COMS E6998-9: Algorithmic Techniques for Massive DataSep 15, 2015Lecture 3 – Frequency Moments, Heavy HittersInstructor: Alex AndoniScribes: Daniel Alabi, Wangda Zhang

1 Introduction

This lecture is about the second frequency moment and heavy hitters. First, we present the Tug-of-War algorithm by Alon-Matias-Szegedy to obtain a $1 + \epsilon$ approximation using $O(\frac{1}{\epsilon} \log n)$ space. Second, we define heavy hitters and present the CountMin algorithm which can be used to obtain heavy hitters.

2 Second Frequency Moment

Assume – as in previous lectures – that we are given a stream of length m from which we want to obtain a frequency vector $f = (f_1, f_2, ..., f_n)$ (n distinct elements) where f_i is the frequency of the *i*th distinct element in the stream, then the *k*th frequency moment of the stream is

$$F_k = \sum_{i=1}^n f_i^k \tag{1}$$

In Lectures 1 and 2, we estimated F_0 and F_1 corresponding to the number of distinct elements and the length of the stream respectively. Now we wish to obtain the second moment:

$$F_2 = \sum_{i=1}^{n} f_i^2$$
 (2)

The idea is to use i.i.d random variables $r_i(=r(i))$ where $P(r_i = 1) = P(r_i = -1) = \frac{1}{2}$ (Rademacher random variables) to get an estimator.

Thus, $\mathbb{E}[r_i] = 0$ and $\operatorname{Var}[r_i] = 1$ (since $r_i^2 = 1$ and $\operatorname{Var}[r_i] = E[r_i^2] - (E[r_i])^2$). We can think of r_i as a random variable defined for every distinct element so that

$$r: [n] \to \{-1, +1\}$$
 (3)

As an example, let's consider when the entries of the frequency vector is all 1s ($\Rightarrow m = n$). Let

$$z = \sum r_i \tag{4}$$

Then $\mathbb{E}[z] = \sum \mathbb{E}[r_i] = 0$ by linearity of expectation and using the distribution of r_i . Similarly, $\operatorname{Var}[z] = \operatorname{Var}[\sum r_i] = m$. We can apply Chebyshev to obtain that $|z - 0| = |z| \leq O(\sqrt{m})$ with constant probability. Turns out that this bound is tight.

Now, let's consider the more general case and define

$$z = \sum_{i} r_i \cdot f_i \tag{5}$$

Claim 1. $\mathbb{E}[z^2] = \sum_{i=1} f_i^2 = F_2$

Proof.

$$\mathbb{E}[z^2] = \mathbb{E}[(\sum_{i=1}^n r_i f_i)^2] \tag{6}$$

$$=\sum_{i} \mathbb{E}[r_i^2] f_i^2 + \sum_{i \neq j} \mathbb{E}[r_i] \mathbb{E}[r_j] f_i f_j$$
(7)

$$=\sum_{i} f_i^2 \mathbb{E}[r_i^2] \tag{8}$$

$$=\sum_{i}f_{i}^{2}=F_{2} \tag{9}$$

(7) holds because for $i \neq j$, r_i and r_j are independent, while (8) holds because $\mathbb{E}[r_i] = 0$ for all i. Finally, (9) holds because $r_i^2 = 1 \Rightarrow \mathbb{E}[r_i^2] = 1$.

Claim 2. $Var[z^2] \le O(1) \cdot F_2^2$

Proof. First, let's compute $\mathbb{E}[z^4]$

$$\mathbb{E}[z^4] = \mathbb{E}[(\sum_i r_i f_i)^4] \tag{10}$$

$$= \mathbb{E}\left[\sum_{i,j,k,l} r_i f_i r_j f_j r_k f_k r_l f_l\right]$$
(11)

$$=\sum_{i,j,k,l}f_if_jf_kf_l\mathbb{E}[r_ir_jr_kr_l]$$
(12)

$$=\sum_{i} f_{i}^{4} + 6\sum_{i < j} f_{i}^{2} f_{j}^{2}$$
(13)

$$\leq O(1) \cdot (\sum_{i} f_i^2)^2 \tag{14}$$

(13) holds because:

- Of independence of the random variables
- The terms with odd powers of r_i evaluate to zero
- There are $\binom{4}{2} = 6$ terms of the form $r_i^2 r_j^2$

Finally, we obtain that $\operatorname{Var}[z^2] \leq \mathbb{E}[z^4] \leq O(1) \cdot F_2^2$

Having bounded $\mathbb{E}[z^2]$ and $\mathrm{Var}[z^2],$ we present the algorithm below

2.1 Tug-of-War (Alon-Matias-Szegedy 1996)

We maintain a counter z.

- 1. Initialize z = 0
- 2. When we see element i: z = z + r(i)
- 3. Return the estimator z^2

Earlier, we defined r_i in the form $r : [n] \to \{-1, +1\}$ where r_i acts like a hash function. The hash function for the r_i s should be 4-wise independent.

Next, we apply the "average trick" using $k = O(\frac{1}{\epsilon^2})$ parallel runs of the algorithm to obtain a $1 + \epsilon$ approximation in $O(\frac{1}{\epsilon^2} \log n)$ space.

2.2 Linearity

So far we have only considered simple estimators, and we next consider something more complex. Suppose we have two parts of a stream seen by two different estimators, and we want to estimate the union of these two parts (i.e., how we can combine them).

Claim 3. Linearity: given estimates z' for f' and z'' for f'', we can combine them as z = z' + z'' for f = f' + f''.

Proof. Since $z' = \sum r_i f'_i$ and $z'' = \sum r_i f''_i$, we have $z' + z'' = \sum r_i (f'_i + f''_i)$. Note that we need to use the same randomness for two estimates.

Similarly, we can use $(z' - z'')^2$ to estimate $\sum (f'_i - f''_i)^2$. However, we cannot use linearity in a similar way for $\sum |f'_i - f''_i|$, and will discuss this pointer later in class.

2.3 General Streaming Model

We now consider a more generalized model: at each moment, we have an update (i, δ_i) to increase the *i*-th entry by δ_i . (δ_i may be negative)

A linear algorithm S handles this easily, $S(f + e_i \delta_i) = S(f) + S(e_i \delta_i)$. We call S a sketch. According to [Nguyen-Li-Woodruff'14], any algorithm for general streaming might as well be linear.

3 Heavy Hitters

Now that we are able to compute many types of frequency counts, we wonder if we can also compute the max frequency in a stream. It turns out that we cannot: it is impossible to approximate the max frequency in sublinear space. Therefore, we will solve a more modest problem where we want to detect the max-frequency element if it is very heavy. We will show that we can find these heavy hitters in space $O(1/\phi)$.

Definition 4. *i* is ϕ -heavy if $f_i \ge \phi \sum_j f_j$.

The basic idea is still to use hash functions. A first-attempt method uses a single hash function h mapping from [n] to [w] randomly, where $w = O(1/\phi)$. Then each element i goes to bucket i, and we sum up the frequencies in each of the w buckets. We denote the sum of each bucket as S. So the estimator for f_i is $\hat{f} = S(h(i))$.

For example, consider a stream of 2, 5, 7, 5, 5. If the hash function h_1 works as $h_1(2) = 2, h_1(5) = 1, h_1(7) = 2$, then we will obtain the following estimates: $\hat{f}_2 = 2, \hat{f}_5 = 3, \hat{f}_7 = 2$. However, for an element that never appears in the stream, e.g. 11, this method also estimates its frequency as $\hat{f}_{11} = 2$, assuming $h_1(11) = 2$.

Claim 5. S(h(i)) is a biased estimator.

Proof. Analyzing this estimator, we have $\hat{f}_i = S(h(i)) = f_i + \sum_{\{j:h(j)=h(i)\}} f_j$. Let $C = \sum_{\{j:h(j)=h(i)\}} f_j$. Thus,

$$\mathbb{E}[C] = \sum_{j} \Pr[h(j) = h(i)] \cdot f_j = \sum_{j \neq i} \frac{f_j}{w} \neq 0$$

However, it is easy to see that $\mathbb{E}[C] \leq \frac{\sum_j f_j}{w}$. So the bias is at most $\sum_j f_j/w$, which is small for $f_i \gg \sum_j f_j/w$. By Markov Inequality, we have $Cle \frac{10\sum_j f_j}{w}$ with at least 90% probability, i.e.

$$Pr[\hat{f}_i - f_i < O\left(\frac{\sum_j f_j}{w}\right)] \ge 0.9$$

For $w = O\left(\frac{1}{\epsilon\phi}\right)$ and $f_i \ge \phi \sum_j f_j$, we have $C \le \epsilon f_i$. That is, \hat{f}_i is a $(1 + \epsilon)$ approximation (with 90% probability).

Still, there are two issues with this estimator: (1) only constant probability; (2) overestimate for many indices (10%). Fundamentally, there is a conflict between avoiding many collisions and reducing space used by the hash table.

3.1 CountMin

This motivates us to use the "median trick". We can use $L = O(\log n)$ hash tables with hash functions h_j . The CountMin algorithm works as follows:

```
Initialize(r, L):
    array S[L][w]
    L hash functions h_1, \ldots, h_L, into \{1, \ldots, w\}
Process(int i):
    for (j = 0; j < L; ++j)
        S[j][h_j(i)] += 1
Estimator:
    foreach i in PossibleIP:
        \hat{f}_i = median_j(S[j][h_j(i)]
```

Claim 6. The median is a $\pm \epsilon \phi$ estimator with $(1 - 1/n^2)$ probability.

Proof. For an index *i*, each row (out of the *L* rows) gives $\hat{f}_i = f_i \pm \epsilon \phi$ with 90% probability. By Median Trick (see Lecture 2), the median gives an estimator of $\pm \epsilon \phi$ with $(1 - 1/n^2)$ probability.

Alternatively, we can take the min, instead of median, since all counts are overestimated.

3.2 Output Heavy Hitters

We can now identify the heavy hitters by iterating over all *i*'s and outputing those with $\frac{f_i}{\sum_j f_j} \ge \phi$. In particular, for true frequencies f_i s,

- if $\frac{f_i}{\sum_i f_j} \leq \phi(1-\epsilon)$, then *i* is not in output;
- if $\frac{f_i}{\sum_i f_i} \ge \phi(1+\epsilon)$, then *i* is reported as a heavy hitter;
- if $\phi(1-\epsilon) \leq \frac{f_i}{\sum_i f_j} \leq \phi(1+\epsilon)$, then *i* may or may not be reported as a heavy hitter.

If we really care about those elements in between, then we could take more space to further narrow the gap.

The space used is $O\left(\frac{\log^2 n}{\epsilon\phi}\right)$ bits. Since we iterate over all *i*'s, the time complexity is $\Omega(n)$.

We can improve this time complexity, at the cost of increasing space to $O\left(\frac{\log^3 n}{\epsilon\phi}\right)$ bits. The idea is to use dyadic intervals. For each level, we maintain its own sketch, and find the heavy hitters by following down the subtrees of heavy hitters in intermediary.