COMS E6998-9 F15

Lecture 4: CountSketch High Frequencies

The Fu Foundation School of Engineering and Applied Science

- Scriber?
- Plan:
- CountMin/CountSketch (continuing from last time)
- High frequency moments via Precision Sampling

Part 1: CountMin/CountSketch

- Let f_{i} be frequency of i
- Last lecture:
- $2^{\text {nd }}$ moment: $\sum_{i} f_{i}^{2}$
- Tug of War
- Max: heavy hitter
- CountMin

CountMin: overall

- Heavy hitters: $\frac{\widehat{f_{i}}}{\Sigma f_{j}} \geq \phi$

$$
\begin{aligned}
& - \text { If } \frac{f_{i}}{\Sigma f_{j}} \leq \phi(1-\epsilon) \text {, not } \\
& \text { reported }
\end{aligned}
$$

- If $\frac{f_{i}}{\sum f_{j}} \geq \phi(1+\epsilon)$,

```
Algorithm CountMin:
```

```
Initialize(L, w):
```

Initialize(L, w):
array S[L][W]
L hash functions }\mp@subsup{h}{1}{}···\mp@subsup{h}{L}{}\mathrm{ , into {1,..w}
Process(int i):
for(j=0; j<L; j++)
S[j][hj(i)] += 1;

```
```

Estimator:
foreach i in PossibleIP {
\hat{f}

```
    reported as heavy
        hitter
- Space: \(O\left(\frac{\log n}{\epsilon \phi}\right)\) cells
- Can improve time; space degrades to \(O\left(\frac{\log ^{2} n}{\epsilon \phi}\right)\)
- Idea: dyadic intervals
- Each level: one CountMin sketch on the virtual stream
- Find heavy hitters by following down the tree the heavy hitters
[1,n]
[1,n/2]
\([3,4]\)

(virtual) stream 1, with 1 element [1,n]
(virtual) stream 2, with 2 elements [1,n/2], [n/2+1,n]
\begin{tabular}{l}
\hline\((\) virtual ) stream \(j\), \\
with \(2^{j}\) elements \\
{\(\left[1, \mathrm{n} / 2^{\wedge}\right], \ldots\)}
\end{tabular}
(real) stream \(\log n\), with \(n\) elements
1,2,..n

\section*{CountMin: linearity}
- Is CountMin linear?
- CountMin \(\left(f^{\prime}+f^{\prime \prime}\right)\) from CountMin \(\left(f^{\prime}\right)\) and CountMin( \(f^{\prime \prime}\) ) ?
- Just sum the two!
- sum the 2 arrays, assuming we use the same hash function \(h_{j}\)
- Used a lot in practice https://sites.google.com/site/countminsketch I

\section*{CountSketch}
- How about \(f=f^{\prime}-f^{\prime \prime}\) ?
- Or general streaming
- "Heavy hitter":
- if \(\left|f_{i}\right| \geq \phi \sum_{j}\left|f_{j}\right|=\phi \cdot| | f \|_{1}\)
- "min" is an issue
- But median is still ok
```

Algorithm CountSketch:
Initialize(L, w):
array S[L][W]
L hash func's h}\mp@subsup{h}{1}{}···\mp@subsup{h}{L}{}\mathrm{ , into [w]
L hash func's r r , .. r r , into { }\pm1
Process(int i, real \delta}\mp@subsup{\delta}{i}{})
for(j=0; j<L; j++)
S[j][hj(i)] += r }\mp@subsup{h}{j}{}(i)\cdot\mp@subsup{\delta}{i}{}

```

\section*{Estimator:}
```

 foreach i in PossibleIP {
 \mp@subsup{f}{i}{}}=\mp@subsup{\operatorname{median}}{j}{(S[j][h}\mp@subsup{h}{j}{(i)]);
 }
    ```
- Ideas to improve it further?
- Use Tug of War \(r\) in each bucket => CountSketch
- Better in certain sense (cancelations in a cell)

\section*{CountSketch \(=\) Compressed Sensing}
- Sparse approximations:
\(-f \in \mathfrak{R}^{n}\)
- \(k\)-sparse approximation \(f^{*}\) :
- \(\min \left\|f^{*}-f\right\|\)
- Solution: \(f^{*}=\) the \(k\) heaviest elements of \(f\)
- Compressed Sensing:
[Candes-Romberg-Tao'04, Donoho’04]
- Want to acquire signal \(f\)
- Acquisition: linear measurements (sketch) \(S(f)=S f\)
- Goal: recover \(k\)-sparse approximation \(\hat{f}\) from \(S f\)
- Error guarantee:
\[
\|\hat{f}-f\| \leq \min _{k-\text { sparse } f^{*}}\left\|f^{*}-f\right\|
\]
- Theorem: need only \(O(k \cdot \log n)\)-size sketch!

Signal Acquisition for CS
- Single pixel camera
[Takhar-Laska-Waskin-Duarte-Baron-Sarvotham-Kelly-Baraniuk'06]
- One linear measurement = one row of \(S\)

source: http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/cscam-SPIEJan06.pdf
- CountSketch: a version of Compr Sensing
- Set \(\phi=1 / 2 k\)
- \(\hat{f}\) : take all the heavy hitters (or \(k\) largest)
- Space: \(O(k \log n)\)

\section*{Back to Moments}
- General moments:
- \(p^{\text {th }}\) moment: \(\sum_{i} f_{i}^{p}\)
- normalized: \(\left(\Sigma_{i} f_{i}^{p}\right)^{1 / p}\)
\(-p=2: \Sigma f_{i}^{2}\)
- \(O(\log n)\) via Tug of War (Lec. 3)
- \(p=0\) : count \# distinct!
- \(O(\log n)\) [Flajolet-Martin] from Lec. 2
\begin{tabular}{|l|l|}
\hline IP & Frequency \\
\hline 1 & 3 \\
\hline 2 & 2 \\
\hline 3 & 0 \\
\hline 4 & 9 \\
\hline 5 & 0 \\
\hline\(\ldots\) & 0 \\
\hline\(n\) & 1 \\
\hline
\end{tabular}
- \(O(\log n):\) will see later (for all \(p \in(0,2)\) )
\(-p=\infty\) (normalized): \(\max _{i} f_{i}\)
- Impossible to approximate, but can heavy hitters (Lec. 3)
- Remains: \(2<p<\infty\) ?
- Space: \(\Theta\left(n^{1-\frac{2}{p}} \log ^{2} n\right) \Rightarrow\) Precision Sampling (next)

\section*{A task: estimate sum}
- Given: \(n\) quantities \(a_{1}, a_{2}, \ldots a_{n}\) in the range \([0,1]\)
- Goal: estimate \(S=a_{1}+a_{2}+\cdots a_{n}\) "cheaply"
- Standard sampling: pick random set \(J=\left\{j_{1}, \ldots j_{m}\right\}\) of size \(m\)
- Estimator: \(\tilde{S}=\frac{n}{m} \cdot\left(a_{j_{1}}+a_{j_{2}}+\cdots a_{j_{m}}\right)\)
- Chebyshev bound: with \(90 \%\) success probability
\[
S-O(n / m)<\tilde{S}<S+O(n / m)
\]
- For constant additive error, need \(m=\Omega(n)\)

Compute an estimate \(\tilde{S}\) from \(a_{1}, a_{3}\)


\section*{Precision Sampling Framework}
- Alternative "access" to \(a_{i}\) 's:
- For each term \(a_{i}\), we get a (rough) estimate \(\tilde{a}_{i}\)
- up to some precision \(u_{i}\), chosen in advance: \(\left|a_{i}-\tilde{a}_{i}\right|<u_{i}\)
- Challenge: achieve good trade-off between
- quality of approximation to \(S\)
- use only weak precisions \(u_{i}\) (minimize "cost" of estimating \(\tilde{a}\) )


\section*{Formalization}

\section*{Sum Estimator}


\section*{Adversary}

1. fix precisions \(u_{i}\)
1. fix \(a_{1}, a_{2}, \ldots a_{n}\)
2. fix \(\tilde{a}_{1}, \tilde{a}_{2}, \ldots \tilde{a}_{n}\) s.t. \(\left|a_{i}-\tilde{a}_{i}\right|<u_{i}\)
3. given \(\tilde{a}_{1}, \tilde{a}_{2}, \ldots \tilde{a}_{n}\), output \(\tilde{S}\) s.t.
\(\left|\sum_{i} a_{i}-\gamma \tilde{S}\right|<1\) (for \(\gamma \approx 1\) )
- What is cost?
- Here, average cost \(=1 / n \cdot \sum 1 / u_{i}\)
- to achieve precision \(u_{i}\), use \(1 / u_{i}\) "resources": e.g., if \(a_{i}\) is itself a sum \(a_{i}=\sum_{j} a_{i j}\) computed by subsampling, then one needs \(\Theta\left(1 / u_{i}\right)\) samples
- For example, can choose all \(u_{i}=1 / n\)
- Average cost \(\approx n\)

\section*{Precision Sampling Lemma}
- Goal: estimate \(S=\sum a_{i}\) from \(\left\{\tilde{a}_{i}\right\}\) satisfying
\[
\left|a_{i}-\tilde{a}_{i}\right|<u_{i}
\]

Precision Sampling Lemma: can get, with 90\% success:
- O(1) additive error and 1.5 multiplicative error:
\(S / 1.5-O(1)<\tilde{S}<1.5 \cdot S+O\) (1)
- with average cost equal to \(O(\log n)\)
- Example: distinguish \(\Sigma a_{i}=3\) vs \(\Sigma a_{i}=0\)
- Consider two extreme cases:
- if three \(a_{i}=1\) : enough to have crude approx for all ( \(u_{i}=0.1\) )
- if all \(a_{i}=3 / n\) : only few with good approx \(u_{i}=1 / n\), and the rest with \(u_{i}=1\)

\section*{Precision Sampling: Algorithm}
- Precision Sampling Lemma: can get, with 90\% success:
- O(1) additive error and 1.5 multiplicative error:
\[
S / 1.5-O(1)<\tilde{S}<1.5 \cdot S+O(1)
\]
- with average cost equal to \(O(\log n)\)
- Algorithm:
- Choose each \(u_{i} \in \operatorname{Exp}(1)\) i.i.d.
- Estimator: \(\tilde{S}=\max _{i} \tilde{a}_{i} / u_{i}\).
- Proof of correctness:

- Claim 1: \(\max a_{i} / u_{i} \sim \sum a_{i} / \operatorname{Exp}(1)\)
- Hence, \(\max \tilde{a}_{i} / u_{i}=\frac{\sum a_{i}}{\operatorname{Exp}(1)} \pm 1\)
- Claim 2: Avg cost \(=O(\log n)\)
\(p\)-moments via Prec. Sampling
- Theorem: linear sketch for \(p\)-moment with \(O\) (1) approximation, and \(O\left(n^{1-2 / p} \log ^{O(1)} n\right)\) space (with \(90 \%\) success probability).
- Sketch:
\[
u \sim e^{-u}
\]
- Pick random \(r_{i} \in\{ \pm 1\}\), and \(u_{i} \sim \operatorname{Exp}(1)\)
- let \(y_{i}=f_{i} \cdot r_{i} / u_{i}^{1 / p}\)
- Hash into a hash table \(S\),
\[
w=O\left(n^{1-\frac{2}{p}} \log ^{O(1)} n\right) \text { cells }
\]
- Estimator:
\(-\max _{j}|S[j]|^{p}\)
- Linear

\section*{Correctness of estimation}
- Theorem: \(\max |S[j]|^{p}\) is \(O(1)\) approximation with \(90 \%\) probability, with
\[
w=O\left(n^{1-2 / p} \log ^{O(1)} n\right) \text { cells }
\]
- Proof:
- Use Precision Sampling Lem.
\(-a_{i}=\left|f_{i}\right|^{p}\)
- \(\sum a_{i}=\sum\left|f_{i}\right|^{p}=F_{p}\)
\(-\tilde{a}_{i}=|S[h(i)]|^{p}\)
- Need to show \(\left|a_{i}-\tilde{a}_{i}\right|\) small
- more precisely: \(\left|\frac{\tilde{a}_{i}}{u_{i}}-\frac{a_{i}}{u_{i}}\right| \leq \epsilon F_{p}\)
```

Algorithm PrecisionSamplingFp:

```
Initialize(w):
    array \(\mathrm{S}[\mathrm{w}]\)
    hash func \(h\), into [w]
    hash func \(r\), into \(\{ \pm 1\}\)
    reals \(u_{i}\), from Exp distribution
Process(vector \(f \in \Re^{n}\) ):
    for (i=0; i<n; i++)
        \(\mathrm{S}[h(i)]+=f_{i} \cdot \frac{r_{i}}{u_{i}^{1 / p}} ;\)

\section*{Estimator:}
\(\max _{j}|S(j)|^{p}\)

\section*{Correctness 2}

- Claim: \(\left|S[h(i)]^{p}-f_{i}^{p} / u_{i}\right| \leq O\left(\epsilon F_{p}\right)\)
- Consider cell \(z=h(i)\)
- \(S[z]=\frac{f_{i}}{u_{i}^{1 / p}}+C\)
- How much chaff \(C\) is there?
\(-C=\sum_{j \neq i^{*}} y_{j} \cdot \chi[h(j)=z]\)
- \(E\left[C^{2}\right]=\cdots \leq\|y\|^{2} / w\)
- What is \(\|y\|^{2}\) ?
\[
y_{i}=f_{i} \cdot r_{i} / u_{i}^{1 / p}
\] where \(r_{i} \in\{ \pm 1\}\) \(u_{i}\) exponential r.v.
- \(E_{u}\|y\|^{2} \leq\|f\|^{2} \cdot E\left[\frac{1}{u^{2 / p}}\right]=\|f\|^{2} \cdot O(\log n)\)
- \(\|f\|^{2} \leq n^{1-2 / p}\|f\|_{p}^{2}\)
- By Markov's: \(C^{2} \leq\|f\|_{p}^{2} \cdot n^{1-2 / p} \cdot O(\log n) / w\) with probability \(>90 \%\)
- Set \(w=\frac{1}{\epsilon^{2 / p}} n^{1-2 / p} \cdot O(\log n)\), then
\(-|C|^{p} \leq\|f\|_{p}^{p} \cdot \epsilon=\epsilon F_{p}\)
- Claim: \(\left|S[h(i)]^{p}-f_{i}^{p} / u_{i}\right| \leq O\left(\epsilon F_{p}\right)\)
- \(S[h(i)]^{p}=\left(\frac{f_{i}}{u_{i}^{1 / p}}+C\right)^{p}\)
- where \(C=\sum_{j \neq i^{*}} y_{j} \cdot \chi[h(j)=h(i)]\)
- Proved:
\(-E\left[C^{2}\right] \leq\|y\|^{2} / w\)
- this implies \(C^{p} \leq \epsilon F_{p}\) with \(90 \%\) for fixed \(i\)
- But need for all \(i\) !
- Want: \(C^{2} \leq \beta\|y\|^{2} / w\) with high probability for some smallish \(\beta\)
- Can indeed prove for \(\beta=O\left(\log ^{2} n\right)\) with strong concentration inequality (Bernstein).
- CountSketch:
- Linear sketch for general streaming
- \(p\)-moment for \(p>2\)
- Via Precision Sampling
- Estimate of sum from poor estimates
- Sketch: Exp variables + CountSketch```

