Lecture 6: Counting triangles Dynamic graphs \& sampling

- Problem 3: Counting triangles
- Streaming for dynamic graphs
- Scriber?

Streaming for Graphs

- Graph G
- n vertices
- m edges
- Stream: list of edges
(e.g., on a hard drive)

$$
(0,0)(0, \bullet)(\bullet, 0)(\bullet, 0)(0,0)(0,0)
$$

Streaming for Graphs

- Small (work)space:
- Aim: to use $\sim n$ space
E.g., for web can have $n=1 \cdot 10^{9}$ nodes
$m=100 \cdot 10^{9}$ edges
- or $\mathrm{O}(n \cdot \log n)$
- Still much less than the size of the graph, m (that could be up to n^{2})
$-\ll n$ is usually not achievable

Problems

- 1. connectivity
- Exact in $O(n)$ space
- 2. distances
$-\alpha$ (odd) approximation in $O\left(n^{1+\frac{2}{\alpha+1}}\right)$
- 3. Count \# triangles...

Problem 3: triangle counting

- $T=$ number of triangles
- Motivation:
- How often 2 friends of a person know each other?

$$
F=\frac{T}{3 \sum_{v}\binom{\operatorname{deg}(v)}{2}}
$$

$-F \in[0,1]$

- Can we compute $\sum_{v}\binom{\operatorname{deg}(v)}{2}$ in $O(n)$ space?
- Yes: just count the degrees, and compute
- T?
- Hard to distinguish $T=0$ vs $T=1$ in $\ll m$ space
- Suppose we have a lower bound $t \leq T$

Triangle counting: Approach

- Define a vector x with coordinate for each subset S of 3 nodes
$-x_{S}=$ how many edges among S
- $T=\#$ of coordinates which are 3
- Remember frequencies:
$-F_{p}=\sum_{s} x_{s}^{p}$
- Claim: $T=F_{0}-1.5 F_{1}+0.5 F_{2}$

Triangle counting: Approach

- Claim: $T=F_{0}-1.5 F_{1}+0.5 F_{2}$
- if $x_{S}=0$, contributes 0 on the right
- if $x_{S}=1$, contributes 0
- If $x_{S}=2$, contributes 0
- if $x_{S}=3$, contributes 1 !
- Why such a formula exist?
- Want a polynomial $f\left(x_{S}\right)$ which is $=0$ on $\{0,1,2\}$ and $=1$ on $\{3\}$
- Polynomial interpolation!
- Need a polynomial of degree 3 , but F_{0} provides a degree of freedom, hence degree=2 is sufficient

Triangle Counting: Algorithm

- $T=F_{0}-1.5 F_{1}+0.5 F_{2}$
- Algorithm:
- Let $\widehat{F_{0}}, \widehat{F_{1}}, \widehat{F_{2}}$ be $1+\gamma$ estimates
- General streaming!
- Edge (i, j) increases count for all x_{S} s.t. $\{i, j\} \subset S$
$-\widehat{T}=\widehat{F_{0}}-1.5 \widehat{F}_{1}+0.5 \widehat{F_{2}}$
- How do we set γ ?
- Not a $1+\gamma$ multiplicative!
- Additive error: $O\left(\gamma F_{0}\right)=O(\gamma m n)$
- Set $\gamma=\frac{O(t)}{\epsilon m n}$ for $\pm \epsilon t$ additive error
- Total space: $O\left(\gamma^{-2} \log n\right)=O\left(\left(\frac{m n}{\epsilon t}\right)^{2} \log n\right)$

Triangle Counting: Algorithm 2

- Let's consider an even simpler algorithm:
- Pick a few random $S_{1}, \ldots S_{k}$ of 3 nodes (at start)
- Compute $x_{S_{i}}$, for $i \in[k]$ while stream goes by
- Let c be the number of i s.t. $x_{S_{i}}=3$
- Estimate: $R=\frac{M}{k} \cdot c$, where $M=\binom{n}{3}$
- We can see:
$-E[R]=T$
$-\operatorname{Var}[R] \leq \frac{M}{k} T$
- Chebyshev: $|R-T| \leq O\left(\sqrt{\frac{M T}{k}}\right)$

Triangle Counting: Algorithm 2+

- $|R-T| \leq O\left(\sqrt{\frac{M T}{k}}\right)$
- Need $k=\frac{O(1)}{\epsilon^{2}} \cdot \frac{M}{t}$ where $M=O\left(n^{3}\right)$
- Better?
- Sample S
from set of smaller size $M^{\prime} \ll M$!
- for which $x_{S} \geq 1$

- Then obtain:
- Chebyshev: $|R-T| \leq O\left(\sqrt{\frac{M^{\prime} T}{k}}\right)$
- Need $k=\frac{O(1)}{\epsilon^{2}} \cdot \frac{M^{\prime}}{t}=O\left(\frac{1}{\epsilon^{2}} \cdot \frac{m n}{t}\right)$
since $M^{\prime}=O(m n)$
- Setting 1:
- Suppose we just have positive updates
- Not linear
- Setting 2:
- General steaming: also negative updates...
- Why? Dynamic graphs
- Stream contains both insertions and deletions of edges
- Use 1: a log of updates to the graph
- [Ahn-Guha-McGregor'12]: "hyperlinks can be removed and tiresome friends can be de-friended"
- Use 2: graph is distributed over a number of computers
- Then want linear sketches
- Generally: dynamic streams \Leftrightarrow linear sketches
- Use 3: if time-efficient, then it's a data structure!

Revisit Problem 1: Connectivity

- Can we do connectivity in dynamic graphs?
- Algorithm from the previous lecture?
- No...
- Theorem [AGM12]: can check s-t connectivity in dynamic graphs with $O\left(n \cdot \log ^{5} n\right)$ space (with 90% success probability)
- Approach: sampling in (dynamic) graphs

Sub-Problem: dynamic sampling

- Stream: general updates to a vector $x \in$ $\{-1,0,1\}^{n}$
- (will work for general x too)
- Goal:
- Output i with probability $\frac{\left|x_{i}\right|}{\sum_{j}\left|x_{j}\right|}$
- Does "standard" sampling work?
- No:
- After putting $x_{i}=1$ for $n / 2$ coordinates, add 1 more and delete the first $n / 2 \ldots$...

Dynamic Sampling

- Goal: output i with probability $\frac{\left|x_{i}\right|}{\sum_{j}\left|x_{j}\right|}$
- Let $A=\left\{i\right.$ s.t. $\left.x_{i} \neq 0\right\}$
- Intuition:
- Suppose $|A|=10$
- How can we sample i with non-zero x_{i} ?
- Use CountSketch!
- Each $x_{i} \neq 0(i \in A)$ is a $1 / 10$-heavy hitter
- Can recover all of them
- $O(\log n)$ space total
- Suppose $A=n / 10$
- Downsample first: pick a random set $D \subset[n]$, of size $|D| \approx 100$
- Focus on substream on $i \in D$ only (ignore the rest)
- What's $|A \cap D|$?
- In expectation =10
- Use CountSketch on the downsampled stream...
- In general: prepare for all levels

