
11

Lecture 24:

MapReduce Algorithms

Wrap-up

Admin

• PS2-4 solutions

• Project presentations next week

– 20min presentation/team

– 10 teams => 3 days

– 3rd time: Fri at 3-4:30pm

– sign-up sheet online

• Today:

– MapReduce algorithms

– Wrap-up

2

Computational Model
• 𝑀 machines

• 𝑆 space per machine

• 𝑀 ⋅ 𝑆 O(input size)
– cannot replicate data much

• Input: 𝑛 elements

• Output: O(input size)=O(n)
doesn’t fit on a machine: 𝑆 ≪ 𝑛

• Round: shuffle all (expensive!)

Model Constraints
• Main goal:

– number of rounds 𝑅 = 𝑂(1)

– for 𝑆 ≥ 𝑛𝛿

• e.g., 𝑆 > 𝑛 when 𝑆 > 𝑀

• Local resources bounded by 𝑆
– 𝑂(𝑆) in-communication per round

– ideally: linear run-time/round

• Model culmination of:
– Bulk-Synchronous Parallel [Valiant’90]

– Map Reduce Framework [Feldman-Muthukrishnan-Sidiropoulos-
Stein-Svitkina’07, Karloff-Suri-Vassilvitskii’10, Goodrich-
Sitchinava-Zhang’11]

– Massively Parallel Computing (MPC) [Beame-Koutis-Suciu’13]

Problem 1: sorting
• Suppose:

– 𝑆 = 𝑂(𝑛2/3)

– 𝑀 = 𝑂(𝑛1/3)

• Algorithm:

– Pick each element with Pr=
𝑛1/2

𝑛
(locally!)

• total Θ(𝑛1/2) elements selected

– Send selected elements to machine #1
– Choose ~equidistant pivots and assign a range to each machine

• each range will capture about 𝑂(𝑛2/3) elements

– Send the pivots to all machines

– Each machine sends elements in range 𝑖 to machine #𝑖
– Sort locally

• 3 rounds!

machine 1
responsible

machine 2
responsible

machine 3
responsible

Parallel algorithms from 80-90’s

• Can reuse algorithms in Parallel RAM model
– can simulate PRAM algorithms with

R=O(parallel time) [KSV’10,GSZ’11]

• Bad news: often ≈ logarithmic…
– e.g., XOR

• Ω log 𝑛 on CRCW [BH89]

• Difficulty: information aggregation

• 𝑂 log𝑆 𝑛 = 𝑐𝑜𝑛𝑠𝑡 on MapReduce/MPC !

• MapReduce as a circuit:

– 𝑆 = 𝑛𝛿 fan-in

– arbitrary function at a “gate”

Graph problems: connectivity

• Dense: if 𝑆 ≫ solution size
– “Filtering”: filter input until fits on a machine

– 𝑆 = 𝑛1+𝛿 can do in 𝑂
1

𝛿
rounds [KSV’10, EIM’11…]

• Sparse: if 𝑆 ≪ solution size

– 𝑆 = 𝑛

– Hard: big open question to do s-t connectivity in ≪
log 𝑛 rounds

– Lower bounds for restricted algorithms [BKS13]

VS

Geometric Graphs

• Implicit graph on 𝑛 points in ℝ𝑑

– distance = Euclidean distance

• Minimum Spanning Tree

– Agglomerative hierarchical clustering

[Zahn’71, Kleinberg-Tardos]

• Earth-Mover Distance

• etc

Geometric Graphs

• Implicit graph on 𝑛 points in ℝ𝑑

– distance = Euclidean distance

• Minimum Spanning Tree

– Agglomerative hierarchical clustering

[Zahn’71, Kleinberg-Tardos]

• Earth-Mover Distance

• etc

Results: MST & EMD algorithms

• Theorem: can get
– 1 + 𝜖 approximation in low dimensional space

(ℝ𝑑)

– Constant number of rounds: 𝑅 = log𝑆 𝑛
𝑂 1

• For:
– Minimum Spanning Tree (MST):

• as long as 𝑆 ≥ 𝜖−𝑂 𝑑

– Earth-Mover Distance (EMD):

• as long as 𝑆 ≥ 𝑛𝑜(1) for constant 𝜖, 𝑑

[A-Nikolov-Onak-Yaroslavtsev’14]

Framework: Solve-And-Sketch
• Partition the space hierarchically in a “nice

way”

• In each part
– Compute a pseudo-solution for the local view

– Sketch the pseudo-solution using small space

– Send the sketch to be used in the next
level/round

MST algorithm: attempt 1
• Partition the space hierarchically in a “nice

way”

• In each part
– Compute a pseudo-solution for the local view

– Sketch the pseudo-solution using small space

– Send the sketch to be used in the next
level/round

quad trees!

local MST

send any point as a
representative

Difficulties

• Quad tree can cut MST edges

– forcing irrevocable decisions

• Choose a wrong representative

• Randomly shifted grid [Arora’98, …]

• Take an 𝜖Δ-net 𝑁
• Net points are entry/exit portals for the cell

• 𝑑′ 𝑝, 𝑞 =
– Old distance if in the same cell

– Snap each point to closest net-point + net-point to net-point distance

• Claim: all distances preserved up to 1 + 8𝜖 in expectation

New Partition: Grid Distance

Δ • Proof:
fix pair 𝑝, 𝑞

𝛿 = Pr 𝑝, 𝑞 𝑐𝑢𝑡 ≤
2||𝑝 − 𝑞||

Δ
Hence:

𝐸 𝑑′ 𝑝, 𝑞 ≤ ||𝑝 − 𝑞|| + 4𝛿 ⋅ 𝜖Δ
≤ ||𝑝 − 𝑞|| ⋅ (1 + 8𝜖)

MST Algorithm: Final
• Assume entire pointset in a cube of size 𝑛2/3 × 𝑛2/3

also 𝑆 ≫ 𝑛2/3

• Partition:
– Randomly-shifted grid with Δ = 𝑛1/3

– 2 levels of partition: local size Δ × Δ < 𝑆

• Pseudo-solution:
– Run Kruskal’s algorithm locally, for edges up to length 𝜖Δ

• Sketch of a pseudo-solution:

– Snap points to 𝜖2Δ-net 𝑁2, and store their connectivity => size O
1

𝜖4

Δ

Kruskal’s MST algorithm: connect
the points with the shortest edge

that does not introduce a cycle

MST Analysis

• Claim: our algorithm is equivalent to running Kruskal
on the distance 𝑑′, up to 1 + 𝑂(𝜖) approximation
– Any distance across cells is ≥ 𝜖Δ
– Safe to run Kruskal locally inside each cell up to this

threshold!

– Snapping to 𝜖2Δ-net points: introduces 1 + 2𝜖 factor error
only since all distances are now at least 𝜖Δ

Kruskal’s MST algorithm: connect
the points with the shortest edge

that does not introduce a cycle

MST Wrap-up
• Conclusion:

– We find an MST with cost at most 1 + 2𝜖 time the
MST under the distance 𝑑′

– Hence: 𝐸 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑀𝑆𝑇 ≤ 1 + 𝑂 𝜖 ⋅ 𝑀𝑆𝑇𝑜𝑝𝑡
• Local run-time?

– Linear: using approximate Kruskal

• How is the solution represented?
– Each machine has a number of edges from the MST

– The top machine has the remaining edges

Wrap-up

18

1) Streaming algorithms
• Streaming algorithms

• Frequency moments, heavy hitters

• Graph algorithms

• Algorithms for lists: Median selection, longest increasing
sequence

• Algorithms for geometric objects: clustering, MST, various
approximation algorithms

19

2

IP Frequency

160.39.142.2 3

18.9.22.69 2

80.97.56.20 2

Sketching &dimension reduction
• Power of linear sketches: 𝑆 𝑎 + 𝑏 = 𝑆 𝑎 + 𝑆 𝑏
• For frequency vectors, dynamic graphs

• Ultra-efficient for ℓ1, ℓ2: 1 + 𝜖 approximation in constant
space!

• Dimension reduction: Johnson-Lindenstrauss

• Fast JL, using Fast Fourier Transform

• Can speed-up numerical linear algebra!

• Compressed sensing: many algorithms/models

20

d
a t

a

D T AA
source: http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/cscam-SPIEJan06.pdf

Nearest Neighbor Search

• Can use sketching for NNS

• Even better via Locality Sensitive Hashing

• Data-dependent LSH

• Embeddings: reduce harder

distances to easier ones

• NNS for general metrics

• Complexity dependent on

“intrinsic dimension”

21

000000

011100

010100

000100

010100

011111

000000

001100

000100

000100

110100

111111 𝑞

𝑝

Sampling, property testing

22

• Distribution testing:
– Get samples from a distribution, deduce its

properties

– Uniformity, identity

– Many others in the literature!

– Instance optimal: better for easier distributions

• Property testing:
– Is this graph connected or far

from connected?

– For dense graphs: regularity lemma

• Sublinear time approximation:
– Estimate the MST cost, matching

size, etc

Parallel algorithms: MapReduce

• Model: limited space/machine

• Filtering: throw away part of the input

locally, send only important stuff

• Dense graph algorithms

• Solve-And-Sketch:

– find a partial solution locally

– sketch the solution

– work with sketches up

• Good for problems on points

23

Algorithms for massive data

24

• Computer resources << data

• Access data in a limited way

– Limited space (main memory << hard drive)

– Limited time (time << time to read entire data)

Introduction

to

Sublinear

Algorithms

power of randomization

and approximation

