\operatorname{Pr}_{B}[x \in T]\right|
$$

- Claim: $T V(A, B)=\frac{1}{2}\|A-B\|_{1}$
- $\left\|D-U_{n}\right\|_{1} \leq \epsilon$ means:
- sampling up to $\sim 1 / \varepsilon$ times nearly-equivalent to sampling from a uniform distribution

Algorithm attempt

- How shall we test uniformity?
- Estimate distribution empirically, \widehat{D}
- Compute \| $\widehat{D}-U_{n} \| \ldots$
- How many samples do we need?
- At least $n / 2$: if half the coordinates are zero, far from uniform!
- χ^{2} test: also $\Omega(n)$ samples
- Can we do better?
- Theorem: can test uniformity with $O_{\epsilon}(\sqrt{n})$ samples

Algorithm for Uniformity

- Counts the number of collisions
- Intuition:
- If not uniform, more likely to have more collisions

Algorithm UNIFORM:

Input: $n, m, x_{1}, \ldots x_{m}$
$C=0 ;$
for (i=0; i<m; i++)
for (j=i+1; j<m; j++)
if $\left(x_{i}=x_{j}\right)$ C++;
if $\left(C<a \cdot m^{2} / n\right)$ return "Uniform"; else
return "Not uniform";
// a: constant dependent on ε

Algorithm intuition

- Uses $\sim \sqrt{n}$ samples
- as long as all distinct, no way to tell apart
- first collisions appear at $\sim \sqrt{n}$ - the birthday paradox!

Algorithm UNIFORM:

Input: $n, m, x_{1}, \ldots x_{m}$
C $=0$;
for (i=0; i<m; i++) for ($\mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<\mathrm{m} ; \mathrm{j}++$)
if $\left(x_{i}=x_{j}\right)$ C++;
if $\left(C<a \cdot m^{2} / n\right)$ return "Uniform"; else
return "Not uniform";
// a: constant dependent on ε

Analysis

- Consider ℓ_{2} distance!
- If $D=U_{n}$

$$
-\left\|D-U_{n}\right\|_{2}=0
$$

- If $\left\|D-U_{n}\right\|_{1} \geq \epsilon$

$$
-\left\|D-U_{n}\right\|_{2}^{2}>\epsilon^{2} / n
$$

- Claim:

$$
\left\|D-U_{n}\right\|_{2}^{2}=\|D\|_{2}^{2}-1 / n
$$

- Hence, enough to distinguish:
$-\|D\|_{2}^{2}=1 / n$ (unif)
- $\|D\|_{2}^{2}>1 / n+\epsilon^{2} / n$ (non-unif)
- Compute $\|D\|_{2}^{2}$ up to additive ϵ^{2} / n ?

Analysis

- New goal: distinguish
$-\|D\|_{2}^{2}=1 / n$
$-\|D\|_{2}^{2}>1 / n+\epsilon^{2} / n$
- Lemma: $\frac{1}{M} \cdot[\#$ collisions $]$ is a good enough as long as
$-m=\Omega\left(\frac{\sqrt{n}}{\epsilon^{4}}\right)$
Algorithm UNIFORM:

Input: $n, m, x_{1}, \ldots x_{m}$
$C=0 ;$
for (i=0; i<m; i++) for ($\mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<\mathrm{m} ; \mathrm{j}++$)
if $\left(x_{i}=x_{j}\right)$ C++;
if $\left(C<a \cdot m^{2} / n\right)$ return "Uniform";
else
return "Not uniform";
// a: constant dependent on ε

- where $M=m(m-1) / 2$
- Projects

