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Lecture 9:

Fast Dimension Reduction

Sketching



Plan

• PS2 due tomorrow, 7pm

• My office hours after class

• Fast Dimension Reduction

• Sketching

• Scriber?

– Due on Fri eve

2



Johnson Lindenstrauss Lemma

• 𝐹 𝑥 =
1

𝑘
𝐺𝑥 = (𝑔1 ⋅ 𝑥, 𝑔2 ⋅ 𝑥, …𝑔𝑘 ⋅ 𝑥) / 𝑘

– ||𝐹(𝑥)|| = 1 ± 𝜖 ||𝑥|| with probability ≥ 1 − 𝛿

– for 𝑘 = 𝑂
1

𝜖2
log

1

𝛿

• Time to compute 𝐺𝑥 : 

– 𝑂(𝑘𝑑)

• Faster? 

– 𝑂(𝑑 + 𝑘) time ?

– Will show: 𝑂(𝑑 log 𝑑 + 𝑘3) time



Fast JL Transform

• 𝑧 = 𝐺𝑥

• Costly because 𝐺 is dense

• Meta-approach: use sparsematrix 𝐺 ?

• Suppose sample 𝑠 entries/row

• Analysis of one row:
– ℎ: 𝑑 → {0,1} s.t. ℎ(𝑖) = 1 with probability 𝑠/𝑑

– 𝑧1 = 𝜂 ⋅  𝑖=1
𝑑 ℎ(𝑖) ⋅ 𝑔𝑖𝑥𝑖

– Expectation of 𝑧1
2: 

– 𝐸 𝑧1
2 = 𝜂2 𝐸  𝑖 ℎ 𝑖 𝑔𝑖

2 𝑥𝑖
2 = 𝜂2 ⋅

𝑠

𝑑
⋅ 𝑥

2

– What about variance?
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Set 𝜂 = 𝑑/𝑠

𝑮

𝑥

𝑘

𝑑

𝑮

normalization constant



Fast JLT: sparse projection
• Variance of 𝑧1 can be large 

– Bad case: 𝑥 is sparse
• think: 𝑥 = 𝑒1 − 𝑒2

– Even for 𝑠 ≈ 𝑑/𝑘 (each coordinate of 𝑥 goes 
somewhere)

• two coordinates collide (bad) with probability ~1/𝑘
• want exponential in 𝑘 failure probability

• really would need 𝑠 ≈ 𝑑

• But, take away: may work if 𝑥 is “spread 
around”

• New plan:
– “spread around” 𝑥
– use sparse 𝐺
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𝑥

𝑘

𝑑

𝑮



FJLT: construction

• 𝐷 = matrix with random ±1 on diagonal

• 𝐻= Hadamard matrix (Fourier transform)
– A non-trivial rotation

– 𝐻𝑥 can be computed in time 𝑂(𝑑 ⋅ log 𝑑)

• 𝑃 = projection matrix: sparse matrix as before, 
with size 𝑘′ × 𝑑, with 𝑘′ ≈ 𝑘2
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Projection:

sparse matrix

𝑧 = 𝑃𝐻𝐷 ⋅ 𝑥

“spreading around”

Hadamard

(Fast Fourier Transform)

Diagonal



Spreading around: intuition

• 𝑦 = 𝐻𝐷𝑥
• Idea for Hadamard/Fourier Transform: 

– “Uncertainty principle”: if the original 𝑥 is sparse, then the 
transform is dense!

– Though can “break” 𝑥’s that are already dense
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Projection:

sparse matrix

𝑧 = 𝑃𝐻𝐷 ⋅ 𝑥

“spreading around”

Hadamard

(Fast Fourier Transform)

Diagonal

𝐻1 = 1

𝐻2𝑙 =
1

2

𝐻2𝑙−1 𝐻2𝑙−1

𝐻2𝑙−1 −𝐻2𝑙−1

𝐻𝑑 composed of ±
1

𝑑



Spreading around: proof
• 𝑦 = 𝐻𝐷𝑥
• Suppose ||𝑥|| = 1

– Without loss of generality since the map is linear!

• Ideal spreading around:
– would like ||𝑦|| = 1, and

– 𝑦𝑖
2 =

1

𝑑
for all 𝑖

• Lemma: 𝑦𝑖
2 ≤

1

𝑑
⋅ 𝑂 log

1

𝛿
with probability at least 1 − 𝛿, for 

each coordinate 𝑖
• Proof:

– 𝑦𝑖 = 𝐻𝑖𝐷𝑥 = 𝑟𝑥
• where 𝑟 = 𝐻𝑖𝐷 is a random ±1 vector, times 1/ 𝑑 !

• as mentioned before, 𝑟𝑥 “behaves like” 𝑔𝑥, for Gaussian 𝑔
(needs proof: at the end of the lecture if time permits) 

– Hence 𝑦𝑖
2 ≤

1

𝑑
⋅ 𝑂 log

1

𝛿
with probability ≥ 1 − 𝛿
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Why projection 𝑃 ?

• Why aren’t we done?

– choose first few coordinates of 𝑦 = 𝐻𝐷𝑥 ?

– each has same distribution:
• Roughly  ||𝑥|| × gaussian

– Issue: 
• 𝑦1, 𝑦2, … are not independent!

• Nevertheless:

– ||𝑦|| = ||𝑥|| since 𝐻𝐷 is a change of basis 
(rotation in ℜ𝑑)
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𝑧 = 𝑃𝐻𝐷𝑥



Projection 𝑃

• So far: 𝑦 = 𝐻𝐷𝑥

– 𝑚 = max𝑦𝑖
2 ≤

1

𝑑
⋅ 𝑂 log

1

𝛿
with probability 1 − 𝑑𝛿

– Or: 𝑚 ≤
1

𝑑
⋅ 𝑂 log

𝑑

𝛿
with probability 1 − 𝛿

• 𝑃 = projection onto just 𝑘′ random coordinates!

– 𝑠 = 1

• Proof: standard concentration

– 𝑦1
2 + 𝑦2

2 +⋯+ 𝑦𝑑
2 = ||𝑥||2 = 1

– Chernoff: enough to sample 𝑂 𝑑𝑚 ⋅
1

𝜖2
⋅ log

1

𝛿
terms for 

1 + 𝜖 approximation

– Hence 𝑘′ = 𝑂 log
𝑑

𝛿
⋅
1

𝜖2
log

1

𝛿
suffices
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𝑧 = 𝑃𝐻𝐷𝑥



FJLT: wrap-up

• Obtain:
– ||𝑧||2 = 1 ± 𝜖 ||𝑥||2 with probability ≥ 1 − 2𝛿

– dimension of 𝑧 is 𝑘′ = 𝑂 log
𝑑

𝛿
⋅
1

𝜖2
log

1

𝛿

– time: 𝑂(𝑑 log 𝑑 + 𝑘′)

• Dimension 𝑘′ not optimal: 
– apply regular (dense) JL on 𝑧

– to reduce further to 𝑘 = 𝑂
1

𝜖2
log

1

𝛿

• Final time: 𝑂 𝑑 log 𝑑 + 𝑘𝑘′ = 𝑂(𝑑 log 𝑑 + 𝑘3)
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𝑧 = 𝑃𝐻𝐷𝑥


