1 Johnson-Lindenstrauss Summary

- $F(x)=\frac{1}{\sqrt{k}} G_{k * d} x$
- $\|F(x)\|=(1 \pm \epsilon)\|x\|$ with probability $\geq 1-\delta$
- $k=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- Takes time $O(k \cdot d)$ as we need to calculate $\mathrm{k}^{*} \mathrm{~d}$ dense matrix

2 Fast Johnson-Lindenstrauss Transformation Idea and Issues

2.1 Running Time Goal

- $O(d+k)$ is optimal goal
- We'll show $O\left(d \log d+k^{3}\right)$

2.2 Sampling

To improve the algorithm speed, we can sample s entries from each row. We can define:

- $h:[d] \rightarrow\{0,1\}$
- $\operatorname{Pr}[h(i)=1]=\frac{s}{d}$

And compute:

- $z=\sqrt{\frac{d}{s}} \sum_{i=1}^{d} h(i) \cdot g_{i} x_{i}$
- $\mathbb{E}\left[\|z\|^{2}\right]=\frac{d}{s} \mathbb{E}\left[\sum_{i=1}^{k} h(i) \cdot g_{i}^{2} x_{i}^{2}\right]=\|x\|^{2}$

While this tactic works when x is dense, x can be sparse which can create large variance.

2.3 Example of sparse x

Consider the case where $x=e_{1}-e_{2} \Longrightarrow$ even choosing relatively large sample size $s=\frac{d}{k}$ has high chance to fail since $\operatorname{Pr}[h(1)=1 \wedge h(2)=1]=\left(\frac{s}{d}\right)^{2}=\frac{1}{k^{2}}$.
And since we have k rows the overall chance is $\frac{1}{k}$ which is too high.

2.4 Spreading x

To solve the above issue we will "spread-around" x and use sparse G.

3 FJLT construction

3.1 Spreading x into y - Overview

The idea is to spread x into y , by defining $y=H D x$. y is in dimension d (like x) and $\|y\|=\|x\|$. However, unlike x , we will be able to provide certain guarantees as to the maximum coordinate values, and therefore we can project y into lower-dimensional z using a sparse matrix P with high probability.

3.2 Definitions

- $\mathrm{D}=$ diagonal matrix with random ± 1 on diagonal
- $\mathrm{H}=$ Hadamard Matrix $=$ Fourier Transform
- $\mathrm{P}=$ Projection Matrix - similar to previous G but sparse and dimension $k^{\prime} * d$, with $k^{\prime} \approx k^{2}$

3.3 Why Fourier Transform?

Fourier Transform is non-trivial rotation. A trivial rotation (i.e. random) takes $O\left(d^{2}\right)$ to compute, while FT takes $O(d \log d)$.

$$
\begin{gathered}
H_{1}=1 \\
H_{2^{l}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
H_{2^{l-1}} & H_{2^{l-1}} \\
H_{2^{l-1}} & -H_{2^{l-1}}
\end{array}\right) \\
H_{d * d}=\left(\begin{array}{c}
H_{1} \\
H_{2} \\
\cdots \\
H_{i} \\
\ldots \\
H_{d}
\end{array}\right)
\end{gathered}
$$

Where $H_{i j}= \pm \frac{1}{\sqrt{d}}$.
Therefore, $y_{i}=H_{i} D x=r x$, where $r x$ is a random vector of $\pm \frac{1}{\sqrt{d}}$
Lemma 1. $r \cdot x$ behaves like $g \cdot x$
This needs to be proved (wasn't proved in class). Also, we need to bound y_{i}.
Lemma 2. $\operatorname{Pr}\left[y_{i}^{2} \leq \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)\right] \geq 1-\delta$
Proof. We will approximate $y_{i} \approx g \cdot x \sim l$ where l is Gaussian $\Longrightarrow \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-l^{2}}{2}}<\delta$ when $l \approx \sqrt{\log \frac{1}{\delta}}$

3.4 Why do we need D?

If x is sparse, then $H x$ is dense. However \exists dense x s.t. $H x$ is sparse. D fixes it by randomizing H ($H D$ is randomization of H) and since there are very few such dense x, randomization fixes that issue.

$3.5 y_{i}$ Dependence - issue?

Clearly, y_{i} are not independent:

- $y_{1}=H_{1} D x$
- $y_{2}=H_{2} D x$
- and so on.

However, since we are only rotating, the norm doesn't change: $\|y\|=\|x\|$!

4 P Projection

4.1 Density of y

As we saw: $y_{i}^{2} \leq \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right)$ with prob. $1-\delta$; and since y has d coordinates, we get:

$$
\begin{align*}
m & =\max y_{i}^{2} \leq \frac{1}{d} \cdot O\left(\log \frac{1}{\delta}\right) \text { with prob. } 1-d \delta \Longrightarrow \tag{1}\\
m & \leq \frac{1}{d} \cdot O\left(\log \frac{d}{\delta}\right) \text { with prob. } 1-\delta \tag{2}
\end{align*}
$$

4.2 Projecting to z

Define:

- $j \in\left[k^{\prime}\right]$
- $z_{j}=y_{i}$ for random $i \in[d] \rightarrow \forall i, j ; \operatorname{Pr}\left[z_{j}=y_{i}\right]=\frac{1}{d}$
- Assume w.l.o.g $\|x\|=1$

Claim 3. $\|z\|^{2}=(1 \pm \epsilon)\|x\|^{2}$ with prob. $1-2 \delta$
We want to show $\sum_{j} z_{j}^{2}$ concentrates.
Define:

- $t_{j}=\frac{z_{j}^{2}}{m} \in[0,1]$
- $\mu=\mathbb{E}\left[\sum_{j=1}^{k^{\prime}} t_{j}\right]$

Proof.

$$
\begin{equation*}
\mu=\mathbb{E}\left[\sum_{j} \frac{z_{j}^{2}}{m}\right]=\frac{1}{m} \sum_{j}\left[\frac{1}{d} y_{1}^{2}+\frac{1}{d} y_{1}^{2}+\ldots\right]=\frac{1}{m d} \sum_{j}\|y\|=\frac{k^{\prime}}{m d} \Longrightarrow \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { Chernoff: } \operatorname{Pr}\left[\sum_{j} t_{j} \notin(1 \pm \epsilon) \mu\right] \leq 2 e^{\frac{-\epsilon^{2} \mu}{3}}=2 e^{\frac{\epsilon^{2} k^{\prime}}{3 m d}}<\delta \Longrightarrow \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
k^{\prime}=m \cdot d \cdot \frac{3}{\epsilon^{2}} \cdot \ln \frac{2}{\delta}=O\left(\log \frac{d}{\delta} \cdot \frac{1}{e^{2}} \cdot \log \frac{1}{\delta}\right) \tag{5}
\end{equation*}
$$

Since each of Chernoff and m can deviate from bound with prob. δ, the overall success rate is $1-2 \delta$.

5 Time analysis and further reduction

So far we reduced dimension d to k' with time $O\left(d \log d+k^{\prime}\right)$:

- $d \log d \rightarrow H D x$ multiplication
- $k^{\prime} \rightarrow$ Projection

To further reduce dimension from k^{\prime} to $k=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$, we can apply regular (dense) JL on z:

- $G z$ projection takes $k^{\prime} \cdot k$ time.
- Final time for $d \rightarrow k$ dimension reduction: $O\left(d \log d+k \cdot k^{\prime}\right)=O\left(d \log d+k^{3}\right)$

5.1 Example

Assume:

- $d=\log ^{3} n$
- $\delta=\frac{1}{n^{2}}$

We get:

$$
\begin{align*}
\qquad k & =O\left(\frac{1}{\epsilon^{2}} \log n\right) \tag{6}\\
k^{\prime} & =O\left(\frac{1}{\epsilon^{2}} \log ^{2} n\right) \tag{7}\\
\text { FJL Time } & : O\left(\log ^{3} n \log \log n+\frac{1}{\epsilon^{4}} \log ^{3} n\right) \tag{8}\\
\text { JL Time } & : O(d k)=O\left(\frac{1}{\epsilon^{2}} \log ^{4} n\right) \tag{9}
\end{align*}
$$

Since we assume ϵ is constant \Rightarrow FJL Time \ll JL Time.

5.2 Optimal time

What can we hope for?

- $O(d+k)$ or $O(d \log d+k)$
- Assume $d=\log n$
- JL Time: $O(d k) \approx \log ^{2} n$
- Optimal Time: $O(d+k) \approx \log n$

