COMS E6998-9: Algorithmic Techniques for Massive DataSep 24, 2015Lecture 6 : Counting triangles, Dynamic graphs & samplingInstructor: Alex AndoniScribe: Patanjali Vakhulabharanam

Plan

- Counting triangles
- Streaming for dynamic graphs

1 Streaming for graphs(recap)

Consider a graph with

- n vertices
- m edges

which is represented as a stream of list of edges, stored somewhere like on a hard drive. We can sequentially access this data to generate a stream. Number of edges m could be $O(n^2)$ If we have a limited working memory and are trying to process the edge stream, we would like to get an algorithm that uses space

- *O*(*n*)
- $O(n \log n)$ which is still much better than $O(n^2)$

Acheiving << n is usually not possible.

1.1 Problems

- 1. Connectivity
 - Exact in O(n) space
- 2. Distances
 - α (odd) approximation in $O\left(n^{1+\frac{2}{\alpha+1}}\right)$
- 3. Count # of triangles

2 Triangle counting

Let T = number of triangles in the graph Physical motivation - To answer some questions like

• How often do two friends of a person know each other

Define this fraction as

$$F = \frac{T}{3\sum_{v} \binom{\deg(v)}{2}}$$

 $F\in [0,1]$

- Denominator
 - It is possible to measure the denominator by just counting the degrees of vertices
 - -O(n) space required to do this
- Numerator T
 - Measuring the numerator is harder
 - It is not possible to distinguish T = 0 from T = 1 in $\ll m$ space
 - Suppose we have a lower bound $t \leq T$

2.1 Triangle counting : Approach

Define a vector x which has a coordinate x_S for each subset S of three nodes. The value of this coordinate is

- x_S = number of edges among vertices in S
- T = number of coordinates in x that have value of 3

We had earlier defined frequencies as

•
$$F_p = \sum_S x_S^p$$

 $\begin{array}{l} Claim: T=F_0-1.5F_1+0.5F_2\\ \text{This is equivalent to writing}\\ \sum_S \chi[X_S \neq 0]-1.5\sum_S X_S^1+0.5\sum_S X_S^2=\sum_S \chi[X_S=3]\\ Proof \end{array}$

- $X_S = 0$ contribute 0 to both LHS and RHS
- $X_S = 1$ contribute 0 to both LHS and RHS
 - LHS evaluates to $1 1.5 * 1 + 0.5 * 1^2 = 0$

- $X_S = 2$ contribute 0 to both LHS and RHS
 - LHS evaluates to $1 1.5 * 2 + 0.5 * 2^2 = 0$
- $X_3 = 3$ contributes 1 to RHS
 - LHS evaluates $1 1.5 * 3 + 0.5 * 3^2 = 1$

We can generate such a formula because of polynomial interpolation.

- We need a polynomial $f(X_S)$ that evaluates to 0 on $\{0, 1, 2\}$ and evaluates to 1 on $\{3\}$
- Use polynomial interpolation!
- We ideally need a polynomial of degree 3 but we get one degree of freedom from F_0 so 2 is enough.

Algorithm

- Let $\hat{F}_0, \hat{F}_1, \hat{F}_2$ be $1 + \gamma$ estimates
- Stream the edges to generate updates for X_S
 - For each edge e = (i, j)
 - Generate S that contain these two nodes
 - For each $S = \{i, j, k\}$, set $X_S = X_S + 1$
 - This is the rule (S, +1)
- Estimate $\hat{T} = \hat{F}_0 1.5 * \hat{F}_1 + 0.5 * \hat{F}_2$
- The errors for each of the terms cannot be directly added. We use the following inequalities

$$\begin{aligned} & - |\hat{F}_0 - F_0| < \gamma F_0 \\ & - |\hat{F}_1 - F_1| < \gamma F_1 \le 3\gamma F_0 \\ & - |\hat{F}_2 - F_2| < \gamma F_2 \le 9\gamma F_0 \end{aligned}$$

- Using the above, we get error in $\hat{T} = O(\gamma F_0) = O(\gamma mn)$
- Therefore we can set $\gamma = \frac{O(t)}{\epsilon m n}$ for a $\pm \epsilon t$ additive error
- Total space required is

$$O(\gamma^{-2}\log n) = O\left(\left(\frac{mn}{\epsilon t}\right)^2\log n\right)$$

Algorithm 2 Let us consider an even simpler algorithm that the previous one

- Pick a few random S_i for $i \in [k]$ of 3 nodes
- Compute X_{S_i} for $i \in [k]$

- Let c be the number of i such that $X_{S_i} = 3$
- Estimate $R = \frac{M}{k} * c$ where $M = \binom{n}{3}$
- Mean of R is

$$E[R] = E[\frac{M}{k} * c]$$

= $E[\frac{M}{k} * \sum_{S} (\chi[X_{S} = 3] * \chi[S \text{ is sampled}])]$
= $\frac{M}{k} * \frac{k}{M} * T$
= T

• Variance of R is

$$Var[R] = \sum_{S} Var[\frac{M}{k} * \chi[X_{S} = 3] * \chi[S \text{ is sampled}]]$$

$$\leq \sum_{S|X_{S}=3} \left(\frac{M}{k}\right)^{2} * Probability(S \text{ is sampled})$$

$$= \frac{M^{2}}{k^{2}} * \frac{k}{M} * T$$

$$= \frac{TM}{k}$$

- Using Chebyshev's inequality, we get $|R T| \le O\left(\sqrt{\left(\frac{MT}{K}\right)}\right)$
- We need $k = \frac{O(1)}{\epsilon^2} * \frac{M}{t} = O\left(\frac{1}{\epsilon^2} * \frac{n^3}{t}\right)$, since $M = O(n^3)$

Algorithm 2+

- The previous algorithm can be improved by choosing S more selectively rather than randomly.
- Pick only those S for which $X_S \ge 1$
- The size of this set will be M' << M
- Using Chebyshev's inequality on this, we get

$$- |R - T| \le O\left(\sqrt{\left(\frac{M'T}{K}\right)}\right)$$

• Using this and M' = O(mn), we get

$$-k = \frac{O(1)}{\epsilon^2} * \frac{M'}{t} = O\left(\frac{1}{\epsilon^2} * \frac{mn}{t}\right)$$

3 Sampling in graphs

- Setting 1
 - Updates are only positive
 - Not linear
- Setting 2
 - General streaming : Also include negative updates
 - This is motivated by dynamic graphs were connections can get added as well as deleted

Dynamic graphs - Streams can contain both insertions and deletions of edges. There are several use cases for such graphs

- Use 1 : Log file of updates to the graph
 - A graph of a social network can have people "unfriending"
 - A graph of webpage hyperlinks can have links being added as well as deleted, etc
- Use 2 : Graph is distributed over a number of computers
 - We will then want linear sketches
 - In general dynamic streams and linear sketches go together
- Use 3 : If the algorithm is time efficient, it can also be considered a data structure. This makes it interesting to areas that are beyond just algorithms.

4 Revisiting connectivity

- Can we do connectivity in dynamic graphs using the algorithm from previous lecture?
- No

Theorem 1. We can check s-t connectivity in dynamic graphs with $O(nlog^5n)$ space (with 90% success probability)

Approach : Use sampling in (dynamic) graphs We will first look at a sub problem - dynamic sampling

5 Dynamic sampling

Problem

- General updates to a vector $x \in \{-1, 0, 1\}^n$
 - This will also work for a general **x**
- Goal : Output i with probability $\frac{|x_i|}{\sum_i |x_j|}$

- Does standard sampling work?
 - No : For instance consider this. After putting $x_i = 1$ for n/2 coordinates, add 1 more and delete the first n/2
- Let $A = \{isuchthat x_i \neq 0\}$
- Intuition
 - Suppose |A| = 10.
 - * How do we sample i with only non zero x_i
 - * Notice that each of the x_i which are non zero are $\frac{1}{10}$ heavy hitters
 - * Therefore using CountSketch, we can recover all of them
 - * $O(\log n)$ space is required for this
 - Suppose A = n/10
 - * Downsample first Pick a random subset $D \subset [n]$ of size $|D| \approx 100$
 - * Focus on a substream $i \in D$ only and ignore the rest
 - $* E[|A \cap D|] = 10$
 - $\ast\,$ Use CountSketch on the downsampled stream
 - In general, prepare for all levels