Lecture 7: Dynamic sampling

Dimension Reduction

The Fu Foundation School of Engineering and Applied Science

- Admin:
- PSet 2 released later today, due next Wed
- Alex office hours: Tue 2:30-4:30
- Plan:
- Dynamic streaming graph algorithms
- S2: Dimension Reduction \& Sketching
- Scriber?

Sub-Problem: dynamic sampling

- Stream: general updates to a vector $x \in$ $\{-1,0,1\}^{n}$
- Goal:
- Output i with probability $\frac{\left|x_{i}\right|}{\Sigma_{j}\left|x_{j}\right|}$

Dynamic Sampling

- Goal: output i with probability $\frac{\left|x_{i}\right|}{\sum_{j}\left|x_{j}\right|}$
- Let $D=\left\{i\right.$ s.t. $\left.x_{i} \neq 0\right\}$
- Intuition:
- Suppose $|D|=10$
- How can we sample i with $x_{i} \neq 0$?
- Each $x_{i} \neq 0$ is a $1 / 10$-heavy hitter
- Use CountSketch \Rightarrow recover all of them
- $O(\log n)$ space total
- Suppose $|D|=10 \sqrt{n}$
- Downsample: pick a random set $I \subset[n]$ s.t. $\operatorname{Pr}[i \in I]=\frac{1}{\sqrt{n}}$
- Focus on substream on $i \in I$ only (ignore the rest)
- What's $|D \cap I|$?
- In expectation = 10
- Use CountSketch on the downsampled stream I...
- In general: prepare for all levels

Basic Sketch

- Hash function $g:[n] \rightarrow[n]$
- Let $h(i)=\#$ tail zeros in $g(i)$
$-\operatorname{Pr}[h(i)=j]=2^{-j-1}$ for $j=0 . . L-1$ and $L=\log _{2} n$
- Partition stream into substreams $I_{0}, I_{1}, \ldots I_{L}$
- Substream I_{j} focuses on elements with $h(i)=j$
$-E\left[\left|D \cap I_{j}\right|\right]=|D| \cdot 2^{-j-1}$
- Sketch: for each $j=0, \ldots L$,
- Store $C S_{j}$: CountSketch for $\phi=0.01$
- Store $D C_{j}$: distinct count sketch for approx=1.1
- F_{2} would be sufficient here!
- Both for success probability $1-1 / n$

Estimation

- Find a substream I_{j} s.t. $D C_{j}$ output $\in[1,20]$
- If no such stream, then FAIL
- Recover all $i \in I_{j}$ with $x_{i} \neq 0$ (using $C S_{j}$)
- Pick any of them at random

Algorithm DynSampleBasic:

Initialize:
hash function $g:[n] \rightarrow[n]$
$h(i)=\#$ tail zeros in $g(i)$
CountSketch sketches $C S_{j}, j \in[L]$
DistinctCount sketches $D C_{j}, j \in[L]$

```
Process(int i, real }\mp@subsup{\delta}{i}{}\mathrm{ ):
    Let j=h(i)
    Add (i, \deltai) to CS j and DC j
```


Estimator:

Let j be s.t. $D C_{j} \in[1,20]$
If no such j, FAIL
$i=$ random heavy hitter from $C S_{j}$
Return i

Analysis

- If $|D|<10$
- then $\left|D \cap I_{j}\right| \in[1,10]$ for some j
- Suppose $D \geq 10$
- Let k be such that $|D| \in$ $\left[10 \cdot 2^{k}, 10 \cdot 2^{k+1}\right]$
- $E\left[\left|D \cap I_{k}\right|\right]=|D| \cdot 2^{-k-1}$

$$
\in[5,10]
$$

- $\operatorname{Var}\left[\left|D \cap I_{k}\right|\right] \leq|D| \cdot 2^{-k-1} \leq 10$
- Chebyshev: $\left|D \cap I_{k}\right|$ deviates from expectation by $4>$
$\sqrt{1.5 \operatorname{Var}}$ with probability at most $\frac{1}{1.5}<0.7$
- le., probability of FAIL is at most 0.7

Analysis (cont)

- Let j with $D C_{j} \in[1,20]$
- All heavy hitters $=D \cap I_{j}$
- $C S_{j}$ will recover a heavy hitter, i.e., $i \in D \cap I_{j}$
- By symmetry, once we output some i, it is random over D

```
Algorithm DynSampleBasic:
Initialize:
    hash function g:[n]->[n]
    h(i)=# tail zeros in g(i)
    CountSketch sketches CS , j [ [L]
    DistinctCount sketches DC j, j\in[L]
Process(int i, real }\mp@subsup{\delta}{i}{}\mathrm{ ):
    Let j=h(i)
    Add (i, \deltai) to CS and DC 
```


Estimator:

Let j be s.t. $D C_{j} \in[1,20]$
If no such j, FAIL
$i=$ random heavy hitter from $C S_{j}$
Return i

- Randomness?
- We just used Chebyshev \Rightarrow pairwise g is OK!
- DynSampleBasic guarantee:
- FAIL: with probability ≤ 0.7
- Otherwise, output a random $i \in D$
- Modulo a negligible probability of $C S / D C$ failing
- Reduce FAIL probability?
- DynSample-Full:
- Take $k=O(\log n)$ independent DynSampleBasic
- Will not FAIL in at least one with probability at least $1-0.7^{k} \geq 1-1 / n$
- Space: $O\left(\log ^{4} n\right)$ words for:
- $k=O(\log n)$ repetitions
- $O(\log n)$ substreams
- $O\left(\log ^{2} n\right)$ for each $C S_{j}, D C_{j}$

Back to Dynamic Graphs

- Graph G with edges inserted/deleted
- Define node-edge incidence vectors:
- For node v, we have vector:

- $x_{v} \in R^{p}$ where $p=\binom{n}{2}$
- For $j>v: x_{v}(v, j)=+1$ if edge (v, j) exists
- For $j<v: x_{v}(j, v)=-1$ if edge (j, v) exists
- Idea:
- Use Dynamic-Sample-Full to sample an edge from each vertex v
- Collapse edges
- How to iterate?
- Property:
- For a set Q of nodes
- Consider: $\sum_{v \in Q} x_{v}$
- Claim: has non-zero in coordinate (i, j) iff edge (i, j) crosses from Q to outside (i.e., $|Q \cap\{i, j\}|=1$)
- Sketch enough for: for any set Q, can sample an edge from Q !
- Sketching algorithm:
- Dynamic-Sample-Full for each x_{v}

$$
\begin{aligned}
& x_{v} \in R^{p} \text { where } p=\binom{n}{2} \\
& \text { for } j>v: x_{v}(v, j)=+1 \text { if } \exists(v, j) \\
& \text { for } j<v: x_{v}(j, v)=-1 \text { if } \exists(j, v)
\end{aligned}
$$

- Check connectivity:
- Sample an edge from each node v
- Contract all sampled edges
$-\Rightarrow$ partitioned the graph into a bunch of components $Q_{1}, \ldots Q_{l}$ (each is connected)
- Iterate on the components $Q_{1}, \ldots Q_{l}$
- How many iterations?
- $O(\log n)$ - each time we reduce the number of components by a factor ≥ 2
- Issue: iterations not independent!
- Can use a fresh Dynamic-Sampling-Full for each of the $O(\log n)$ iterations

A little history

- [Ahn-Guha-McGregor'12]: the above streaming algorithm
- Overall $O\left(n \cdot \log ^{4} n\right)$ space
- [Kapron-King-Mountjoy'13]:
- Data structure for maintaining graph connectivity under edge inserts/deletes
- First algorithm with $(\log n)^{O(1)}$ time for update/connectivity!
- Open since '80s

Section 2:

Dimension Reduction \& Sketching

- Application:

Nearest Neighbor Search in high dimensions

- Preprocess: a set D of points

- Query: given a query point q, report a point $p \in D$ with the smallest distance to q

Motivation

- Generic setup:
- Points model objects (e.g. images)
- Distance models (dis)similarity measure
- Application areas:
- machine learning: k-NN rule
- speech/image/video/music recognition, vector quantization, bioinformatics, etc...
- Distance can be:

- Euclidean, Hamming

Low-dimensional: easy

- Compute Voronoi diagram
- Given query q, perform point location
- Performance:
- Space: $O(n)$
- Query time: $O(\log n)$

High-dimensional case

- All exact algorithms degrade rapidly with the dimension d

Algorithm	Query time	Space
Full indexing	$O(\log n \cdot d)$	$n^{o(d)}$ (Voronoi diagram size)
No indexing - linear scan	$O(n \cdot d)$	$O(n \cdot d)$

Dimension Reduction

- Reduce high dimension?!
- "flatten" dimension d into dimension $k \ll d$
- Not possible in general: packing bound
- But can if: for a fixed subset of \Re^{d}

