COMS E6998-9: Algorithmic Techniques for Massive Data Sep 15, 2015
Lecture 3 — Frequency Moments, Heavy Hitters

Instructor: Alex Andoni Scribes: Daniel Alabi, Wangda Zhang

1 Introduction

This lecture is about the second frequency moment and heavy hitters. First, we present the Tug-of-War
algorithm by Alon-Matias-Szegedy to obtain a 1 4 € approximation using O(% logn) space. Second, we
define heavy hitters and present the CountMin algorithm which can be used to obtain heavy hitters.

2 Second Frequency Moment

Assume — as in previous lectures — that we are given a stream of length m from which we want to obtain
a frequency vector f = (f1, fa,..., fn) (n distinct elements) where f; is the frequency of the ith distinct
element in the stream, then the kth frequency moment of the stream is

i=1

In Lectures 1 and 2, we estimated Fy and Fy corresponding to the number of distinct elements and
the length of the stream respectively. Now we wish to obtain the second moment:

=1

The idea is to use i.i.d random variables r;(= r(i)) where P(r; = 1) = P(r; = —1) = 1 (Rademacher
random variables) to get an estimator.
Thus, E[r;] = 0 and Var[r;] = 1 (since 77 = 1 and Var[r;] = E[r?] — (E[r;])?). We can think of r; as a

(2
random variable defined for every distinct element so that

r:[n] —{-1,+1} (3)
As an example, let’s consider when the entries of the frequency vector is all 1s (= m = n). Let

Z:ZW (4)

Then E[z] = Y E[r;] = 0 by linearity of expectation and using the distribution of r;. Similarly, Var[z] =
Var[> r;] = m. We can apply Chebyshev to obtain that |z —0| = |z| < O(y/m) with constant probability.
Turns out that this bound is tight.

Now, let’s consider the more general case and define
i

Claim 1. E2| =Y. _, f? = F»

Proof.

n

E[2%] = E[(D_ rifi)’] (6)
=1
=Y R+ D B[R] fif; (7)
i i#]
=3 f2ER?) ®)

=S =5)
(7) holds because for i # j, r; and r; are independent, while (8) holds because E[r;] = 0 for all 4. Finally,
(9) holds because r? = 1(= E[r?] = 1). O
Claim 2. Var[z?] < O(1) - F}

Proof. First, let’s compute E[z4]

E[z*] = E[(Y_rifi)’] (10)

(2

=E| Z ri firj fire ferifi] (11)
ikl
= Z fifj fu fiklrirjryr] (12)
ikl
=Y [+ fif (13)
: i<j

<o) (3£ (14)

(13) holds because:
e Of independence of the random variables

e The terms with odd powers of r; evaluate to zero

e There are (3) = 6 terms of the form 7"227"]2

Finally, we obtain that Var[z?] < E[z%] < O(1) - F} O

Having bounded E[22] and Var[z?], we present the algorithm below

2.1 Tug-of-War (Alon-Matias-Szegedy 1996)

We maintain a counter z.
1. Initialize 2z =0

2. When we see element i: z = z + (i)

3. Return the estimator 22

Earlier, we defined 7; in the form r : [n] — {—1,+1} where r; acts like a hash function. The hash
function for the r;s should be 4-wise independent.

Next, we apply the “average trick” using k = O(e%) parallel runs of the algorithm to obtain a 1+ €
approximation in O(ei2 logn) space.

2.2 Linearity

So far we have only considered simple estimators, and we next consider something more complex. Suppose
we have two parts of a stream seen by two different estimators, and we want to estimate the union of
these two parts (i.e., how we can combine them).

Claim 3. Linearity: given estimates 2z’ for f' and 2" for f”, we can combine them as z = 2/ + 2" for
F=rr

Proof. Since 2’ = > r;f! and 2" = Y rif!', we have 2/ + 2" = 3" ri(f] + f/'). Note that we need to use
the same randomness for two estimates. O

Similarly, we can use (2’ — 2”)? to estimate Y (f/ — f/')%. However, we cannot use linearity in a similar
way for Y |f/ — f|, and will discuss this pointer later in class.

2.3 General Streaming Model

We now consider a more generalized model: at each moment, we have an update (¢,6;) to increase the
i-th entry by ;. (§; may be negative)

A linear algorithm S handles this easily, S(f + e;0;) = S(f) + S(e;d;). We call S a sketch. According
to [Nguyen-Li-Woodruff’14], any algorithm for general streaming might as well be linear.

3 Heavy Hitters

Now that we are able to compute many types of frequency counts, we wonder if we can also compute
the max frequency in a stream. It turns out that we cannot: it is impossible to approximate the max
frequency in sublinear space. Therefore, we will solve a more modest problem where we want to detect
the max-frequency element if it is very heavy. We will show that we can find these heavy hitters in space

O(1/9).
Definition 4. i is ¢-heavy if fi > 3, f;.

The basic idea is still to use hash functions. A first-attempt method uses a single hash function h
mapping from [n] to [w] randomly, where w = O(1/¢). Then each element i goes to bucket i, and we sum
up the frequencies in each of the w buckets. We denote the sum of each bucket as S. So the estimator
for f; is f = S(h(i).

For example, consider a stream of 2, 5, 7, 5, 5. If the hash function h works as h1(2) = 2,h1(5) =
1,h1(7) = 2, then we will obtain the following estimates: fo =2, fs =3, fr = 2. However, for an element

that never appears in the stream, e.g. 11, this method also estimates its frequency as f 11 = 2, assuming
hi(11) = 2.

Claim 5. S(h(i)) is a biased estimator.

Proof. Analyzing this estimator, we have f; = S(h(i)) = fi + 2o h()=h@yy [i- Let C =3 i znay Ji-

Thus,
=S PrnG) =) G =32 %0
j i
O]
Zj fj

w

However, it is easy to see that E[C] < . So the bias is at most }_, f;/w, which is small for

Z Ji with at least 90% probability, i.e.
Prifi—fi <O (fo])] >0.9
w

For w = O <$> and f; > ¢, fj, we have C' < ef;. That is, fi is a (1 + €) approximation (with 90%
probability).

fi >3, fi/w. By Markov Inequality, we have Cle—2=

Still, there are two issues with this estimator: (1) only constant probability; (2) overestimate for many

indices (10%). Fundamentally, there is a conflict between avoiding many collisions and reducing space
used by the hash table.

3.1 CountMin

[13

This motivates us to use the “median trick”. We can use L = O(logn) hash tables with hash functions

hj. The CountMin algorithm works as follows:

Initialize(r, L):
array S[L][w]
L hash functions hy,...,hr, into {1,...,w}

Process (int i):
for (j = 0; j < L; ++j)
S[j1Lh;(4)]1 += 1

Estimator:
foreach i in PossiblelIP:

fi = median; (S[j]1[h;(i)]

Claim 6. The median is a +e¢ estimator with (1 — 1/n?) probability.

Proof. For an index i, each row (out of the L rows) gives fi = f; + e¢ with 90% probability. By Median
Trick (see Lecture 2), the median gives an estimator of +e¢ with (1 — 1/n?) probability. O

Alternatively, we can take the min, instead of median, since all counts are overestimated.

3.2 Output Heavy Hitters

We can now identify the heavy hitters by iterating over all +’s and outputing those with Zf ! 7 > ¢. In

jJI
particular, for true frequencies f;s,

e fi B .. .)
o if ST < ¢(1 — €), then ¢ is not in output;

o if Zfif_ > ¢(1 + ¢€), then i is reported as a heavy hitter;
il

o if p(1—¢) < Zfif_ < ¢(1 + €), then i may or may not be reported as a heavy hitter.
j i

If we really care about those elements in between, then we could take more space to further narrow
the gap.
log?n

The space used is O (7) bits. Since we iterate over all i’s, the time complexity is Q(n).

We can improve this time complexity, at the cost of increasing space to O (lofj;n) bits. The idea is to

use dyadic intervals. For each level, we maintain its own sketch, and find the heavy hitters by following
down the subtrees of heavy hitters in intermediary.

