
COMS E6998-9: Algorithmic Techniques for Massive Data Sep 29, 2015

Lecture 7 – Dynamic sampling, Dimension Reduction

Instructor: Alex Andoni Scribes: Clément Canonne

1 Dynamic Sampling (and applications)

Recall that in the previous lecture, we introduced the following subproblem as building block for an

approach to solve the connectivity problem on dynamic graph streams:

1.1 Dynamic Sampling

Stream: general updates to a vector x ∈ {−1, 0,+1}n

Goal: output X ∈ [n] with Pr[X = i] = |xi|∑n
j=1|xj | .

Before describing and analyzing an algorithm achieving this goal, we describe (some) intuition behind it

by considering the following two extreme cases, where we let D
def
= { i ∈ [n] : xi 6= 0 }:

• If |D| = 10, then each xi 6= 0 is a 1
10 -heavy hitter: we can use CountSketch to recover all of them

using a total of O(log n) space.1

• If |D| = 10
√
n, we can downsample. That is, we can first obtain a random subset S ⊆ [n] by

including independently each coordinate i ∈ [n] with probability 1/
√
n (so that |S| ≈

√
n), and

then focus on the substream involving indices i ∈ S. (Note that this allows to reduce to the previous

case, since E[|D ∩ S|] = 10, and with high probability we should actually have |D ∩ S| ≈ 10.)

The actual algorithm will in some sense interpolate between these cases, by considering all possibles

“orders of magnitude” for |D| (and focusing on the one that works.)

1.1.1 Basic Sketch

We start by choosing a hash function g : [n] → {0, . . . , n − 1} ≡ {0, 1}L (where L
def
= log n), and let

h : [n]→ [L] be the function defined by

h(i)
def
= max

{
k ∈ {0, . . . , L} : ∃x ∈ {0, 1}∗, g(i) = x0k

}
, i ∈ [n].

1This actually leverages some extra guarantees of CountSketch, not explicitly stated in the previous lectures. Namely,
defining for a vector x its tail xtail as x restricted to the set of indices that do not belong to the top-k coordinates (where in
the previous lectures we had k = 1/φ), then for all i ∈ [n] CountSketch an estimate of xi accurate to within an additive
±‖xtail‖2/k.

1

(That is, h(i) is the number of tail zeros in the binary expansion of g(i): if g(i) = 01000100, then

h(i) = 2). This implies that, over the randomness of the hash function g, for any i ∈ [n]

Pr[h(i) = j] =

{
1

2j+1 for 0 ≤ j ≤ L− 1
1
2L

for j = L

where the first expression comes from the fact that h(i) = j iff the last j bits are 0 and the bit just

before is 1 (which happens with probability 2−j · 12 In particular,
∑L

j=0 Pr[h(i) = j] = 1, as it should for

a probability distribution.

The algorithm then partition the stream into L + 1 substreams I0, . . . , IL, where the substream Ij
only includes the indices i ∈ [n] such that h(i) = j. The crucial observation here is that this implies that

E[|D ∩ Ij |] =
|D|
2j+1

, 0 ≤ j ≤ L− 1

i.e. “stream Ij corresponds to downsampling with probability 1/2j+1.”

Sketch. For each 0 ≤ j ≤ L:

• Store CSj : CountSketch on Ij , with parameter φ
def
= 1

100 ;

• Store DCj : DistinctCountSketch on Ij , with parameter ε
def
= 1

10 (for a 1.1-approximation);

both with success probability 1 − 1
n (for a union bound over all streams and iterations) (which costs

an extra O(log n) factor in the space complexity).2 Note that for DistinctCountSketch we can use

the linear sketch Tug-of-War (which approximates the frequency moment F2). Indeed, since each

fi ∈ {−1, 0, 1}, we get
∑

i f
2
i =

∑
i 1{fi 6=0} = |D|.

Estimation.

1. Find a substream Ij such that DCj ∈ [1, 20]: if none, output fail.

2. Recover all i ∈ Ij such that xi 6= 0 (using CSj).

3. Output one of them uniformly at random.

Analysis. (We condition on all sketches DCj , CSj computed in the sketching stage to meet their

guarantee, which overall by a union bound over all O(L) sketches happens with probability 1− o(1).)

• First, if 0 < |D| < 10, then there exists some j for which DJj ∈ [1, 11]; thus, the algorithm does

not output fail in the first step and the rest goes through.

• We can therefore assume |D| ≥ 10. Let k ≥ 0 be such that |D| ∈ [10 · 2k, 10 · 2k+1); then,

E |D ∩ Ik| =
|D|
2k+1

∈ [5, 10) (1)

2Note that it will become apparent later in the analysis that 1 − 1
10 logn

or so would be sufficient, if one wanted to do
precise bookkeeping.

2

and furthermore, setting p
def
= Pr[i ∈ Ik] = 1

2k+1 for convenience, one can compute the variance as

follows:

Var |D ∩ Ik| = Var
∑
i∈D

1{i∈Ik}

=
∑
i∈D

Var1{i∈Ik} ((Pairwise) independence)

=
∑
i∈D

p(1− p) (Variance of a Bernoulli)

= |D| p(1− p) ≤ |D|
2k+1

≤ 10. (by definition of k)

Applying Chebyshev’s inequality, we obtain that

Pr[|D ∩ Ik| /∈ [1, 20]] ≤ Pr[||D ∩ Ik| − E |D ∩ Ik|| > 4]

≤ Var |D ∩ Ik|
16

≤ 10

16
= 0.625.

Thus, we have DCk ∈ [1, 20] with probability at least 0.375. Conditioning on this event, the

algorithm does not output fail in Step 1: let then j be any index such that DCj ∈ [1, 20] (there

is at least one such index, namely k). This, along with the setting of the parameter φ, guarantees

that CSj will recover a heavy hitter: that is, i ∈ D ∩ Ij .

Finally, by symmetry, we can see that as long as the algorithm reaches Step 3 and outputs i ∈ D ∩ Ij for

some j, then i is uniformly distributed over D. Does this

need elabo-

rating?

Does this

need elabo-

rating?Observation 1. As the analysis only relied on independence for the computation of the variance (to

apply Chebyshev’s inequality), a pairwise independent (family of) hash function(s) is sufficient for g.

Guarantees. The algorithm we described and analyzed above, DynSampleBasic, only offers the

following guarantees:

• it fails with probability at most 0.625 (and we know when it does, as it explicitly outputs fail);

• whenever it does not fail, it outputs i uniformly distributed in D (modulo a negligible probability

that either one of the CSj ’s or DSj ’s does not succeed).

To reduce the failure probability, one can do the usual trick: that is, taking independent copies. Below

is the overall algorithm, DynSampleFull:

• Run ` = O(log n) independent copies of DynSampleBasic: with probability at least 1−(0.625)` >

1− 1
n , at least one of them will not output fail.

3

• The space needed overall is O
(
log4 n

)
words, for ` = O(log n) independent copies with each

L = O(log n) different substreams, all involving O
(
log2 n

)
space (for CSj ,DSj called with error

parameter 1/n).3

1.2 Back to Dynamic Graphs (and Connectivity)

Recall that in this setting, we are given the edges of a n-node graph G = (V,E) as a stream of insertions

or deletions. In particular, we can consider the following encoding of the graph, as node-edge incidence

vectors: to each v ∈ V = [n] corresponds a vector xv ∈ Rp (for p
def
=
(
n
2

)
), where

• for j > v, xv(v, j) = 1{(v,j)∈E};

• for j < v, xv(v, j) = −1{(v,j)∈E}.

In particular, non-zero coordinates of xv correspond to edges incident to v (and the sign of xv(v, j) is an

“artificial orientation” we imposed to it).

Idea. We can use dynamic sampling to sample uniformly an edge incident to each v. Then, we use these

edges to collapse the graph: replacing two nodes u, v connected by an edge we sampled by a “meta-node,”

combining the incident edges to both u and v.

Ideally, we would like to iterate until either we are left with a single meta-node (in which case the

graph was connected) or strictly more than one (in which case the graph was not). The issue, however,

lies in this iteration: namely, how to sample edges incident to these “meta-nodes,”, while we only have

(streaming) access to the edges of the actual graph G?

The answer lies in the following crucial observation, which also explains the particular type of ±1

encoding that was chosen for the vectors xv:

Claim 2. For a set Q ⊆ V , define the node-edge incidence vector of the “meta-node” Q as xQ
def
=∑

v∈Q xv ∈ Rp. Then, xQ ∈ {−1, 0, 1}V , and moreover it has a non-zero component at coordinate (i, j)

if and only if edge (i, j) exists and crosses from Q to V \Q. (That is, (i, j) ∈ E and |{i, j} ∩Q| = 1.)

Proof. If (i, j) /∈ E, then xQ(i, j) = xi(i, j) + xj(i, j) = 0 + 0 = 0. Otherwise, assume (i, j) ∈ E: if

|{i, j} ∩Q| = 2, then xQ(i, j) = xi(i, j) + xj(i, j) = 1 − 1 = 0. If |{i, j} ∩Q| = 0, then xQ(i, j) = 0

immediately (no term in the sum with something in that coordinate). Only the case |{i, j} ∩Q| = 1

results in xQ(i, j) = 1 or xQ(i, j) = −1, depending on which of i, j belongs to Q.

Another very useful property of these xQ: to compute them, we only need the sketches of the xv’s,

since they are linear sketches. Therefore, we can actually sample a random edge from xQ (for any fixed

Q ⊆ V), using only |V | ·O(poly log |V |) = O(n poly log n) space!

DynSampleFull
(∑

v∈Q
xv

)
=
∑
v∈Q

DynSampleFull(xv), ∀Q ⊆ V.

An (almost correct) idea would therefore to do the following:

1. Initiate a sketch (of DynSampleFull) for each of the n vectors xv

3Note that as hinted before, this can be reduced to O
(
log3 n · log logn

)
words, setting the error probability of each

CSj ,DSj to be only 1/ logn.

4

2. Check connectivity with the following recursive way, outputting no whenever one of the steps

outputs fail, and yes if we reach a graph with only one (meta)-node:

(a) sample an edge for each of the meta-nodes v of the current graph;

(b) contract all sampled edges, obtaining a smaller graph with meta-nodes corresponding to con-

nected components of the previous one;

(c) recurse on the new graph.

Since at every recursive step, the number of meta-nodes is easily seen to be reduced by a factor at least

2, only O(log n) such steps are needed overall.

However, the above has a big flaw: namely, the iterations (calls to DynSampleFull on the “new

meta-nodes”) are not independent, compromising correctness. . . (Indeed, the guarantees of DynSam-

pleFull do not apply if the queries are made on adaptively chosen combinations of previous queries:

an adversary could basically learn enough about the sketches to eventually query some xQ on which

DynSampleFull is ensured to fail.)

A simple solution: we can use new independent copies of DynSampleFull at every iteration... only

costing an O(log n) blowup in the space required (since this is the number of iterations).

2 Dimension Reduction

Barely scratched... next lecture.

5

	Dynamic Sampling (and applications)
	Dynamic Sampling
	Basic Sketch

	Back to Dynamic Graphs (and Connectivity)

	Dimension Reduction

