# Lecture 24: MapReduce Algorithms Wrap-up





## Admin

- PS2-4 solutions
- Project presentations next week
  - 20min presentation/team
  - 10 teams => 3 days
  - 3<sup>rd</sup> time: Fri at 3-4:30pm
  - sign-up sheet online
- Today:
  - MapReduce algorithms
  - Wrap-up

# **Computational Model**

- *M* machines
- *S* space per machine
- *M* · *S* ≈ O(input size)
   cannot replicate data much
- Input: *n* elements
- Output: O(input size)=O(n) doesn't fit on a machine: S << n</li>

• Round: shuffle all (expensive!)





# Model Constraints

- Main goal:
  - number of rounds R = O(1)
  - for  $S \ge n^{\delta}$ 
    - e.g.,  $S > \sqrt{n}$  when S > M
- Local resources bounded by *S* 
  - O(S) in-communication per round
  - ideally: linear run-time/round
- Model culmination of:
  - Bulk-Synchronous Parallel [Valiant'90]
  - Map Reduce Framework [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11]
  - Massively Parallel Computing (MPC) [Beame-Koutis-Suciu'13]





## Problem 1: sorting

- Suppose:
  - $-S = O(n^{2/3})$
  - $M = O(n^{1/3})$
- Algorithm:
  - Pick each element with  $Pr = \frac{n^{1/2}}{n}$  (locally!)
    - total  $\Theta(n^{1/2})$  elements selected
- Send selected elements to machine #1
  - Choose ~equidistant *pivots* and assign a range to each machine
    - each range will capture about  $O(n^{2/3})$  elements
- Send the pivots to all machines
- Each machine sends elements in range *i* to machine *#i*
  - Sort locally
- 3 rounds!



## Parallel algorithms from 80-90's

- Can reuse algorithms in Parallel RAM model

   can simulate PRAM algorithms with
   R=O(parallel time) [KSV'10,GSZ'11]
- Bad news: often  $\approx$  logarithmic...
  - e.g., XOR
    - $\widetilde{\Omega}(\log n)$  on CRCW [BH89]
    - Difficulty: information aggregation
    - $O(\log_s n) = const$  on MapReduce/MPC !
- MapReduce as a circuit:

 $-S = n^{\delta}$  fan-in

- arbitrary function at a "gate"

## Graph problems: connectivity

- Dense: if *S* >> solution size
  - "Filtering": filter input until fits on a machine

 $-S = n^{1+\delta}$  can do in  $O\left(\frac{1}{\delta}\right)$  rounds [KSV'10, EIM'11...]

• Sparse: if *S* << solution size

 $-S = \sqrt{n}$ 

- Hard: big open question to do s-t connectivity in  $\ll \log n$  rounds
- Lower bounds for restricted algorithms [BKS13]



## Geometric Graphs

- Implicit graph on *n* points in R<sup>d</sup>
   distance = Euclidean distance
- Minimum Spanning Tree
   Agglomerative hierarchical clustering
   [Zahn'71, Kleinberg-Tardos]

2

- Earth-Mover Distance
- etc



## Geometric Graphs

- Implicit graph on *n* points in R<sup>d</sup>
   distance = Euclidean distance
- Minimum Spanning Tree
   Agglomerative hierarchical clustering
   [Zahn'71, Kleinberg-Tardos]
- Earth-Mover Distance
- etc



#### Results: MST & EMD algorithms [A-Nikolov-Onak-Yaroslavtsev'14]

- Theorem: can get
  - $-1 + \epsilon$  approximation in low dimensional space  $(\mathbb{R}^d)$
  - Constant number of rounds:  $R = (\log_s n)^{O(1)}$
- For:
  - Minimum Spanning Tree (MST):
    - as long as  $S \ge e^{-O(d)}$
  - Earth-Mover Distance (EMD):
    - as long as  $S \ge n^{o(1)}$  for constant  $\epsilon, d$



#### Framework: Solve-And-Sketch

- Partition the space hierarchically in a "nice way"
- In each part
  - Compute a pseudo-solution for the local view
  - Sketch the pseudo-solution using small space
  - Send the sketch to be used in the next level/round





MST algorithm: attempt 1

- Partition the space hierarchically in a "nice way"
- In each part

local MST

quad trees!

- <u>Compute</u> a pseudo-solution for the local view
- Sketch the pseudo-solution using small space
- Send the sketch to be used in the next level/round

send any point as a representative



#### Difficulties

- Quad tree can cut MST edges

   forcing irrevocable decisions
- Choose a wrong representative





## New Partition: Grid Distance

- Randomly shifted grid [Arora'98, ...]
- Take an  $\epsilon \Delta$ -net N
- Net points are entry/exit portals for the cell
- d'(p,q) =
  - Old distance if in the same cell
  - Snap each point to closest net-point + net-point to net-point distance
- Claim: all distances preserved up to  $1 + 8\epsilon$  in expectation



# MST Algorithm: Final

- Assume entire pointset in a cube of size  $n^{2/3} \times n^{2/3}$ also  $S \gg n^{2/3}$
- Partition:
  - Randomly-shifted grid with  $\Delta = n^{1/3}$
  - 2 levels of partition: local size  $\Delta \times \Delta < S$
- Pseudo-solution:
  - Run Kruskal's algorithm locally, for edges up to length  $\epsilon\Delta$
- Sketch of a pseudo-solution:
  - Snap points to  $\epsilon^2 \Delta$ -net  $N_2$ , and store their connectivity => size  $O\left(\frac{1}{\epsilon^4}\right)$



Kruskal's MST algorithm: connect the points with the shortest edge that does not introduce a cycle

## **MST Analysis**

Kruskal's MST algorithm: connect the points with the shortest edge that does not introduce a cycle

- Claim: our algorithm is equivalent to running Kruskal on the distance d', up to  $1 + O(\epsilon)$  approximation
  - Any distance across cells is  $\geq \epsilon \Delta$
  - Safe to run Kruskal locally inside each cell up to this threshold!
  - Snapping to  $\epsilon^2 \Delta$ -net points: introduces  $1 + 2\epsilon$  factor error only since all distances are now at least  $\epsilon \Delta$



# MST Wrap-up

- Conclusion:
  - We find an MST with cost at most  $1 + 2\epsilon$  time the MST under the distance d'
  - Hence:  $E[cost \ of \ MST] \leq (1 + O(\epsilon)) \cdot MST_{opt}$
- Local run-time?
  - Linear: using approximate Kruskal
- How is the solution represented?

ENGINFERING

The Fu Foundation School of Engineering and Applied Science

- Each machine has a number of edges from the MST
- The top machine has the remaining edges



# Wrap-up

# 1) Streaming algorithms

• Streaming algorithms





- Frequency moments, heavy hitters
- Graph algorithms
- Algorithms for lists: Median selection, longest increasing sequence
- Algorithms for geometric objects: clustering, MST, various approximation algorithms

## Sketching & dimension reduction

- Power of linear sketches: S(a + b) = S(a) + S(b)
- For frequency vectors, dynamic graphs
- Ultra-efficient for  $\ell_1, \ell_2: 1 + \epsilon$  approximation in constant space!
- Dimension reduction: Johnson-Lindenstrauss
- Fast JL, using Fast Fourier Transform
- Can speed-up numerical linear algebra!
- Compressed sensing: many algorithms/models



### Nearest Neighbor Search

- Can use sketching for NNS
- Even better via Locality Sensitive Hashing
- Data-dependent LSH
- Embeddings: reduce harder distances to easier ones
- NNS for general metrics
- Complexity dependent on "intrinsic dimension"





# Sampling, property testing

- Distribution testing:
  - Get samples from a distribution, deduce its properties
  - Uniformity, identity
  - Many others in the literature!
  - Instance optimal: better for easier distributions
- Property testing:
  - Is this graph connected or far from connected?
  - For dense graphs: regularity lemma
- Sublinear time approximation:
   Estimate the MST cost, matching size, etc

# Parallel algorithms: MapReduce

- Model: limited space/machine
- Filtering: throw away part of the input locally, send only important stuff
- Dense graph algorithms
- Solve-And-Sketch:
  - find a partial solution locally
  - sketch the solution
  - work with sketches up
- Good for problems on points

### Algorithms for massive data

- Computer resources << data</li>
- Access data in a limited way
  - Limited space (main memory << hard drive)</p>
  - Limited time (time << time to read entire data)</li>



power of randomization

Introduction to *Sublinear* Algorithms