COMS E6998-9 F15

Lecture 22: Linearity Testing Sparse Fourier Transform

Administrivia, Plan

- Thu: no class. Happy Thanksgiving!
- Tue, Dec $1^{\text {st }}$:
- Sergei Vassilvitskii (Google Research) on MapReduce model and algorithms
- I'm away until next Thu, Dec 3rd
- Office hours: Tue 2:30-4:30, Wed 4-6pm
- Plan:
- Linearity Testing (finish)
- Sparse Fourier Transform

Last lecture

- Linearity Testing:
$-f:\{-1,+1\}^{n}$ is linear iff for any $x, y \in$ $\{-1,+1\}^{n}$, we have:
- $f(x) \cdot f(y)=f(x \oplus y)$
- Test: repeat $O(1 / \epsilon)$ times
- Pick random x, y
- Verify that $f(x) \cdot f(y)=f(x \oplus y)$
- Main Theorem:
- If f is ϵ-far from linearity, then $\operatorname{Pr}[$ test fails $] \geq \epsilon$

Linearity Testing

- Remaining Lemma:
- Let $T_{x y}=1$ iff $f(x) \cdot f(y)=f(x \oplus y)$
$-\operatorname{Pr}\left[T_{x y}=1\right]=\frac{1}{2}+\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}_{S}^{3}$
- Where $\hat{f}_{S}=\left\langle f, \chi_{S}\right\rangle$ for $\chi_{S}(x)=\prod_{i \in \mathrm{~S}} x_{i}$
- Consider
$-f:[n] \rightarrow \Re$

$$
\begin{aligned}
\hat{x}_{i} & =\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}, \\
\omega & =e^{-2 \pi \mathrm{i} / n}\left(n^{t h} \text { root of unity }\right) \\
x_{i} & =\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}
\end{aligned}
$$

- also special case of more general setting:
- $f:[n]^{d} \rightarrow$ R
- Will call such function: $x=\left(x_{1}, \ldots x_{n}\right)$
- Fourier transform:
$-\hat{x}_{i}=\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}$,
- where $\omega=e^{-2 \pi \mathbf{i} / n}$ is the $n^{\text {th }}$ root of unity
$-x_{i}=\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}$
- Assume: n is power of 2

Why important?

- Imaging
- MRI, NMR
- Compression:
- JPEG: retain only high Fourier coefficients
- Signal processing
- Data analysis

Columbia|Engineering
The Fu Foundation School of Engineering and Applied Science

$$
\begin{aligned}
\hat{x}_{i} & =\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}, \\
\omega & =e^{-2 \pi \mathbf{i} / n} \text { (} n^{t h} \text { root of unity) } \\
x_{i} & =\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}
\end{aligned}
$$

Computing

- Naively:
$-O\left(n^{2}\right)$

$$
\begin{aligned}
\hat{x}_{i} & =\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}, \\
\omega & =e^{-2 \pi \mathbf{i} / n}\left(n^{t h}\right. \text { root of unity) } \\
x_{i} & =\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}
\end{aligned}
$$

- Fast Fourier Transform:
- $O(n \log n)$ time
- [Cooley-Tukey 1964]
- [Gauss 1805]
- One of the biggest open questions in CS:
- Can we do in $O(n)$ time?

Sparse Fourier Transform

- Many signals represented well by sparse Fourier transform

$$
\begin{aligned}
\hat{x}_{i} & =\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}, \\
\omega & =e^{-2 \pi \mathbf{i} / n} \text { (} n^{t h} \text { root of unity) } \\
x_{i} & =\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}
\end{aligned}
$$

- If \hat{x} is sparse,
- Can we do better?
- YES!
- $O\left(k \cdot \log ^{2} n\right)$ time possible, assuming k non-zero Fourier coefficients!
- Sublinear time: just sample a few positions in x
- Even when \hat{x} is approximately sparse

Similar to Compresse

- Sparse Fourier Transform
- Sparse: $\hat{x}=F x$

$$
\begin{aligned}
\hat{x}_{i} & =\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}, \\
\omega & =e^{-2 \pi i / n}\left(n^{\text {th }} \text { root of unity }\right) \\
x_{i} & =\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}
\end{aligned}
$$

- Access: $x=F^{-1} \hat{x}$ of dimension n
$-F, \widehat{F}=$ concrete matrix
- Compressed Sensing
- Sparse: $x \in \Re^{n}$
- Access: $y=A x \in \Re^{m}$, where $m=O(k \log n)$
$-A$ is usually designed (though sometimes: random rows of the Fourier matrix)

Warm-up: $k=1$

- Assume \hat{x} is exactly 1 -sp.
$-\hat{x}_{f} \neq 0$

$$
\begin{aligned}
\hat{x}_{i} & =\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}, \\
\omega & =e^{-2 \pi \mathrm{i} / n}\left(n^{t h}\right. \text { root of unity) } \\
x_{i} & =\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}
\end{aligned}
$$

- Problem:
- How many queries into x ?
- Algorithm:
- Sample x_{0}, x_{1}
- $x_{0}=a \omega^{0 f}=a$
- $x_{1}=a \omega^{f}$
- $\omega^{f}=x_{1} / x_{0}$

$$
x_{1}=\mathbf{a} \cdot \omega^{f}
$$

- Can read off the frequency f

What about noise?

- $x_{i}=a \omega^{i f}+$ noise
- Problem:

$$
\begin{aligned}
\hat{x}_{i} & =\frac{1}{n} \sum_{j \in[n]} x_{j} \omega^{-i j}, \\
\omega & =e^{-2 \pi \mathbf{i} / n}\left(n^{t h}\right. \text { root of unity) } \\
x_{i} & =\sum_{j \in[n]} \hat{x}_{j} \omega^{i j}
\end{aligned}
$$

- Find y s.t. 1 -sparse (in Fourier domain)
- Best approximation to x
$-\|\hat{x}-\hat{y}\|_{2} \leq C \cdot \min _{\hat{y}: 1-\text { sparse }}\|\hat{x}-\hat{y}\|$
$-\|x-y\|_{2} \leq C \cdot \min _{y: 1 \text {-sparse }}\|x-y\| \quad$ Use for $z=x-y!$
- Will assume "error" is ϵ fraction:
$-\min _{\hat{y}: 1-\text { sparse }}\|\hat{x}-\hat{y}\|^{2}=\sum_{j \neq f}\left|\widehat{x}_{j}\right|^{2} \leq \epsilon^{2} \cdot{\widehat{x_{f}}}^{2}=\epsilon^{2} a^{2}$
$-E_{j}\left[\left|x_{j}-y_{j}\right|^{2}\right] \leq \epsilon^{2} a^{2}$ (Parserval's)
- Interesting when $\epsilon \ll 1$

Re-use $k=1$ algorithm?

- Suppose: $a=1$
- $x_{0}=1+\epsilon$
- $x_{1}=\omega^{f}+\epsilon \omega^{q}$
- So: $\frac{x_{1}}{x_{0}}=\frac{1}{1+\epsilon}\left(\omega^{f}+\epsilon \omega^{q}\right)$
- Error in frequency!

- Will recover $y=\omega^{g}$ for $g \neq f$
- Thus $\|\hat{x}-\hat{y}\| \geq\left\|\hat{x}_{f}\right\|=1$ instead of $O(\epsilon)$...
- Good news: error bounded, up to ϵn

Algorithm for $k=1+$ noise

- $x_{i}=\omega^{i f}+$ noise
- Will find f by binary search!
- Bit 0:

$$
-f=2 f_{1}+b \text { for } b \in\{0,1\}
$$

- Claim: for pure signal $y_{i}=\omega^{i f}$:

$$
\begin{aligned}
& -y_{n / 2}=y_{0} \cdot(-1)^{b} \\
& -y_{n / 2+r}=y_{r}(-1)^{b}
\end{aligned}
$$

- Proof:

$$
\begin{aligned}
& -y_{n / 2}=\omega^{f \cdot n / 2}=(-1)^{f}=(-1)^{2 f_{1}} \cdot(-1)^{b}=(-1)^{b} y_{0} \\
& -y_{n / 2+r}=\omega^{f \cdot n / 2+f r}=(-1)^{f} \omega^{f r}=(-1)^{b} y_{r}
\end{aligned}
$$

- What about noise?

Bit 0 with noise

- We have:
$-x_{i}=\omega^{i \cdot\left(2 f_{1}+b\right)}+$ noise
$-y_{i}=\omega^{i \cdot\left(2 f_{1}+b\right)}$
- Claim: $y_{n / 2+r}=y_{r}(-1)^{b}$
$-E_{j}\left[\left|x_{j}-y_{j}\right|^{2} \leq \epsilon^{2}\right]$ (Parseval's)

$$
\begin{aligned}
& \text { If } b=0: \\
& \text { If } b=1: \begin{array}{l}
\left|y_{n / 2+r}+y_{r}\right|=2 \\
\left|y_{n / 2+r}-y_{r}\right|=0
\end{array} \\
& \left\lvert\, \begin{array}{l}
\left|y_{n / 2+r}+y_{r}\right|=0 \\
\left|y_{n / 2+r}-y_{r}\right|=2
\end{array}\right.
\end{aligned}
$$

- Algorithm:
- For t times:
- Pick random $r \in[n]$
- Check $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$: then $b=0$
- Otherwise $b=1$
- Take majority vote
- Claim: output the right b with $1-2^{-\Omega(t)}$ probability
- Proof:
- Each test:
- $x_{n / 2+r}, x_{r}$ are within $5 \epsilon^{2}$ of $y_{n / 2+r}, y_{r}$ with probability $1-2 \cdot 1 / 5$ (Markov)
- Hence test works with at least 0.6 probability
- Majority of t tests work with $1-2^{-\Omega(t)}$ probability (Chernoff bound concentration)

Bit 1

- Reduce to bit 0 case!
- We have
$-x_{i}=\omega^{i\left(2 f_{1}+b\right)}+$ noise
$-y_{i}=\omega^{i\left(2 f_{1}+b\right)}$
- Suppose $b=0$:
$-y_{i}=\omega^{i \cdot 2 f_{1}}=\left(\omega^{2}\right)^{i f_{1}}=\left(\omega_{n / 2}\right)^{i f_{1}}$
- where $\omega_{n / 2}$ is the $(n / 2)^{\text {th }}$ root of unity
- Same problem as for Fourier transform over [$n / 2$]!
- Suppose $b=1$?
- Define $y_{i}^{\prime}=y_{i} \omega^{-i}$
- Then $y_{i}^{\prime}=\omega^{i f-i}=\omega^{i\left(2 f_{1}+1-1\right)}=\omega^{i \cdot\left(2 f_{1}\right)}$
- Just shifts all frequencies down by one!
- Continue as above for $x_{i}^{\prime}=x_{i} \omega^{-i}$
- Note: we compute x_{i}^{\prime} on the fly when whenever we query some x_{i}

Overall algorithm to recover f

- $x_{i}=\omega^{i f}+$ noise
- Where $f=b_{0}+b_{1} \cdot 2^{1}+b_{2} \cdot 2^{2}+\cdots+b_{\lg \frac{n}{2}} \cdot \frac{n}{2}$
- Algorithm:
- Learn b_{0} : take majority of t trials of
- Pick random r
- Check: $\left|x_{n / 2+r}+x_{r}\right|>\left|x_{n / 2+r}-x_{r}\right|$
- Then set $b_{0}=0$
- Learn b_{1} : take majority of t trials of
- Pick random r
- Check: $\left|\omega^{n / 4 \cdot b_{0}} x_{n / 4+r}+x_{r}\right|>\left|\omega^{n / 4 \cdot b_{0}} x_{n / 4+r}-x_{r}\right|$
- Then set $b_{1}=0$
- Learn b_{2} : take majority of t trials of
- Pick random r
- Check: $\left|\omega^{n / 8 \cdot\left(b_{0}+2 b_{1}\right)} x_{n / 8+r}+x_{r}\right|>\left|\omega^{n / 8 \cdot\left(b_{0}+2 b_{1}\right)} x_{n / 8+r}-x_{r}\right|$ - Then set $b_{2}=0$

Wrap-up of the algorithm $k=1$

- Correctness:
- We learn $O(\log n)$ bits
- Each needs to succeed with probability 1 $O(1 / \log n)$
- Hence set $t=O(\log \log n)$
- Overall performance:
- Number of samples: $O(\log n \cdot \log \log n)$
- Same run-time
- $x_{i}=a_{1} \omega^{i f_{1}}+a_{2} \omega^{i f_{2}}+\cdots a_{k} \omega^{i f_{k}}+$ noise
- Main ideas:
- Isolate each frequency
- Like in CountSketch or compressed sensing!
- "Throw" frequencies in "buckets"
- Hope have 1 frequency per "bucket"
- Throw in buckets:
- permute the frequencies (pseudo-)randomly
- Can have frequencies go as $i \rightarrow a i+b$ for random a, b
- partition in blocks: $\left[1, \frac{n}{k}\right]\left[\frac{n}{k}+1, \frac{2 n}{k}\right], \ldots$
- Apply a filter that keeps only the correct block

