COMS E6998-9: Algorithmic Techniques for Massive Data

Sep 29, 2015

Lecture 7 – Dynamic sampling, Dimension Reduction

Instructor: Alex Andoni

Scribes: Clément Canonne

1 Dynamic Sampling (and applications)

Recall that in the previous lecture, we introduced the following subproblem as building block for an approach to solve the *connectivity* problem on dynamic graph streams:

1.1 Dynamic Sampling

Stream: general updates to a vector $x \in \{-1, 0, +1\}^n$

Goal: output $X \in [n]$ with $\Pr[X = i] = \frac{|x_i|}{\sum_{j=1}^{n} |x_j|}$.

Before describing and analyzing an algorithm achieving this goal, we describe (some) intuition behind it by considering the following two extreme cases, where we let $D \stackrel{\text{def}}{=} \{ i \in [n] : x_i \neq 0 \}$:

- If |D| = 10, then each $x_i \neq 0$ is a $\frac{1}{10}$ -heavy hitter: we can use COUNTSKETCH to recover all of them using a total of $O(\log n)$ space.¹
- If $|D| = 10\sqrt{n}$, we can *downsample*. That is, we can first obtain a random subset $S \subseteq [n]$ by including independently each coordinate $i \in [n]$ with probability $1/\sqrt{n}$ (so that $|S| \approx \sqrt{n}$), and then focus on the substream involving indices $i \in S$. (Note that this allows to reduce to the previous case, since $\mathbb{E}[|D \cap S|] = 10$, and with high probability we should actually have $|D \cap S| \approx 10$.)

The actual algorithm will in some sense *interpolate* between these cases, by considering all possibles "orders of magnitude" for |D| (and focusing on the one that works.)

1.1.1 Basic Sketch

We start by choosing a hash function $g: [n] \to \{0, \ldots, n-1\} \equiv \{0, 1\}^L$ (where $L \stackrel{\text{def}}{=} \log n$), and let $h: [n] \to [L]$ be the function defined by

$$h(i) \stackrel{\text{def}}{=} \max\left\{ k \in \{0, \dots, L\} : \exists x \in \{0, 1\}^*, \ g(i) = x0^k \right\}, \qquad i \in [n].$$

¹This actually leverages some extra guarantees of COUNTSKETCH, not explicitly stated in the previous lectures. Namely, defining for a vector \mathbf{x} its *tail* \mathbf{x}^{tail} as \mathbf{x} restricted to the set of indices that do not belong to the top-k coordinates (where in the previous lectures we had $k = 1/\phi$), then for all $i \in [n]$ COUNTSKETCH an estimate of \mathbf{x}_i accurate to within an additive $\pm \|\mathbf{x}^{\text{tail}}\|_2/k$.

(That is, h(i) is the number of tail zeros in the binary expansion of g(i): if g(i) = 01000100, then h(i) = 2). This implies that, over the randomness of the hash function g, for any $i \in [n]$

$$\Pr[h(i) = j] = \begin{cases} \frac{1}{2^{j+1}} & \text{for } 0 \le j \le L - 1\\ \frac{1}{2^L} & \text{for } j = L \end{cases}$$

where the first expression comes from the fact that h(i) = j iff the last j bits are 0 and the bit just before is 1 (which happens with probability $2^{-j} \cdot \frac{1}{2}$ In particular, $\sum_{j=0}^{L} \Pr[h(i) = j] = 1$, as it should for a probability distribution.

The algorithm then partition the stream into L + 1 substreams I_0, \ldots, I_L , where the substream I_j only includes the indices $i \in [n]$ such that h(i) = j. The crucial observation here is that this implies that

$$\mathbb{E}[|D \cap I_j|] = \frac{|D|}{2^{j+1}}, \qquad 0 \le j \le L-1$$

i.e. "stream I_j corresponds to downsampling with probability $1/2^{j+1}$."

Sketch. For each $0 \le j \le L$:

- Store CS_j : COUNTSKETCH on I_j , with parameter $\phi \stackrel{\text{def}}{=} \frac{1}{100}$;
- Store DC_j : DISTINCT COUNTSKETCH on I_j , with parameter $\varepsilon \stackrel{\text{def}}{=} \frac{1}{10}$ (for a 1.1-approximation);

both with success probability $1 - \frac{1}{n}$ (for a union bound over all streams and iterations) (which costs an extra $O(\log n)$ factor in the space complexity).² Note that for DISTINCTCOUNTSKETCH we can use the *linear* sketch TUG-OF-WAR (which approximates the frequency moment F_2). Indeed, since each $f_i \in \{-1, 0, 1\}$, we get $\sum_i f_i^2 = \sum_i \mathbf{1}_{\{f_i \neq 0\}} = |D|$.

Estimation.

- 1. Find a substream I_j such that $DC_j \in [1, 20]$: if none, output fail.
- 2. Recover all $i \in I_j$ such that $x_i \neq 0$ (using CS_j).
- 3. Output one of them uniformly at random.

Analysis. (We condition on all sketches DC_j, CS_j computed in the sketching stage to meet their guarantee, which overall by a union bound over all O(L) sketches happens with probability 1 - o(1).)

- First, if 0 < |D| < 10, then there exists some j for which $DJ_j \in [1, 11]$; thus, the algorithm does not output fail in the first step and the rest goes through.
- We can therefore assume $|D| \ge 10$. Let $k \ge 0$ be such that $|D| \in [10 \cdot 2^k, 10 \cdot 2^{k+1})$; then,

$$\mathbb{E}|D \cap I_k| = \frac{|D|}{2^{k+1}} \in [5, 10) \tag{1}$$

²Note that it will become apparent later in the analysis that $1 - \frac{1}{10 \log n}$ or so would be sufficient, if one wanted to do precise bookkeeping.

and furthermore, setting $p \stackrel{\text{def}}{=} \Pr[i \in I_k] = \frac{1}{2^{k+1}}$ for convenience, one can compute the variance as follows:

$$\begin{aligned} \operatorname{Var} |D \cap I_k| &= \operatorname{Var} \sum_{i \in D} \mathbf{1}_{\{i \in I_k\}} \\ &= \sum_{i \in D} \operatorname{Var} \mathbf{1}_{\{i \in I_k\}} \\ &= \sum_{i \in D} p(1-p) \end{aligned} \qquad (\text{Variance of a Bernoulli}) \\ &= |D| \, p(1-p) \leq \frac{|D|}{2^{k+1}} \\ &\leq 10. \end{aligned} \qquad (by \text{ definition of } k) \end{aligned}$$

Applying Chebyshev's inequality, we obtain that

$$\Pr[|D \cap I_k| \notin [1, 20]] \le \Pr[||D \cap I_k| - \mathbb{E} |D \cap I_k|| > 4]$$
$$\le \frac{\operatorname{Var} |D \cap I_k|}{16}$$
$$\le \frac{10}{16} = 0.625.$$

Thus, we have $DC_k \in [1, 20]$ with probability at least 0.375. Conditioning on this event, the algorithm does not output fail in Step 1: let then j be any index such that $DC_j \in [1, 20]$ (there is at least one such index, namely k). This, along with the setting of the parameter ϕ , guarantees that CS_j will recover a heavy hitter: that is, $i \in D \cap I_j$.

Finally, by symmetry, we can see that as long as the algorithm reaches Step 3 and outputs $i \in D \cap I_j$ for some j, then i is uniformly distributed over D.

Does this need elaborating?

Observation 1. As the analysis only relied on independence for the computation of the variance (to apply Chebyshev's inequality), a pairwise independent (family of) hash function(s) is sufficient for g.

Guarantees. The algorithm we described and analyzed above, DYNSAMPLEBASIC, only offers the following guarantees:

- it fails with probability at most 0.625 (and we *know* when it does, as it explicitly outputs fail);
- whenever it does not fail, it outputs *i* uniformly distributed in D (modulo a negligible probability that either one of the CS_j 's or DS_j 's does not succeed).

To reduce the failure probability, one can do the usual trick: that is, taking independent copies. Below is the overall algorithm, DYNSAMPLEFULL:

• Run $\ell = O(\log n)$ independent copies of DYNSAMPLEBASIC: with probability at least $1 - (0.625)^{\ell} > 1 - \frac{1}{n}$, at least one of them will not output fail.

• The space needed overall is $O(\log^4 n)$ words, for $\ell = O(\log n)$ independent copies with each $L = O(\log n)$ different substreams, all involving $O(\log^2 n)$ space (for CS_j, DS_j called with error parameter 1/n).³

1.2 Back to Dynamic Graphs (and Connectivity)

Recall that in this setting, we are given the edges of a *n*-node graph G = (V, E) as a stream of insertions or deletions. In particular, we can consider the following encoding of the graph, as *node-edge incidence* vectors: to each $v \in V = [n]$ corresponds a vector $\mathbf{x}_v \in \mathbb{R}^p$ (for $p \stackrel{\text{def}}{=} \binom{n}{2}$), where

- for j > v, $\mathbf{x}_v(v, j) = \mathbf{1}_{\{(v, j) \in E\}};$
- for j < v, $\mathbf{x}_v(v, j) = -\mathbf{1}_{\{(v, j) \in E\}}$.

In particular, non-zero coordinates of \mathbf{x}_v correspond to edges incident to v (and the sign of $\mathbf{x}_v(v, j)$ is an "artificial orientation" we imposed to it).

Idea. We can use dynamic sampling to sample uniformly an edge incident to each v. Then, we use these edges to *collapse* the graph: replacing two nodes u, v connected by an edge we sampled by a "meta-node," combining the incident edges to both u and v.

Ideally, we would like to iterate until either we are left with a single meta-node (in which case the graph was connected) or strictly more than one (in which case the graph was not). The issue, however, lies in this iteration: namely, how to sample edges incident to these "meta-nodes,", while we only have (streaming) access to the edges of the actual graph G?

The answer lies in the following crucial observation, which also explains the particular type of ± 1 encoding that was chosen for the vectors \mathbf{x}_v :

Claim 2. For a set $Q \subseteq V$, define the node-edge incidence vector of the "meta-node" Q as $\mathbf{x}_Q \stackrel{\text{def}}{=} \sum_{v \in Q} x_v \in \mathbb{R}^p$. Then, $\mathbf{x}_Q \in \{-1, 0, 1\}^V$, and moreover it has a non-zero component at coordinate (i, j) if and only if edge (i, j) exists and crosses from Q to $V \setminus Q$. (That is, $(i, j) \in E$ and $|\{i, j\} \cap Q| = 1$.)

Proof. If $(i,j) \notin E$, then $\mathbf{x}_Q(i,j) = \mathbf{x}_i(i,j) + \mathbf{x}_j(i,j) = 0 + 0 = 0$. Otherwise, assume $(i,j) \in E$: if $|\{i,j\} \cap Q| = 2$, then $\mathbf{x}_Q(i,j) = \mathbf{x}_i(i,j) + \mathbf{x}_j(i,j) = 1 - 1 = 0$. If $|\{i,j\} \cap Q| = 0$, then $\mathbf{x}_Q(i,j) = 0$ immediately (no term in the sum with something in that coordinate). Only the case $|\{i,j\} \cap Q| = 1$ results in $\mathbf{x}_Q(i,j) = 1$ or $\mathbf{x}_Q(i,j) = -1$, depending on which of i, j belongs to Q.

Another very useful property of these \mathbf{x}_Q : to compute them, we only need the sketches of the \mathbf{x}_v 's, since they are linear sketches. Therefore, we can actually sample a random edge from \mathbf{x}_Q (for any fixed $Q \subseteq V$), using only $|V| \cdot O(\text{poly} \log |V|) = O(n \text{ poly} \log n)$ space!

$$DYNSAMPLEFULL\left(\sum_{v \in Q} \mathbf{x}_v\right) = \sum_{v \in Q} DYNSAMPLEFULL(\mathbf{x}_v), \qquad \forall Q \subseteq V$$

An (almost correct) idea would therefore to do the following:

1. Initiate a sketch (of DYNSAMPLEFULL) for each of the n vectors \mathbf{x}_v

³Note that as hinted before, this can be reduced to $O(\log^3 n \cdot \log \log n)$ words, setting the error probability of each CS_j, DS_j to be only $1/\log n$.

- 2. Check connectivity with the following recursive way, outputting no whenever one of the steps outputs fail, and yes if we reach a graph with only one (meta)-node:
 - (a) sample an edge for each of the meta-nodes v of the current graph;
 - (b) contract all sampled edges, obtaining a smaller graph with meta-nodes corresponding to connected components of the previous one;
 - (c) recurse on the new graph.

Since at every recursive step, the number of meta-nodes is easily seen to be reduced by a factor at least 2, only $O(\log n)$ such steps are needed overall.

However, the above has a big flaw: namely, the iterations (calls to DYNSAMPLEFULL on the "new meta-nodes") are *not* independent, compromising correctness... (Indeed, the guarantees of DYNSAM-PLEFULL do not apply if the queries are made on *adaptively* chosen combinations of previous queries: an adversary could basically learn enough about the sketches to eventually query some \mathbf{x}_Q on which DYNSAMPLEFULL is ensured to fail.)

A simple solution: we can use *new* independent copies of DYNSAMPLEFULL at every iteration... only costing an $O(\log n)$ blowup in the space required (since this is the number of iterations).

2 Dimension Reduction

Barely scratched... next lecture.