COMS E6998-9 F15

Lecture 22: Linearity Testing Sparse Fourier Transform

Administrivia, Plan

- Thu: no class. Happy Thanksgiving!
- Tue, Dec 1st:

 Sergei Vassilvitskii (Google Research) on MapReduce model and algorithms

- I'm away until next Thu, Dec 3rd
 Office hours: Tue 2:30-4:30, Wed 4-6pm
- Plan:
 - Linearity Testing (finish)
 - Sparse Fourier Transform

Last lecture

- Linearity Testing:
 - $-f: \{-1, +1\}^n$ is linear iff for any $x, y \in \{-1, +1\}^n$, we have:
 - $f(x) \cdot f(y) = f(x \oplus y)$
- Test: repeat $O(1/\epsilon)$ times
 - Pick random *x*, *y*
 - Verify that $f(x) \cdot f(y) = f(x \oplus y)$
- Main Theorem:

- If f is ϵ -far from linearity, then Pr[test fails] $\geq \epsilon$

Linearity Testing

• Remaining Lemma: $- \operatorname{Let} T_{xy} = 1 \text{ iff } f(x) \cdot f(y) = f(x \oplus y)$ $- \operatorname{Pr}[T_{xy} = 1] = \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}_{S}^{3}$ $- \operatorname{Where} \hat{f}_{S} = \langle f, \chi_{S} \rangle \text{ for } \chi_{S}(x) = \prod_{i \in S} x_{i}$

Discrete Fourier Transform

Consider

$$-f:[n] \to \Re$$

$$\begin{aligned} \hat{x}_i &= \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij}, \\ \omega &= e^{-2\pi \mathbf{i}/n} (n^{th} \text{ root of unity}) \\ x_i &= \sum_{j \in [n]} \hat{x}_j \omega^{ij} \end{aligned}$$

• also special case of more general setting:

•
$$f:[n]^d \to \Re$$

- Will call such function: $x = (x_1, ..., x_n)$
- Fourier transform:

$$-\hat{x}_{i} = \frac{1}{n} \sum_{j \in [n]} x_{j} \omega^{-ij},$$

$$- \text{ where } \omega = e^{-2\pi i/n} \text{ is the } n^{th} \text{ root of unity}$$

$$- x_{i} = \sum_{j \in [n]} \hat{x}_{j} \omega^{ij}$$

$$- \text{ Assume: } n \text{ is power of } 2$$

Why important?

- Imaging
 MRI, NMR
- Compression:

$$\hat{x}_{i} = \frac{1}{n} \sum_{j \in [n]} x_{j} \omega^{-ij},$$

$$\omega = e^{-2\pi i/n} (n^{th} \text{ root of unity})$$

$$x_{i} = \sum_{j \in [n]} \hat{x}_{j} \omega^{ij}$$

- JPEG: retain only high Fourier coefficients
- Signal processing
- Data analysis

Computing

• Naively: $-O(n^2)$

$$\begin{aligned} \hat{x}_i &= \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij}, \\ \omega &= e^{-2\pi \mathbf{i}/n} \text{ (}n^{th} \text{ root of unity)} \\ x_i &= \sum_{j \in [n]} \hat{x}_j \omega^{ij} \end{aligned}$$

- Fast Fourier Transform:
 - $-O(n\log n)$ time
 - [Cooley-Tukey 1964]
 - [Gauss 1805]
- One of the biggest open questions in CS:
 Can we do in O(n) time?

Sparse Fourier Transform

- Many signals represented well by sparse Fourier transform
- If \hat{x} is sparse,
 - Can we do better?
- YES!

 $\hat{x}_{i} = \frac{1}{n} \sum_{j \in [n]} x_{j} \omega^{-ij},$ $\omega = e^{-2\pi i/n} (n^{th} \text{ root of unity}),$ $x_{i} = \sum_{j \in [n]} \hat{x}_{j} \omega^{ij}$

- $O(k \cdot \log^2 n)$ time possible, assuming k non-zero Fourier coefficients!
- Sublinear time: just sample a few positions in x
- Even when \hat{x} is approximately sparse

Similar to Compressed Sensing

Sparse Fourier Transform

- Sparse: $\hat{x} = Fx$

 $\hat{x}_i = \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij}, \\ \omega = e^{-2\pi \mathbf{i}/n} (n^{th} \text{ root of unity}) \\ x_i = \sum_{j \in [n]} \hat{x}_j \omega^{ij}$

- Access: $x = F^{-1}\hat{x}$ of dimension n
- $-F, \hat{F} = \text{concrete matrix}$
- Compressed Sensing
 - Sparse: $x \in \Re^n$
 - -Access: $y = Ax \in \Re^m$, where $m = O(k \log n)$
 - A is usually designed (though sometimes: random rows of the Fourier matrix)

Warm-up: k = 1

- Assume \hat{x} is exactly 1-sp. $-\hat{x}_f \neq 0$
- Problem:

– How many queries into x ?

- Algorithm:
 - Sample x_0 , x_1
- $x_0 = a\omega^{0f} = a$
- $x_1 = a\omega^f$
- $\omega^f = x_1/x_0$ - Can read off the frequency *f*

$$\begin{aligned} \hat{x}_i &= \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij}, \\ \omega &= e^{-2\pi \mathbf{i}/n} \text{ (}n^{th} \text{ root of unity)} \\ x_i &= \sum_{j \in [n]} \hat{x}_j \omega^{ij} \end{aligned}$$

What about noise?

- $x_i = a\omega^{if} + noise$
- Problem:

 $\begin{aligned} \hat{x}_i &= \frac{1}{n} \sum_{j \in [n]} x_j \omega^{-ij}, \\ \omega &= e^{-2\pi \mathbf{i}/n} \text{ (}n^{th} \text{ root of unity)} \\ x_i &= \sum_{j \in [n]} \hat{x}_j \omega^{ij} \end{aligned}$

Parseval's

- Find y s.t. 1-sparse (in Fourier domain)
- Best approximation to x

$$- ||\hat{x} - \hat{y}||_2 \le C \cdot \min_{\hat{y}: \ 1-sparse} ||\hat{x} - \hat{y}||$$

$$||x - y||_2 \le C \cdot \min_{y: 1 - sparse} ||x - y||_2$$

$$||\hat{z}||^{2} = \frac{1}{n} ||z||^{2} = E_{j} [|z_{j}|^{2}]$$

Use for $z = x - y$!

• Will assume "error" is ϵ fraction:

$$-\min_{\hat{y}:\ 1-sparse} ||\hat{x} - \hat{y}||^2 = \sum_{j \neq f} |\hat{x}_j|^2 \le \epsilon^2 \cdot \widehat{x_f}^2 = \epsilon^2 a^2$$
$$-E_j \left[|x_j - y_j|^2 \right] \le \epsilon^2 a^2 \text{ (Parserval's)}$$

– Interesting when $\epsilon \ll 1$

Re-use k = 1 algorithm?

- Suppose: a = 1
- $x_0 = 1 + \epsilon$
- $x_1 = \omega^f + \epsilon \omega^q$
- So: $\frac{x_1}{x_0} = \frac{1}{1+\epsilon} (\omega^f + \epsilon \omega^q)$
- Error in frequency!

unit circle

- Will recover $y = \omega^g$ for $g \neq f$
- Thus $||\hat{x} \hat{y}|| \ge ||\hat{x}_f|| = 1$ instead of $O(\epsilon)$...
- Good news: error bounded, up to ϵn

Algorithm for k = 1 + noise

- $x_i = \omega^{if} + noise$
- Will find *f* by binary search!
- Bit 0:

$$-f = 2f_1 + b$$
 for $b \in \{0,1\}$

• Claim: for pure signal $y_i = \omega^{if}$:

$$- y_{n/2} = y_0 \cdot (-1)^b$$
$$- y_{n/2+r} = y_r (-1)^b$$

• Proof:

$$-y_{n/2} = \omega^{f \cdot n/2} = (-1)^f = (-1)^{2f_1} \cdot (-1)^b = (-1)^b y_0$$
$$-y_{n/2+r} = \omega^{f \cdot n/2+fr} = (-1)^f \omega^{fr} = (-1)^b y_r$$

• What about noise?

Bit 0 with noise

- We have:
 - $x_i = \omega^{i \cdot (2f_1 + b)} + noise$
 - $y_i = \omega^{i \cdot (2f_1 + b)}$
 - Claim: $y_{n/2+r} = y_r(-1)^b$
 - $E_j \left[\left| x_j y_j \right|^2 \le \epsilon^2 \right]$ (Parseval's)
- Algorithm:
 - For *t* times:
 - Pick random $r \in [n]$
 - Check $|x_{n/2+r} + x_r| > |x_{n/2+r} x_r|$: then b = 0
 - Otherwise b = 1
 - Take majority vote
- Claim: output the right b with $1 2^{-\Omega(t)}$ probability
- Proof:
 - Each test:
 - $x_{n/2+r}$, x_r are within $5\epsilon^2$ of $y_{n/2+r}$, y_r with probability $1 2 \cdot 1/5$ (Markov)

If b = 0:

If b = 1:

 $|y_{n/2+r} + y_r| = 2$ $|y_{n/2+r} - y_r| = 0$

 $\left|y_{n/2+r} + y_r\right| = 0$

 $|y_{n/2+r} - y_r| = 2$

- Hence test works with at least 0.6 probability
- Majority of t tests work with $1 2^{-\Omega(t)}$ probability (Chernoff bound concentration)

Bit 1

- Reduce to bit 0 case!
- We have
 - $x_i = \omega^{i(2f_1+b)} + noise$ $y_i = \omega^{i(2f_1+b)}$
- Suppose b = 0:
 - $y_i = \omega^{i \cdot 2f_1} = (\omega^2)^{if_1} = (\omega_{n/2})^{if_1}$
 - where $\omega_{n/2}$ is the $(n/2)^{th}$ root of unity
 - Same problem as for Fourier transform over [n/2] !
- Suppose b = 1?
 - Define $y'_i = y_i \omega^{-i}$
 - Then $y'_i = \omega^{if-i} = \omega^{i(2f_1+1-1)} = \omega^{i \cdot (2f_1)}$
 - Just shifts all frequencies down by one!
 - Continue as above for $x'_i = x_i \omega^{-i}$
 - Note: we compute x'_i on the fly when whenever we query some x_i

Overall algorithm to recover f

- $x_i = \omega^{if} + noise$ - Where $f = b_0 + b_1 \cdot 2^1 + b_2 \cdot 2^2 + \dots + b_{\lg \frac{n}{2}} \cdot \frac{n}{2}$
- Algorithm:
 - Learn b_0 : take majority of t trials of
 - Pick random *r*
 - Check: $|x_{n/2+r} + x_r| > |x_{n/2+r} x_r|$ - Then set $b_0 = 0$
 - Learn b_1 : take majority of t trials of
 - Pick random r
 - Check: $|\omega^{n/4 \cdot b_0} x_{n/4+r} + x_r| > |\omega^{n/4 \cdot b_0} x_{n/4+r} x_r|$ - Then set $b_1 = 0$
 - Learn b_2 : take majority of t trials of
 - Pick random r
 - Check: $|\omega^{n/8 \cdot (b_0 + 2b_1)} x_{n/8+r} + x_r| > |\omega^{n/8 \cdot (b_0 + 2b_1)} x_{n/8+r} x_r|$ - Then set $b_2 = 0$

Wrap-up of the algorithm k = 1

- Correctness:
 - We learn $O(\log n)$ bits
 - Each needs to succeed with probability $1 O(1/\log n)$
 - Hence set $t = O(\log \log n)$
- Overall performance:
 - Number of samples: $O(\log n \cdot \log \log n)$
 - Same run-time

k > 1

- $x_i = a_1 \omega^{if_1} + a_2 \omega^{if_2} + \cdots + a_k \omega^{if_k} + noise$
- Main ideas:
 - Isolate each frequency
 - Like in CountSketch or compressed sensing!
 - "Throw" frequencies in "buckets"
 - Hope have 1 frequency per "bucket"
 - Throw in buckets:
 - permute the frequencies (pseudo-)randomly
 - Can have frequencies go as $i \rightarrow ai + b$ for random a, b
 - partition in blocks: $\left[1, \frac{n}{k}\right], \left[\frac{n}{k} + 1, \frac{2n}{k}\right], \dots$

• Apply a filter that keeps only the correct block UMBIA ENGINEERING Indation School of Engineering and Applied Science