COMS E6998-9: Algorithmic Techniques for Massive Data

Oct 15, 2015

Lecture 12 – More LSH, Data-Dependent Hashing

Instructor: Alex Andoni

Scribes: Mingxian Zhong

1 Time-space Trade-offs

Type Space Time Comment Ref n^{σ} $\sigma = 2.09/c$ [Ind'01,Pan'06] Low space and $\approx n$ n^{σ} $\sigma = O(1/c^2)$ [AI'06] High query time $\approx n$ $n^{1+\rho}$ $\rho = 1/c$ [IM'98,DIIM'04] Medium space and n^{ρ} $n^{1+\rho}$ Medium query time n^{ρ} $\rho = 1/c^2$ [AI'06] $n^{1+\rho}$ n^{ρ} $\rho \ge 1/c^2$ [MNP'06,OWZ'11] $n^{1+o(1+1/c^2)}$ $\omega(1)$ memory lookup [PTW'08, PTW'10] n^{4/ϵ^2} [KOR'98,IM'08,Pan'06] High space and O(dlogn)(1 mem lookup) $c=1+\epsilon$ $n^{o(1/\epsilon^2)}$ $\omega(1)$ memory lookup Low query time [AIP'06]

Below we present a table of LSH algorithms using different space and time.

2 Near-linear Space for $\{0,1\}^d$

[Indyk'01,PanIgrahy'06]

- General idea: Sample a few bucket in the same hash table.
- Setting:

- Close:
$$r = \frac{d}{2c}$$
 [Note that from last lecture $P_1 = 1 - \frac{r}{d} = 1 - \frac{1}{2c}$]
- Far: $cr = \frac{d}{2}$ [Note that from last lecture $P_2 = 1 - \frac{cr}{d} = \frac{1}{2}$]

- Algorithm:
 - Use on hash table with $k = \frac{\log n}{\log 1/P_2} = \alpha \ln n$ [Note that since $P_2 = 1/2$ here α is a constant]
 - On query q:
 - * Compute $w = g(p) \in \{0, 1\}^k$
 - * Define w' such that starting from w, flip each w_j with probability $1 P_1$
 - * Lookup bucket g(w') and compute distance to all points there
 - * Repeat $R = n^{\sigma}$ times, stop if found an approximate near neighbor

Theorem. For $\sigma = \Theta(\frac{\log c}{c})$, we have

- $Pr[find an approximate near neighbor] \ge 0.1$
- Expected runtime: $O(n^{\sigma})$

Proof. Let p^* be the near neighbor, then we know that $||q - p^*|| \le r$. Define $w = g(q), t = ||w - g(p^*)||_1$. Claim 1. $Pr[t \le \frac{k}{c}] \ge \frac{1}{2}$

Proof. Note that $E[t] = \frac{r}{d}k = \frac{k}{2c}$. Hence by Markov Inequality, $Pr[t \le \frac{k}{c}] \ge 1 - \frac{k}{2c}/\frac{k}{c} = \frac{1}{2}$

Claim 2. $Pr[w' = g(p)|||q - p||_1 \ge \frac{d}{2}] \le \frac{1}{n}$

Proof.

$$Pr[Collision] \le (P_1P_2 + (1 - P_1)(1 - P_2))^k$$

= $(P_2(P_1 + 1 - 1) + (1 - P_1)(1 - P_2))^k$
= $(P_2 + (1 - P_1)(1 - 2P_2))^k$
 $\le P_2^k = 1/n$

-		
L		

Claim 3. $Pr[w' = g(p^*)|Claim 1] \ge n^{-\sigma}$

Proof.

$$\begin{aligned} \Pr[w' &= g(p^*) | \text{Claim 1}] = (1 - P_1)^t P_1^{k-t} \\ &\geq (1 - (1 - \frac{1}{2c}))^{k/c} (1 - \frac{1}{2c})^{k(1 - 1/c)} \\ &\geq (\frac{1}{2c})^k \frac{k}{c} e^{-\frac{1}{2c}k} \\ &\geq n^{-\frac{\Theta(1) \lg c}{c}} n^{-\frac{\Theta}{2c}} \\ &\geq n^{-\sigma} \end{aligned}$$

Since if $w' = g(p^*)$ for at least one w', we are guaranteed to output either p^* or an approximate near neighbor, we are done by Claim 3.

3 Beyond LSH

Below we give a contrast of LSH algorithms and other algorithm.

In Hamming Space

Type	Space	Time	Comment	c = 2	Reference
LSH	$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98]
			$\rho \geq 1/c$		[MNP'06,OWZ'11]
Non-LSH	$n^{1+\rho}$	$n^{ ho}$	$\rho \approx \frac{1}{2c-1}$	$\rho = 1/3$	[AINR'14,AR'15]

In Euclidean Space

Туре	Space	Time	Comment	c = 2	Reference
LSH	$n^{1+\rho}$	$n^{ ho}$	$\rho\approx 1/c^2$	$\rho = 1/4$	[AI'06]
			$\rho \geq 1/c^2$		[MNP'06,OWZ'11]
Non-LSH	$n^{1+\rho}$	$n^{ ho}$	$\rho \approx \frac{1}{2c^2 - 1}$	$\rho = 1/7$	[AINR'14,AR'15]

4 Data-dependent hashing

[A.-Indyk-Nguyen-Razenshteyn'14, A.-Razenshteyn'15]

- General idea: Using a random has function, which is chosen after seeing the given dataset
- Feature: Efficiently computable
- Components:
 - Nice geometric structure (has better data partition)
 - Reduction to such structure (depends on the data)
- Nice geometric structure:
 - Like a random dataset on a sphere s.t. random points at distance $\approx cr$
 - Query: At angle 45' from near-neighbor
- Alg 1: Hyperplanes[Charikar'02]
 - We sample unit r uniformly, hash p into sgn < r, p >, $Pr[h(p) = h(q)] = 1 - \alpha/\pi$, where α is the angle between p and q

$$-P_1 = 3/4, P_2 = 1/2$$

- $-\rho \approx 0.42$
- Alg 2: Voronoi[A.-Indyk-Nguyen-Razenshteyn'14] based on [Karger-Motwani-Sudan'94]
 - Sample T i.i.d. standard d-dimensional Gaussians $g_2, g_2, .., g_T$.
 - Hash p into $h(p) = argmax_{1 \le i \le T} < p, g_i >$
 - Note that it is simply Hyperplane LSH when T = 2

- Hyperplane VS Voronoi
 - Hyperplane with k = 6 hyperplanes , which means we partition space into $2^6 = 64$ pieces
 - Voronoi with $T = 2^k = 64$ vectors. $\rho = 0.18$

– In Hyperplane algorithm we partition into grids while in Voronoi we partition into sphere

5 Nearest Neighbor Search: Conclusion

- Approach 1: Via sketches
- Approach 2: Locality Sensitive Hashing
 - Use Random Space Partitions
 - Algorithm with Better Space Bound
 - Use Data-dependent hashing