Lecture 7: Dynamic sampling

Dimension Reduction
Plan

• Admin:
 – PSet 2 released later today, due next Wed
 – Alex office hours: Tue 2:30-4:30

• Plan:
 – Dynamic streaming graph algorithms
 – S2: Dimension Reduction & Sketching

• Scriber?
Sub-Problem: dynamic sampling

- **Stream**: general updates to a vector $x \in \{-1,0,1\}^n$

- **Goal**:
 - Output i with probability $\frac{|x_i|}{\sum_j |x_j|}$
Dynamic Sampling

- **Goal:** output \(i \) with probability \(\frac{|x_i|}{\sum_j |x_j|} \)
- **Let** \(D = \{ i \text{ s.t. } x_i \neq 0 \} \)
- **Intuition:**
 - Suppose \(|D| = 10 \)
 - How can we sample \(i \) with \(x_i \neq 0 \)?
 - Each \(x_i \neq 0 \) is a 1/10-heavy hitter
 - Use CountSketch \(\Rightarrow \) recover all of them
 - \(O(\log n) \) space total
 - Suppose \(|D| = 10\sqrt{n} \)
 - Downsample: pick a random set \(I \subset [n] \) s.t. \(\Pr[i \in I] = \frac{1}{\sqrt{n}} \)
 - Focus on substream on \(i \in I \) only (ignore the rest)
 - What’s \(|D \cap I| \)?
 - In expectation = 10
 - Use CountSketch on the downsampling stream \(I \)...
 - In general: prepare for all levels
Basic Sketch

- **Hash function** $g: [n] \rightarrow [n]$
- **Let** $h(i) = \# \text{tail zeros in } g(i)$
 - $\Pr[h(i) = j] = 2^{-j-1}$ for $j = 0 \ldots L - 1$ and $L = \log_2 n$
- **Partition stream into substreams** I_0, I_1, \ldots, I_L
 - Substream I_j focuses on elements with $h(i) = j$
 - $E[|D \cap I_j|] = |D| \cdot 2^{-j-1}$
- **Sketch:** for each $j = 0, \ldots, L$,
 - Store CS_j: CountSketch for $\phi = 0.01$
 - Store DC_j: distinct count sketch for approx=1.1
 - F_2 would be sufficient here!
 - Both for success probability $1 - 1/n$
Estimation

- Find a substream I_j s.t. DC_j output $\in [1,20]$
 - If no such stream, then FAIL
- Recover all $i \in I_j$ with $x_i \neq 0$ (using CS_j)
- Pick any of them at random

Algorithm DynSampleBasic:

Initialize:
- hash function $g:[n] \rightarrow [n]$
 - $h(i) =$ # tail zeros in $g(i)$
- CountSketch sketches CS_j, $j \in [L]$
- DistinctCount sketches DC_j, $j \in [L]$

Process(int i, real δ_i):
- Let $j = h(i)$
- Add (i, δ_i) to CS_j and DC_j

Estimator:
- Let j be s.t. $DC_j \in [1,20]$
 - If no such j, FAIL
 - $i =$ random heavy hitter from CS_j
- Return i
Analysis

• If $|D| < 10$
 - then $|D \cap I_j| \in [1,10]$ for some j
• Suppose $D \geq 10$
 - Let k be such that $|D| \in [10 \cdot 2^k, 10 \cdot 2^{k+1}]
 \quad E[|D \cap I_k|] = |D| \cdot 2^{-k-1}
 \in [5,10]
 \quad Var[|D \cap I_k|] \leq |D| \cdot 2^{-k-1} \leq 10$
• Chebyshev: $|D \cap I_k|$ deviates from expectation by $4 > \sqrt{1.5Var}$ with probability at most $\frac{1}{1.5} < 0.7$
 - i.e., probability of FAIL is at most 0.7

Algorithm DynSampleBasic:

Initialize:
 hash function $g:[n] \to [n]
 h(i) = $ # tail zeros in $g(i)$
 CountSketch sketches CS_j, $j \in [L]$
 DistinctCount sketches DC_j, $j \in [L]$

Process(int i, real δ_i):
 Let $j = h(i)$
 Add (i, δ_i) to CS_j and DC_j

Estimator:
 Let j be s.t. $DC_j \in [1,20]$
 If no such j, FAIL
 $i =$ random heavy hitter from CS_j
 Return i
Analysis (cont)

• Let j with $DC_j \in [1, 20]$
 – All heavy hitters = $D \cap I_j$
 – CS_j will recover a heavy hitter, i.e., $i \in D \cap I_j$

• By symmetry, once we output some i, it is random over D

• Randomness?
 – We just used Chebyshev
 \[\Rightarrow \text{pairwise } g \text{ is OK !} \]

Algorithm DynSampleBasic:

Initialize:
 hash function $g: [n] \rightarrow [n]$
 $h(i) = \# \text{tail zeros in } g(i)$
 CountSketch sketches CS_j, $j \in [L]$
 DistinctCount sketches DC_j, $j \in [L]$

Process(int i, real δ_i):
 Let $j = h(i)$
 Add (i, δ_i) to CS_j and DC_j

Estimator:
 Let j be s.t. $DC_j \in [1, 20]$
 If no such j, FAIL
 $i = \text{random heavy hitter from } CS_j$
 Return i
Dynamic Sampling: overall

- **DynSampleBasic guarantee:**
 - **FAIL:** with probability \(\leq 0.7 \)
 - Otherwise, output a random \(i \in D \)
 - Modulo a negligible probability of \(CS/DC \) failing

- **Reduce FAIL probability?**

- **DynSample-Full:**
 - Take \(k = O(\log n) \) independent DynSampleBasic
 - Will not FAIL in at least one with probability at least \(1 - 0.7^k \geq 1 - 1/n \)
 - **Space:** \(O(\log^4 n) \) words for:
 - \(k = O(\log n) \) repetitions
 - \(O(\log n) \) substreams
 - \(O(\log^2 n) \) for each \(CS_j, DC_j \)
Back to Dynamic Graphs

• Graph G with edges inserted/deleted
• Define node-edge incidence vectors:
 – For node v, we have vector:
 • $x_v \in \mathbb{R}^p$ where $p = \binom{n}{2}$
 • For $j > v$: $x_v(v, j) = +1$ if edge (v, j) exists
 • For $j < v$: $x_v(j, v) = -1$ if edge (j, v) exists

• Idea:
 – Use Dynamic-Sample-Full to sample an edge from each vertex v
 – Collapse edges
 – How to iterate?

• Property:
 – For a set Q of nodes
 – Consider: $\sum_{v \in Q} x_v$
 – **Claim:** has non-zero in coordinate (i, j) iff edge (i, j) crosses from Q to outside (i.e., $|Q \cap \{i, j\}| = 1$)

• Sketch enough for: for any set Q, can sample an edge from Q!
Dynamic Connectivity

• Sketching algorithm:
 – Dynamic-Sample-Full for each x_v

• Check connectivity:
 – Sample an edge from each node v
 – Contract all sampled edges
 – \Rightarrow partitioned the graph into a bunch of components Q_1, \ldots, Q_l (each is connected)
 – Iterate on the components Q_1, \ldots, Q_l

• How many iterations?
 – $O(\log n)$ - each time we reduce the number of components by a factor ≥ 2

• Issue: iterations not independent!
 – Can use a fresh Dynamic-Sampling-Full for each of the $O(\log n)$ iterations

$x_v \in \mathbb{R}^p$ where $p = \binom{n}{2}$
for $j > v$: $x_v(v, j) = +1$ if $\exists (v, j)$
for $j < v$: $x_v(j, v) = -1$ if $\exists (j, v)$
A little history

- [Ahn-Guha-McGregor’12]: the above streaming algorithm
 - Overall $O(n \cdot \log^4 n)$ space

- [Kapron-King-Mountjoy’13]:
 - Data structure for maintaining graph connectivity under edge inserts/deletes
 - First algorithm with $(\log n)^{O(1)}$ time for update/connectivity!
 - Open since ‘80s
Section 2:

Dimension Reduction & Sketching
Why?

• Application: Nearest Neighbor Search in high dimensions

• **Preprocess**: a set D of points

• **Query**: given a query point q, report a point $p \in D$ with the smallest distance to q
Motivation

• Generic setup:
 – Points model objects (e.g. images)
 – Distance models (dis)similarity measure

• Application areas:
 – machine learning: k-NN rule
 – speech/image/video/music recognition, vector quantization, bioinformatics, etc...

• Distance can be:
 – Euclidean, Hamming
Low-dimensional: easy

• Compute Voronoi diagram
• Given query q, perform point location
• Performance:
 – Space: $O(n)$
 – Query time: $O(\log n)$
High-dimensional case

- All exact algorithms degrade rapidly with the dimension d

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Query time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full indexing</td>
<td>$O(\log n \cdot d)$</td>
<td>$n^{0(d)}$ (Voronoi diagram size)</td>
</tr>
<tr>
<td>No indexing – linear scan</td>
<td>$O(n \cdot d)$</td>
<td>$O(n \cdot d)$</td>
</tr>
</tbody>
</table>
Dimension Reduction

• Reduce high dimension?!
 – “flatten” dimension d into dimension $k \ll d$

• Not possible in general: packing bound

• But can if: for a fixed subset of \mathbb{R}^d