COMS E6998-9 F15

Lecture 17: Sublinear-time algorithms

Administrivia, Plan

- Admin:
 - My office hours after class (CSB517)
- Plan:
 - Finalize embeddings
 - Sublinear-time algorithms
 - Projects
- Scriber?

Embeddings of various metrics into ℓ_1

Metric	Upper bound
Earth-mover distance	$O(\log s)$
(s-sized sets in 2D plane)	[Cha02, IT03]
Earth-mover distance	$O(\log s \cdot \log d)$
(<i>s</i> -sized sets in {0,1} ^d)	[AIK08]
Edit distance over {0,1} ^d	$2^{\tilde{O}(\sqrt{\log d})}$
(#indels to transform x->y)	[OR05]
Ulam (edit distance between	$O(\log d)$
permutations)	[CK06]
Block edit distance	$\tilde{O}(\log d)$
	[MS00, CM07]

edit(______,

edit(1234567, 7123456) = 2

Non-embeddability into ℓ_1

Distortion D implies sketch (decision version) with O(D) approximation and O(1) size! (implies NNS)

OPEN to get better for pretty much all these distances!

Earth-mover distance	$O(\log s)$	$\Omega(\sqrt{\log s})$
(s-sized sets in 2D plane)	[Cha02, IT03]	[NS07]
Earth-mover distance $(s-sized sets in {0,1}^d)$	$O(\log s \cdot \log d)$ [AIK08]	Ω(log s) [KN05]
Edit distance over $\{0,1\}^d$	$2^{\tilde{O}(\sqrt{\log d})}$	$\Omega(\log d)$
(#indels to transform x->y)	[OR05]	~
Ulam (edit distance between permutations)	<i>О</i> (log <i>d</i>) [СКО6]	$\overline{\Omega}(\log d)$ [AK07]
Block edit distance	$\tilde{O}(\log d)$ [MS00, CM07]	4/3 [Cor03]

Sublinear-time algorithms

Setup

- Can we get away with not even looking at all data?
 Just use a sample...
- Where do we get samples?
 - stored on disk, passing through a router, etc
 - Data comes as a sample
 - Observation of a "natural" phenomenon

Two types of algorithms

- Classic:
 - Output an answer, approximately
 - E.g.: number of triangles in a graph!

- Property testing:
 - Does object *O* have *blah* property or not
 - E.g.: does graph have a triangle or not
 - Distribution testing: *O*=distribution
 - Need a new notion of approximation

Distribution Testing

• Problem:

- given *m* samples $x_1, \dots x_m \in \{1, 2, \dots n\}$, from *D*
- do they come from a *uniform distribution*?
- Hard to solve precisely:
 - Uniform except 6 has probability 10^{-50} higher than normal
 - Do we care about 10^{-50} ?
- Use approximation...

Approximation: total variation

- Goal: distinguish between
 - exactly uniform
 - sufficiently non-uniform:
 - ε -far: $||D U_n||_1 \ge \epsilon$
- Why ℓ_1 distance?
 - Equivalent to Total Variation distance:
 - How to distinguish distributions A, B with 1 sample?
 - a test: is a set $T \subset [n]$
 - Check whether a sample $x \in T$
 - Distinguishing probability: $\left| \Pr[x \in T] \Pr_{R}[x \in T] \right|$
 - We want the best such test:

$$TV(A,B) = \max_{T \subseteq [n]} \left| \Pr_{A} [x \in T] - \Pr_{B} [x \in T] \right|$$

- Claim: $TV(A, B) = \frac{1}{2} ||A B||_1$
- $||D U_n||_1 \le \epsilon$ means:
 - sampling up to ${\sim}1/\epsilon$ times nearly-equivalent to sampling from a uniform distribution

Algorithm attempt

- How shall we test uniformity?
 - Estimate distribution empirically, \widehat{D}
 - Compute $|| \hat{D} U_n || \dots$
 - How many samples do we need?
 - At least n/2: if half the coordinates are zero, far from uniform!
 - $-\chi^2$ test: also $\Omega(n)$ samples
- Can we do better?
- Theorem: can test uniformity with $O_{\epsilon}(\sqrt{n})$ samples

Algorithm for Uniformity

- Counts the number of collisions
- Intuition:
 - If not uniform, more likely to have more collisions

Algorithm UNIFORM:

```
Input: n, m, x_1, ... x_m

C = 0;

for(i=0; i<m; i++)

for(j=i+1; j<m; j++)

if (x_i = x_j)

C++;
```

```
if (C < a · m<sup>2</sup>/n)
  return "Uniform";
  else
  return "Not uniform";
// a: constant dependent on ε
```


Algorithm intuition

- Uses $\sim \sqrt{n}$ samples
 - as long as all distinct, no way to tell apart
 - first collisions appear at $\sim \sqrt{n}$ the birthday paradox!

Algorithm UNIFORM:

```
Input: n, m, x_1, ... x_m

C = 0;

for(i=0; i<m; i++)

for(j=i+1; j<m; j++)

if (x_i = x_j)

C++;
```

if (C < a · m²/n)
 return "Uniform";
 else
 return "Not uniform";
// a: constant dependent on ε

Analysis

- Consider ℓ_2 distance!
- If $D = U_n$

$$-||D - U_n||_2 = 0$$

- If $||D U_n||_1 \ge \epsilon$ - $||D - U_n||_2^2 > \epsilon^2/n$
- Claim:

 $||D - U_n||_2^2 = ||D||_2^2 - 1/n$

- Hence, enough to distinguish: $- ||D||_2^2 = 1/n$ (unif) $- ||D||_2^2 > 1/n + \epsilon^2/n$ (non-unif)
- Compute $||D||_2^2$ up to additive ϵ^2/n ?

Algorithm UNIFORM:

Input:
$$n, m, x_1, ... x_m$$

 $C = 0;$
for(i=0; i
for(j=i+1; j
if $(x_i = x_j)$
 $C++;$

if
$$(C < a \cdot m^2/n)$$

return "Uniform";
else
return "Not uniform";
// a : constant dependent on ε

Analysis

- New goal: distinguish $- ||D||_2^2 = 1/n$ $- ||D||_2^2 > 1/n + \epsilon^2/n$
- Lemma: $\frac{1}{M} \cdot [\# \text{ collisions}]$ is a good enough as long as

$$-m = \Omega\left(\frac{\sqrt{n}}{\epsilon^4}\right)$$

- where M = m(m - 1)/2

Algorithm UNIFORM:

Input:
$$n, m, x_1, ... x_m$$

 $C = 0;$
for(i=0; i
for(j=i+1; j
if $(x_i = x_j)$
 $C++;$

if $(C < a \cdot m^2/n)$ return "Uniform"; else return "Not uniform"; // a: constant dependent on ε • Projects

