1 Dynamic Sampling (and applications)

Recall that in the previous lecture, we introduced the following subproblem as building block for an approach to solve the connectivity problem on dynamic graph streams:

1.1 Dynamic Sampling

Stream: general updates to a vector $x \in \{-1, 0, +1\}^n$

Goal: output $X \in [n]$ with $\Pr[X = i] = \frac{|x_i|}{\sum_{j=1}^n |x_j|}$.

Before describing and analyzing an algorithm achieving this goal, we describe (some) intuition behind it by considering the following two extreme cases, where we let $D = \{ i \in [n] : x_i \neq 0 \}$:

- If $|D| = 10$, then each $x_i \neq 0$ is a $\frac{1}{10}$-heavy hitter: we can use CountSketch to recover all of them using a total of $O(\log n)$ space.

- If $|D| = 10\sqrt{n}$, we can downsample. That is, we can first obtain a random subset $S \subseteq [n]$ by including independently each coordinate $i \in [n]$ with probability $1/\sqrt{n}$ (so that $|S| \approx \sqrt{n}$), and then focus on the substream involving indices $i \in S$. (Note that this allows to reduce to the previous case, since $\mathbb{E}[|D \cap S|] = 10$, and with high probability we should actually have $|D \cap S| \approx 10$.)

The actual algorithm will in some sense interpolate between these cases, by considering all possible “orders of magnitude” for $|D|$ (and focusing on the one that works.)

1.1.1 Basic Sketch

We start by choosing a hash function $g : [n] \rightarrow \{0, \ldots, n - 1\} \equiv \{0, 1\}^L$ (where $L = \log n$), and let $h : [n] \rightarrow [L]$ be the function defined by

$$h(i) = \max \left\{ k \in \{0, \ldots, L\} : \exists x \in \{0, 1\}^*, g(i) = x0^k \right\}, \quad i \in [n].$$

\footnote{This actually leverages some extra guarantees of CountSketch, not explicitly stated in the previous lectures. Namely, defining for a vector x its tail x^{tail} as x restricted to the set of indices that do not belong to the top-k coordinates (where in the previous lectures we had $k = 1/\phi$), then for all $i \in [n]$ CountSketch an estimate of x_i accurate to within an additive $\pm ||x^{\text{tail}}||_2/k$.}
(That is, \(h(i)\) is the number of tail zeros in the binary expansion of \(g(i)\): if \(g(i) = 01000100\), then \(h(i) = 2\). This implies that, over the randomness of the hash function \(g\), for any \(i \in [n]\)

\[
\Pr[h(i) = j] = \begin{cases}
\frac{1}{2^{j+1}} & \text{for } 0 \leq j \leq L - 1 \\
\frac{1}{2^L} & \text{for } j = L
\end{cases}
\]

where the first expression comes from the fact that \(h(i) = j\) iff the last \(j\) bits are 0 and the bit just before \(j\) is 1 (which happens with probability \(2^{-j} \cdot \frac{1}{2}\)). In particular, \(\sum_{j=0}^{L} \Pr[h(i) = j] = 1\), as it should for a probability distribution.

The algorithm then partition the stream into \(L + 1\) substreams \(I_0, \ldots, I_L\), where the substream \(I_j\) only includes the indices \(i \in [n]\) such that \(h(i) = j\). The crucial observation here is that this implies that

\[
\mathbb{E}[|D \cap I_j|] = \frac{|D|}{2^{j+1}}, \quad 0 \leq j \leq L - 1
\]

i.e. “stream \(I_j\) corresponds to downsampling with probability \(1/2^{j+1}\).”

Sketch. For each \(0 \leq j \leq L\):

- Store \(CS_j\): **CountSketch** on \(I_j\), with parameter \(\phi \overset{\text{def}}{=} \frac{1}{100}\);

- Store \(DC_j\): **DistinctCountSketch** on \(I_j\), with parameter \(\varepsilon \overset{\text{def}}{=} \frac{1}{10}\) (for a 1.1-approximation);

both with success probability \(1 - \frac{1}{n}\) (for a union bound over all streams and iterations) (which costs an extra \(O(\log n)\) factor in the space complexity).\(^2\) Note that for **DistinctCountSketch** we can use the linear sketch Tug-of-War (which approximates the frequency moment \(F_2\)). Indeed, since each \(f_i \in \{-1, 0, 1\}\), we get \(\sum_i f_i^2 = \sum_i \mathbb{1}_{\{f_i \neq 0\}} = |D|\).

Estimation.

1. Find a substream \(I_j\) such that \(DC_j \in [1, 20]\): if none, output fail.

2. Recover all \(i \in I_j\) such that \(x_i \neq 0\) (using \(CS_j\)).

3. Output one of them uniformly at random.

Analysis. (We condition on all sketches \(DC_j, CS_j\) computed in the sketching stage to meet their guarantee, which overall by a union bound over all \(O(L)\) sketches happens with probability \(1 - o(1)\).)

- First, if \(0 < |D| < 10\), then there exists some \(j\) for which \(DJ_j \in [1, 11]\); thus, the algorithm does not output fail in the first step and the rest goes through.

- We can therefore assume \(|D| \geq 10\). Let \(k \geq 0\) be such that \(|D| \in [10 \cdot 2^k, 10 \cdot 2^{k+1})\); then,

\[
\mathbb{E}[|D \cap I_k|] = \frac{|D|}{2^{k+1}} \in [5, 10)
\] \(^{(1)}\)

\(^2\)Note that it will become apparent later in the analysis that \(1 - \frac{1}{100\log n}\) or so would be sufficient, if one wanted to do precise bookkeeping.
and furthermore, setting \(p \overset{\text{def}}{=} \Pr[i \in I_k] = \frac{1}{2^{k+1}} \) for convenience, one can compute the variance as follows:

\[
\text{Var} |D \cap I_k| = \text{Var} \sum_{i \in D} 1_{\{i \in I_k\}} \\
= \sum_{i \in D} \text{Var} 1_{\{i \in I_k\}} \quad \text{((Pairwise) independence)} \\
= \sum_{i \in D} p(1 - p) \quad \text{(Variance of a Bernoulli)} \\
= |D| p(1 - p) \leq \frac{|D|}{2^{k+1}} \\
\leq 10. \quad \text{(by definition of } k)
\]

Applying Chebyshev’s inequality, we obtain that

\[
\Pr[|D \cap I_k| \not\in [1, 20]] \leq \Pr[||D \cap I_k| - \mathbb{E}|D \cap I_k|| > 4] \leq \frac{\text{Var} |D \cap I_k|}{16} \leq \frac{10}{16} = 0.625.
\]

Thus, we have \(DC_k \in [1, 20] \) with probability at least 0.375. Conditioning on this event, the algorithm does not output \text{fail} in Step 1: let then \(j \) be any index such that \(DC_j \in [1, 20] \) (there is at least one such index, namely \(k \)). This, along with the setting of the parameter \(\phi \), guarantees that \(CS_j \) will recover a heavy hitter: that is, \(i \in D \cap I_j \).

Finally, by symmetry, we can see that as long as the algorithm reaches Step 3 and outputs \(i \in D \cap I_j \) for some \(j \), then \(i \) is uniformly distributed over \(D \).

Observation 1. As the analysis only relied on independence for the computation of the variance (to apply Chebyshev’s inequality), a pairwise independent (family of) hash function(s) is sufficient for \(g \).

Guarantees. The algorithm we described and analyzed above, DYNSAMPLEBASIC, only offers the following guarantees:

- it fails with probability at most 0.625 (and we know when it does, as it explicitly outputs \text{fail});
- whenever it does not fail, it outputs \(i \) uniformly distributed in \(D \) (modulo a negligible probability that either one of the \(CS_j \)’s or \(DS_j \)’s does not succeed).

To reduce the failure probability, one can do the usual trick: that is, taking independent copies. Below is the overall algorithm, DYNSAMPLEFULL:

- Run \(\ell = O(\log n) \) independent copies of DYNSAMPLEBASIC: with probability at least \(1 - (0.625)^\ell > 1 - \frac{1}{n} \), at least one of them will not output \text{fail}.
• The space needed overall is $O(\log^4 n)$ words, for $\ell = O(\log n)$ independent copies with each $L = O(\log n)$ different substreams, all involving $O(\log^2 n)$ space for CS_j, DS_j called with error parameter $1/n$.\(^3\)

1.2 Back to Dynamic Graphs (and Connectivity)

Recall that in this setting, we are given the edges of an n-node graph $G = (V, E)$ as a stream of insertions or deletions. In particular, we can consider the following encoding of the graph, as node-edge incidence vectors: to each node-edge incidence or deletions. In particular, we can consider the following encoding of the graph, as node-edge incidence vectors: to each $v \in V = [n]$ corresponds a vector $x_v \in \mathbb{R}^p$ (for $p \overset{\text{def}}{=} \binom{n}{2}$), where

- for $j > v$, $x_v(v, j) = 1_{\{(v, j) \in E\}}$;
- for $j < v$, $x_v(v, j) = -1_{\{(v, j) \in E\}}$.

In particular, non-zero coordinates of x_v correspond to edges incident to v (and the sign of $x_v(v, j)$ is an “artificial orientation” we imposed to it).

Idea. We can use dynamic sampling to sample uniformly an edge incident to each v. Then, we use these edges to collapse the graph: replacing two nodes u, v connected by an edge we sampled by a “meta-node,” combining the incident edges to both u and v.

Ideally, we would like to iterate until either we are left with a single meta-node (in which case the graph was connected) or strictly more than one (in which case the graph was not). The issue, however, lies in this iteration: namely, how to sample edges incident to these “meta-nodes,” while we only have (streaming) access to the edges of the actual graph G?

The answer lies in the following crucial observation, which also explains the particular type of ± 1 encoding that was chosen for the vectors x_v:

Claim 2. For a set $Q \subseteq V$, define the node-edge incidence vector of the “meta-node” Q as $x_Q \overset{\text{def}}{=} \sum_{v \in Q} x_v \in \mathbb{R}^p$. Then, $x_Q \in \{-1, 0, 1\}^V$, and moreover it has a non-zero component at coordinate (i, j) if and only if edge (i, j) exists and crosses from Q to $V \setminus Q$. (That is, $(i, j) \in E$ and $|\{i, j\} \cap Q| = 1$.)

Proof. If $(i, j) \notin E$, then $x_Q(i, j) = x_i(i, j) + x_j(i, j) = 0 + 0 = 0$. Otherwise, assume $(i, j) \in E$: if $|\{i, j\} \cap Q| = 2$, then $x_Q(i, j) = x_i(i, j) + x_j(i, j) = 1 - 1 = 0$. If $|\{i, j\} \cap Q| = 0$, then $x_Q(i, j) = 0$ immediately (no term in the sum with something in that coordinate). Only the case $|\{i, j\} \cap Q| = 1$ results in $x_Q(i, j) = 1$ or $x_Q(i, j) = -1$, depending on which of i, j belongs to Q. \qed

Another very useful property of these x_Q: to compute them, we only need the sketches of the x_v’s, since they are linear sketches. Therefore, we can actually sample a random edge from x_Q (for any fixed $Q \subseteq V$), using only $|V| \cdot O(\text{poly log } |V|) = O(n \text{ poly log } n)$ space!

$$\text{DYN SAMPLE FULL}(\sum_{v \in Q} x_v) = \sum_{v \in Q} \text{DYN SAMPLE FULL}(x_v), \quad \forall Q \subseteq V.$$

An (almost correct) idea would therefore to do the following:

1. Initiate a sketch (of DYN SAMPLE FULL) for each of the n vectors x_v\(^3\)

3 Note that as hinted before, this can be reduced to $O(\log^3 n \cdot \log \log n)$ words, setting the error probability of each CS_j, DS_j to be only $1/\log n$.

4
2. Check connectivity with the following recursive way, outputting \textbf{no} whenever one of the steps outputs \textit{fail}, and \textbf{yes} if we reach a graph with only one (meta)-node:

(a) sample an edge for each of the meta-nodes v of the current graph;
(b) contract all sampled edges, obtaining a smaller graph with meta-nodes corresponding to connected components of the previous one;
(c) recurse on the new graph.

Since at every recursive step, the number of meta-nodes is easily seen to be reduced by a factor at least 2, only $O(\log n)$ such steps are needed overall.

However, the above has a big flaw: namely, the iterations (calls to \textsc{DynSampleFull} on the “new meta-nodes”) are \textit{not} independent, compromising correctness... (Indeed, the guarantees of \textsc{DynSampleFull} do not apply if the queries are made on \textit{adaptively} chosen combinations of previous queries: an adversary could basically learn enough about the sketches to eventually query some x_Q on which \textsc{DynSampleFull} is ensured to fail.)

A simple solution: we can use new independent copies of \textsc{DynSampleFull} at every iteration... only costing an $O(\log n)$ blowup in the space required (since this is the number of iterations).

2 Dimension Reduction

Barely scratched... next lecture.