Lecture 24: MapReduce Algorithms Wrap-up

Admin

- PS2-4 solutions
- Project presentations next week
- 20min presentation/team
- 10 teams => 3 days
-3 rd time: Fri at 3-4:30pm
- sign-up sheet online
- Today:
- MapReduce algorithms
- Wrap-up

Computational Model

- M machines
- S space per machine
- $M \cdot S \approx 0$ (input size)
- cannot replicate data much
- Input: n elements
- Output: O(input size)=O(n) doesn't fit on a machine: $S \ll n$
- Round: shuffle all (expensive!)

Model Constraints

- Main goal:
- number of rounds $R=O$ (1)
- for $S \geq n^{\delta}$
- e.g., $S>\sqrt{n}$ when $S>M$
- Local resources bounded by S
- $O(S)$ in-communication per round
- ideally: linear run-time/round
- Model culmination of:

- Bulk-Synchronous Parallel [Valiant'90]
- Map Reduce Framework [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11]
- Massively Parallel Computing (MPC) [Beame-Koutis-Suciu'13]

Problem 1: sorting

- Suppose:
$-S=O\left(n^{2 / 3}\right)$
- $M=O\left(n^{1 / 3}\right)$
- Algorithm:
- Pick each element with $\operatorname{Pr}=\frac{n^{1 / 2}}{n}$ (locally!)
- total $\Theta\left(n^{1 / 2}\right)$ elements selected
- Send selected elements to machine \#1
- Choose ~equidistant pivots and assign a range to each machine
- each range will capture about $O\left(n^{2 / 3}\right)$ elements
- Send the pivots to all machines
- Each machine sends elements in range i to machine $\# i$
- Sort locally
- 3 rounds!

Parallel algorithms from 80-90's

- Can reuse algorithms in Parallel RAM model
- can simulate PRAM algorithms with R=O(parallel time) [KSV'10,GSZ'11]
- Bad news: often \approx logarithmic...
- e.g., XOR
- $\widetilde{\Omega}(\log n)$ on CRCW [BH89]
- Difficulty: information aggregation
- $O\left(\log _{s} n\right)=$ const on MapReduce/MPC !
- MapReduce as a circuit:
$-S=n^{\delta}$ fan-in
- arbitrary function at a "gate"

Graph problems: connectivity

- Dense: if $S \gg$ solution size
- "Filtering": filter input until fits on a machine $-S=n^{1+\delta}$ can do in $O\left(\frac{1}{\delta}\right)$ rounds [KSV'10, EIM'11...]
- Sparse: if $S \ll$ solution size
$-S=\sqrt{n}$
- Hard: big open question to do s-t connectivity in << $\log n$ rounds
- Lower bounds for restricted algorithms [BKS13]

VS

Geometric Graphs

- Implicit graph on n points in \mathbb{R}^{d}
- distance = Euclidean distance
- Minimum Spanning Tree
- Agglomerative hierarchical clustering [Zahn'71, Kleinberg-Tardos]
- Earth-Mover Distance
- etc

Geometric Graphs

- Implicit graph on n points in \mathbb{R}^{d}
- distance = Euclidean distance
- Minimum Spanning Tree
- Agglomerative hierarchical clustering [Zahn'71, Kleinberg-Tardos]
- Earth-Mover Distance
- etc
- Theorem: can get
$-1+\epsilon$ approximation in low dimensional space $\left(\mathbb{R}^{d}\right)$
- Constant number of rounds: $R=\left(\log _{S} n\right)^{O(1)}$
- For:
- Minimum Spanning Tree (MST):
- as long as $S \geq \epsilon^{-O(d)}$
- Earth-Mover Distance (EMD):
- as long as $S \geq n^{o(1)}$ for constant ϵ, d

Framework: Solve-And-Sketch

- Partition the space hierarchically in a "nice
- In each part
- Compute a pseudo-solution for the local view
-Sketch the pseudo-solution using small space
- Send the sketch to be used in the next level/round

- Partition the space hierarchically in a "nice
- In each part
- Compute a pseudo-solution for the local view
-Sketch the pseudo-solution using small space
- Send the sketch to be used in the next level/round

Difficulties

- Quad tree can cut MST edges
- forcing irrevocable decisions
- Choose a wrong representative

New Partition: Grid Distance

- Randomly shifted grid [Arora'98, ...]
- Take an $\epsilon \Delta$-net N
- Net points are entry/exit portals for the cell
- $d^{\prime}(p, q)=$
- Old distance if in the same cell
- Snap each point to closest net-point + net-point to net-point distance
- Claim: all distances preserved up to $1+8 \epsilon$ in expectation

- Proof:
fix pair p, q

$$
\delta=\operatorname{Pr}[p, q c u t] \leq \frac{2\|p-q\|}{\Delta}
$$

Hence:

$$
\begin{gathered}
E\left[d^{\prime}(p, q)\right] \leq\|p-q\|+4 \delta \cdot \epsilon \Delta \\
\leq\|p-q\| \cdot(1+8 \epsilon)
\end{gathered}
$$

MST Algorithm: Final

- Assume entire pointset in a cube of size $n^{2 / 3} \times n^{2 / 3}$

$$
\text { also } S \gg n^{2 / 3}
$$

- Partition:
- Randomly-shifted grid with $\Delta=n^{1 / 3}$

Kruskal's MST algorithm: connect the points with the shortest edge that does not introduce a cycle

- 2 levels of partition: local size $\Delta \times \Delta<S$
- Pseudo-solution:
- Run Kruskal's algorithm locally, for edges up to length $\epsilon \Delta$
* Sketch of a pseudo-solution:
- Snap points to $\epsilon^{2} \Delta$-net N_{2}, and store their connectivity $=>$ size $0\left(\frac{1}{\epsilon^{4}}\right)$

Kruskal's MST algorithm: connect the points with the shortest edge that does not introduce a cycle

- Claim: our algorithm is equivalent to running Kruskal on the distance d^{\prime}, up to $1+O(\epsilon)$ approximation
- Any distance across cells is $\geq \epsilon \Delta$
- Safe to run Kruskal locally inside each cell up to this threshold!
- Snapping to $\epsilon^{2} \Delta$-net points: introduces $1+2 \epsilon$ factor error only since all distances are now at least $\epsilon \Delta$

- Conclusion:
- We find an MST with cost at most $1+2 \epsilon$ time the MST under the distance d^{\prime}
- Hence: $E[$ cost of $M S T] \leq(1+O(\epsilon)) \cdot M S T_{o p t}$
- Local run-time?
- Linear: using approximate Kruskal
- How is the solution represented?
- Each machine has a number of edges from the MST
- The top machine has the remaining edges

Wrap-up

1) Streaming algorithms

- Streaming algorithms

- Frequency moments, heavy hitters
- Graph algorithms
- Algorithms for lists: Median selection, longest increasing sequence
- Algorithms for geometric objects: clustering, MST, various approximation algorithms

Sketching \&dimension reduction

- Power of linear sketches: $S(a+b)=S(a)+S(b)$
- For frequency vectors, dynamic graphs
- Ultra-efficient for $\ell_{1}, \ell_{2}: 1+\epsilon$ approximation in constant space!
- Dimension reduction: Johnson-Lindenstrauss
- Fast JL, using Fast Fourier Transform
- Can speed-up numerical linear algebra!
- Compressed sensing: many algorithms/models

Nearest Neighbor Search

- Can use sketching for NNS
- Even better via Locality Sensitive Hashing
- Data-dependent LSH
- Embeddings: reduce harder distances to easier ones
- NNS for general metrics
- Complexity dependent on "intrinsic dimension"

Sampling, property testing

- Distribution testing:
- Get samples from a distribution, deduce its properties
- Uniformity, identity
- Many others in the literature!
- Instance optimal: better for easier distributions
- Property testing:
- Is this graph connected or far from connected?
- For dense graphs: regularity lemma
- Sublinear time approximation:
- Estimate the MST cost, matching size, etc

Parallel algorithms: MapReduce

- Model: limited space/machine
- Filtering: throw away part of the input locally, send only important stuff
- Dense graph algorithms
- Solve-And-Sketch:
- find a partial solution locally
- sketch the solution
- work with sketches up
- Good for problems on points

Algorithms for massive data

- Computer resources << data
- Access data in a limited way
- Limited space (main memory << hard drive)
- Limited time (time << time to read entire data)

Introduction to
Sublinear
Algorithms

