
COMS E6998-9: Algorithmic Techniques for Massive Data Sep 24, 2015

Lecture 6 : Counting triangles, Dynamic graphs & sampling

Instructor: Alex Andoni Scribe: Patanjali Vakhulabharanam

Plan

• Counting triangles

• Streaming for dynamic graphs

1 Streaming for graphs(recap)

Consider a graph with

• n vertices

• m edges

which is represented as a stream of list of edges, stored somewhere like on a hard drive. We can sequentially

access this data to generate a stream. Number of edges m could be O(n2) If we have a limited working

memory and are trying to process the edge stream, we would like to get an algorithm that uses space

• O(n)

• O(n log n) which is still much better than O(n2)

Acheiving << n is usually not possible.

1.1 Problems

1. Connectivity

• Exact in O(n) space

2. Distances

• α (odd) approximation in O
(
n1+

2
α+1

)
3. Count # of triangles
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2 Triangle counting

Let T = number of triangles in the graph

Physical motivation - To answer some questions like

• How often do two friends of a person know each other

Define this fraction as

F =
T

3
∑

v

(
deg(v)

2

)
F ∈ [0, 1]

• Denominator

– It is possible to measure the denominator by just counting the degrees of vertices

– O(n) space required to do this

• Numerator T

– Measuring the numerator is harder

– It is not possible to distinguish T = 0 from T = 1 in << m space

– Suppose we have a lower bound t ≤ T

2.1 Triangle counting : Approach

Define a vector x which has a coordinate xS for each subset S of three nodes. The value of this coordinate

is

• xS = number of edges among vertices in S

• T = number of coordinates in x that have value of 3

We had earlier defined frequencies as

• Fp =
∑

S x
p
S

Claim : T = F0 − 1.5F1 + 0.5F2

This is equivalent to writing∑
S χ[XS 6= 0]− 1.5

∑
S X

1
S + 0.5

∑
S X

2
S =

∑
S χ[XS = 3]

Proof

• XS = 0 contribute 0 to both LHS and RHS

• XS = 1 contribute 0 to both LHS and RHS

– LHS evaluates to 1− 1.5 ∗ 1 + 0.5 ∗ 12 = 0
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• XS = 2 contribute 0 to both LHS and RHS

– LHS evaluates to 1− 1.5 ∗ 2 + 0.5 ∗ 22 = 0

• X3 = 3 contributes 1 to RHS

– LHS evaluates 1− 1.5 ∗ 3 + 0.5 ∗ 32 = 1

We can generate such a formula because of polynomial interpolation.

– We need a polynomial f(XS) that evaluates to 0 on {0, 1, 2} and evaluates to 1 on {3}
– Use polynomial interpolation!

– We ideally need a polynomial of degree 3 but we get one degree of freedom from F0 so 2 is

enough.

Algorithm

• Let F̂0, F̂1, F̂2 be 1 + γ estimates

• Stream the edges to generate updates for XS

– For each edge e = (i, j)

– Generate S that contain these two nodes

– For each S = {i, j, k}, set XS = XS + 1

– This is the rule (S,+1)

• Estimate T̂ = F̂0 − 1.5 ∗ F̂1 + 0.5 ∗ F̂2

• The errors for each of the terms cannot be directly added. We use the following inequalities

– |F̂0 − F0| < γF0

– |F̂1 − F1| < γF1 ≤ 3γF0

– |F̂2 − F2| < γF2 ≤ 9γF0

• Using the above, we get error in T̂ = O(γF0) = O(γmn)

• Therefore we can set γ = O(t)
εmn for a ±εt additive error

• Total space required is

O(γ−2 log n) = O

((mn
εt

)2
log n

)
Algorithm 2 Let us consider an even simpler algorithm that the previous one

• Pick a few random Si for i ∈ [k]of 3 nodes

• Compute XSi for i ∈ [k]
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• Let c be the number of i such that XSi = 3

• Estimate R = M
k ∗ c where M =

(
n
3

)
• Mean of R is

E[R] = E[
M

k
∗ c]

= E[
M

k
∗
∑
S

(χ[XS = 3] ∗ χ[S is sampled])]

=
M

k
∗ k

M
∗ T

= T

• Variance of R is

V ar[R] =
∑
S

V ar[
M

k
∗ χ[XS = 3] ∗ χ[S is sampled]]

≤
∑

S|XS=3

(
M

k

)2

∗ Probability(S is sampled)

=
M2

k2
∗ k

M
∗ T

=
TM

k

• Using Chebyshev’s inequality, we get |R− T | ≤ O
(√(

MT
K

))
• We need k = O(1)

ε2
∗ Mt = O

(
1
ε2
∗ n3

t

)
, since M = O(n3)

Algorithm 2+

• The previous algorithm can be improved by choosing S more selectively rather than randomly.

• Pick only those S for which XS ≥ 1

• The size of this set will be M ′ << M

• Using Chebyshev’s inequality on this, we get

– |R− T | ≤ O
(√(

M ′T
K

))
• Using this and M ′ = O(mn), we get

– k = O(1)
ε2
∗ M ′

t = O
(
1
ε2
∗ mnt

)
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3 Sampling in graphs

• Setting 1

– Updates are only positive

– Not linear

• Setting 2

– General streaming : Also include negative updates

– This is motivated by dynamic graphs were connections can get added as well as deleted

Dynamic grahps - Streams can contain both insertions and deletions of edges. There are several use cases

for such graphs

• Use 1 : Log file of updates to the graph

– A graph of a social network can have people ”unfriending”

– A graph of webpage hyperlinks can have links being added as well as deleted, etc

• Use 2 : Graph is distributed over a number of computers

– We will then want linear sketches

– In general dynamic streams and linear sketches go together

• Use 3 : If the algorithm is time efficient, it can also be considered a data structure. This makes it

interesting to areas that are beyond just algorithms.

4 Revisiting connectivity

• Can we do connectivity in dynamic graphs using the algorithm from previous lecture?

• No

Theorem 1. We can check s-t connectivity in dynamic graphs with O(nlog5n) space (with 90%

success probability)

Approach : Use sampling in (dynamic) graphs We wll first look at a sub problem - dynamic sampling

5 Dynamic sampling

Problem

• General updates to a vector x ∈ {−1, 0, 1}n

– This will also work for a general x

• Goal : Output i with probability |xi|∑
j |xj |
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• Does standard sampling work?

– No : For instance consider this. After putting xi = 1 for n/2 coordinates, add 1 more and

delete the first n/2

• Let A = {isuchthatxi 6= 0}

• Intuition

– Suppose |A| = 10.

∗ How do we sample i with only non zero xi

∗ Notice that each of the xi which are non zero are 1
10 heavy hitters

∗ Therefore using CountSketch, we can recover all of them

∗ O(log n) space is required for this

– Suppose A = n/10

∗ Downsample first - Pick a random subset D ⊂ [n] of size |D| ≈ 100

∗ Focus on a substream i ∈ D only and ignore the rest

∗ E[|A ∩D|] = 10

∗ Use CountSketch on the downsampled stream

– In general, prepare for all levels
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