Lecture 9:

Fast Dimension Reduction Sketching
Plan

- PS2 due tomorrow, 7pm
- My office hours after class

- Fast Dimension Reduction
- Sketching

- Scriber?
 - Due on Fri eve
Johnson Lindenstrauss Lemma

- \(F(x) = \frac{1}{\sqrt{k}} Gx = (g_1 \cdot x, g_2 \cdot x, \ldots g_k \cdot x) / \sqrt{k} \)
 - \(||F(x)|| = (1 \pm \epsilon)||x|| \) with probability \(\geq 1 - \delta \)
 - for \(k = O \left(\frac{1}{\epsilon^2 \log \frac{1}{\delta}} \right) \)

- Time to compute \(Gx \):
 - \(O(kd) \)

- Faster?
 - \(O(d + k) \) time ?
 - Will show: \(O(d \log d + k^3) \) time
Fast JL Transform

- \(z = Gx \)
- Costly because \(G \) is dense
- Meta-approach: use **sparse** matrix \(G \)?
- Suppose sample \(s \) entries/row
- Analysis of one row:
 - \(h: [d] \to \{0,1\} \) s.t. \(h(i) = 1 \) with probability \(s/d \)
 - \(z_1 = \eta \cdot \sum_{i=1}^{d} h(i) \cdot g_i x_i \)
 - Expectation of \(z_1^2 \):
 - \(E[z_1^2] = \eta^2 E[\sum_i h(i) g_i^2 x_i^2] = \eta^2 \cdot \frac{s}{d} \cdot ||x||^2 \)
 - What about variance?

Set \(\eta = \sqrt{d/s} \)
Fast JLT: sparse projection

• Variance of z_1 can be large 😞
 – Bad case: x is sparse
 • think: $x = e_1 - e_2$
 – Even for $s \approx d/k$ (each coordinate of x goes somewhere)
 • two coordinates collide (bad) with probability $\sim 1/k$
 • want exponential in k failure probability
 • really would need $s \approx d$

• But, take away: may work if x is “spread around”

• New plan:
 – “spread around” x
 – use sparse G
FJLT: construction

\[z = PHD \cdot x \]

- \(D \) = matrix with random \(\pm 1 \) on diagonal
- \(H \) = Hadamard matrix (Fourier transform)
 - A non-trivial rotation
 - \(Hx \) can be computed in time \(O(d \cdot \log d) \)
- \(P \) = projection matrix: sparse matrix as before, with size \(k' \times d \), with \(k' \approx k^2 \)
Spreading around: intuition

\[z = PHD \cdot x \]

- **Projection:** sparse matrix
- **Hadamard (Fast Fourier Transform)**
- **Diagonal**

Idea for Hadamard/Fourier Transform:
- “Uncertainty principle”: if the original \(x \) is sparse, then the transform is dense!
- Though can “break” \(x \)’s that are already dense

\[
H_1 = 1 \\
H_{2^l} = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{2^{l-1}} & H_{2^{l-1}} \\ H_{2^{l-1}} & -H_{2^{l-1}} \end{pmatrix}
\]

\(H_d \) composed of \(\pm \frac{1}{\sqrt{a}} \)
Spreading around: proof

• \(y = HDx \)
• Suppose \(||x|| = 1 \)
 – Without loss of generality since the map is linear!
• **Ideal** spreading around:
 – would like \(||y|| = 1 \), and
 – \(y_i^2 = \frac{1}{d} \) for all \(i \)
• **Lemma:** \(y_i^2 \leq \frac{1}{d} \cdot O \left(\log \frac{1}{\delta} \right) \) with probability at least \(1 - \delta \), for each coordinate \(i \)
• **Proof:**
 – \(y_i = H_iDx = rx \)
 • where \(r = H_iD \) is a random \(\pm 1 \) vector, times \(1/\sqrt{d} \) !
 • as mentioned before, \(rx \) “behaves like” \(gx \), for Gaussian \(g \)
 (needs proof: at the end of the lecture if time permits)
 – Hence \(y_i^2 \leq \frac{1}{d} \cdot O \left(\log \frac{1}{\delta} \right) \) with probability \(\geq 1 - \delta \)
Why projection P?

$$z = PHDx$$

• Why aren’t we done?
 – choose first few coordinates of $y = HDx$?
 – each has same distribution:
 • Roughly $||x|| \times$ gaussian
 – Issue:
 • y_1, y_2, \ldots are not independent!

• Nevertheless:
 – $||y|| = ||x||$ since HD is a change of basis (rotation in \mathbb{R}^d)
Projection P

$$z = PHDx$$

- So far: $y = HDx$
 - $m = \max y_i^2 \leq \frac{1}{d} \cdot O \left(\log \frac{1}{\delta} \right)$ with probability $1 - d\delta$
 - Or: $m \leq \frac{1}{d} \cdot O \left(\log \frac{d}{\delta} \right)$ with probability $1 - \delta$
- $P =$ projection onto just k' random coordinates!
 - $s = 1$
- Proof: standard concentration
 - $y_1^2 + y_2^2 + \cdots + y_d^2 = ||x||^2 = 1$
 - Chernoff: enough to sample $O \left(dm \cdot \frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta} \right)$ terms for $1 + \epsilon$ approximation
 - Hence $k' = O \left(\log \frac{d}{\delta} \cdot \frac{1}{\epsilon^2} \log \frac{1}{\delta} \right)$ suffices
FJLT: wrap-up

\[z = PHDx \]

- Obtain:
 - \[||z||^2 = (1 \pm \epsilon)||x||^2 \] with probability \(\geq 1 - 2\delta \)
 - dimension of \(z \) is \(k' = O \left(\log \frac{d}{\delta} \cdot \frac{1}{\epsilon^2} \log \frac{1}{\delta} \right) \)
 - time: \(O(d \log d + k') \)
- Dimension \(k' \) not optimal:
 - apply regular (dense) JL on \(z \)
 - to reduce further to \(k = O \left(\frac{1}{\epsilon^2} \log \frac{1}{\delta} \right) \)
- Final time: \(O(d \log d + kk') = O(d \log d + k^3) \)