Lecture 4: CountSketch High Frequencies
Plan

• Scriber?

• Plan:
 – CountMin/CountSketch (continuing from last time)
 – High frequency moments via Precision Sampling
Part 1: CountMin/CountSketch

- Let \(f_i \) be frequency of \(i \)

- Last lecture:
 - \(2^{\text{nd}} \) moment: \(\sum_i f_i^2 \)
 - Tug of War
 - \(\text{Max}: \) heavy hitter
 - CountMin

<table>
<thead>
<tr>
<th>IP</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>(n)</td>
<td>1</td>
</tr>
</tbody>
</table>
CountMin: overall

- **Heavy hitters:** $\frac{\hat{f}_i}{\sum f_j} \geq \phi$
 - If $\frac{f_i}{\sum f_j} \leq \phi (1 - \epsilon)$, not reported
 - If $\frac{f_i}{\sum f_j} \geq \phi (1 + \epsilon)$, reported as heavy hitter

- **Space:** $O \left(\frac{\log n}{\epsilon \phi} \right)$ cells

Algorithm CountMin:

Initialize(L, w):
- array $S[L][w]$
 - L hash functions $h_1 \ldots h_L$, into $\{1, \ldots, w\}$

Process(int i):
- for($j=0$; $j<L$; $j++$)
 - $S[j][h_j(i)] += 1$;

Estimator:
- foreach i in PossibleIP {
 - $\hat{f}_i = \min_j (S[j][h_j(i)])$;
}
• Can improve time; space degrades to $O\left(\frac{\log^2 n}{\epsilon \phi}\right)$

• **Idea:** dyadic intervals
 – Each level: one CountMin sketch on the virtual stream
 – Find heavy hitters by following down the tree the heavy hitters

\[
\begin{align*}
\sum_{i=1}^{n/2} f_i &= \sum_{i=\frac{n}{2}+1}^{n} f_i \\
\sum_{i=1}^{\frac{n}{2}} f_i &= \sum_{i=\frac{n}{2}+1}^{n} f_i \\
\sum_{i=1}^{n} f_i &= \sum_{i=\frac{n}{2}+1}^{n} f_i \\
\end{align*}
\]
CountMin: linearity

• Is CountMin linear?
 – CountMin($f' + f''$) from CountMin(f') and CountMin(f'')?
 – Just sum the two!
 • sum the 2 arrays, assuming we use the same hash function h_j

• Used a lot in practice

https://sites.google.com/site/countminsketch/
CountSketch

- How about $f = f' - f''$?
 - Or general streaming
 - “Heavy hitter”:
 - if $|f_i| \geq \phi \sum_j |f_j| = \phi \cdot ||f||_1$
 - “min” is an issue
 - But median is still ok

- Ideas to improve it further?
 - Use Tug of War r in each bucket => CountSketch
 - Better in certain sense (cancelations in a cell)

Algorithm CountSketch:

Initialize(L, w):

- array $S[L][w]$
- L hash func’s $h_1 \ldots h_L$, into [w]
- L hash func’s $r_1 \ldots r_L$, into {±1}

Process(int i, real δ_i):

- for(j=0; j<L; j++)
 - $S[j][h_j(i)] += r_j(i) \cdot \delta_i$;

Estimator:

- foreach i in PossibleIP {
 - $\hat{f}_i = median_j(S[j][h_j(i)])$;
CountSketch ⇒ Compressed Sensing

• Sparse approximations:
 – \(f \in \mathbb{R}^n \)
 – \(k \)-sparse approximation \(f^* \):
 • \(\min ||f^* - f|| \)
 • Solution: \(f^* = \) the \(k \) heaviest elements of \(f \)

• Compressed Sensing:
 [Candes-Romberg-Tao’04, Donoho’04]
 – Want to acquire signal \(f \)
 – Acquisition: linear measurements (sketch) \(S(f) = Sf \)
 – Goal: recover \(k \)-sparse approximation \(\hat{f} \) from \(Sf \)
 – Error guarantee:
 \[||\hat{f} - f|| \leq \min_{k\text{-sparse } f^*} ||f^* - f|| \]
 – Theorem: need only \(O(k \cdot \log n) \)-size sketch!
Signal Acquisition for CS

• Single pixel camera
 [Takhar-Laska-Waskin-Duarte-Baron-Sarvotham-Kelly-Baraniuk’06]
 • One linear measurement = one row of S

 ![Diagram of signal acquisition](http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/cscam-SPIEJan06.pdf)

• CountSketch: a version of Compr Sensing
 – Set $\phi = 1/2k$
 – \hat{f}: take all the heavy hitters (or k largest)
 – Space: $O(k \log n)$
Back to Moments

- General moments:
 - p^{th} moment: $\sum_i f_i^p$
 - normalized: $(\sum_i f_i^p)^{1/p}$
 - $p = 2$: $\sum f_i^2$
 - $O(\log n)$ via Tug of War (Lec. 3)
 - $p = 0$: count # distinct!
 - $O(\log n)$ [Flajolet-Martin] from Lec. 2
 - $p = 1$: $\sum |f_i|$
 - $O(\log n)$: will see later (for all $p \in (0,2)$)
 - $p = \infty$ (normalized): $\max_i f_i$
 - Impossible to approximate, but can heavy hitters (Lec. 3)
 - Remains: $2 < p < \infty$?
 - Space: $\Theta\left(n^{1-\frac{2}{p}} \log^2 n\right) \Rightarrow$ Precision Sampling (next)
A task: estimate sum

- Given: \(n \) quantities \(a_1, a_2, \ldots, a_n \) in the range \([0,1]\)
- Goal: estimate \(S = a_1 + a_2 + \cdots + a_n \) “cheaply”

- Standard sampling: pick random set \(J = \{j_1, \ldots, j_m\} \) of size \(m \)
 - Estimator: \(\tilde{S} = \frac{n}{m} \cdot (a_{j_1} + a_{j_2} + \cdots + a_{j_m}) \)
- Chebyshev bound: with 90% success probability
 \[S - O(n/m) < \tilde{S} < S + O(n/m) \]
- For constant additive error, need \(m = \Omega(n) \)

Compute an estimate \(\tilde{S} \) from \(a_1, a_3 \)
• Alternative “access” to a_i’s:
 – For each term a_i, we get a (rough) estimate \tilde{a}_i
 – up to some precision u_i, chosen in advance:
 $|a_i - \tilde{a}_i| < u_i$

• Challenge: achieve good trade-off between
 – quality of approximation to S
 – use only weak precisions u_i (minimize “cost” of estimating \tilde{a})

Compute an estimate \tilde{S} from $\tilde{a}_1, \tilde{a}_2, \tilde{a}_3, \tilde{a}_4$
Formalization

Sum Estimator

1. fix precisions u_i

3. given $\tilde{a}_1, \tilde{a}_2, ... \tilde{a}_n$, output \tilde{S} s.t.
\[|\sum_i a_i - \gamma \tilde{S}| < 1 \text{ (for } \gamma \approx 1) \]

- What is cost?
 - Here, average cost = $1/n \cdot \sum 1/u_i$
 - to achieve precision u_i, use $1/u_i$ “resources”: e.g., if a_i is itself a sum $a_i = \sum_j a_{ij}$ computed by subsampling, then one needs $\Theta(1/u_i)$ samples

- For example, can choose all $u_i = 1/n$
 - Average cost $\approx n$

Adversary

1. fix $a_1, a_2, ... a_n$

2. fix $\tilde{a}_1, \tilde{a}_2, ... \tilde{a}_n$ s.t. $|a_i - \tilde{a}_i| < u_i$
Precision Sampling Lemma

• Goal: estimate $S = \sum a_i$ from $\{\tilde{a}_i\}$ satisfying $|a_i - \tilde{a}_i| < u_i$.

• **Precision Sampling Lemma:** can get, with 90% success:
 - $O(1)$ additive error and 1.5 multiplicative error:
 $S/1.5 - O(1) < \tilde{S} < 1.5 \cdot S + O(1)$
 - with average cost equal to $O(\log n)$

• Example: distinguish $\Sigma a_i = 3$ vs $\Sigma a_i = 0$
 - Consider two extreme cases:
 • if three $a_i = 1$: enough to have crude approx for all ($u_i = 0.1$)
 • if all $a_i = 3/n$: only few with good approx $u_i = 1/n$, and the rest with $u_i = 1$
• **Precision Sampling Lemma:** can get, with 90% success:
 - $O(1)$ additive error and 1.5 multiplicative error:
 $$S/1.5 - O(1) < \tilde{S} < 1.5 \cdot S + O(1)$$
 - with average cost equal to $O(\log n)$

• **Algorithm:**
 - Choose each $u_i \in \text{Exp}(1)$ i.i.d.
 - Estimator: $\tilde{S} = \max_i \frac{\tilde{a_i}}{u_i}$.

• **Proof of correctness:**
 - **Claim 1:** $\max a_i/u_i \sim \sum a_i/\text{Exp}(1)$
 - Hence, $\max \tilde{a_i}/u_i = \frac{\sum a_i}{\text{Exp}(1)} \pm 1$
 - Claim 2: Avg cost $= O(\log n)$
\(p\)-moments via Prec. Sampling

Theorem: linear sketch for \(p\)-moment with \(O(1)\) approximation, and \(O(n^{1-2/p} \log^{O(1)} n)\) space (with 90% success probability).

Sketch:
- Pick random \(r_i \in \{\pm 1\}\), and \(u_i \sim \text{Exp}(1)\)
- let \(y_i = f_i \cdot r_i / u_i^{1/p}\)
- Hash into a hash table \(S\),
 \[w = O(n^{1-2/p} \log^{O(1)} n)\] cells

Estimator:
- \(\max_j |S[j]|^p\)

Linear
\[
f = f_1 f_2 f_3 f_4 f_5 f_6
\]
\[
S = y_1 + y_3\quad y_4\quad y_2 + y_5 + y_6
\]

\(u \sim e^{-u}\)
Correctness of estimation

- **Theorem:** \(\max_j |S[j]|^p\) is \(O(1)\) approximation with 90% probability, with
 \(w = O(n^{1-2/p} \log^{O(1)} n)\) cells

- **Proof:**
 - Use Precision Sampling Lem.
 - \(a_i = |f_i|^p\)
 - \(\sum a_i = \sum |f_i|^p = F_p\)
 - \(\tilde{a}_i = |S[h(i)]|^p\)
 - Need to show \(|a_i - \tilde{a}_i|\) small
 - more precisely: \(\left|\frac{\tilde{a}_i}{u_i} - \frac{a_i}{u_i}\right| \leq \varepsilon F_p\)

Algorithm PrecisionSamplingFp:

Initialize(w):
- array \(S[w]\)
- hash func \(h\), into \([w]\)
- hash func \(r\), into \(\{\pm 1\}\)
- reals \(u_i\), from \(Exp\) distribution

Process(vector \(f \in \mathbb{R}^n\)):
- for \(i=0; i<n; i++\)
 - \(S[h(i)] += f_i \cdot \frac{r_i}{u_i^{1/p}};\)

Estimator:
- \(\max_j |S(j)|^p\)
Correctness 2

- **Claim:**
 \[|S[h(i)]^p - f_i^p / u_i| \leq O(\epsilon F_p) \]
- Consider cell \(z = h(i) \)
 - \(S[z] = \frac{f_i}{u_i^{1/p}} + C \)
- How much chaff \(C \) is there?
 - \(C = \sum_{j \neq i^*} y_j \cdot \chi[h(j) = z] \)
 - \(E[C^2] = \cdots \leq ||y||^2 / w \)
 - What is \(||y||^2 \)?
 - \(E_u ||y||^2 \leq ||f||^2 \cdot E \left[\frac{1}{u_i^{2/p}} \right] = ||f||^2 \cdot O(\log n) \)
 - \(||f||^2 \leq n^{1-2/p} ||f||_p^2 \)
 - By Markov’s: \(C^2 \leq ||f||_p^2 \cdot n^{1-2/p} \cdot O(\log n) / w \) with probability >90%
- Set \(w = \frac{1}{\epsilon^2/p} n^{1-2/p} \cdot O(\log n) \), then
 - \(|C|^p \leq ||f||_p^p \cdot \epsilon = \epsilon F_p \)

\[\begin{align*}
 y_1 & = f_i \cdot r_i / u_i^{1/p} \\
 u_i & \text{ exponential r.v.}
\end{align*} \]
Correctness (final)

• **Claim:** \(|S[h(i)]^p - f_i^p / u_i| \leq O(\epsilon F_p) \)

• \(S[h(i)]^p = \left(\frac{f_i}{u_i^{1/p}} + C \right)^p \)
 – where \(C = \sum_{j \neq i^*} y_j \cdot \chi[h(j) = h(i)] \)

• **Proved:**
 – \(E[C^2] \leq ||y||^2 / w \)
 – this implies \(C^p \leq \epsilon F_p \) with 90% for fixed \(i \)
 – But need for all \(i \)!

• **Want:** \(C^2 \leq \beta ||y||^2 / w \) with high probability for some smallish \(\beta \)
 – Can indeed prove for \(\beta = O(\log^2 n) \) with strong concentration inequality (Bernstein).
Recap

• CountSketch:
 – Linear sketch for general streaming

• p-moment for $p > 2$
 – Via Precision Sampling
 • Estimate of sum from poor estimates
 – Sketch: Exp variables + CountSketch