Lecture 10 - Sketching and Nearest Neighbour Search

Instructor: Alex Andoni
Scribes: Chaoxu Zhou

1 Sketching

In this section, we will look at space complexity in number of bits instead of in number of words. First we define sketch $S(\cdot)$ as a map from \mathbf{R}^{d} to the space of "short-bit-strings" that given $S(x)$ and $S(y)$, we are able to estimate some function of x and y with a constant success probability. The goal in this section is to solve the decision version problem using sketching, that is, given r and ϵ, distinguishing $\|x-y\| \leq r$ and $\|x-y\|>(1+\epsilon) r$ based on $S(x)$ and $S(y)$ with constant probability. We will show that a sketch of size $O\left(1 / \epsilon^{2}\right)$ is sufficient to achieve this goal, .

Lemma 1. For every $\epsilon>0,1<r<d$, a sketch $S:\{0,1\}^{d} \rightarrow\{0,1\}^{k}$ can be constructed such that
(1) for any $x, y \in\{0,1\}^{d}$, a decision can be generated based on $S(x)$ and $S(y)$, which can distinguish

$$
\begin{aligned}
& \|x-y\|_{1} \leq r \quad \text { or } \\
& \|x-y\|_{1}>(1+\epsilon) r
\end{aligned}
$$

with constant success probability.
(2) $k=O\left(1 / \epsilon^{2}\right)$.

Proof.
Part $1 r=d / C$, where $C>1$ is a known constant.
Let $J=\left\{j_{1}, \ldots, j_{k}\right\}$ be a random sample chosen from $\{1,2, \ldots, d\}$ uniformly without replacement. For every $x \in\{0,1\}^{d}$, define $S(x)=\left(x_{j_{1}}, \ldots, x_{j_{k}}\right)$ where x_{i} is the i-th entry of vector x. For every $x, y \in\{0,1\}^{d}$, the following decision will be made based on $S(x)$ and $S(y)$:

$$
\begin{array}{ll}
\text { if }\|S(x)-S(y)\|_{1}<\frac{r}{d} k(1+\sqrt{C} \epsilon), & \text { report }\|x-y\|_{1}<r \\
\text { if }\|S(x)-S(y)\|_{1} \geq \frac{r}{d} k(1-\sqrt{C} \epsilon), & \text { report }\|x-y\|_{1}>(1+\epsilon) r .
\end{array}
$$

Denote $\Delta=\|x-y\|_{1}$. and $\hat{\Delta}=\|S(x)-S(y)\|_{1}$. It's easy to see that $\|x-y\|_{1}=\sum_{j=1}^{d} \mathbb{I}\left\{x_{j} \neq y_{j}\right\}$. As a consequence, if we pick i from [d] uniformly randomly, then

$$
\mathbb{P}\left(x_{i}=y_{i}\right)=\frac{\sum_{j=1}^{d} \mathbb{I}\left(x_{j}=y_{j}\right)}{d}=\frac{d-\sum_{j=1}^{d} \mathbb{I}\left(x_{j} \neq y_{j}\right)}{d}=\frac{d-\Delta}{d} .
$$

In order establish the desired result, we need calculate the expectation and variance of $\hat{\Delta}$.

$$
\mathbb{E}(\hat{\Delta})=\mathbb{E}\left(\|S(x)-S(y)\|_{1}\right)=\mathbb{E}\left(\sum_{l=1}^{k} \mathbb{I}\left\{x_{j_{l}} \neq y_{j_{l}}\right\}\right)=\sum_{l=1}^{k} \mathbb{P}\left(x_{j_{l}} \neq y_{j_{l}}\right)=\frac{k}{d} \Delta .
$$

And

$$
\begin{aligned}
\operatorname{var}\left(\|\hat{\Delta}\|_{1}\right) & =\operatorname{var}\left(\sum_{l=1}^{k} \mathbb{I}\left\{x_{j_{l}} \neq y_{j_{l}}\right\}\right) \\
& \left.=\sum_{l=1}^{k} \operatorname{var}\left(\mathbb{I}\left\{x_{j_{l}} \neq y_{j_{l}}\right\}\right) \quad \quad \text { (by independence of } j_{1}, \ldots, j_{l}\right) \\
& =\sum_{l=1}^{k}\left(1-\frac{\Delta}{d}\right) \frac{\Delta}{d}=\frac{k}{d} \Delta\left(1-\frac{\Delta}{d}\right) \leq \frac{k}{d} \Delta .
\end{aligned}
$$

Then the probability of making a wrong decision can be calculated as
$\mathbb{P}($ A wrong decision is made $)=\mathbb{P}\{\Delta \leq r$, we report $\Delta \geq(1+\epsilon) r\}+\mathbb{P}\{\Delta \geq(1+\epsilon) r$, we report $\Delta \leq r\}$

$$
\begin{aligned}
& =\mathbb{P}\left\{\Delta \leq r, \hat{\Delta}>\frac{r}{d} k(1+\sqrt{C} \epsilon)\right\}+\mathbb{P}\left\{\Delta \geq(1+\epsilon) r, \hat{\Delta}<\frac{r}{d} k(1-\sqrt{C} \epsilon)\right\} \\
& \leq \mathbb{P}\left\{\hat{\Delta}>\frac{\Delta}{d} k+\frac{r k \sqrt{C}}{d} \epsilon\right\}+\mathbb{P}\left\{\hat{\Delta}<\frac{\Delta}{d} k-\frac{r k \sqrt{C}}{d} \epsilon\right\} \\
& =\mathbb{P}\left(\left|\hat{\Delta}-\frac{k}{d} \Delta\right|>\frac{k r \sqrt{C}}{d} \epsilon\right)=\mathbb{P}\left(|\hat{\Delta}-\mathbb{E} \hat{\Delta}|>\frac{k r \sqrt{C}}{d} \epsilon\right) \\
& \leq \frac{\operatorname{var}(\hat{\Delta})}{k^{2} r^{2} C \epsilon^{2} / d^{2}} \\
& \leq \frac{d^{2}}{k^{2} r^{2} C \epsilon^{2}} \frac{k \Delta}{d} \\
& \leq \frac{1}{k \epsilon^{2}} . \\
& \quad \text { (by Chebyshev's inequality) } \\
&
\end{aligned}
$$

Thus set $k=O\left(\epsilon^{-2}\right)$ is sufficient to achieve a constant success probability.
Part $22<r \ll d$ which correspond to the case $C \rightarrow \infty$ in Part 1
Let $u_{1}, \ldots, u_{k} \in\{0,1\}^{d}$ be random vectors that $\mathbb{P}\left(u_{i j}=1\right)=1 / r$, where $u_{i j}$ denotes the j-th entry of $u_{i j}$. We can choose u_{1}, \ldots, u_{k} such that $\left\{u_{i j}\right\}$'s are independent for all $i=1, \ldots, d, j=1, \ldots, k$. We define the sketch $S:\{0,1\}^{d} \rightarrow\{0,1\}^{k}$ by

$$
S(x)=\left(x^{\top} u_{1}, \ldots, x^{\top} u_{k}\right) \quad \bmod 2
$$

for every $x \in\{0,1\}^{d}$.

For every $x, y \in\{0,1\}^{d}$, a decision rule based on $S(x)$ and $S(y)$ is constructed as

$$
\begin{array}{ll}
\text { if }\|S(x)-S(y)\|_{1}<(1-\epsilon) \frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\} & \text { report }\|x-y\|_{1}<r \\
\text { if }\|S(x)-S(y)\|_{1}>(1+\epsilon) \frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\} & \text { report }\|x-y\|_{1} \geq r .
\end{array}
$$

To verify that this decision rule has constant success probability when $k=O\left(\epsilon^{-2}\right)$, we first need to calculate the expectation and variance of $\hat{\Delta}=\|S(x)-S(y)\|_{1}$. Note that

$$
\begin{aligned}
\mathbb{E}\{\hat{\Delta}\} & =\mathbb{E} \sum_{i=1}^{k} \mathbb{I}\left(x^{\top} u_{i}-y^{\top} u_{i} \equiv 1 \quad \bmod 2\right) \\
& =\sum_{i=1}^{k} \mathbb{P}\left(x^{\top} u_{i}-y^{\top} u_{i} \equiv 1 \quad \bmod 2\right) \\
& =k \mathbb{P}\left(x^{\top} u_{1}-y^{\top} u_{1} \equiv 1 \quad \bmod 2\right)
\end{aligned}
$$

The task is converted to calculate $\mathbb{P}\left(x^{\top} u_{1}-y^{\top} u_{1} \equiv 1 \bmod 2\right)$. Denote $D=\left\{j \mid x_{j} \neq y_{j}\right\}$, where x_{j}, y_{j} are the j-th entry of x and y. Write $|D|$ to be the cardinality of D and note that $|D|=\|x-y\|_{1}=\Delta$, then we have

$$
\begin{aligned}
\mathbb{P}\left(x^{\top} u_{1}-y^{\top} u_{1} \equiv 1 \quad \bmod 2\right) & =\mathbb{P}\left\{\sum_{j \in D}\left(x_{j}-y_{j}\right) u_{j} \equiv 1 \quad \bmod 2\right\} \\
& =\mathbb{P}\left(\sum_{j \in D} u_{j} \equiv 1 \quad \bmod 2\right)
\end{aligned}
$$

The above probability equals to the probability of the value of X is even, where $X \sim \operatorname{binomial}(\Delta, 1 / r)$. Note that when Δ is odd

$$
\begin{aligned}
1=\left(1-\frac{1}{r}+\frac{1}{r}\right)^{\Delta} & =\sum_{i=0}^{\Delta}\binom{\Delta}{i}\left(\frac{1}{r}\right)^{i}\left(1-\frac{1}{r}\right)^{\Delta-i} \\
& =\sum_{i=0}^{\lfloor\Delta / 2\rfloor}\binom{\Delta}{2 i}\left(\frac{1}{r}\right)^{2 i}\left(1-\frac{1}{r}\right)^{\Delta-2 i}+\sum_{i=0}^{\lfloor\Delta / 2\rfloor}\binom{\Delta}{2 i+1}\left(\frac{1}{r}\right)^{2 i+1}\left(1-\frac{1}{r}\right)^{\Delta-2 i-1} \\
& =\mathbb{P}(X \text { is even })+\mathbb{P}(X \text { is odd })
\end{aligned}
$$

and

$$
\begin{aligned}
\left(1-\frac{2}{r}\right)^{\Delta}=\left(1-\frac{1}{r}-\frac{1}{r}\right)^{\Delta} & =\sum_{i=0}^{\Delta}\binom{\Delta}{i}\left(-\frac{1}{r}\right)^{i}\left(1-\frac{1}{r}\right)^{\Delta-i} \\
& =\sum_{i=0}^{\lfloor\Delta / 2\rfloor}\binom{\Delta}{2 i}\left(\frac{1}{r}\right)^{2 i}\left(1-\frac{1}{r}\right)^{\Delta-2 i}-\sum_{i=0}^{\lfloor\Delta / 2\rfloor}\binom{\Delta}{2 i+1}\left(\frac{1}{r}\right)^{2 i+1}\left(1-\frac{1}{r}\right)^{\Delta-2 i-1} \\
& =\mathbb{P}(X \text { is even })-\mathbb{P}(X \text { is odd }) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbb{P}(X \text { is even }) & =\frac{1}{2}+\frac{1}{2}\left(1-\frac{2}{r}\right)^{\Delta} \\
\mathbb{P}(X \text { is odd }) & =\frac{1}{2}-\frac{1}{2}\left(1-\frac{2}{r}\right)^{\Delta}
\end{aligned}
$$

when Δ is odd.
We can use exactly the same method to derive exactly the same result for Δ is even. Thus we have

$$
\begin{aligned}
\mathbb{E}(\hat{\Delta}) & =k \mathbb{P}\left(x^{\top} u_{1}-y^{\top} u_{1} \equiv 1 \quad \bmod 2\right) \\
& =k \mathbb{P}\left(\sum_{j \in D} u_{j} \equiv 1 \quad \bmod 2\right) \\
& =\frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{\Delta}\right\} .
\end{aligned}
$$

To calculate the variance of $\hat{\Delta}$, we know that $\hat{\Delta}$ is a summation of k independent Bernoulli random variables with parameter $\left\{1-(1-2 / r)^{\Delta}\right\} / 2$. Thus

$$
\begin{aligned}
\operatorname{var}(\hat{\Delta}) & =k \frac{1}{2}\left\{1-\left(1-\frac{2}{r}\right)^{\Delta}\right\} \frac{1}{2}\left\{1+\left(1-\frac{2}{r}\right)^{\Delta}\right\} \\
& \leq k \frac{1}{2}\left\{1-\left(1-\frac{2}{r}\right)^{\Delta}\right\}
\end{aligned}
$$

Now we can bound the success probability of the decision rule we defined previously.
$\mathbb{P}($ A wrong decision is made $)=\mathbb{P}\{\Delta<r$, we report $\Delta \geq(1+\epsilon) r\}+\mathbb{P}\{\Delta \geq(1+\epsilon) r$, we report $\Delta \leq r\}$

$$
\begin{aligned}
= & \mathbb{P}\left(\Delta<r, \hat{\Delta}>(1+\epsilon) \frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\}\right) \\
& +\mathbb{P}\left(\Delta \geq(1+\epsilon) r, \hat{\Delta}<(1-\epsilon) \frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\}\right) \\
\leq & \mathbb{P}\left(\hat{\Delta}>\frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{\Delta}\right\}+\epsilon \frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\}\right) \\
+ & \mathbb{P}\left(\hat{\Delta}<\frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{\Delta}\right\}-\epsilon \frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\}\right) \\
= & \mathbb{P}\left\{|\hat{\Delta}-\mathbb{E}(\hat{\Delta})|>\epsilon \frac{k}{2}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\}\right\} \\
\leq & \frac{4 \operatorname{var}(\hat{\Delta})}{\epsilon^{2} k^{2}}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\}^{-2} \quad \quad \text { (by Chebyshev's inequality) } \\
\leq & \frac{2}{\epsilon^{2} k}\left\{1-\left(1-\frac{2}{r}\right)^{\Delta}\right\}\left\{1-\left(1-\frac{2}{r}\right)^{r}\right\}^{-2}
\end{aligned}
$$

Since $\log (1-2 / r) \leq-2 / r$, we have $(1-2 / r)^{r}=\exp \{r \log (1-2 / r)\} \leq \exp (-2)$ and noting that $1-\left(1-\frac{2}{r}\right)^{\Delta}<1$, we have

$$
\mathbb{P}(\text { A wrong decision is made }) \leq \frac{2}{\epsilon^{2} k} \frac{1}{(1-\exp (-2))^{2}}
$$

Thus setting $k=O\left(\epsilon^{-2}\right)$ is sufficient to achieve a constant success probability.

2 Approach 1: Nearest Neighbour Search

Definition 2. A c-approximate r - nearest neighbour search procedure is a procedure that given a query point q which returns a point p^{\prime} in the domain such that normp ${ }^{\prime}-q \leq c r$ given that $c>1$ and there exists p^{*} that $\left\|p^{*}-q\right\| \leq r$.

2.1 Boosted Sketch

Let S be the sketch in the decision version probability that based on which a decision rule with constant success probability could be generated. Define a new sketch W by keeping $k=O(\log n)$ copies of S and the decision is the majority answer of the k decisions. Therefore the sketch size is $O\left(\epsilon^{-2} \log n\right)$ and the success probability is $1-1 / n^{2}$. To use this method we need to compute all points p in the domain in advance and when we make a query we need to compute $W(q)$, and compute distance to all points using sketch. There is an improvement of computation time from $O(n d)$ to $O\left(n \epsilon^{-2} \log n\right)$.

2.2 Approach 2

The goal of this approach is to improve computation time from $O\left(n \epsilon^{-2} \log n\right)$ to $O(n)$. The result is given by the following theorem.

Theorem 3 (KOR98). To achieve (1+ ϵ)- approximation of nearest neighbour search procedure, $O\left(d \epsilon^{-2} \log n\right)$ query time and $n^{O\left(\epsilon^{-2}\right)}$ is sufficient.

The idea of the construction and the proof is by noting that $W(q)$, which is defined in "Approach 1 ", has $w=O\left(\epsilon^{-2} \log n\right)$ bits and there are only 2^{w} possible sketches. Thus we can store an answer for each of $2^{w}=n^{O\left(\epsilon^{-2}\right)}$ possible inputs.

