COMS E6998-9 F15

Lecture 4: CountSketch High Frequencies

Plan

Scriber?

- Plan:
 - CountMin/CountSketch (continuing from last time)
 - High frequency moments via Precision
 Sampling

Part 1: CountMin/CountSketch

- Let f_i be frequency of i
- Last lecture:
 - -2^{nd} moment: $\sum_i f_i^2$
 - Tug of War
 - Max: heavy hitter
 - CountMin

IP	Frequency
1	3
2	2
3	0
4	9
5	0
•••	0
n	1

CountMin: overall

• Heavy hitters: $\frac{\widehat{f_i}}{\sum f_j} \ge \phi$

$$- \inf \frac{f_i}{\sum f_j} \le \phi(1 - \epsilon), \text{ not}$$

reported

$$- \inf \frac{f_i}{\Sigma f_j} \ge \phi(1 + \epsilon),$$

reported as heavy
hitter

• Space:
$$O\left(\frac{\log n}{\epsilon\phi}\right)$$
 cells

Algorithm CountMin:

```
Initialize(L, w):
array S[L][w]
L hash functions h_1 \dots h_L, into {1,...w}
```

```
Process(int i):
    for(j=0; j<L; j++)
        S[j][ h<sub>j</sub>(i) ] += 1;
```

```
Estimator:
  foreach i in PossibleIP {
    f̂<sub>i</sub> = min<sub>j</sub>(S[j][h<sub>j</sub>(i)]);
  }
```

Time

- Can improve time; space degrades to $O\left(\frac{\log^2 n}{\epsilon \phi}\right)$
- Idea: dyadic intervals
 - Each level: one CountMin sketch on the virtual stream
 - Find heavy hitters by following down the tree the heavy hitters

CountMin: linearity

- Is CountMin linear?
 - CountMin(f' + f'') from CountMin(f') and CountMin(f'')?
 - Just sum the two!
 - sum the 2 arrays, assuming we use the same hash function h_j
- Used a lot in practice
 <u>https://sites.google.com/site/countminsketch</u>

CountSketch

- How about f = f' f''?
 Or general streaming
 "Heavy hitter":
 - if $|f_i| \ge \phi \sum_j |f_j| = \phi \cdot ||f||_1$
 - "min" is an issue
 - But median is still ok

```
Algorithm CountSketch:

Initialize(L, w):

array S[L][w]

L hash func's h_1 \dots h_L, into [w]

L hash func's r_1, \dots r_L, into {±1}

Process(int i, real \delta_i):

for(j=0; j<L; j++)

S[j][ h_j(i) ] += r_j(i) \cdot \delta_i;

Estimator:

foreach i in PossibleIP {

\hat{f}_i = median_j(S[j][h_j(i)]);

}
```

- Ideas to improve it further?
 - Use Tug of War r in each bucket => CountSketch
 - Better in certain sense (cancelations in a cell)

CountSketch⇒Compressed Sensing

- Sparse approximations:
 - $-f \in \Re^n$
 - k-sparse approximation f^* :
 - min $||f^* f||$
 - Solution: f^* = the k heaviest elements of f
- Compressed Sensing:
 - [Candes-Romberg-Tao'04, Donoho'04]
 - Want to acquire signal f
 - Acquisition: linear measurements (sketch) S(f) = Sf
 - Goal: recover k-sparse approximation \hat{f} from Sf
 - Error guarantee:

$$|\hat{f} - f|| \le \min_{k-sparse \ f^*} ||f^* - f||$$

- Theorem: need only $O(k \cdot \log n)$ -size sketch!

Signal Acquisition for CS

• Single pixel camera

[Takhar-Laska-Waskin-Duarte-Baron-Sarvotham-Kelly-Baraniuk'06]

• One linear measurement = one row of *S*

source: http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/cscam-SPIEJan06.pdf

- CountSketch: a version of Compr Sensing
 - Set $\phi = 1/2k$
 - \hat{f} : take all the heavy hitters (or k largest)

- Space: $O(k \log n)$ COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Back to Moments

- General moments: $-p^{th}$ moment: $\sum_{i} f_{i}^{p}$ • normalized: $(\sum_{i} f_{i}^{p})^{1/p}$ $m = 2 \cdot \Sigma f^{2}$
 - $-p = 2 : \sum f_i^2$ • $O(\log n)$ via Tug of War (Lec. 3)
 - -p = 0: count # distinct!
 - $O(\log n)$ [Flajolet-Martin] from Lec. 2

$$-p = 1: \sum |f_i|$$

• $O(\log n)$: will see later (for all $p \in (0,2)$)

- $-p = \infty$ (normalized): $\max_{i} f_i$
 - Impossible to approximate, but can heavy hitters (Lec. 3)
- Remains: 2 ?
 - Space: $\Theta\left(n^{1-\frac{2}{p}}\log^2 n\right) \Rightarrow$ Precision Sampling (next)

IP	Frequency
1	3
2	2
3	0
4	9
5	0
	0
n	1

A task: estimate sum

- Given: n quantities $a_1, a_2, \dots a_n$ in the range [0,1]
- Goal: estimate $S = a_1 + a_2 + \cdots + a_n$ "cheaply"
- Standard sampling: pick random set $J = \{j_1, \dots, j_m\}$ of size m- Estimator: $\tilde{S} = \frac{n}{m} \cdot (a_{j_1} + a_{j_2} + \dots + a_{j_m})$
- Chebyshev bound: with 90% success probability $S O(n/m) < \tilde{S} < S + O(n/m)$
- For constant additive error, need $m = \Omega(n)$

Precision Sampling Framework

- Alternative "access" to a_i 's:
 - For each term a_i , we get a (rough) estimate \tilde{a}_i
 - up to some precision u_i , chosen in advance: $|a_i - \tilde{a}_i| < u_i$
- Challenge: achieve good trade-off between
 - quality of approximation to S

he Fu Foundation School of Engineering and Applied Science

– use only weak precisions u_i (minimize "cost" of estimating \tilde{a})

Compute an estimate \tilde{S} from $\tilde{a}_1, \tilde{a}_2, \tilde{a}_3, \tilde{a}_4$ $u_1 \qquad u_2 \qquad u_3 \qquad u_4$ $\tilde{a}_1 \qquad \tilde{a}_2 \qquad \tilde{a}_3$

ã₄

Formalization

Sum Estimator

1. fix precisions u_i

1. fix $a_1, a_2, ..., a_n$

- 2. fix $\tilde{a}_1, \tilde{a}_2, \dots \tilde{a}_n$ s.t. $|a_i \tilde{a}_i| < u_i$
- 3. given $\tilde{a}_1, \tilde{a}_2, \dots \tilde{a}_n$, output \tilde{S} s.t. $\left|\sum_i a_i - \gamma \tilde{S}\right| < 1$ (for $\gamma \approx 1$)
- What is cost?
 - Here, average cost = $1/n \cdot \sum 1/u_i$
 - to achieve precision u_i , use $1/u_i$ "resources": e.g., if a_i is itself a sum $a_i = \sum_j a_{ij}$ computed by subsampling, then one needs $\Theta(1/u_i)$ samples
- For example, can choose all $u_i = 1/n$
 - Average cost $\approx n$

Precision Sampling Lemma

- Goal: estimate $S = \sum a_i$ from $\{\tilde{a}_i\}$ satisfying $|a_i \tilde{a}_i| < u_i$.
- Precision Sampling Lemma: can get, with 90% success:
 - O(1) additive error and 1.5 multiplicative error: $S/1.5 - O(1) < \tilde{S} < 1.5 \cdot S + O(1)$
 - with average cost equal to $O(\log n)$
- Example: distinguish $\Sigma a_i = 3$ vs $\Sigma a_i = 0$ – Consider two extreme cases:
 - if three $a_i = 1$: enough to have crude approx for all $(u_i = 0.1)$
 - if all $a_i = 3/n$: only few with good approx $u_i = 1/n$, and the rest with $u_i = 1$

Precision Sampling: Algorithm

- Precision Sampling Lemma: can get, with 90% success:
 - O(1) additive error and 1.5 multiplicative error:
 - $S/1.5 O(1) < \tilde{S} < 1.5 \cdot S + O(1)$
 - with average cost equal to $O(\log n)$
- Algorithm:
 - Choose each $u_i \in Exp(1)$ i.i.d.
 - Estimator: $\tilde{S} = \max_{i} \tilde{a}_i / u_i$.
- Proof of correctness:

lumbia Engineering

The Fu Foundation School of Engineering and Applied Science

- Claim 1: $\max a_i/u_i \sim \sum a_i/Exp(1)$

• Hence, $\max \tilde{a}_i/u_i = \frac{\sum a_i}{Exp(1)} \pm 1$

- Claim 2: Avg cost = $O(\log n)$

p-moments via Prec. Sampling

- Theorem: linear sketch for p-moment with O(1) approximation, and $O(n^{1-2/p} \log^{O(1)} n)$ space (with 90% success probability).
- Sketch:
 - Pick random $r_i \in \{\pm 1\}$, and $u_i \sim Exp(1)$

$$-\operatorname{let} y_i = f_i \cdot r_i / u_i^{1/p}$$

- Hash into a hash table S,

$$w = O(n^{1-\frac{2}{p}}\log^{O(1)} n)$$
 cells

• Estimator:

$$- \max_{j} |S[j]|^{p}$$

umbia Engineering

The Fu Foundation School of Engineering and Applied Science

• Linear

S =

f =

 $u \sim e^{-u}$

 f_5

 t_3

Y4

 y_2

 $+ y_{5}$

Correctness of estimation

• Theorem: $\max_{j} |S[j]|^{p}$ is O(1)approximation with 90% probability, with

$$w = O(n^{1-2/p} \log^{O(1)} n)$$
 cells

• Proof:

- Use Precision Sampling Lem.

$$-a_i = |f_i|^p$$

•
$$\sum a_i = \sum |f_i|^p = F_p$$

$$-\tilde{a}_i = |S[h(i)]|^p$$

– Need to show $|a_i - \tilde{a}_i|$ small

• more precisely:
$$\left|\frac{\tilde{a}_i}{u_i} - \frac{a_i}{u_i}\right| \le \epsilon F_p$$

Algorithm PrecisionSamplingFp:

```
Initialize(w):

array S[w]

hash func h, into [w]

hash func r, into {±1}

reals u_i, from Exp distribution
```

Process(vector
$$f \in \Re^n$$
):
for(i=0; i $S[h(i)] += f_i \cdot \frac{r_i}{u_i^{1/p}};$

Estimator: $\max_{j} |S(j)|^p$

Correctness 2

- Claim: $|S[h(i)]^p f_i^p / u_i| \le O(\epsilon F_p)$
- Consider cell z = h(i)
 - $S[z] = \frac{f_i}{u_i^{1/p}} + C$
- How much chaff *C* is there?
 - $C = \sum_{j \neq i^*} y_j \cdot \chi[h(j) = z]$
 - $E[C^2] = \cdots \leq ||y||^2/w$
 - What is $||y||^2$?
 - $E_u ||y||^2 \le ||f||^2 \cdot E\left[\frac{1}{u^{2/p}}\right] = ||f||^2 \cdot O(\log n)$
 - $||f||^2 \le n^{1-2/p} ||f||_p^2$
 - By Markov's: $C^2 \leq ||f||_p^2 \cdot n^{1-2/p} \cdot O(\log n)/w$ with probability >90%

• Set
$$w = \frac{1}{\epsilon^{2/p}} n^{1-2/p} \cdot O(\log n)$$
, then
 $- |C|^p \le ||f||_p^p \cdot \epsilon = \epsilon F_p$

$$f_{1} \quad f_{2} \quad f_{3} \quad f_{4} \quad f_{5} \quad f_{6}$$

$$S = \begin{bmatrix} y_{1} & y_{4} & y_{2} \\ + y_{3} & y_{4} & y_{5} \\ + y_{6} & y_{6} \end{bmatrix}$$

 $y_i = f_i \cdot r_i / u_i^{1/p}$ where $r_i \in \{\pm 1\}$ u_i exponential r.v.

Correctness (final)

- Claim: $\left|S[h(i)]^p f_i^p/u_i\right| \le O(\epsilon F_p)$
- $S[h(i)]^p = \left(\frac{f_i}{u_i^{1/p}} + C\right)^p$ - where $C = \sum_{j \neq i^*} y_j \cdot \chi[h(j) = h(i)]$
- Proved:
 - $-E[C^2] \le ||y||^2/w$
 - this implies $C^p \leq \epsilon F_p$ with 90% for fixed *i*
 - But need for all i !
- Want: $C^2 \leq \beta ||y||^2/w$ with high probability for some smallish β
 - Can indeed prove for $\beta = O(\log^2 n)$ with strong concentration inequality (Bernstein).

Recap

CountSketch:

- Linear sketch for general streaming

- p-moment for p > 2
 - Via Precision Sampling
 - Estimate of sum from poor estimates
 - Sketch: Exp variables + CountSketch