
COMS E6998-9: Algorithmic Techniques for Massive Data Sep 15, 2015

Lecture 3 – Frequency Moments, Heavy Hitters

Instructor: Alex Andoni Scribes: Daniel Alabi, Wangda Zhang

1 Introduction

This lecture is about the second frequency moment and heavy hitters. First, we present the Tug-of-War

algorithm by Alon-Matias-Szegedy to obtain a 1 + ε approximation using O(1ε log n) space. Second, we

define heavy hitters and present the CountMin algorithm which can be used to obtain heavy hitters.

2 Second Frequency Moment

Assume – as in previous lectures – that we are given a stream of length m from which we want to obtain

a frequency vector f = (f1, f2, . . . , fn) (n distinct elements) where fi is the frequency of the ith distinct

element in the stream, then the kth frequency moment of the stream is

Fk =

n∑
i=1

fki (1)

In Lectures 1 and 2, we estimated F0 and F1 corresponding to the number of distinct elements and

the length of the stream respectively. Now we wish to obtain the second moment:

F2 =
n∑
i=1

f2i (2)

The idea is to use i.i.d random variables ri(= r(i)) where P (ri = 1) = P (ri = −1) = 1
2 (Rademacher

random variables) to get an estimator.

Thus, E[ri] = 0 and Var[ri] = 1 (since r2i = 1 and Var[ri] = E[r2i]− (E[ri])
2). We can think of ri as a

random variable defined for every distinct element so that

r : [n]→ {−1,+1} (3)

As an example, let’s consider when the entries of the frequency vector is all 1s (⇒ m = n). Let

z =
∑

ri (4)

Then E[z] =
∑

E[ri] = 0 by linearity of expectation and using the distribution of ri. Similarly, Var[z] =

Var[
∑
ri] = m. We can apply Chebyshev to obtain that |z−0| = |z| ≤ O(

√
m) with constant probability.

Turns out that this bound is tight.

1

Now, let’s consider the more general case and define

z =
∑
i

ri · fi (5)

Claim 1. E[z2] =
∑

i=1 f
2
i = F2

Proof.

E[z2] = E[(

n∑
i=1

rifi)
2] (6)

=
∑
i

E[r2i]f
2
i +

∑
i 6=j

E[ri]E[rj]fifj (7)

=
∑
i

f2i E[r2i] (8)

=
∑
i

f2i = F2 (9)

(7) holds because for i 6= j, ri and rj are independent, while (8) holds because E[ri] = 0 for all i. Finally,

(9) holds because r2i = 1(⇒ E[r2i] = 1).

Claim 2. Var[z2] ≤ O(1) · F 2
2

Proof. First, let’s compute E[z4]

E[z4] = E[(
∑
i

rifi)
4] (10)

= E[
∑
i,j,k,l

rifirjfjrkfkrlfl] (11)

=
∑
i,j,k,l

fifjfkflE[rirjrkrl] (12)

=
∑
i

f4i + 6
∑
i<j

f2i f
2
j (13)

≤ O(1) · (
∑
i

f2i)2 (14)

(13) holds because:

• Of independence of the random variables

• The terms with odd powers of ri evaluate to zero

• There are
(
4
2

)
= 6 terms of the form r2i r

2
j

Finally, we obtain that Var[z2] ≤ E[z4] ≤ O(1) · F 2
2

Having bounded E[z2] and Var[z2], we present the algorithm below

2

2.1 Tug-of-War (Alon-Matias-Szegedy 1996)

We maintain a counter z.

1. Initialize z = 0

2. When we see element i: z = z + r(i)

3. Return the estimator z2

Earlier, we defined ri in the form r : [n] → {−1,+1} where ri acts like a hash function. The hash

function for the ris should be 4-wise independent.

Next, we apply the “average trick” using k = O(1
ε2

) parallel runs of the algorithm to obtain a 1 + ε

approximation in O(1
ε2

log n) space.

2.2 Linearity

So far we have only considered simple estimators, and we next consider something more complex. Suppose

we have two parts of a stream seen by two different estimators, and we want to estimate the union of

these two parts (i.e., how we can combine them).

Claim 3. Linearity: given estimates z′ for f ′ and z′′ for f ′′, we can combine them as z = z′ + z′′ for

f = f ′ + f ′′.

Proof. Since z′ =
∑
rif

′
i and z′′ =

∑
rif

′′
i , we have z′ + z′′ =

∑
ri(f

′
i + f ′′i). Note that we need to use

the same randomness for two estimates.

Similarly, we can use (z′−z′′)2 to estimate
∑

(f ′i−f ′′i)2. However, we cannot use linearity in a similar

way for
∑
|f ′i − f ′′i |, and will discuss this pointer later in class.

2.3 General Streaming Model

We now consider a more generalized model: at each moment, we have an update (i, δi) to increase the

i-th entry by δi. (δi may be negative)

A linear algorithm S handles this easily, S(f + eiδi) = S(f) + S(eiδi). We call S a sketch. According

to [Nguyen-Li-Woodruff’14], any algorithm for general streaming might as well be linear.

3 Heavy Hitters

Now that we are able to compute many types of frequency counts, we wonder if we can also compute

the max frequency in a stream. It turns out that we cannot: it is impossible to approximate the max

frequency in sublinear space. Therefore, we will solve a more modest problem where we want to detect

the max-frequency element if it is very heavy. We will show that we can find these heavy hitters in space

O(1/φ).

Definition 4. i is φ-heavy if fi ≥ φ
∑

j fj.

3

The basic idea is still to use hash functions. A first-attempt method uses a single hash function h

mapping from [n] to [w] randomly, where w = O(1/φ). Then each element i goes to bucket i, and we sum

up the frequencies in each of the w buckets. We denote the sum of each bucket as S. So the estimator

for fi is f̂ = S(h(i)).

For example, consider a stream of 2, 5, 7, 5, 5. If the hash function h1 works as h1(2) = 2, h1(5) =

1, h1(7) = 2, then we will obtain the following estimates: f̂2 = 2, f̂5 = 3, f̂7 = 2. However, for an element

that never appears in the stream, e.g. 11, this method also estimates its frequency as f̂11 = 2, assuming

h1(11) = 2.

Claim 5. S(h(i)) is a biased estimator.

Proof. Analyzing this estimator, we have f̂i = S(h(i)) = fi +
∑

{j:h(j)=h(i)} fj . Let C =
∑

{j:h(j)=h(i)} fj .

Thus,

E[C] =
∑
j

Pr[h(j) = h(i)] · fj =
∑
j 6=i

fj
w
6= 0

However, it is easy to see that E[C] ≤
∑

j fj
w . So the bias is at most

∑
j fj/w, which is small for

fi �
∑

j fj/w. By Markov Inequality, we have Cle
10

∑
j fj

w with at least 90% probability, i.e.

Pr[f̂i − fi < O

(∑
j fj

w

)
] ≥ 0.9

For w = O
(

1
εφ

)
and fi ≥ φ

∑
j fj , we have C ≤ εfi. That is, f̂i is a (1 + ε) approximation (with 90%

probability).

Still, there are two issues with this estimator: (1) only constant probability; (2) overestimate for many

indices (10%). Fundamentally, there is a conflict between avoiding many collisions and reducing space

used by the hash table.

3.1 CountMin

This motivates us to use the “median trick”. We can use L = O(log n) hash tables with hash functions

hj . The CountMin algorithm works as follows:

Initialize(r, L):

array S[L][w]

L hash functions h1, . . . , hL, into {1, . . . , w}

Process(int i):

for (j = 0; j < L; ++j)

S[j][hj(i)] += 1

Estimator:

foreach i in PossibleIP:

f̂i = medianj(S[j][hj(i)]

4

Claim 6. The median is a ±εφ estimator with (1− 1/n2) probability.

Proof. For an index i, each row (out of the L rows) gives f̂i = fi ± εφ with 90% probability. By Median

Trick (see Lecture 2), the median gives an estimator of ±εφ with (1− 1/n2) probability.

Alternatively, we can take the min, instead of median, since all counts are overestimated.

3.2 Output Heavy Hitters

We can now identify the heavy hitters by iterating over all i’s and outputing those with f̂i∑
j fj
≥ φ. In

particular, for true frequencies fis,

• if fi∑
j fj
≤ φ(1− ε), then i is not in output;

• if fi∑
j fj
≥ φ(1 + ε), then i is reported as a heavy hitter;

• if φ(1− ε) ≤ fi∑
j fj
≤ φ(1 + ε), then i may or may not be reported as a heavy hitter.

If we really care about those elements in between, then we could take more space to further narrow

the gap.

The space used is O
(
log2 n
εφ

)
bits. Since we iterate over all i’s, the time complexity is Ω(n).

We can improve this time complexity, at the cost of increasing space to O
(
log3 n
εφ

)
bits. The idea is to

use dyadic intervals. For each level, we maintain its own sketch, and find the heavy hitters by following

down the subtrees of heavy hitters in intermediary.

5

