Dynamics of frequency-swept nuclear spin optical pumping in powdered diamond at low magnetic fields

Pablo R. Zangara, Siddharth Dhomkar, Ashok Ajoy, Kristina Liu, Raffi Nazaryan, Daniela Pagliero, Dieter Suter, Jeffrey A. Reimer, Alexander Pines, and Carlos A. Meriles

Department of Physics, City College of New York, New York University, New York, NY 10031; Department of Chemistry, University of California, Berkeley, CA 94720; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720; and Graduate Center, City University of New York, New York, NY 10016

Edited by Robert Tycko, National Institutes of Health, Bethesda, MD, and accepted by Editorial Board Member Adriana X. Lv December 18, 2018 (received for review July 28, 2018)

A broad effort is underway to improve the sensitivity of NMR through the use of dynamic nuclear polarization. Nitrogen vacancy (NV) centers in diamond offer an appealing platform because these paramagnetic defects can be optically polarized efficiently at room temperature. However, work thus far has been mainly limited to single crystals, because most polarization transfer protocols are sensitive to misalignment between the NV and magnetic field axes. Here we study the spin dynamics of nitrogen vacancy (NV)−13C pairs in the simultaneous presence of optical excitation and microwave frequency sweeps at low magnetic fields. We show that a subtle interplay between illumination intensity, frequency sweep rate, and hyperfine coupling strength leads to efficient, sweep-rate-dependent 13C spin polarization over a broad range of orientations of the magnetic field. In particular, our results strongly suggest that finely tuned, moderately coupled nuclear spins are key to the hyperpolarization process, which makes this mechanism distinct from other known dynamic polarization channels. These findings pave the route to applications where powders are intrinsically advantageous, including the hyperpolarization of target fluids in contact with the diamond surface or the use of hyperpolarized particles as contrast agents for vivo imaging.

Significance

We articulate theory and experimental observations to understand the dynamic polarization of 13C spins in nitrogen vacancy (NV)-hosting diamond particles. The explored powder geometry is ideally suited to hyperpolarize fluids, as its inherently large surface-to-volume ratio is much greater than that possible in systems based on single crystals. Given the low-field magnets and low-intensity microwave and light sources we use, our technique promises to serve as a platform for low-cost, portable spin polarizers operating under ambient conditions. Alternatively, the diamond particles themselves could be exploited as background-free contrast agents for magnetic resonance imaging, a modality that builds on the biocompatibility of diamond and thus is complementary to the use of NV-hosting diamond particles as in vivo, fluorescent labels and drug delivery agents.

This article is a PNAS Direct Submission. R.T. is a guest editor invited by the Editorial Board. Published under the PNAS license.

To whom correspondence should be addressed. Email: cmeriles@ccny.cuny.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1811994116/-/DCSupplemental.
focus on the limit of low magnetic fields (\(\sim 10\) mT to 30 mT) and consider the system evolution in the presence of MW sweeps of variable sweep rate. Through a transformation to the rotating frame, we show that the dynamics can be described in terms of a series of multibranched Landau–Zener (LZ) crossings; the branch-dependent degree of adiabaticity during these crossings combined with mild optical pumping of the NV spin leads to a net buildup of \(^{13}\)C polarization, which is robust against NV misalignment and efficient for hyperfine couplings as low as 0.2 MHz to 0.3 MHz. In particular, we show that moderately coupled carbons are dominant in driving the polarization dynamics of the bulk, a feature very much in contrast with prior spin transfer studies in diamond (mediated by first- or second-shell carbons). For the present experimental conditions, the observed level of \(^{13}\)C polarization is in the range 0.1 to 0.3\%, corresponding to a 100- to 300-fold enhancement over the thermal polarization at 7 T. These results can be immediately extended to paramagnetic defects other than the NV [such as the neutrally charged silicon vacancy center (16, 17)] or to other wide-bandgap semiconductors (such as silicon carbide) hosting point defects that can be optically spin polarized (18).

Results and Discussion

Let us first consider an NV center spin interacting with a single \(^{13}\)C nucleus in the presence of an external magnetic field,\n
\[
H = \Delta \left((S^z)^2 - S(S+1)/3 \right) - \gamma_e B \cdot S - \gamma_C B \cdot I + S \cdot A \cdot I. \tag{1}
\]

Here, \(\gamma_e\) and \(\gamma_C\) stand for the electron and \(^{13}\)C gyromagnetic ratios, \(B\) is the external magnetic field, and \(A\) is the hyperfine coupling tensor between the NV electron spin \(S\) and the \(^{13}\)C spin \(I\). Unless explicitly stated, we consider \(|B| = 10\) mT and 100 kHz \(\leq A \leq 10\) MHz, meaning that the characteristic energy scales can be ordered as

\[
\Delta \approx 3 \times 10^3 \text{ MHz} > \gamma_e B \approx 3 \times 10^5 \text{ MHz} > A > \gamma_C B \approx 1 \times 10^{-3} \text{ MHz}. \tag{2}
\]

In this regime, the crystal field \(\Delta\) is dominant and defines the main quantization direction, here chosen to coincide with the crystal frame \(z\) axis; accordingly, we write the magnetic field as \(B = B(z) = \sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta\), where \(\theta\) and \(\phi\) respectively denote the polar and azimuthal angles, changing randomly from one particle to another in the diamond powder. Further, the magnitude of the hyperfine coupling is greater than the nuclear Zeeman interaction, which makes the present regime different from that governing the integrated solid effect at high fields (19).

Extending the analysis above to identify the terms governing the nuclear spin dynamics is considerably more involved because, at the low magnetic fields considered herein, the hyperfine interaction can be dominant. An effective secular approximation valid for any choice of angles \((\theta, \phi)\) can be derived using Average Hamiltonian Theory (20, 21). Without loss of generality, we assume the carbon atom lies within the \(x\) plane, and obtain (SI Appendix, section I)

\[
H_{\text{sec}} = \Delta \left((S^z)^2 - S(S+1)/3 \right) - \gamma_e B \cos \theta S^z - \gamma_e B \cdot I + A_{zx} S^x I^x + A_{zy} S^y I^y - \gamma_C B \sin \theta \frac{M\hbar}{\Delta} \cos \phi (A_{zx} I^x + A_{zy} I^y) + \sin \phi A_{zy} I^y, \tag{3}
\]

where \(M\) is a constant matrix defined in the Hilbert space \((|m_S = +1\rangle, |m_S = 0\rangle, |m_S = -1\rangle\) of the NV,

\[
M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

Fig. 1A shows a schematic representation of the NV–\(^{13}\)C energy diagram: For the nuclear spin states, we use the notation \(|\alpha_{\pm}\rangle\) and \(|\beta_{\pm}\rangle\) to underscore the difference with the Zeeman basis states \(|\uparrow, \downarrow\rangle\) (even if they retain part of their character; see SI Appendix, section II). While the impact of the hyperfine field on the nuclear spin states in the \(m_S = \pm 1\) subspaces is well documented (22), misalignment between the NV axis and the external magnetic field—unavoidable in a powdered sample—makes it necessary to take into account an additional contribution—last term in Eq. 3—active even when \(m_S = 0\) (23, 24). To illustrate its importance, we consider, for example, a hyperfine interaction \(A \approx 1\) MHz, leading to matrix elements of order \(\delta \approx \gamma_e B A / \Delta \approx 1 \times 10^{-1}\) MHz. In the \(m_S = 0\) subspace, this contribution—which does not commute with \(-\gamma_C B i\) is comparable to the Zeeman splitting of the \(^{13}\)C states (Eq. 2) and hence cannot be disregarded. Note that this same term is less important in the \(m_S = \pm 1\) subspaces (where the fourth and fifth terms in Eq. 3 become nonzero), since the factor scaling down the hyperfine coupling, \(\gamma_C B / \Delta\), amounts to only \(\sim 0.1\) for a 10-mT magnetic field.

Building on Eq. 3, we can now extend our description to include the effect of MW driving: The MW field is modeled by a term \(e \mathbf{S} \cos(\omega t)\), and, upon a unitary transformation into the frame rotating at the MW angular frequency \(\omega\) (SI Appendix, section I), we write the final effective Hamiltonian as

\[
H_{\text{eff}} = \Delta \left((S^z)^2 - S(S+1)/3 \right) - \gamma_e B \cos \theta S^z - \Omega^2 S^z - \delta E_{13} \approx \Omega \sin \phi A_{zy} I^y + \sin \phi A_{zy} I^y, \tag{4}
\]

where we have introduced the Rabi frequency \(\Omega\). To illustrate the mechanism of spin polarization in the presence of an MW sweep, we first determine the eigenenergies of \(H_{\text{eff}}\) as a function of the MW frequency \(\nu_{\text{MW}} = \omega / (2\pi)\) (Fig. 1B), and subsequently calculate the system evolution assuming initialization into \(m_S = 0\) (Fig. 1C) for the case of a positive hyperfine coupling (see below). As we tune the MW frequency in and out of resonance—in the present example, from lower to higher frequencies across the \(m_S = 0\) \(\rightarrow m_S = -1\) subset of transitions—the dynamics that follows can be interpreted in terms of an LZ population exchange near the avoided crossings. The corresponding energy gaps can be derived via second-order perturbation theory for the interlevel transitions in Eq. 4: using numeric labels 1 through 4 to identify branches in order of increasing energy (Fig. 1B, Inset), we find (SI Appendix, section II)

\[
\delta E_{13} \approx \Omega \sin \phi \frac{\omega \nu_{\text{MW}}}{2} + \frac{A^2 \nu_{\text{MW}}}{4(\omega \nu_{\text{MW}} + A_{zz})}, \tag{5}
\]

and

\[
\delta E_{23} \approx \left| \frac{\omega \nu_{\text{MW}}}{2} + \frac{A^2 \nu_{\text{MW}}}{8(\omega \nu_{\text{MW}} + A_{zz})} \right| \frac{1}{2} \left(\omega \nu_{\text{MW}} - \frac{A^2 \nu_{\text{MW}}}{4(\omega \nu_{\text{MW}} + A_{zz})} \right)^2 + \Omega^2. \tag{6}
\]

Net nuclear spin polarization emerges from the nuclear spin-selective adiabaticity of the MW sweep. Assuming, for concreteness, a low-to-high-frequency sweep, the gap \(\delta E_{13}\) yields an LZ jump probability between branches 1 and 3,

\[
p(1|3) \approx \exp(-2\pi \nu_{\text{MW}}/\dot{\nu}), \tag{7}
\]

where \(\dot{\nu}\) is the frequency sweep rate. Therefore, assuming \(\Omega^2 > \dot{\nu}\), the spin population initially in branch 1 remains unchanged.
Fig. 1. Dynamic polarization of a 13C nuclear spin coupled to an NV center. (A) Schematics of the ground state energy diagram of an NV–13C pair. In each ket, the first (second) index refers to the electron (nuclear) spin quantum number, and we assume A_{xy} is positive; all energy separations are approximate. (B) Four lowest eigenenergies of H_{el} as a function of the MW frequency ν_{MW} in the region near the $m_z = 0 \rightarrow m_z = -1$ transition. The labels denote the corresponding crystal eigenstates. The inset is a zoomed plot of the main energy diagram within the region enclosed by the rectangle. (C) Population of the instantaneous eigenstates for the eigenenergies shown in B as the system undergoes an MW sweep at a velocity $\nu = 40 \text{ MHz/ps}$. (D) Calculated 13C polarization during the sweep for (Upper) low-to-high and (Lower) high-to-low sweeps. (E) The 13C NMR spectrum at 7 T from single-crystal diamond upon 10 s of 532-nm, 1-W laser illumination and MW excitation at 38 mT following by sample shuttling. The red (blue) trace corresponds to a low-to-high (high-to-low) MW frequency sweep after 20 repetitions of the polarization protocol; in both cases, the sweep rate is $\nu = 60 \text{ MHz/ps}$ and the frequency range is -0.37 GHz, from 3.507 GHz to 3.878 GHz (corresponding to a repetition rate of 164 Hz). The black trace is a reference spectrum from thermal polarization at 7 T for a total of 120 repeats separated by a 600-s wait interval; the attained enhancement relative to the 7-T signal is -300, corresponding to a bulk 13C polarization of -0.3%. In these NMR spectra, $\Delta_{yy} = \Delta (1/2 - \gamma_y)$ is the radio frequency (RF) shift relative to the high-field 13C resonant frequency $\nu_0 = 70 \text{ MHz}$. Upper Inset shows the NMR peak amplitude as a function of the illumination time; Lower Inset is a blowout of the thermal 13C NMR spectrum. In B–D, we consider $A_{yy} = A_{xy} = A_{yy} = 500 \text{ kHz}$, $A_{xy} = 0.3 A_{zz}$, $\Omega = 250 \text{ kHz}$, $B = 10 \text{ mT}$, and $\theta = 65^\circ$, $\phi = 0^\circ$; in C and D, we assume that the electron spin has been fully initialized into $m_z = 0$.

throughout the LZ crossing. The situation is different, however, for the spin population in branch 2, whose jump probability to branch 3 is approximately given by

$$p(2|3) \approx \exp \left\{ -2\pi \frac{\Omega (G + A_{zz})}{4 (\omega_0 + A_{zz} + F)}^2 / \nu \right\},$$

where F and G are functions of the relative orientation of the magnetic field (θ, ϕ), and we are assuming $\Omega^2 > \nu$; see SI Appendix, section II. The LZ dynamics in this case is partially nonadiabatic, meaning that the spin population initially in branch 2 bifurcates to create a net nuclear spin population difference (Fig. 1C). More generally, the condition for the generation of nuclear spin polarization during a sweep can be formally stated as $p(2|3) > p(1|3)$. We later show the carbon polarization in our simplified NV–13C model system ($\sim 35\%$ in the calculation of Fig. 1D) is consistent with the observed levels of bulk 13C polarization in our samples (typically in the 0.1 to 0.3% range). Interestingly, we note that, for a frequency sweep starting above, not below, the set of avoided crossings, it is the population in branch 3, not in branch 2, that bifurcates. Therefore, an adapted analysis shows that the sign of the end 13C polarization—calculated as a fractional population difference (see SI Appendix, section II)—depends on the direction of the frequency sweep, i.e., a low-to-high sweep yields positive nuclear magnetization, whereas the opposite is true for a high-to-low sweep (Fig. 1D).

A comparison with experiment is presented in Fig. 1E, where we probe the bulk 13C polarization induced at 38 mT under 532-nm illumination; inductive 13C detection upon MW and optical excitation is carried out at high field with the help of a 7-T NMR system adapted with a sample shuttling device (25). In this particular case, we use a single diamond crystal oriented so that all four NV orientations form the same angle with the applied magnetic field, and limit the MW sweep to a range around the $m_z = 0 \rightarrow m_z = -1$ subset of transitions. Consistent with theory (Fig. 1D), we find that reversing the sign of the frequency sweep yields a 13C NMR signal of opposite phase, indicative of polarization inversion. Note that the phase in the 13C NMR spectrum attained upon a low-to-high MW sweep coincides with that observed in the thermal signal at 7 T (acquired without optical excitation and/or sample shuttling), hence lifting the ambiguity in the absolute sign of the measured nuclear spin polarization.

The structure of the LZ crossings is, in fact, more complex than the one presented in Fig. 1B (corresponding to a comparatively weak hyperfine coupling). Fig. 2 shows the typical energy diagrams for $A \approx 500 \text{ kHz}$ (Fig. 2A and C) and 4 MHz (Fig. 2B and D), both near the $m_z = 0 \leftrightarrow m_z = -1$ (Fig. 2A and B) and $m_z = 0 \leftrightarrow m_z = +1$ (Fig. 2C and D) set of transitions. Comparing Fig. 2A and B ($m_z = -1$ manifold), we find that, despite the growing frequency separation between the LZ crossings, the asymmetry in the gap size (and thus in the population transfer between branches) is not lifted, i.e., net nuclear spin polarization of the same (sweep-direction–dependent) sign is generated in all cases (even if the efficiency changes with hyperfine coupling strength and relative magnetic field alignment; see below).

By contrast, a quick inspection of Fig. 2C and D shows that the energy level structure near the crossings—and corresponding polarization yield—is markedly different in the $m_z = +1$ manifold. Here, reversal in the order of the “allowed” and “forbidden” transitions traversed during a sweep (respectively connecting branches with the same “up” or “down” nuclear spin character) makes the generation of 13C polarization inefficient. The impact of the order reversal can be better visualized in Fig. 2D, where the greater hyperfine coupling leads to four resolved LZ crossings. Assuming initialization into $m_z = 0$ and
a low-to-high-frequency sweep, the large gap in the first avoided crossing—proportional to ω—makes this passage predominantly adiabatic. Correspondingly, the subsequent population exchange during the second (narrower) crossing becomes ineffective in creating net nuclear polarization, as the probability of finding the NV-13C system in either branch still amounts to ~50% (Fig. 2D, Right); a similar reasoning applied to the ensuing pair of crossings in the present example confirms that no net polarization can emerge from a sweep of the $m_S = 0 \rightarrow m_S = \pm 1$ subset. Note, however, that because, in the present low-field regime, $A > \gamma_C B$, the order in the transitions during a sweep depends on the sign of A_{zz}, which can be positive or negative with nearly equal probability. Therefore, there is no intrinsic difference in the polarization efficiency associated to the $m_S = -1$ or +1 manifolds, as the dynamics reverses upon an overall sign change of the hyperfine coupling constants. In other words, low-to-high (high-to-low) MW sweeps across either subset in a bulk crystal should yield net positive (negative) 13C spin polarization. We return to this point later in this section.

To gain a fuller understanding of the dynamics underlying the generation of bulk nuclear polarization. This is shown in Fig. 3B where we plot the 13C spin energy splitting δ within the $m_S = 0$ manifold assuming a 10-mT field. Except for NVs perfectly aligned with B, hyperfine contributions (stemming from the last term in Eq. 3) can quickly dominate over the Zeeman term, thus leading to a hyperfine-dependent frequency mismatch between carbons. This effect is only moderate when $A_\perp \lesssim 1$ MHz, suggesting that carbons featuring weak to moderate couplings have a comparatively larger influence on the observed 13C NMR signal.

We can qualitatively gauge the influence of a given NV–13C pair with hyperfine coupling strength A in generating the observed NMR signal through the “impact factor” $\eta(A) \propto \int d\phi N_{C=1} g(\delta)$, where $N \propto 1/A^2$, and $g(\delta, \theta, \phi, \eta)$ is a function that quantifies the ability of a 13C spin to spin diffuse with its neighbors. Although the latter is presently unknown, we get a crude estimate by assuming $g(\delta) \propto \exp(-(\delta - \gamma_C B/2\pi)^2/2A_{\max}^2)$, where A_{\max} represents a critical hyperfine coupling, of order ~1 MHz (see below). The result—shown as a dashed line in Fig. 3A—suggests that a very selective set of moderately coupled carbons—featuring A between 0.5 MHz and 0.8 MHz—is effective in producing the observed bulk NMR signal, very much in contrast with prior studies (6, 11) where strongly coupled carbons (~0.1 MHz and up) were seen to be dominant.

We confirm the ideas above through the observations in Fig. 3C and D: Here, we consider NV–13C pairs extracted from a statistical distribution of hyperfine couplings, and calculate, for each pair, the 13C spin polarization after a 100-MHz local sweep of variable central frequency ν_{MW}. Throughout these calculations, we assume the relative orientations of the magnetic field and NV axis are random (SI Appendix, section IIII). Fig. 3C shows the results for distributions of hyperfine couplings with a variable upper threshold A_{\max} ranging from 4 MHz down to 0.5 MHz (respectively ordered from top to bottom in the figure). Notably, the calculated responses display a marked asymmetry between the sides of the spectrum associated to transitions involving the...
Fig. 3. “Strong” vs. “moderate” hyperfine couplings. (A) Calculated steady-state 13C spin polarization after repeated low-to-high-frequency sweeps across the $m_S = -1$ or $m_S = +1$ subset for a variable hyperfine coupling A_{C2}; the initial NV spin polarization is 5%, the sweep rate is 40 MHz/ms, the Rabi field is 250 kHz, and we assume $A_{C2} = A_x = A_y$ and $A_z = 0.3 A_y$; the dots indicate a representative polarization for a given relative orientation of the magnetic field \mathbf{B}, and the solid line is a guide to the eye. The dashed line indicates the estimated relative contribution η to the observed 13C NMR signal amplitude (right vertical axis). (B) Calculated energy splitting δ between the NV–13C eigenenergies within the subspace $m_S = 0$ as a function of θ for $\phi = 0$. (C) Modeled 13C spin NMR signal for a powdered diamond sample and a 100-MHz-wide MW frequency sweep centered at a variable frequency ν_{MW}. In all calculations, we assume the external magnetic field is $B = 1.23$ mT and consider hyperfine interactions over the range 0 to A_{max}. (D) Same as in C but for a variable sweep range, as calculated numerically and observed experimentally (lower and upper trace sets, respectively). For the calculated plots, we use $A_{\text{max}} = 750$ kHz, and all averages emerge over 1.5×10^4 configurations; throughout the experiments, the number of MW sweeps per data point is 10, and the number of repeats is 30, with all other conditions remaining as in Fig. 1. In C and D, we displace all traces horizontally for clarity.

A_{max}...
and $B \neq \emptyset \leq \ell$ axis. For these calculations, we use a hyperfine coupling tensor of the form \mathbf{T}. In both cases, the sweep is from low to high frequencies and thus yields a positive 13C polarization. All other experimental and modeling conditions are as in Fig. 3D. Calculated 13C spin polarization for two example NV–13C pairs featuring similar hyperfine couplings ($A = 500$ kHz) upon a low-to-high-frequency sweep; the NV–13C coupling is assumed positive (negative) for pair 1 (pair 2). Vertical dashed lines indicate the location of the crossings within the $m_s = \pm 1$ manifolds (we are assuming $\theta = 30^\circ$). For simplicity, we assume the NV is optically pumped into $m_s = 0$ both at the beginning and midpoint of the sweep (dotted vertical line). Calculated 13C spin polarization as a function of the orientation of the magnetic field relative to the NV axis, aligned parallel to the z axis. For these calculations, we use a hyperfine coupling tensor of the form $A_{zz} = A_{xy} = A_{yy} = 0.5$ MHz and $A_{xx} = 0.3 A_{zz}$.

Fig. 4. Optimal spin polarization transfer: frequency and angular dependence. (A) (Upper) Measured (full circles) and calculated (solid line) 13C NMR signal upon multiple frequency sweeps; each sweep goes from a fixed MW start frequency $\nu_{MW}^{(i)} = 2.4$ GHz to a variable end frequency $\nu_{MW}^{(f)}$. (Lower) Same as in Upper but for a variable start frequency $\nu_{MW}^{(i)}$ to a fixed final frequency $\nu_{MW}^{(f)} = 3.3$ GHz. In both cases, the sweep is from low to high frequencies and thus yields a positive 13C polarization. All other experimental and modeling conditions are as in Fig. 3D. (B) Calculated 13C spin polarization for two example NV–13C pairs featuring similar hyperfine couplings ($A = 500$ kHz) upon a low-to-high-frequency sweep; the NV–13C coupling is assumed positive (negative) for pair 1 (pair 2). Vertical dashed lines indicate the location of the crossings within the $m_s = \pm 1$ manifolds (we are assuming $\theta = 30^\circ$). For simplicity, we assume the NV is optically pumped into $m_s = 0$ both at the beginning and midpoint of the sweep (dotted vertical line). (C) Calculated 13C spin polarization as a function of the orientation of the magnetic field relative to the NV axis, aligned parallel to the z axis. For this calculations, we use a hyperfine coupling tensor of the form $A_{zz} = A_{xy} = A_{yy} = 0.5$ MHz and $A_{xx} = 0.3 A_{zz}$.

the magnetic field and NV axes. Despite the broad spectral response observed in Fig. 3C and D—naively indicative of angle-insensitive nuclear spin polarization—we find a complex dependence, both in terms of the polar and azimuthal angles (Fig. 4C). Remarkably, our calculations indicate that nuclear spin polarization is more efficiently produced in the case of misaligned NVs (i.e., $\theta \neq 0$), which sheds light on why this approach works so effectively in a powdered sample. On the other hand, the polarization transfer process does not show cylindrical symmetry, a reflection of the azimuthal angle dependence in the last term of Eq. 3. Note that, although the calculated nuclear polarization is sizable only in the upper hemisphere of the plot, an equivalent response—this time with optimum in the lower hemisphere—can be attained by changing the sign of the hyperfine coupling, from positive (used in the present example) to negative. A crude estimate that takes into account the concentration of NVs and the 13C spin-lattice relaxation time, shows that the calculated average carbon polarization per sweep in our two-spin model (of order 5%; Fig. 4) is consistent with the observed bulk 13C polarization (of order 0.1%; see SI Appendix, section IV).

Finally, we investigate the impact of the MW frequency sweep rate, set to $\nu_{MW} = 40$ MHz/ms in all of the results presented thus far. We start by calculating the 13C spin response in a moderately coupled NV–13C pair ($A = 500$ kHz) for different orientations of the magnetic field. From a quick inspection of Fig. 5A, we conclude that the polarization transfer is most efficient at intermediate sweep rates—of order 40 MHz/ms to 50 MHz/ms—where nonadiabaticity at the LZ crossings is optimal. Consistent with the observations in Fig. 4C, the absolute 13C polarization attained at $\nu_{MW} = 40$ MHz/ms diminishes for NVs aligned with B. On the other hand, the optimal sweep velocity can vary substantially depending on the exact field direction (Fig. 5B), although the absolute change is rather moderate within the set of angles (θ, ϕ) where the polarization transfer is most efficient. In particular, we find that the angular region where the 13C polarization is maximum remains similar to that in Fig. 4C, even if we choose, for each B field direction, the optimal sweep rate (Fig. 5C).

Since the time required to complete multiple sweeps inherently depends on the chosen sweep rate, a comparison with experimental observations as a function of ν_{MW} must necessarily take into account nuclear spin diffusion from the target carbon into the bath (Fig. 5D). While a full quantum mechanical description is difficult, we resort to a phenomenological approach where spin diffusion takes the form of a pseudo spin-lattice relaxation process affecting the polarization of the carbon directly coupled to the NV (26); our code, however, keeps track of the total magnetization injected into the nuclear spin system so as to make the end result proportional to the observed 13C NMR signal (SI Appendix, section IV).

Experimental plots of the dynamically pumped 13C NMR signal amplitude as a function of the MW sweep rate are presented in the upper trace of Fig. 5E; to maximize the polarization buildup, the total pumping time at each point is kept constant at $T_{IC} = 10$ s (coincident with the 13C spin-lattice relaxation time at $B \approx 13.2$ mT), meaning that n, the number of sweeps, gradually changes depending on the specific value of ν_{MW} according to the relation $n = T_{IC}/\nu_{MW}$, where $\Delta \nu = 370$ MHz is the frequency bandwidth. The lower traces in Fig. 5E show the results of numerical simulations where we incorporate the above conditions; throughout these calculations, each data point emerges from a complex average, namely, we sample the hyperfine coupling from a statistical distribution (similar to that used in Fig. 3D, i.e., $0 \leq A \leq 750$ kHz), and vary the magnetic field direction over all possible orientations relative to the NV axis. To save time (these calculations are demanding and thus require considerable computing power; see SI Appendix, section IV) we limit the total illumination time to 1 s.
In qualitative agreement with our experiments, we find a sharp initial growth followed by a slower decay at faster sweep rates, with an optimum around 40 MHz/ms to 50 MHz/ms. Taking spin diffusion into account (lower traces in Fig. 5E) shifts the optimum sweep rate to greater values, because the larger number of sweeps per unit time effectively enhances the total nuclear magnetization produced. It would be premature, however, to elaborate on the spin diffusion dynamics at play, as the overall shape of the response is sensitive to the Rabi field amplitude (Fig. 5F). Indeed, this latter dependence may be responsible for the main differences between theory and experiment, as the fixed direction of the MW field in the laboratory frame amounts to a random orientation relative to the NV axis, hence leading to a variable effective MW amplitude.

Interestingly, greater laser powers lead to greater 13C NMR signals without distorting the overall shape of the response (upper data set in Fig. 5G). This observation—correctly reproduced by our model (see lower data set in Fig. 5G)—is a consequence of the relatively mild illumination we employ herein (1-W laser focused over a 4-mm-diameter spot). Under these conditions, the probability of optically exciting an NV precisely during a subset of LZ crossings is relatively low—particularly if, as shown above, $A < 750$ kHz (Fig. 2)—meaning that the polarization transfer takes place coherently and NV repolarization preferentially occurs between successive crossings. More intense laser powers, therefore, lead to better NV spin initialization, and Consequently, to enhanced 13C polarization, as observed experimentally. We caution, however, that this picture breaks down for strongly coupled carbons—where LZ crossings split into a resolved series (Fig. 2B and D)—because optical reinitialization of the NV between crossings within the same $m_S = \pm 1$ manifold typically causes depolarization (SI Appendix, section V).

Conclusions
Continuous optical illumination accompanied by repeated MW frequency sweeps leads to efficient spin polarization transfer from NVs to neighboring carbons in powdered diamond at 10 mT to 30 mT. Our observations can be reproduced via an average Hamiltonian describing the effective rotating-frame interaction between the NV and a neighboring 13C spin. In this picture, spin transfer takes place via an LZ-like process where nuclear polarization emerges as a consequence of the asymmetry in the adiabaticity parameter characterizing avoided crossings between branches with the same or opposite nuclear spin character; the polarization sign depends on the direction of the sweep, whereas its level relates to the hyperfine coupling, the misalignment, and...
the particular set of crossings involved. From comparison with 13C-NMR-detected NV spin spectra, we conclude that the polarization transfer to bulk nuclei is mediated by carbons with hyperfine couplings within a narrow range, 200 kHz < δ < 750 kHz. Although comparable levels of nuclear polarization can be attained virtually at all NV spin frequencies, the polarization transfer is sensitive to the relative direction of the magnetic field, with the optimum occurring for carbons associated to misaligned NVs. Further, competing nuclear spin polarization and depolarization processes limit the range of the frequency sweep necessary to attain maximum 13C NMR signals to approximately half the NV spin resonance spectrum. The NMR signal response as a function of the frequency sweep rate shows an optimum around 40 MHz/ms to 50 MHz/ms, consistent with the (calculated) values required to optimize the spin transfer during the LZ crossings.

Our findings open interesting opportunities for further optimization as well as for fundamental and applied work. For example, the angular dependence of the transfer on the B field axis—particularly the azimuthal dependence (Fig. 4C)—suggests that additional NMR signal gain could be attained by making the field direction undergo a suitable time evolution. Also to consider is the sweep rate, which, rather than constant, could be gradually incremented with growing frequencies so as to match the optimum observed at different orientations (Fig. 5B). Along the same lines, another possibility is to use several MW sources to generate multiple sweeps running simultaneously but shifted in frequency; NMR signal amplification is expected when the time separation between successive sweeps—all sharing the same frequency sweep rate—are brought to a minimum defined by the NV repolarization time (27).

Additional work will be needed to investigate the impact of other experimental parameters such as the illumination conditions, and the influence of paramagnetic defects other than the NV. For example, at the relatively mild laser intensities used herein—of order 100 mW/mm²—the NV polarization rate amounts to ~100 Hz, implying that the steady-state NV spin polarization, reaching at best 10%, is far below the optimum. On the other hand, light-induced decoherence during the LZ crossings must ultimately hinder the spin transfer process, which suggests there must be an optimum illumination intensity. Whether or not this regime can be reached without complications due to the ionization of other impurities is a question that can only be addressed through subsequent studies over a larger range of laser powers and using illumination wavelengths other than 532 nm.

Another pending question is the response as a function of the magnetic field amplitude, here constrained to less than 20 mT. Extending the present studies to greater fields—particularly those above 100 mT—is an attractive route to prolong the 13C spin-lattice relaxation time—here limited by cross-relaxation with paramagnetic nitrogen impurities (25)—and hence potentially augment the end polarization. Initial observations at ~100 mT showed no enhancement, although a more systematic study—ideally encompassing greater fields—is in order. Several complications, both experimental and theoretical, must be overcome to accomplish this task. Among them is the limited frequency bandwidth typical in most MW sources and amplification systems, normally circumvented at high fields (e.g., B ~ 300 mT) through the use of tuned, narrow-band MW cavities and variable magnetic fields; it is not clear, however, that this strategy shares the same flexibility as the approach pursued herein. On the theoretical side, additional work will be necessary to extend the present formalism—valid in the limit where the impact of the magnetic field can be treated perturbatively—to the regime where the Zeeman interaction becomes dominant over the NV crystal field. Although some key ingredients remain unchanged (12), this regime is expected to differ from the present one in important ways, including the type of carbons mediating the polarization transfer to the bulk and, most notably, the impact of misalignment on the NV spin initialization. These studies must also encompass the case where the NV spin simultaneously interacts with more than one carbon nucleus, inherent to 13C-enriched samples and thus important in applications where diamond particles serve as an imaging contrast agent or as the source of hyperpolarization for target fluids.

Materials and Methods

Most experiments presented in this paper are carried out using 6diamond particles with an average size of ~200 µm and NV concentration of 1 ppm; more recent work, however, has attained virtually identical results with particle sizes down to 1 µm, either in the form of a dry powder or in solution. The mass of the entire sample of particles is 7.50 ± 0.25 mg. Using the known density of diamond (3.51 mg/mm³), the total sample volume is calculated to be 2.14 ± 0.07 mm³. Dividing by the individual particle volume, the number of diamond particles is found to be 287 ± 27 diamonds. For the experiments in Fig. 1, we employ a 3 × 3 × 0.3 mm³ type 1b single-crystal diamond oriented so that all four NV directions form a 54.7° angle with the applied magnetic field.

To induce and detect DNP, we use a custom-built sample shunting device. In a typical experiment, simultaneous MW excitation and 1-W, 4-mm-diameter optical illumination at 532 nm take place at a variable low magnetic field (5 mT to 36 mT), upon which the sample quickly moves to the sweet spot of a 7-T NMR magnet for inspection; the NMR signal amplitude is extracted from the height of the 13C spectrum obtained upon Fourier transform of the free-induction decay resulting from resonant single-pulse radio frequency excitation at 7 T. We refer the reader to ref. 25 for further details.

Our numerical calculations are conducted using a Matlab code developed in-house (SI Appendix, section IV). We consider individual NV-13C pairs whose dynamics follows the effective rotating-frame Hamiltonian presented in Eq. 4; we model the impact of light through sudden projections into the m_z = 0 subspace. We sample over all relative orientations of the magnetic field, and, when necessary, over all hyperfine couplings using suitable statistical distributions. To reduce the computing time, we resort to the facilities of the City University of New York (CUNY) High Performance Computing Center. We refer the reader to SI Appendix, section IV for additional details.

ACKNOWLEDGMENTS. P.R.Z., S.D., and C.A.M. acknowledge support from the National Science Foundation (NSF) through Grant NSF-1401632, and from Research Corporation for Science Advancement through a Frontiers in Research Excellence and Discovery (FRED) Award; they also acknowledge access to the facilities and research infrastructure of the NSF Centers of Research Excellence in Science and Technology (CREST) Center for Interface Design and Engineered Assembly of Low Dimensional Systems (IDEALS), Grant NSF-HRD-1547830. All authors acknowledge the CUNY High Performance Computing Center (HPCC). The CUNY HPCC is operated by the College of Staten Island and funded, in part, by grants from the City of New York, State of New York, and CUNY Research Foundation, and National Science Foundation Grants CNS-0958379, CNS-0855217, and ACI 1126113.

