Lecture 9:

Fast Dimension Reduction Sketching

Plan

- PS2 due tomorrow, 7pm
- My office hours after class
- Fast Dimension Reduction
- Sketching
- Scriber?
 Due on Fri eve

Johnson Lindenstrauss Lemma

•
$$F(x) = \frac{1}{\sqrt{k}}Gx = (g_1 \cdot x, g_2 \cdot x, \dots g_k \cdot x) / \sqrt{k}$$

 $- ||F(x)|| = (1 \pm \epsilon)||x||$ with probability $\ge 1 - \delta$
 $- \text{ for } k = O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$

- Time to compute Gx: -O(kd)
- Faster?
 - -O(d+k) time ?
 - Will show: $O(d \log d + k^3)$ time

Fast JL Transform

- z = Gx
- Costly because *G* is dense

- Meta-approach: use sparse matrix G?
- Suppose sample *s* entries/row
- Analysis of one row:
 - $-h: [d] \rightarrow \{0,1\}$ s.t. h(i) = 1 with probability s/d

$$-z_1 = \eta \cdot \sum_{i=1}^d h(i) \cdot g_i x_i$$

– Expectation of z_1^2 :

Set
$$\eta = \sqrt{d/s}$$

- $-E[z_1^2] = \eta^2 E[\sum_i h(i)g_i^2 x_i^2] = \eta^2 \cdot \frac{s}{d} \cdot ||x||^2$
- What about variance?

normalization constant

X

Fast JLT: sparse projection

- Variance of z_1 can be large \otimes
 - Bad case: x is sparse
 - think: $x = e_1 e_2$
 - Even for $s \approx d/k$ (each coordinate of x goes somewhere)
 - two coordinates collide (bad) with probability $\sim 1/k$

k

- want exponential in k failure probability
- really would need $s \approx d$
- But, take away: may work if x is "spread around"
- New plan:
 - "spread around" x
 - use sparse G

X

d

- $D = \text{matrix with random } \pm 1 \text{ on } \frac{\text{diagonal}}{1}$
- *H*= Hadamard matrix (Fourier transform)
 - A non-trivial rotation
 - *Hx* can be computed in time $O(d \cdot \log d)$
- P = projection matrix: sparse matrix as before,with size $k' \times d$, with $k' \approx k^2$

- y = HDx
- Idea for Hadamard/Fourier Transform:
 - "Uncertainty principle": if the original x is sparse, then the transform is dense!
 - Though can "break" x's that are already dense

$$\begin{split} H_1 &= 1 \\ H_{2^l} &= \frac{1}{\sqrt{2}} \begin{pmatrix} H_{2^{l-1}} & H_{2^{l-1}} \\ H_{2^{l-1}} & -H_{2^{l-1}} \end{pmatrix} \end{split}$$

BIA ENGINEERING

The Fu Foundation School of Engineering and Applied Science

 H_d composed of $\pm \frac{1}{\sqrt{d}}$

Spreading around: proof

- y = HDx
- Suppose ||x|| = 1
 - Without loss of generality since the map is linear!
- Ideal spreading around:
 - would like ||y|| = 1, and

$$- y_i^2 = \frac{1}{d}$$
 for all *i*

- Lemma: $y_i^2 \le \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)$ with probability at least 1δ , for each coordinate *i*
- Proof:

$$- y_i = H_i D x = r x$$

- where $r = H_i D$ is a random ± 1 vector, times $1/\sqrt{d}$!
- as mentioned before, rx "behaves like" gx, for Gaussian g (needs proof: at the end of the lecture if time permits)

- Hence
$$y_i^2 \le \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)$$
 with probability $\ge 1 - \delta$

Why projection *P* ?

z = PHDx

- Why aren't we done?
 - choose first few coordinates of y = HDx?
 - each has same distribution:
 - Roughly $||x|| \times gaussian$

– Issue:

- y_1, y_2, \dots are not independent!
- Nevertheless:
 - -||y|| = ||x|| since *HD* is a change of basis (rotation in \Re^d)

Projection P

z = PHDx

• So far: y = HDx

 $-m = \max y_i^2 \le \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)$ with probability $1 - d\delta$

- Or: $m \leq \frac{1}{d} \cdot O\left(\log \frac{d}{\delta}\right)$ with probability 1δ
- *P* = projection onto just *k*' random coordinates! *s* = 1
- Proof: standard concentration
 - $y_1^2 + y_2^2 + \dots + y_d^2 = ||x||^2 = 1$
 - Chernoff: enough to sample $O\left(\frac{dm}{\epsilon^2} \cdot \log \frac{1}{\delta}\right)$ terms for $1 + \epsilon$ approximation

- Hence
$$k' = O\left(\log \frac{d}{\delta} \cdot \frac{1}{\epsilon^2} \log \frac{1}{\delta}\right)$$
 suffices

FJLT: wrap-up

z = PHDx

• Obtain:

 $-||z||^2 = (1 \pm \epsilon)||x||^2$ with probability $\ge 1 - 2\delta$

- dimension of z is $k' = O\left(\log \frac{d}{\delta} \cdot \frac{1}{\epsilon^2} \log \frac{1}{\delta}\right)$

- time: $O(d \log d + k')$

- Dimension k' not optimal:
 - apply regular (dense) JL on z
 - to reduce further to $k = O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$
- Final time: $O(d \log d + kk') = O(d \log d + k^3)$