Lecture 9:

Fast Dimension Reduction Sketching

- PS2 due tomorrow, 7pm
- My office hours after class
- Fast Dimension Reduction
- Sketching
- Scriber?
- Due on Fri eve

Johnson Lindenstrauss Lemma

- $F(x)=\frac{1}{\sqrt{k}} G x=\left(g_{1} \cdot x, g_{2} \cdot x, \ldots g_{k} \cdot x\right) / \sqrt{k}$
$-\|F(x)\|=(1 \pm \epsilon)\|x\|$ with probability $\geq 1-\delta$
- for $k=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- Time to compute $G x$:
$-O(k d)$
- Faster?
$-O(d+k)$ time ?
- Will show: $O\left(d \log d+k^{3}\right)$ time

Fast JL Transform

- $z=G x$
- Costly because G is dense

- Meta-approach: use sparse matrix G ?
- Suppose sample s entries/row
- Analysis of one row:
$-h:[d] \rightarrow\{0,1\}$ s.t. $h(i)=1$ with probability s / d
$-z_{1}=\eta \cdot \sum_{i=1}^{d} h(i) \cdot g_{i} x_{i}$
- Expectation of z_{1}^{2} :

$$
\text { Set } \eta=\sqrt{d / s}
$$

$-E\left[z_{1}^{2}\right]=\eta^{2} E\left[\Sigma h(i) g_{i}^{2} x_{i}^{2}\right]=\eta^{2} \cdot \frac{s}{d} \cdot| | x| |^{2}$

- What about variance?
normalization constant

Fast JLT: sparse projection

- Variance of z_{1} can be large : 0
- Bad case: x is sparse
- think: $x=e_{1}-e_{2}$
- Even for $s \approx d / k$ (each coordinate of x goes somewhere)
- two coordinates collide (bad) with probability $\sim 1 / k$
- want exponential in k failure probability
- really would need $s \approx d$
- But, take away: may work if x is "spread around"
- New plan:
- "spread around" x
- use sparse G

- $D=$ matrix with random ± 1 on diagonal
- $H=$ Hadamard matrix (Fourier transform)
- A non-trivial rotation
- $H x$ can be computed in time $O(d \cdot \log d)$
- $P=$ projection matrix: sparse matrix as before, with size $k^{\prime} \times d$, with $k^{\prime} \approx k^{2}$

Spreading around: intuition

$z=P H D \cdot x$

Projection:
sparse matrix

- $y=H D x$
- Idea for Hadamard/Fourier Transform:
- "Uncertainty principle": if the original x is sparse, then the transform is dense!
- Though can "break" x 's that are already dense

$$
\begin{aligned}
& H_{1}=1 \\
& H_{2^{l}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
H_{2^{l-1}} & H_{2^{l-1}} \\
H_{2^{l-1}} & -H_{2^{l-1}}
\end{array}\right)
\end{aligned}
$$

H_{d} composed of $\pm \frac{1}{\sqrt{d}}$

Spreading around: proof

- $y=H D x$
- Suppose $\|x\|=1$
- Without loss of generality since the map is linear!
- Ideal spreading around:
- would like $\|y\|=1$, and
- $y_{i}^{2}=\frac{1}{d}$ for all i
- Lemma: $y_{i}^{2} \leq \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)$ with probability at least $1-\delta$, for each coordinate i
- Proof:
- $y_{i}=H_{i} D x=r x$
- where $r=H_{i} D$ is a random ± 1 vector, times $1 / \sqrt{d}$!
- as mentioned before, $r x$ "behaves like" $g x$, for Gaussian g (needs proof: at the end of the lecture if time permits)
- Hence $y_{i}^{2} \leq \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)$ with probability $\geq 1-\delta$

Why projection P ?

$z=P H D x$

- Why aren't we done?
- choose first few coordinates of $y=H D x$?
- each has same distribution:
- Roughly $\|x\| \times$ gaussian
- Issue:
- y_{1}, y_{2}, \ldots are not independent!
- Nevertheless:
$-\|y\|=\|x\|$ since $H D$ is a change of basis (rotation in \Re^{d})

Projection P

$z=P H D x$

- So far: $y=H D x$
$-m=\max y_{i}^{2} \leq \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)$ with probability $1-d \delta$
- Or: $m \leq \frac{1}{d} \cdot O\left(\log \frac{d}{\delta}\right)$ with probability $1-\delta$
- $P=$ projection onto just k^{\prime} random coordinates!
$-s=1$
- Proof: standard concentration
$-y_{1}^{2}+y_{2}^{2}+\cdots+y_{d}^{2}=\|x\|^{2}=1$
- Chernoff: enough to sample $O\left(d m \cdot \frac{1}{\epsilon^{2}} \cdot \log \frac{1}{\delta}\right)$ terms for $1+\epsilon$ approximation
- Hence $k^{\prime}=O\left(\log \frac{d}{\delta} \cdot \frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ suffices

FJLT: wrap-up

$z=P H D x$

- Obtain:
$-\|z\|^{2}=(1 \pm \epsilon)\|x\|^{2}$ with probability $\geq 1-2 \delta$
- dimension of z is $k^{\prime}=O\left(\log \frac{d}{\delta} \cdot \frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- time: $O\left(d \log d+k^{\prime}\right)$
- Dimension k^{\prime} not optimal:
- apply regular (dense) JL on z
- to reduce further to $k=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- Final time: $O\left(d \log d+k k^{\prime}\right)=O\left(d \log d+k^{3}\right)$

