COMS E6998-9 F15

Lecture 18: Uniformity Testing Monotonicity Testing

Administrivia, Plan

- Admin:
- PS3: pick up
- Project proposals: Nov 16th
- Plan:
- Uniformity Testing
- Monotonicity Testing
- Scriber?

Uniformity testing

- Enough to distinguish:
$-\|D\|_{2}^{2}=1 / n$ (unif)
- $\|D\|_{2}^{2}>1 / n+\epsilon^{2} / n$ (non-unif)
- Lemma: $\frac{1}{M} \cdot C$ is a good enough as long as
$-m=\Omega\left(\frac{\sqrt{n}}{\epsilon^{4}}\right)$
- where $M=m(m-1) / 2$
- Let $d=\|D\|_{2}^{2}$
- Claim 1: $E\left[\frac{C}{M}\right]=d$

Algorithm UNIFORM:

Input: $n, m, x_{1}, \ldots x_{m}$
$C=0$;
for (i=0; i<m; i++)
for ($\mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<\mathrm{m} ; \mathrm{j}++$)
if $\left(x_{i}=x_{j}\right)$
C++;
if $\left(C<a \cdot m^{2} / n\right)$ return "Uniform";
else
return "Not uniform";
// a: constant dependent on ε

- Claim 2: $\operatorname{Var}\left[\frac{C}{M}\right] \leq \frac{d}{M}+\frac{8 d^{2} \sqrt{n}}{m}$
- Finish lemma proof...
- Problem:
- We have known distribution p
- Given samples from q, distinguish between:
- $p=q$ vs $\|p-q\|_{1} \geq \epsilon$
- Uniformity is an instance ($p=U_{n}$)
- Classic χ^{2} test [Pearson 1900]:
- Let $X_{i}=\#$ of occurrences of i
$-\sum_{i} \frac{\left(X_{i}-k p_{i}\right)^{2}-k p_{i}}{p_{i}} \geq \alpha$
- Test of [Valiant, Valiant 2014]:
$-\sum_{i} \frac{\left(X_{i}-k p_{i}\right)^{2}-X_{i}}{p_{i}^{2 / 3}} \geq \alpha$

Distribution Testing++

- Other properties?
- Equality testing:
- Given samples from unknown p, q, distinguish
$-p=q$ vs $\|p-q\|_{1} \geq \epsilon$
- Sample bound: $\Theta_{\epsilon}\left(n^{2 / 3}\right)$
- Independence testing:
- Given samples from $(p, q) \in[n] \times[n]$, distinguish:
$-p$ is independent of q vs $\|(p, q)-A \times B\|_{1} \geq \epsilon$ for any distributions A, B on [n]
- Sample bound: $\widetilde{\Theta_{\epsilon}}(n)$
- Many more...

Testing Monotonicity

- Problem: given a sequence $x_{1}, \ldots x_{n}$, distinguish:
- sequence is sorted, vs
- sequence is NOT sorted
- In $o(n)$ time?
- Hard exactly: can have just one inversion somewhere
- Approximation notion: ϵ-far

Testing Monotonicity
ϵ-far: if need to delete at least ϵ
fraction of elements to make it sorted

- A testing algorithm:
- Sample random positions i
- Check that $x_{i} \leq x_{j}$ iff $i<j$
- How many samples?
- Bad case: $2,1,4,3, \ldots, i, i-1, i+2, i+1, \ldots, n, n-1$
- At least $\Omega(\sqrt{n})$ before we see an adjacent pair
- Fix?
- Can sample adjacent pairs!
- Works?
- Bad case too

Algorithm: Monotonicity

- Assumption:
$-x_{i} \neq x_{j}$
- One iteration:
- Pick a random i
- Do binary search on $x=x_{i}$ in the sequence
- Start with interval $[\mathrm{s}, \mathrm{t}]=[1, \mathrm{n}]$
- For interval $[\mathrm{s}, \mathrm{t}]$, find middle $m=\frac{s+t}{2}$
- If $x<x_{m}$, recurse on the left
- If $x>x_{m}$, recurse on the right

Algorithm MONOTONICITY:

Input: $n, x_{1}, \ldots x_{n}$ for ($\mathrm{r}=0 ; r<3 / \epsilon ; \mathrm{r}++$) Let $x=x_{i}$ perform binary search on x if $(x$ not found at position i OR binary search inconsistent) return "not sorted";

If finished ok, return "sorted".

- Fail if find inconsistency:
- 1) x_{i} not found where it should be
- 2) $x_{m} \notin\left[x_{s}, x_{t}\right]$

Analysis: Monotonicity

- If sorted, will pass the test
- If ϵ-far from sorted...
- How do we argue?
- Via contrapositive
- Lemma: suppose one iteration succeeds with probability \geq $1-\epsilon$
- Then, sequence $\leq \epsilon$ far from a sorted sequence
- Hence, $3 / \epsilon$ repetitions are enough to catch the case of $>$

Algorithm MONOTONICITY:

Input: $n, x_{1}, \ldots x_{n}$ for ($\mathrm{r}=0 ; r<3 / \epsilon ; \mathrm{r}++$)
Let $x=x_{i}$
perform binary search on x
if $(x$ not found at position i OR binary search inconsistent) return "not sorted";

If finished ok, return "sorted". ϵ far from sortedness with probability 90% :

- Prob to report "sorted" when it's far: is at most $(1-\epsilon)^{3 / \epsilon} \leq$ $e^{-3} \leq 0.1$

Analysis: Monotonicity

- Lemma: suppose one iteration succeeds with probability $\geq 1-\epsilon$
- Then, sequence $\leq \epsilon$ far from a sorted sequence
- Proof:
- Call $i \in[n]$ good if it passes the test
- Claim: if $i<j$ are good, then $x_{i}<$ x_{j}
- Consider the binary search tree, and their lowest common ancestor x_{m}
- It must be:
- $x_{i}<x_{m}$ and

$$
-x_{m}<x_{j}
$$

Algorithm MONOTONICITY:
Input: $n, x_{1}, \ldots x_{n}$ for(r=0; $r<3 / \epsilon ; r++$)
Let $x=x_{i}$
perform binary search on x
if (x not found at position i OR binary search inconsistent) return "not sorted";

If finished ok, return "sorted".

- Hence: good i 's are sorted!
- "probability $\geq 1-\epsilon$ " \Rightarrow number of good elements is at least $(1-\epsilon) n$
- End of proof!

Monotonicity: discussion

- Assumption?
- Replace all x_{i} by (x_{i}, i)
- Then sequence must be strictly monotonic
- Test is adaptive:
- Where we query depends on what we learned from the previous queries
- Do we need adaptivity?
- No!
- A each iteration, we query for $x=x_{i}$
- We know precisely where binary search is supposed to look at!
- E.g., if $i=1$, then it's positions: $\frac{n}{2}, \frac{\pi}{4}, \frac{n}{8}, \ldots$
- Can generate all the positions to query at the beginning and query them all at the same time
- Unless, binary search is inconsistent, in which case we detect this from the queries positions

Algorithm MONOTONICITY:
Input: $n, x_{1}, \ldots x_{n}$ for $(\mathrm{r}=0 ; r<3 / \epsilon ; r++$)
Let $x=x_{i}$
perform binary search on x if $(x$ not found at position i OR binary search inconsistent) return "not sorted";

If finished ok, return "sorted".

Monotonicity++

- $O(\log n)$ queries tight?
- Yes
- Can consider the more general case:
- Function $f:\{0,1\}^{d} \rightarrow\{0,1\}$
- Monotone: if $f(x) \leq f(y)$ whenever $x \leq y$ (coordinate-wise)
- Can test in $\tilde{O}_{\epsilon}(\sqrt{d})$ queries! [GGLRS'98, KMS'15]
- We have a graph $G=(V, E)$
- n vertices
- m edges
- Dense case:
$-m=\Theta\left(n^{2}\right)$
- Sparse case:
- Degree $d \leq O(1)$
- Property testing:
- Eg, is graph G connected?
- Approximation?
- ϵ-far: if we need to delete/insert $\geq \epsilon m$ edges

Connectivity in sparse graph

- Approximation?
$-\epsilon$-far: if we need to delete/insert $\geq \epsilon m$ edges
$-m=d n=O(n)$
- When does it make sense?
$-\epsilon d \ll 1$ (otherwise any sparse graph is close to being connected!)
- Assume: $\epsilon d \ll 1$
- Algorithm:
- For $r=O\left(\frac{1}{\epsilon d}\right)$ times repeat:
- Choose a random node s
- Run a BSF from s
- Until see more than $4 / \epsilon d$ node in the CC
- If the CC is smaller, then report "disconnected"
- Otherwise, report "connected"

Analysis

- Claim: if ϵ-far, then graph has at most $\Omega(\epsilon d n)$ connected components
- Proof:
- Suppose G has c connected component
- Will connect, using $O(c)$ modifications
- Idea:
- Just connect each connected component consecutively
- Issue: can get higher degree than d in a CC
- Is really an issue when all nodes in a CC have full degree
- Just delete one edge (preserving connectivity)
- Hence, on average a CC has $O\left(\frac{n}{\epsilon d n}\right)=O\left(\frac{1}{\epsilon d}\right)$ nodes
- Will pick one of them with probability at least ϵd

