Lecture 6: Counting triangles Dynamic graphs & sampling

Plan

- Problem 3: Counting triangles
- Streaming for dynamic graphs
- Scriber?

Streaming for Graphs

- Graph G
 - *n* vertices
 - m edges
- Stream:
 list of edges
 (e.g., on a hard drive)

$(\bigcirc, \bigcirc) (\bigcirc, \bigcirc) (\bigcirc, \bigcirc) (\bigcirc, \bigcirc) (\bigcirc, \bigcirc) (\bigcirc, \bigcirc)$

Streaming for Graphs

- Small (work)space:
 - Aim: to use $\sim n$ space
 - or $O(n \cdot \log n)$

E.g., for web can have $n = 1 \cdot 10^9$ nodes $m = 100 \cdot 10^9$ edges

- Still much less than the size of the graph, m (that could be up to n^2)
- $\ll n$ is usually *not* achievable

Problems

- 1. connectivity
 - Exact in O(n) space
- 2. distances

 $-\alpha$ (odd) approximation in $O\left(n^{1+\frac{2}{\alpha+1}}\right)$

• 3. Count # triangles...

Problem 3: triangle counting

- T = number of triangles
- Motivation:
 - How often 2 friends of a person know each other?

$$F = \frac{T}{3\sum_{\nu} \left(\frac{\deg(\nu)}{2} \right)}$$

 $- F \in [0,1]$

• Can we compute $\sum_{\nu} {deg(\nu) \choose 2}$ in O(n) space?

- Yes: just count the degrees, and compute

- *T*?
 - Hard to distinguish T = 0 vs T = 1 in $\ll m$ space
 - Suppose we have a lower bound $t \leq T$

Triangle counting: Approach

• Define a vector x with coordinate for each subset S of 3 nodes

2

1

3

2

 $-x_S$ = how many edges among S

- T = # of coordinates which are 3
- Remember frequencies:

$$-F_p = \sum_S x_S^p$$

• Claim: $T = F_0 - 1.5F_1 + 0.5F_2$

Triangle counting: Approach

- Claim: $T = F_0 1.5F_1 + 0.5F_2$
 - if $x_S = 0$, contributes 0 on the right
 - if $x_S = 1$, contributes 0
 - $\text{ If } x_S = 2$, contributes 0
 - if $x_S = 3$, contributes 1 !
- Why such a formula exist?
 - Want a polynomial $f(x_S)$ which is =0 on {0,1,2} and =1 on {3}
 - Polynomial interpolation!
 - Need a polynomial of degree 3, but F_0 provides a degree of freedom, hence degree=2 is sufficient

Triangle Counting: Algorithm

- $T = F_0 1.5F_1 + 0.5F_2$
- Algorithm:
 - Let $\widehat{F_0}$, $\widehat{F_1}$, $\widehat{F_2}$ be $1 + \gamma$ estimates
 - General streaming!
 - Edge (i, j) increases count for all x_S s.t. $\{i, j\} \subset S$

$$-\hat{T} = \widehat{F_0} - 1.5\widehat{F_1} + 0.5\widehat{F_2}$$

- How do we set γ ?
 - Not a $1 + \gamma$ multiplicative!
 - Additive error: $O(\gamma F_0) = O(\gamma mn)$
 - Set $\gamma = \frac{O(t)}{\epsilon m n}$ for $\pm \epsilon t$ additive error

• Total space:
$$O(\gamma^{-2}\log n) = O\left(\left(\frac{mn}{\epsilon t}\right)^2 \log n\right)$$

Triangle Counting: Algorithm 2

- Let's consider an even simpler algorithm:
 - Pick a few random $S_1, \dots S_k$ of 3 nodes (at start)
 - Compute x_{S_i} , for $i \in [k]$ while stream goes by
 - Let c be the number of i s.t. $x_{S_i} = 3$

- Estimate:
$$R = \frac{M}{k} \cdot c$$
, where $M = \binom{n}{3}$

• We can see:

$$-E[R] = T$$
$$-Var[R] \le \frac{M}{k}T$$

– Chebyshev:
$$|R - T| \le O\left(\sqrt{\frac{MT}{k}}\right)$$

Triangle Counting: Algorithm 2+

- $|R T| \le O\left(\sqrt{\frac{MT}{k}}\right)$
- Need $k = \frac{O(1)}{\epsilon^2} \cdot \frac{M}{t}$ where $M = O(n^3)$
- Better?
 - Sample S
 - from set of smaller size $M' \ll M!$
 - for which $x_S \ge 1$

COLUMBIA ENGINEERING

The Fu Foundation School of Engineering and Applied Science

• Then obtain:

- Chebyshev:
$$|R - T| \le O\left(\sqrt{\frac{M'T}{k}}\right)$$

• Need
$$k = \frac{O(1)}{\epsilon^2} \cdot \frac{M'}{t} = O\left(\frac{1}{\epsilon^2} \cdot \frac{mn}{t}\right)$$

since $M' = O(mn)$

Sampling in Graphs

- Setting 1:
 - Suppose we just have positive updates
 - Not linear
- Setting 2:
 - General steaming: also negative updates...
 - Why? Dynamic graphs

Dynamic Graphs

- Stream contains both insertions and deletions of edges
 - Use 1: a log of updates to the graph
 - [Ahn-Guha-McGregor'12]:

"hyperlinks can be removed and tiresome friends can be de-friended"

- Use 2: graph is distributed over a number of computers
 - Then want *linear* sketches
 - Generally: dynamic streams \Leftrightarrow linear sketches
- Use 3: if time-efficient, then it's a data structure!

Revisit Problem 1: Connectivity

- Can we do connectivity in dynamic graphs?
 - Algorithm from the previous lecture?
 - No...
- Theorem [AGM12]: can check s-t connectivity in dynamic graphs with O(n · log⁵ n) space (with 90% success probability)
- Approach: sampling in (dynamic) graphs

Sub-Problem: dynamic sampling

- Stream: general updates to a vector $x \in \{-1,0,1\}^n$
 - (will work for general x too)
- Goal:

– Output *i* with probability $\frac{|x_i|}{\sum_i |x_i|}$

- Does "standard" sampling work?
 No:
 - After putting $x_i = 1$ for n/2 coordinates, add 1 more and delete the first n/2...

Dynamic Sampling

- Goal: output *i* with probability $\frac{|x_i|}{\sum_i |x_i|}$
- Let $A = \{i \text{ s.t. } x_i \neq 0\}$
- Intuition:
 - Suppose |A| = 10
 - How can we sample i with non-zero x_i ?
 - Use CountSketch!
 - Each $x_i \neq 0$ $(i \in A)$ is a 1/10-heavy hitter
 - Can recover all of them
 - $O(\log n)$ space total
 - Suppose A = n/10
 - Downsample first: pick a random set $D \subset [n]$, of size $|D| \approx 100$
 - Focus on substream on $i \in D$ only (ignore the rest)
 - What's $|A \cap D|$?
 - In expectation =10
 - Use CountSketch on the downsampled stream...
 - In general: prepare for all levels