Lecture 8 :

Dimension Reduction

- Pick up PS1 at the end of the class
- PS2 out
- Dimension Reduction
- Fast Dimension Reduction
- Scriber?

High-dimensional case

- Exact algorithms degrade rapidly with the dimension d

Algorithm	Query time	Space
Full indexing	$O(\log n \cdot d)$	$n^{o(d)}$ (Voronoi diagram size)
No indexing - linear scan	$O(n \cdot d)$	$O(n \cdot d)$

Dimension Reduction

- Reduce high dimension?!
- "flatten" dimension d into dimension $k \ll d$
- Not possible in general: packing bound
- But can if: for a fixed subset of \Re^{d}

Johnson-Lindenstrauss Lemma

- [JL84]: There is a randomized linear map $F: \ell_{2}^{d} \rightarrow$ $\ell_{2}^{k}, k \ll d$, that preserves distance between two vectors x, y
- up to $1+\epsilon$ factor:

$$
\|x-y\| \leq\|F(x)-F(y)\| \leq(1+\epsilon) \cdot\|x-y\|
$$

- with $1-e^{-C \epsilon^{2} k}$ probability (C some constant)
- Preserves distances between n points for $k=$ $O\left(\frac{\log n}{\epsilon^{2}}\right)$ with probability at least $1-1 / n$

Dim-Reduction for NNS

- [JL84]: There is a randomized linear map $F: \ell_{2}^{d} \rightarrow$ $\ell_{2}^{k}, k \ll d$, that preserves distance between two vectors x, y
- up to $1+\epsilon$ factor:

$$
\|x-y\| \leq\|F(x)-F(y)\| \leq(1+\epsilon) \cdot\|x-y\|
$$

- with $1-e^{-C \epsilon^{2} k}$ probability (C some constant)
- Application: NNS in ℓ_{2}^{d}
- Trivial scan: $O(n \cdot d)$ query time
- Reduce to $O(n \cdot k)+T_{\text {dim-red }}$ time after using dimension reduction
- where $T_{\text {dim-red }}$ time to reduce dimension of the query point
- Important that F is oblivious !
- Have we seen something similar to JL84 in class?

Idea:

- Project onto a random subspace of dimension k !
- In general, F linear:
$-F(x)-F(y)=F(x-y)$
- Ok to prove that for $z=x-y$
$-F(z) \approx\|z\|$

- Map $f: \ell_{2}^{d} \rightarrow \mathfrak{R}$
$-f(x)=\sum_{i} g_{i} \cdot x_{i}$,
- where g_{i} are iid normal (Gaussian) ran
- Why Gaussian?
- Stability property: $\sum_{i} g_{i} \cdot x_{i}$ is distributed as $\|x\| \cdot g$, where g is also Gaussian
- Proof: $\left\langle g_{1}, \ldots, g_{d}\right\rangle$ is centrally distributed, i.e., has random direction, and projection on random direction depends only on length of x
- Hence, enough to consider $x=e_{1}$

$$
\begin{aligned}
& P(a) \cdot P(b)= \\
& =\frac{1}{\sqrt{2 \pi}} e^{-a^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-b^{2} / 2} \\
& =\frac{1}{2 \pi} e^{-\left(a^{2}+b^{2}\right) / 2}
\end{aligned}
$$

- $\operatorname{Map} f(x)=\sum_{i} g_{i} \cdot x_{i}$,
- for any $x, f(x) \sim\|x\| \cdot g$
- Linear
- Want: $|f(x)| \approx\|x\|$
- Claim: for any $x \in \Re^{d}$, we have
- Expectation: $\mathrm{E}\left[|f(x)|^{2}\right]=\|x\|^{2}$
- Standard deviation:
- $\sigma\left[\mid\left(\left.f(x)\right|^{2}\right]=O\left(\|x\|^{2}\right)\right.$
- Proof:
- Expectation $=\mathrm{E}\left[(f(x))^{2}\right]=\mathrm{E}\left[\|x\|^{2} \cdot g^{2}\right]$

$$
=\|x\|^{2}
$$

Full dimension reduction

- Just repeat the 1D embedding k times
$-F(x)=\left(g_{1} \cdot x, g_{2} \cdot x, \ldots g_{k} \cdot x\right) / \sqrt{k}=\frac{1}{\sqrt{k}} G x$
- where G is a $k \times d$ random Gaussian matrix
- Again, want to prove that
$-F(z)=(1 \pm \epsilon) \cdot\|z\|$
- For fixed z
- With probability $1-e^{-\Omega\left(\epsilon^{2} k\right)}$
- $F(z)$ is distributed as
$-\frac{1}{\sqrt{k}}\left(\|z\| \cdot a_{1},\|z\| \cdot a_{2}, \ldots\|z\| \cdot a_{k}\right)$
- where each a_{i} is distributed as Gaussian
- $\operatorname{Norm}\|F(z)\|^{2}=\|z\|^{2} \cdot \frac{1}{k} \sum_{i} a_{i}^{2}$
$-\sum_{i} a_{i}^{2}$ is called chi-squared distribution with k degrees
- Fact: chi-squared very well concentrated:
- Equal to $1+\epsilon$ with probability $1-e^{-\Omega\left(\epsilon^{2} k\right)}$
- Akin to central limit theorem

Johnson Lindenstrauss: wrap-up

- $F(x)=\left(g_{1} \cdot x, g_{2} \cdot x, \ldots g_{k} \cdot x\right) / \sqrt{k}=\frac{1}{\sqrt{k}} G x$
- $\|F(x)\|=(1 \pm \epsilon)\|x\|$ with high probability
- Contrast to Tug-Of-War:
$-F(x)=\frac{1}{\sqrt{k}} R x$ for R contained of ± 1
- Only proved 90% probability
- Would apply median to get high probability
- Can also prove high probability [Achlioptas'01]
- Gaussians have geometric interpretation

Dimension Reduction for ℓ_{1}

- Dimension reduction?
- Essentially no [CS'02, BC'03, LN'04, JN'10...]
- For n points, D approximation: between $n^{\Omega\left(1 / D^{2}\right)}$ and $O(n / D)$ [BC03, NR10, ANN10...]
- even if map depends on the dataset!
- In contrast: [JL] gives $O\left(\epsilon^{-2} \log n\right)$, and doesn't depend on the dataset
- No distributional dimension reduction either
- But can sketch!

Sketch

- Can we do the "analog" of Euclidean projections?
- For ℓ_{2}, we used: Gaussian distribution
- has stability property:
$-g_{1} z_{1}+g_{2} z_{2}+\cdots g_{d} z_{d}$ is distributed as $g \cdot\|z\|$
- Is there something similar for 1 -norm?
- Yes: Cauchy distribution!
- 1 -stable:

$$
p d f(s)=\frac{1}{\pi\left(s^{2}+1\right)}
$$

$-c_{1} z_{1}+c_{2} z_{2}+\cdots c_{d} z_{d}$ is distributed as $c \cdot\|z\|_{1}$

- What's wrong then?
- Cauchy are heavy-tailed.
- doesn't even have finite expectatio ${ }^{\frac{z^{2}}{2}}$

Sketching for ℓ_{1} [Indyk’00]

- Still, can consider map as before
$-S(x)=\left(C_{1} x, C_{2} x, \ldots, C_{k} x\right)=\boldsymbol{C} x$
- Consider $S(x)-S(y)=\boldsymbol{C} x-\boldsymbol{C} y=\boldsymbol{C}(x-y)=\boldsymbol{C} z$
- where $z=x-y$
- each coordinate distributed as $\|z\|_{1} \times$ Cauchy
- Take 1-norm $\left\|C_{z}\right\|_{1}$?
- does not have finite expectation, but...
- Can estimate $\|z\|_{1}$ by:
- Median of absolute values of coordinates of $C z$!
- Correctness claim: for each i
$-\operatorname{Pr}\left[\left|C_{i} z\right|>\|z\|_{1} \cdot(1-\epsilon)\right]>1 / 2+\Omega(\epsilon)$
$-\operatorname{Pr}\left[\left|C_{i} z\right|<\|z\|_{1} \cdot(1+\epsilon)\right]>1 / 2+\Omega(\epsilon)$

Estimator for ℓ_{1}

- Estimator: median $\left(\left|C_{1} z\right|,\left|C_{2} z\right|, \ldots\left|C_{k} z\right|\right)$
- Correctness claim: for each i

$$
\begin{aligned}
& -\operatorname{Pr}\left[\left|C_{i} z\right|>\|z\|_{1} \cdot(1-\epsilon)\right]>1 / 2+\Omega(\epsilon) \\
& -\operatorname{Pr}\left[\left|C_{i} z\right|<\|z\|_{1} \cdot(1+\epsilon)\right]>1 / 2+\Omega(\epsilon)
\end{aligned}
$$

- Proof:
$-\left|C_{i} z\right|=a b s\left(C_{i} z\right)$ is distributed as $\operatorname{abs}\left(\|z\|_{1} c\right)=\|z\|_{1} \cdot|c|$
- Need to verify that
- $\operatorname{Pr}[|c|>(1-\epsilon)]>1 / 2+\Omega(\epsilon)$
- $\operatorname{Pr}[|c|<(1+\epsilon)]>1 / 2+\Omega(\epsilon)$

Estimator for ℓ_{1}

- Estimator: median $\left(\left|C_{1} z\right|,\left|C_{2} z\right|, \ldots\left|C_{k} z\right|\right)$ $L_{i} \doteq{ }_{1}$ Correctness claim: for each i
if holds- Pr $4 C_{i} Z \mid>\|z\|_{1} \cdot(1-\epsilon) P>1 / 2+\Omega(\epsilon)$
$U_{i}=1-\operatorname{Pr}\left(\operatorname{lic}_{i} z \mid<\|z\|_{1} \cdot(1+\epsilon) D>1 / 2+\Omega(\epsilon)\right.$.
if holds
- Take $k=O\left(1 / \epsilon^{2}\right)$
$-E\left[L_{i}\right] \geq 1 / 2+\Omega(\epsilon)$
- Hence $\operatorname{Pr}\left[\sum_{i} L_{i} \leq \frac{k}{2}\right]<0.05$ (by Chebyshev)
- Similarly with U_{i}
- The above means that
- median $\left(\left|C_{1} z\right|,\left|C_{2} z\right|, \ldots\left|C_{k} z\right|\right) \in(1 \pm \epsilon)\left||z|_{1}\right.$ with probability at least 0.90
- Avg: 65.4
- Standard deviation: 20.5
- Max: 96
- By problems (average \% points):

1: 0.83
2: 0.62
3: 0.44

