Lecture 6 : Counting triangles, Dynamic graphs \& sampling
Instructor: Alex Andoni Scribe: Patanjali Vakhulabharanam

Plan

- Counting triangles
- Streaming for dynamic graphs

1 Streaming for graphs(recap)

Consider a graph with

- n vertices
- m edges
which is represented as a stream of list of edges, stored somewhere like on a hard drive. We can sequentially access this data to generate a stream. Number of edges m could be $O\left(n^{2}\right)$ If we have a limited working memory and are trying to process the edge stream, we would like to get an algorithm that uses space
- $O(n)$
- $O(n \log n)$ which is still much better than $O\left(n^{2}\right)$

Acheiving $\ll n$ is usually not possible.

1.1 Problems

1. Connectivity

- Exact in $O(n)$ space

2. Distances

- α (odd) approximation in $O\left(n^{1+\frac{2}{\alpha+1}}\right)$

3. Count \# of triangles

2 Triangle counting

Let $\mathrm{T}=$ number of triangles in the graph
Physical motivation - To answer some questions like

- How often do two friends of a person know each other

Define this fraction as

$$
F=\frac{T}{3 \sum_{v}\binom{\operatorname{deg}(v)}{2}}
$$

$F \in[0,1]$

- Denominator
- It is possible to measure the denominator by just counting the degrees of vertices
- $O(n)$ space required to do this
- Numerator T
- Measuring the numerator is harder
- It is not possible to distinguish $T=0$ from $T=1$ in $\ll m$ space
- Suppose we have a lower bound $t \leq T$

2.1 Triangle counting : Approach

Define a vector x which has a coordinate x_{S} for each subset S of three nodes. The value of this coordinate is

- $x_{S}=$ number of edges among vertices in S
- $T=$ number of coordinates in x that have value of 3

We had earlier defined frequencies as

- $F_{p}=\sum_{S} x_{S}^{p}$

Claim : $T=F_{0}-1.5 F_{1}+0.5 F_{2}$
This is equivalent to writing
$\sum_{S} \chi\left[X_{S} \neq 0\right]-1.5 \sum_{S} X_{S}^{1}+0.5 \sum_{S} X_{S}^{2}=\sum_{S} \chi\left[X_{S}=3\right]$
Proof

- $X_{S}=0$ contribute 0 to both LHS and RHS
- $X_{S}=1$ contribute 0 to both LHS and RHS
- LHS evaluates to $1-1.5 * 1+0.5 * 1^{2}=0$
- $X_{S}=2$ contribute 0 to both LHS and RHS
- LHS evaluates to $1-1.5 * 2+0.5 * 2^{2}=0$
- $X_{3}=3$ contributes 1 to RHS
- LHS evaluates $1-1.5 * 3+0.5 * 3^{2}=1$

We can generate such a formula because of polynomial interpolation.

- We need a polynomial $f\left(X_{S}\right)$ that evaluates to 0 on $\{0,1,2\}$ and evaluates to 1 on $\{3\}$
- Use polynomial interpolation!
- We ideally need a polynomial of degree 3 but we get one degree of freedom from F_{0} so 2 is enough.

Algorithm

- Let $\hat{F}_{0}, \hat{F}_{1}, \hat{F}_{2}$ be $1+\gamma$ estimates
- Stream the edges to generate updates for X_{S}
- For each edge $e=(i, j)$
- Generate S that contain these two nodes
- For each $S=\{i, j, k\}$, set $X_{S}=X_{S}+1$
- This is the rule $(S,+1)$
- Estimate $\hat{T}=\hat{F}_{0}-1.5 * \hat{F}_{1}+0.5 * \hat{F}_{2}$
- The errors for each of the terms cannot be directly added. We use the following inequalities

$$
\begin{aligned}
& -\left|\hat{F}_{0}-F_{0}\right|<\gamma F_{0} \\
& -\left|\hat{F}_{1}-F_{1}\right|<\gamma F_{1} \leq 3 \gamma F_{0} \\
& -\left|\hat{F}_{2}-F_{2}\right|<\gamma F_{2} \leq 9 \gamma F_{0}
\end{aligned}
$$

- Using the above, we get error in $\hat{T}=O\left(\gamma F_{0}\right)=O(\gamma m n)$
- Therefore we can set $\gamma=\frac{O(t)}{\epsilon m n}$ for a $\pm \epsilon t$ additive error
- Total space required is

$$
O\left(\gamma^{-2} \log n\right)=O\left(\left(\frac{m n}{\epsilon t}\right)^{2} \log n\right)
$$

Algorithm 2 Let us consider an even simpler algorithm that the previous one

- Pick a few random S_{i} for $i \in[k]$ of 3 nodes
- Compute $X_{S_{i}}$ for $i \in[k]$
- Let c be the number of i such that $X_{S_{i}}=3$
- Estimate $R=\frac{M}{k} * c$ where $M=\binom{n}{3}$
- Mean of R is

$$
\begin{aligned}
E[R] & =E\left[\frac{M}{k} * c\right] \\
& =E\left[\frac{M}{k} * \sum_{S}\left(\chi\left[X_{S}=3\right] * \chi[S \text { is sampled }]\right)\right] \\
& =\frac{M}{k} * \frac{k}{M} * T \\
& =T
\end{aligned}
$$

- Variance of R is

$$
\begin{aligned}
\operatorname{Var}[R] & =\sum_{S} \operatorname{Var}\left[\frac{M}{k} * \chi\left[X_{S}=3\right] * \chi[S \text { is sampled }]\right] \\
& \leq \sum_{S \mid X_{S}=3}\left(\frac{M}{k}\right)^{2} * \operatorname{Probability}(S \text { is sampled }) \\
& =\frac{M^{2}}{k^{2}} * \frac{k}{M} * T \\
& =\frac{T M}{k}
\end{aligned}
$$

- Using Chebyshev's inequality, we get $|R-T| \leq O\left(\sqrt{\left(\frac{M T}{K}\right)}\right)$
- We need $k=\frac{O(1)}{\epsilon^{2}} * \frac{M}{t}=O\left(\frac{1}{\epsilon^{2}} * \frac{n^{3}}{t}\right)$, since $M=O\left(n^{3}\right)$

Algorithm 2+

- The previous algorithm can be improved by choosing S more selectively rather than randomly.
- Pick only those S for which $X_{S} \geq 1$
- The size of this set will be $M^{\prime} \ll M$
- Using Chebyshev's inequality on this, we get

$$
-|R-T| \leq O\left(\sqrt{\left(\frac{M^{\prime} T}{K}\right)}\right)
$$

- Using this and $M^{\prime}=O(m n)$, we get

$$
-k=\frac{O(1)}{\epsilon^{2}} * \frac{M^{\prime}}{t}=O\left(\frac{1}{\epsilon^{2}} * \frac{m n}{t}\right)
$$

3 Sampling in graphs

- Setting 1
- Updates are only positive
- Not linear
- Setting 2
- General streaming : Also include negative updates
- This is motivated by dynamic graphs were connections can get added as well as deleted

Dynamic grahps - Streams can contain both insertions and deletions of edges. There are several use cases for such graphs

- Use 1: Log file of updates to the graph
- A graph of a social network can have people "unfriending"
- A graph of webpage hyperlinks can have links being added as well as deleted, etc
- Use 2 : Graph is distributed over a number of computers
- We will then want linear sketches
- In general dynamic streams and linear sketches go together
- Use 3 : If the algorithm is time efficient, it can also be considered a data structure. This makes it interesting to areas that are beyond just algorithms.

4 Revisiting connectivity

- Can we do connectivity in dynamic graphs using the algorithm from previous lecture?
- No

Theorem 1. We can check s-t connectivity in dynamic graphs with $O\left(n l o g^{5} n\right)$ space (with 90% success probability)

Approach : Use sampling in (dynamic) graphs We wll first look at a sub problem - dynamic sampling

5 Dynamic sampling

Problem

- General updates to a vector $x \in\{-1,0,1\}^{n}$
- This will also work for a general x
- Goal : Output i with probability $\frac{\left|x_{i}\right|}{\sum_{j}\left|x_{j}\right|}$
- Does standard sampling work?
- No : For instance consider this. After putting $x_{i}=1$ for $n / 2$ coordinates, add 1 more and delete the first $n / 2$
- Let $A=\left\{\right.$ isuchthatx $\left._{i} \neq 0\right\}$
- Intuition
- Suppose $|A|=10$.
* How do we sample i with only non zero x_{i}
* Notice that each of the x_{i} which are non zero are $\frac{1}{10}$ heavy hitters
* Therefore using CountSketch, we can recover all of them
* $O(\log n)$ space is required for this
- Suppose $A=n / 10$
* Downsample first - Pick a random subset $D \subset[n]$ of size $|D| \approx 100$
* Focus on a substream $i \in D$ only and ignore the rest
* $E[|A \cap D|]=10$
* Use CountSketch on the downsampled stream
- In general, prepare for all levels

