Lecture 3 - Frequency Moments, Heavy Hitters

1 Introduction

This lecture is about the second frequency moment and heavy hitters. First, we present the Tug-of-War algorithm by Alon-Matias-Szegedy to obtain a $1+\epsilon$ approximation using $O\left(\frac{1}{\epsilon} \log n\right)$ space. Second, we define heavy hitters and present the CountMin algorithm which can be used to obtain heavy hitters.

2 Second Frequency Moment

Assume - as in previous lectures - that we are given a stream of length m from which we want to obtain a frequency vector $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ (n distinct elements) where f_{i} is the frequency of the i th distinct element in the stream, then the k th frequency moment of the stream is

$$
\begin{equation*}
F_{k}=\sum_{i=1}^{n} f_{i}^{k} \tag{1}
\end{equation*}
$$

In Lectures 1 and 2, we estimated F_{0} and F_{1} corresponding to the number of distinct elements and the length of the stream respectively. Now we wish to obtain the second moment:

$$
\begin{equation*}
F_{2}=\sum_{i=1}^{n} f_{i}^{2} \tag{2}
\end{equation*}
$$

The idea is to use i.i.d random variables $r_{i}(=r(i))$ where $P\left(r_{i}=1\right)=P\left(r_{i}=-1\right)=\frac{1}{2}$ (Rademacher random variables) to get an estimator.

Thus, $\mathbb{E}\left[r_{i}\right]=0$ and $\operatorname{Var}\left[r_{i}\right]=1\left(\right.$ since $r_{i}^{2}=1$ and $\left.\operatorname{Var}\left[r_{i}\right]=E\left[r_{i}^{2}\right]-\left(E\left[r_{i}\right]\right)^{2}\right)$. We can think of r_{i} as a random variable defined for every distinct element so that

$$
\begin{equation*}
r:[n] \rightarrow\{-1,+1\} \tag{3}
\end{equation*}
$$

As an example, let's consider when the entries of the frequency vector is all $1 \mathrm{~s}(\Rightarrow m=n)$. Let

$$
\begin{equation*}
z=\sum r_{i} \tag{4}
\end{equation*}
$$

Then $\mathbb{E}[z]=\sum \mathbb{E}\left[r_{i}\right]=0$ by linearity of expectation and using the distribution of r_{i}. Similarly, $\operatorname{Var}[z]=$ $\operatorname{Var}\left[\sum r_{i}\right]=m$. We can apply Chebyshev to obtain that $|z-0|=|z| \leq O(\sqrt{m})$ with constant probability. Turns out that this bound is tight.

Now, let's consider the more general case and define

$$
\begin{equation*}
z=\sum_{i} r_{i} \cdot f_{i} \tag{5}
\end{equation*}
$$

Claim 1. $\mathbb{E}\left[z^{2}\right]=\sum_{i=1} f_{i}^{2}=F_{2}$
Proof.

$$
\begin{align*}
\mathbb{E}\left[z^{2}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} r_{i} f_{i}\right)^{2}\right] \tag{6}\\
& =\sum_{i} \mathbb{E}\left[r_{i}^{2}\right] f_{i}^{2}+\sum_{i \neq j} \mathbb{E}\left[r_{i}\right] \mathbb{E}\left[r_{j}\right] f_{i} f_{j} \tag{7}\\
& =\sum_{i} f_{i}^{2} \mathbb{E}\left[r_{i}^{2}\right] \tag{8}\\
& =\sum_{i} f_{i}^{2}=F_{2} \tag{9}
\end{align*}
$$

(7) holds because for $i \neq j, r_{i}$ and r_{j} are independent, while (8) holds because $\mathbb{E}\left[r_{i}\right]=0$ for all i. Finally, (9) holds because $r_{i}^{2}=1\left(\Rightarrow \mathbb{E}\left[r_{i}^{2}\right]=1\right)$.

Claim 2. $\operatorname{Var}\left[z^{2}\right] \leq O(1) \cdot F_{2}^{2}$
Proof. First, let's compute $\mathbb{E}\left[z^{4}\right]$

$$
\begin{align*}
\mathbb{E}\left[z^{4}\right] & =\mathbb{E}\left[\left(\sum_{i} r_{i} f_{i}\right)^{4}\right] \tag{10}\\
& =\mathbb{E}\left[\sum_{i, j, k, l} r_{i} f_{i} r_{j} f_{j} r_{k} f_{k} r_{l} f_{l}\right] \tag{11}\\
& =\sum_{i, j, k, l} f_{i} f_{j} f_{k} f_{l} \mathbb{E}\left[r_{i} r_{j} r_{k} r_{l}\right] \tag{12}\\
& =\sum_{i} f_{i}^{4}+6 \sum_{i<j} f_{i}^{2} f_{j}^{2} \tag{13}\\
& \leq O(1) \cdot\left(\sum_{i} f_{i}^{2}\right)^{2} \tag{14}
\end{align*}
$$

(13) holds because:

- Of independence of the random variables
- The terms with odd powers of r_{i} evaluate to zero
- There are $\binom{4}{2}=6$ terms of the form $r_{i}^{2} r_{j}^{2}$

Finally, we obtain that $\operatorname{Var}\left[z^{2}\right] \leq \mathbb{E}\left[z^{4}\right] \leq O(1) \cdot F_{2}^{2}$
Having bounded $\mathbb{E}\left[z^{2}\right]$ and $\operatorname{Var}\left[z^{2}\right]$, we present the algorithm below

2.1 Tug-of-War (Alon-Matias-Szegedy 1996)

We maintain a counter z.

1. Initialize $z=0$
2. When we see element $i: z=z+r(i)$
3. Return the estimator z^{2}

Earlier, we defined r_{i} in the form $r:[n] \rightarrow\{-1,+1\}$ where r_{i} acts like a hash function. The hash function for the $r_{i} \mathrm{~s}$ should be 4 -wise independent.

Next, we apply the "average trick" using $k=O\left(\frac{1}{\epsilon^{2}}\right)$ parallel runs of the algorithm to obtain a $1+\epsilon$ approximation in $O\left(\frac{1}{\epsilon^{2}} \log n\right)$ space.

2.2 Linearity

So far we have only considered simple estimators, and we next consider something more complex. Suppose we have two parts of a stream seen by two different estimators, and we want to estimate the union of these two parts (i.e., how we can combine them).

Claim 3. Linearity: given estimates z^{\prime} for f^{\prime} and $z^{\prime \prime}$ for $f^{\prime \prime}$, we can combine them as $z=z^{\prime}+z^{\prime \prime}$ for $f=f^{\prime}+f^{\prime \prime}$.

Proof. Since $z^{\prime}=\sum r_{i} f_{i}^{\prime}$ and $z^{\prime \prime}=\sum r_{i} f_{i}^{\prime \prime}$, we have $z^{\prime}+z^{\prime \prime}=\sum r_{i}\left(f_{i}^{\prime}+f_{i}^{\prime \prime}\right)$. Note that we need to use the same randomness for two estimates.

Similarly, we can use $\left(z^{\prime}-z^{\prime \prime}\right)^{2}$ to estimate $\sum\left(f_{i}^{\prime}-f_{i}^{\prime \prime}\right)^{2}$. However, we cannot use linearity in a similar way for $\sum\left|f_{i}^{\prime}-f_{i}^{\prime \prime}\right|$, and will discuss this pointer later in class.

2.3 General Streaming Model

We now consider a more generalized model: at each moment, we have an update $\left(i, \delta_{i}\right)$ to increase the i-th entry by δ_{i}. (δ_{i} may be negative)

A linear algorithm S handles this easily, $S\left(f+e_{i} \delta_{i}\right)=S(f)+S\left(e_{i} \delta_{i}\right)$. We call S a sketch. According to [Nguyen-Li-Woodruff'14], any algorithm for general streaming might as well be linear.

3 Heavy Hitters

Now that we are able to compute many types of frequency counts, we wonder if we can also compute the max frequency in a stream. It turns out that we cannot: it is impossible to approximate the max frequency in sublinear space. Therefore, we will solve a more modest problem where we want to detect the max-frequency element if it is very heavy. We will show that we can find these heavy hitters in space $O(1 / \phi)$.

Definition 4. i is ϕ-heavy if $f_{i} \geq \phi \sum_{j} f_{j}$.

The basic idea is still to use hash functions. A first-attempt method uses a single hash function h mapping from $[n]$ to $[w]$ randomly, where $w=O(1 / \phi)$. Then each element i goes to bucket i, and we sum up the frequencies in each of the w buckets. We denote the sum of each bucket as S. So the estimator for f_{i} is $\hat{f}=S(h(i))$.

For example, consider a stream of $2,5,7,5,5$. If the hash function h_{1} works as $h_{1}(2)=2, h_{1}(5)=$ $1, h_{1}(7)=2$, then we will obtain the following estimates: $\hat{f}_{2}=2, \hat{f}_{5}=3, \hat{f}_{7}=2$. However, for an element that never appears in the stream, e.g. 11, this method also estimates its frequency as $\hat{f_{11}}=2$, assuming $h_{1}(11)=2$.

Claim 5. $S(h(i))$ is a biased estimator.
Proof. Analyzing this estimator, we have $\hat{f}_{i}=S(h(i))=f_{i}+\sum_{\{j: h(j)=h(i)\}} f_{j}$. Let $C=\sum_{\{j: h(j)=h(i)\}} f_{j}$. Thus,

$$
\mathbb{E}[C]=\sum_{j} \operatorname{Pr}[h(j)=h(i)] \cdot f_{j}=\sum_{j \neq i} \frac{f_{j}}{w} \neq 0
$$

However, it is easy to see that $\mathbb{E}[C] \leq \frac{\sum_{j} f_{j}}{w}$. So the bias is at most $\sum_{j} f_{j} / w$, which is small for $f_{i} \gg \sum_{j} f_{j} / w$. By Markov Inequality, we have $C l e \frac{10 \sum_{j} f_{j}}{w}$ with at least 90% probability, i.e.

$$
\operatorname{Pr}\left[\hat{f}_{i}-f_{i}<O\left(\frac{\sum_{j} f_{j}}{w}\right)\right] \geq 0.9
$$

For $w=O\left(\frac{1}{\epsilon \phi}\right)$ and $f_{i} \geq \phi \sum_{j} f_{j}$, we have $C \leq \epsilon f_{i}$. That is, \hat{f}_{i} is a (1+ $)$ approximation (with 90% probability).

Still, there are two issues with this estimator: (1) only constant probability; (2) overestimate for many indices (10\%). Fundamentally, there is a conflict between avoiding many collisions and reducing space used by the hash table.

3.1 CountMin

This motivates us to use the "median trick". We can use $L=O(\log n)$ hash tables with hash functions h_{j}. The CountMin algorithm works as follows:

```
Initialize(r, L):
    array S[L][w]
    L hash functions }\mp@subsup{h}{1}{},\ldots,\mp@subsup{h}{L}{}\mathrm{ , into {1,...,w}
Process(int i):
    for (j = 0; j < L; ++j)
        S[j][h; (i)] += 1
Estimator:
    foreach i in PossibleIP:
        \mp@subsup{\hat{f}}{i}{}=\mp@subsup{median}{j}{(S[j][h}\mp@subsup{h}{j}{}(i)]
```

Claim 6. The median is a $\pm \epsilon \phi$ estimator with $\left(1-1 / n^{2}\right)$ probability.
Proof. For an index i, each row (out of the L rows) gives $\hat{f}_{i}=f_{i} \pm \epsilon \phi$ with 90% probability. By Median Trick (see Lecture 2), the median gives an estimator of $\pm \epsilon \phi$ with $\left(1-1 / n^{2}\right)$ probability.

Alternatively, we can take the min, instead of median, since all counts are overestimated.

3.2 Output Heavy Hitters

We can now identify the heavy hitters by iterating over all i 's and outputing those with $\frac{\hat{f}_{i}}{\sum_{j} f_{j}} \geq \phi$. In particular, for true frequencies $f_{i} \mathrm{~s}$,

- if $\frac{f_{i}}{\sum_{j} f_{j}} \leq \phi(1-\epsilon)$, then i is not in output;
- if $\frac{f_{i}}{\sum_{j} f_{j}} \geq \phi(1+\epsilon)$, then i is reported as a heavy hitter;
- if $\phi(1-\epsilon) \leq \frac{f_{i}}{\sum_{j} f_{j}} \leq \phi(1+\epsilon)$, then i may or may not be reported as a heavy hitter.

If we really care about those elements in between, then we could take more space to further narrow the gap.

The space used is $O\left(\frac{\log ^{2} n}{\epsilon \phi}\right)$ bits. Since we iterate over all i 's, the time complexity is $\Omega(n)$.
We can improve this time complexity, at the cost of increasing space to $O\left(\frac{\log ^{3} n}{\epsilon \phi}\right)$ bits. The idea is to use dyadic intervals. For each level, we maintain its own sketch, and find the heavy hitters by following down the subtrees of heavy hitters in intermediary.

