1 Linear Testing

Given a function f, in linear testing we determine whether it is a linear function: i.e., $f(x+y)=f(x)+f(y)$ for all x, y. Assume that we have the following function:

$$
\begin{gathered}
f:\{0,1\}^{n} \rightarrow R \\
x \xrightarrow{f} f(x)
\end{gathered}
$$

We can think of $f(x)$ is being describe as a complete truth table, as we can sample $f(x)$. To make this proof easier we map the boolean onto +1 and -1 .

$$
\begin{aligned}
& 0 \rightarrow+1 \\
& 1 \rightarrow-1
\end{aligned}
$$

From now on, we will consider the function

$$
f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}
$$

Definition 1. f is linear if $\forall x, y \in\{+1,-1\}^{n}$

$$
\begin{gathered}
f(x \oplus y)=f(x) \cdot f(y) \\
x \oplus y=\left(x_{1} y_{1}, x_{2} y_{2} \ldots x_{n} y_{n}\right)
\end{gathered}
$$

The modulus addition is equivalent to a dot product. This is also termed Homomorphism (for general groups).

Problem 2. The problem at hand is to distinguish between:

- f is linear
- f is ϵ far from linear, which means the following:

$$
\begin{gathered}
\forall g \text { that is linear } \\
f(x) \neq g(x) \text { on } \geq \epsilon 2^{n} \text { inputs } x .
\end{gathered}
$$

Goal 3. How many queries do we need to solve the above goal with 90% success probability.
Motivation [Blum-Luby-Rubinfield ' 90]

- self testing
- self correction
- PCP Theorem (probabilistically checkable proof): informally it is as follows. For a given formula φ, we can transform it into φ^{\prime}, where φ^{\prime} is satisfiable if and only if φ is satisfiable. For any proof (satisfyable assignment) of φ^{\prime}, we can check whether it is indeed satisfyable in $O(1)$ places.
- PCP is often used to prove non-approximability: even approximating max clique upto a factor of \sqrt{n} is a NP hard problem.

Algorithm for testing linearity is fairly basic.

- pick x, y randomly
- check the given property $f(x \oplus y)=f(x) \oplus f(y)$. Lets call this $T_{x y}$ (a test for x, y)
- repeat the $T_{x, y}$ test for $O(1 / \epsilon)$ times and fail if at least one of them fails.

Analysis of Algorithm

- If the function f is linear, then $T_{x y}$ will pass.
- If the function f is ϵ far from linear, we need to find the $\operatorname{Pr}\left[T_{x y}\right.$ fails $]$:

$$
\begin{aligned}
\operatorname{Pr}\left[T_{x y} \text { fails }\right] & =1-\operatorname{Pr}\left[T_{x y} \text { passes }\right] \\
& \geq \epsilon
\end{aligned}
$$

Example [Coppersmith]

$$
\begin{gathered}
f: Z_{3^{k}} \rightarrow Z_{3^{k-1}} \\
f(3 h+d)=h(\text { where } d \in\{-1,0,+1\})
\end{gathered}
$$

We have that $\operatorname{Pr}\left[T_{x y}\right.$ fails $]=2 / 9$, but f is $2 / 3$ far from linear.

2 Fourier Analysis

We will show how Fourier analysis can be used to determine linearity. It is given that

$$
\begin{aligned}
& f:\{+1,-1\}^{n} \rightarrow R \text {, can be seen as a vector } F \in R^{d} \text { where } d=2^{n} \\
& \qquad \mathcal{F}=\{\text { set of all } f\}
\end{aligned}
$$

We define $f(x)$ as a summation of the multiplication of a basis vector and a scalar.
Define: $f_{i}(x)=1$ for $i=x$, and 0 for $i \neq x$
Then, $f=\sum f(i) f_{i}$, i.e., $f(x)=\sum f(i) f_{i}(x)$ for all x.
This is equivalent to: a natural basis e_{i} (where $i \in\{+1,-1\}^{n}$), $F=\sum x_{i} e_{i}$ where x_{i} is a scalar and e_{i} is a basis vactor.

We now introduce the Fourier basis. Fix $S \subseteq[n]$, then we define $\chi_{S}(x)$ as:

$$
\begin{gathered}
\chi_{s}(x)=\Pi x_{i} \text { where } i \in S \\
\text { Define } \chi_{\emptyset}(x)=1 .
\end{gathered}
$$

Fact χ_{S} for $S \subseteq[n]$ are a basis for \mathcal{F}.

- There are 2^{n} of them.
- $\left\|\chi_{S}\right\|^{2}=\sum_{x}\left(\chi_{S}(x)\right)^{2}=2^{n}$.
- Dot product: $\sum_{x} \chi_{S}(x) \chi_{T}(x)=\sum \prod_{i \in S} x_{i} \prod_{i \in T} x_{i}=\sum \prod_{i \in S \Delta T} x_{i}$ $=\sum_{x} \chi_{S \Delta T}(x)=\frac{1}{2^{n}} E\left[\prod_{i \in S \Delta T} x_{i}\right]=\frac{1}{2^{n}} \prod_{i \in S \Delta T} E\left[x_{i}\right]=0$ if $S \neq T$.

Hence these basis functions χ_{S} form a basis for \mathcal{F}.
Definition 4. $<f, g>\triangleq \frac{1}{2^{n}} \sum_{x} f(x) g(x)$ which is essentially a dot product.
In this definition, we get that $\left\langle\chi_{S}, \chi_{S}\right\rangle=1$ (norm of a basis vector is one).
Corollary 5. $\forall f$

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}(x)
$$

where $\hat{f}(S)$ is given by $\hat{f}_{S}=<f, \chi_{S}>$.

Examples of Fourier transform

$f(x)$	Fourier
1	1
X_{i}	X_{i}
AND $\left(X_{2}, X_{1}\right)=-1$ if $X_{2}=X_{1}=-1,1$ otherwise	$\frac{1}{2}+\frac{1}{2} X_{1}+\frac{1}{2} X_{2}-\frac{1}{2} X_{1} X_{2}$
$f=\chi_{S}$	$\hat{f}_{S}=1$ and $\hat{f}_{T}=0$ for $T \neq S$

Theorem 6 (Plancherel's). shows that

$$
<f, g>=\sum_{S \subseteq[n]} \hat{f}_{S} \hat{g}_{S}
$$

Proof $<f, g>=E_{x}[f(x) g(x)]$
$=E\left[\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}(x) \sum_{T \subseteq[n]} \hat{g}(T) \chi_{T}(x)\right]$
$=\sum_{S, T} \hat{f}_{S} \hat{g}_{T} E\left[\chi_{S}(x) \chi_{T}(x)\right]$
The only terms that survive are those in which $S=T$ which makes the expectation value equal 1 . Therefore,

$$
<f, g>=\sum_{S} \hat{f}_{S} \hat{g}_{S}
$$

Theorem 7 (Parseval's). $\langle f, f\rangle=\sum_{S \subseteq[n]} \hat{f}_{S}^{2}$
If $f_{i}\{+,-1\}^{n} \rightarrow\{+1,-1\}$, then, $<f, f>=1$ or can be written as $\sum \hat{f}_{S}^{2}=1$ by Plancherel's.

3 Proof of Linearity with Fourier Analysis

Lemma 8. χ_{S} are exactly all the linear functions $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$.
Proof. - First we prove χ_{S} is linear

$$
\begin{aligned}
& \forall x, y \\
& \chi_{S}(x \oplus y)=\prod_{i \in S} x_{i} y_{i}=\prod_{i \in S} x_{i} \prod_{i \in S} y_{i}=\chi_{S}(x) \chi_{S}(y)
\end{aligned}
$$

- if f is linear then it is some χ_{S} (in problem set 5).
\hat{f}_{S} relates distance to basis function χ_{S}. In particular, if f is ϵ-far from linearity, then we have:
$\hat{f}_{S}=<f, \chi_{S}>=E_{x} f(x) \chi_{S}(x)$
$=\operatorname{Pr}\left[f(x)=\chi_{S}(x)\right]-\operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]$
$=1-\operatorname{dist}\left(f, \chi_{S}\right)-\operatorname{dist}\left(f, \chi_{S}\right)=1-2 \operatorname{dist}\left(f, \chi_{S}\right)$
$\leq 1-2 \epsilon$
Hence, none of the \hat{f}_{S} coefficients are close to 1 , and this will cause the test to fail.
Theorem 9 (Main theorem). Define: $T_{x y}=1$ if $f(x) \cdot f(y)=f(x \oplus y)$ and it is 0 otherwise.
If f is ϵ far then we prove that the $\operatorname{Pr}\left[T_{x y}=1\right] \leq 1-\epsilon$.
Proof Let $\delta=\operatorname{Pr}\left[T_{x y}=0\right]$.
Lemma 10. $\operatorname{Pr}\left[T_{x y}=1\right]=1-\delta=\frac{1}{2}+\frac{1}{2} \sum_{S} \hat{f}_{S}^{3}$.
We prove that this lemma proves the above theorem.
$\delta=1-\left(\frac{1}{2}+\frac{1}{2} \sum_{S} \hat{f}_{S}^{3}\right)=\frac{1}{2}-\frac{1}{2} \sum_{S} \hat{f}_{S}^{3}$
Since \hat{f}_{S} is upper bounded by $1-2 \epsilon$
$\geq \frac{1}{2}-\frac{1}{2}(1-2 \epsilon) \sum_{S} \hat{f}_{S}^{2}$
As proved above, we have $\sum_{S} \hat{f}_{S}^{2}=1$. Therefore,
$\geq \frac{1}{2}-\frac{1}{2}+\epsilon=\epsilon$.
Hence proven. We will prove the above lemma in the next lecture.

