
COMS E6998-9: Algorithmic Techniques for Massive Data Sep 8, 2015

Lecture 11 – Nearest Neighbor Search

Instructor: Alex Andoni Scribes: Marshall Ball

1 Recall: Nearest Neighbor Search

As in the previous lecture, we are concerned here with the problem of Nearest Neighbor Search.

Recall 1. A (c-approximate, r-near) near neighbor (of q in D) is the following:

• Fix a set, D, of points in some space X with distance d. (We allow preprocessing of D.)

• For any query q, if ∃p∗ ∈ D such that d(q, p∗) < r, we want to return some p ∈ D such that

d(q, p) < cr.

Our aim in nearest neighbor search is to minimize the space complexity of our data structure, as well

as the query-time complexity.

In the exact version, c = 1.

For the remainder of this document, we take X := Rd and n := |D|.

Last lecture we defined a sketching method, W , that is useful for NNS:

• W : Rd → {0, 1}k.

• Given W (x),W (y) we can distinguish between:

– ‖x− y‖ < r (x, y are “close”),

– ‖x− y‖ > cr = (1 + ε)r (x, y are “far”),

with high probability. In particular, the probability that our test did not succeed was ≤ δ = 1/n3.

• Moreover, to acheive such an error bound (for `1-norm), we only required k = O(1/ε2 log(n)) bits.

Although we did not see it in class, we can achieve the same sketch length for the `2-norm.

Given our sketch, we looked at the following two methodologies for solving NNS:

1. Linear Scan

• Precompute W (p) for all p ∈ D.

• Given query q, compute W (q).

• Compare W (q) to W (p) for all p ∈ D.

Note that while this gives us a near-linear space complexity, O(1/ε2 log(n)n), it has poor query-time

complexity, O(nk).

1

2. Exhaustive Storage

• For σ ∈ {0, 1}k, A[σ] = p ∈ D such that d(W (p), σ) < cr = (1 + ε)r.

• On query q, output A[W (q)].

3. This gives us O(d/ε2 log(n)) query time (the time to compute W (q)) and O(2O(1/ε2 log(n)) log(n)) =

O(nO(1/ε2) log(n)) space.

In this lecture, our goal is to attempt to get the best of both worlds above: near-linear space complexity

with sub-linear query time.

2 Locality Sensitive Hashing [?]

With the above aim in mind, consider the following primitive:

Definition 1 (informal). A locality senstive hash function, LSH is a random hash function h : Rd → U

(h drawn from a family H, U some finite set) such that

1. d(q, p) ≤ r =⇒ Pr[h(q) = h(p)] = P1 is “not-so-small,” (p close to q implies they collide, under h,

with higher probability)

2. d(q, p) > cr =⇒ Pr[h(q) = h(p)] = P2 is “small.” (q far from p implies they collide, under h, with

lower probability)

We will specify later what “small” and “not-so-small” actually mean. In general, P1 < P2 and we associate

the following parameter with H to characterize this gap:

ρ =
log(1/P1)

log(1/P2)
.

If we had an LSH such that P1 was “large,” then we could simply compute the hash table of D, A.

Then on query q, simply compute A[h(q)]

Remark 1. Unfortunately, it is not possible to have P1 high and P2 low.

Roughly, suppose we have p1, p2 such that d(p1, p2) = cr+ε′. Now consider a series of points q1, . . . , qm
on the line through p1, p2 such that any neighbor points in {p1, p2, q1, . . . , qm} are less than distance r

apart.

Consider m ≈ c − 1 to be not too large (say c = 2). Then with probability Pm+1
1 we have h(p1) =

h(q1) = · · · = h(pm) = h(p1). But, on the other hand with probability h(p1) = h(p2) with probability P2.

So, P c1 . P2.

So instead of a single hash table, we will use L = nρ hash tables for independent h1, . . . , hL ∈ H. (We

will justify this choice of L later.) Note that ρ = log 1/P1

log 1/P2
< 1, so nρ < n.

3 NNS/LSH in Hamming Space

3.1 LSH for Hamming Space

We construct a LSH for Hamming Space, {0, 1}d with distance metric Ham(x, y) = |{xi 6= yi}|.

2

Our hash family, {g : {0, 1}d → {0, 1}k}, is defined as follows:

g(p) := (h1(p), h2(p), . . . , hk(p)),

where

hi(p) := pj for random j ← [d].

Note 1.

Pr[g(p) = g(q)] =
k∏
i=1

Pr[hi(p) = hi(q)].

Fact 1. ρg = ρh

Proof.

Pr[g(p) = g(q)] =

k∏
i=1

Pr[hi(p) = hi(q)] =⇒

{
P1,g = P k1,h
P2,g = P2,h

ρg =
log 1/P1,g

log 1/P2,g
=

log 1/P k1,h

log 1/P k2,h
=
k log 1/P1,h

k log 1/P2,h
= ρh

Claim 2. ρ ≈ 1
c

Proof. Notice that

∀i, Pr[hi(p) = hi(q)] = 1− Ham(p, q)

d
.

For simplicity we assume r � d. This assumption is justified because (1) we can always embed in a

higher dimension, and (2) the analysis goes through without the following approximation.

From the taylor series of ex = 1 + x+ x2

2! + · · · , we get the following approximation (within additive

factor O((cr/d)2)):

P1,h = 1− r

d
≈ e−r/d

P2,h = 1− cr

d
≈ e−cr/d

This implies

ρg =
log 1/P1,h

log 1/P2,h
≈ r/d

cr/d
=

1

c
.

3.2 Using LSH for NNS

We now present an algorithm for NNS in Hamming Space via the above LSH. We will use the technique

outlined earlier.

3.2.1 Algorithm for NNS in Hamming Space

• Data Structure:

3

– Allocate L = nρ hash tables, A1, . . . , AL each with a fresh Hamming-LSH gi. (choice of k for

gi = (h1, . . . , hk), and implicitly L, below.)

– Hash all of D into tables.

– We will want each hash table to have size n. So, we will think of hash table size as simply the

number of the non-empty buckets.

• Query:

On q,

– Compute g1(q), . . . , gL(q).

– Each table, A1[g1(q)], . . . , AL[gL(q)], for collisions.

– For each collision p ∈ D under gi, check if d(p, q) < cr. If so, output p. If none found, FAIL.

(Assuming as usual that ∃p ∈ D : d(p, q) < r. Our promise problem is only concerned with this case.)

For each table/hash function we have success probability P k1,h: probability of a “good” or (close)

collision. We have L tables total. So, taking a union bound we want to choose L = O(1/P k1,h).

Suppose it takes time Tg to compute gi(q). Notice that we expect nP2,g = nP k2,h “bad” (or far)

collisions So in expectation, our runtime will be

O

(
1

P k1,h
(Tg + nP k2,h)

)
.

Tg we think of as a constant (ignoring log(n) factors). So, we want nP k2,h = O(1) as well. Thus, we take

P k2,h = 1/n so that the expected number of far points encountered is 1. This implies:

P k2,h = 1/n =⇒ k log(1/P2,h) = log n =⇒ k =
log n

log(1/P2,h)
.

For this choice we also get,

P k1,h = P

log(n)
log 1/P2,h

1,h = n
− log 1/P1,h
log 1/P2,h = n−ρ.

So for g we have:

P1,g = Pr[g(p) = g(q)|d(p, q) < r] = P k1,h = (P ρ2,h)k =
1

nρ

P2,g = Pr[g(p) = g(q)|d(p, q) < cr] = P k2,h = 1/n.

3.2.2 Analysis

Claim 3. The above algorithm gives us the following guarrantees:

1. Space: O(nL) = O(nn1+ρ) (or actually O(nL log(n)) to store pointers).

2. Query time: O(L(k + d)) = O(nρd) in expectation.

3. > 50% success probability.

4

Space Time Exponent c = 2 Ref

Hamming n1+ρ nρ ρ = 1/c ρ = 1/2 [?]
Space ρ ≥ 1/c [?, ?]

Euclidean n1+ρ nρ ρ = 1/c ρ = 1/2 [?, ?]
Space ρ = 1/c2 ρ = 1/4 [?]

ρ ≥ 1/c2 [?, ?]

Proof. (1) and (2) are clear from above.

For (3) Correctness:

Let p∗ be an r-near neighbor to some query q. (Recall that we have no requirements if some p∗ does

not exist.) Then, the probability that the algorithm fails is bounded from above by

Pr[p∗ /∈ {g1(q), . . . , gL(q)}] =
L∏
i=1

Pr[hi(p
∗) 6= hi(q)]

≤ (1− 1
nρ)L

= (1− 1
nρ)

1
nρ

≤ 1/e < 1/2.

4 LSH Continued

In practice, we may be concerned with exact NNS (c = 1). Note that for the guarrantees on our algorithm

to hold, all we require is that L, k are chosen such that

Pr[failure] ≤ (1− P1,g)
L ≤ 0.1 (small constant).

4.1 Table of LSH algorithms for NNS

Below we present a table of NNS algorithms using the framework defined above:

4.2 LSH for Other `1-type “distance” (Zoo(`1)

In general all of these LSH constructions have

g(p) := 〈h1(p), . . . , hk(p)〉.

Below we specify a variety of “primitive” h for preserving locality under various notions of distance:

• Hamming Distance [?]

h : project onto random coordinate (as seen above).

• `1 (Manhattan) Distance

h : weight of cell in a randomly shifted grid.

5

• Jacard distance between sets.

We define J(A,B) := |A∩B|
|A∪B| where A,B ⊆ U for some universe U = [n].

Min-wise Hashing [?]

– Pick a random permutation π : U → U .

– h(A) := mina∈A π(a). (Recall U = [n]. In general, simply impose some arbitrary ordering.)

Pr[h(A) = h(B)] = Pr[π(A ∪B) ∈ A ∩B] =
A ∩B
A ∪B

= J(A,B).

Note that Jacard Distance LSH can be used for Hamming Distance LSH (with a little work).

4.3 LSH for Euclidean Space [?]

For LSH for euclidean distance, consider the following primitive hash function: (Idea: project onto a

randomly partitioned, random one dimensional subspace.)

• Pick a random gaussian vector `.

• Pick random b ∈ [0, 1].

• w is a parameter that will quantize ` (size of partitions).

h(p) :=

⌊
〈p, `〉
w

+ b

⌋
.

Claim 4. For g constructed via the above primitive functions, ρ = 1/c

Proof. Next time.

References

[1] Andoni, Alexandr, and Piotr Indyk. ”Near-optimal hashing algorithms for approximate nearest neigh-

bor in high dimensions.” Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE

Symposium on. IEEE, 2006.

[2] Broder, Andrei Z. ”On the resemblance and containment of documents.” Compression and Complexity

of Sequences 1997. Proceedings. IEEE, 1997.

[3] Datar, Mayur, et al. ”Locality-sensitive hashing scheme based on p-stable distributions.” Proceedings

of the twentieth annual symposium on Computational geometry. ACM, 2004.

[4] Indyk, Piotr, and Rajeev Motwani. ”Approximate nearest neighbors: towards removing the curse of

dimensionality.” Proceedings of the thirtieth annual ACM symposium on Theory of computing. ACM,

1998.

[5] Motwani, Rajeev, Assaf Naor, and Rina Panigrahy. ”Lower bounds on locality sensitive hashing.”

SIAM Journal on Discrete Mathematics 21.4 (2007): 930-935.

[6] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality sensitive hashing (except

when q is tiny). In Proceedings of Innovations in Computer Science (ICS ’2011), pages 275–283, 2011.

6

