

15.401 Finance Theory I

Alex Stomper

MIT Sloan School of Management

Institute for Advanced Studies, Vienna

Lecture 6: Options

- _ Introduction to options
- Option payoffs
- Corporate securities as options
- Use of options
- Basic properties of options
- Binomial Option Pricing Model
- Black-Scholes option pricing formula

Readings:

- Brealey, Myers and Allen, Chapters 21 22
- Bodie, Kane and Markus, Chapters 20 21

Option types:

Call: The right to buy an asset (the underlying asset) for a given price (exercise price) on or before a given date (expiration date)

Put: The right to sell an asset for a given price on or before the expiration date

Exercise styles:

European: Owner can exercise the option only on expiration date

American: Owner can exercise the option on or before expiration date

Key elements in defining an option:

- Underlying asset and its price S
- Exercise price (strike price) K
- Expiration date (maturity date) T (today is 0)
- European or American

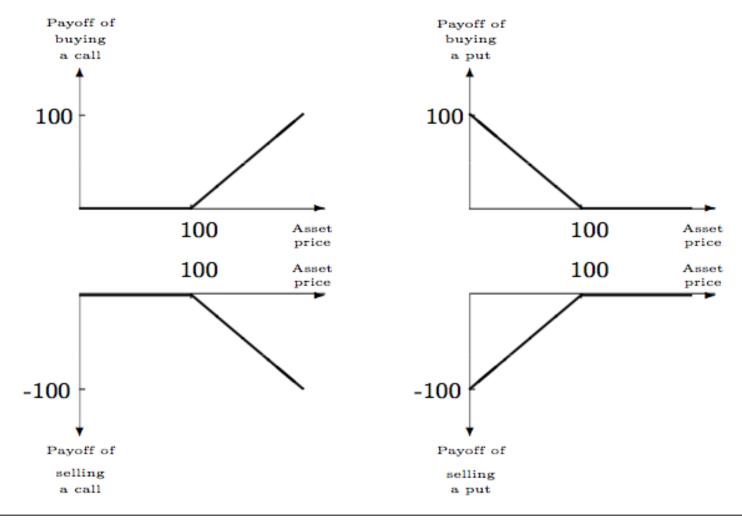
Example. A European call option on IBM with exercise price \$100. It gives the owner (buyer) of the option the right (not the obligation) to buy one share of IBM at \$100 on the expiration date. Depending on the share price of IBM on the expiration date, the option's payoff is:

IBM Price at T	Action	Payoff
:	Not Exercise	0
80	Not Exercise	0
90	Not Exercise	0
100	Not Exercise	0
110	Exercise	10
120	Exercise	20
130	Exercise	30
:	Exercise	$S_T - 100$

- _ The payoff of an option is never negative. Sometimes, it is positive.
- _ Actual payoff depends on the price of the underlying asset:

$$CF_T$$
 (call) = max $[S_T - K, 0]$

Option payoffs can be plotted as a function of the price of the underlying asset at expiration:

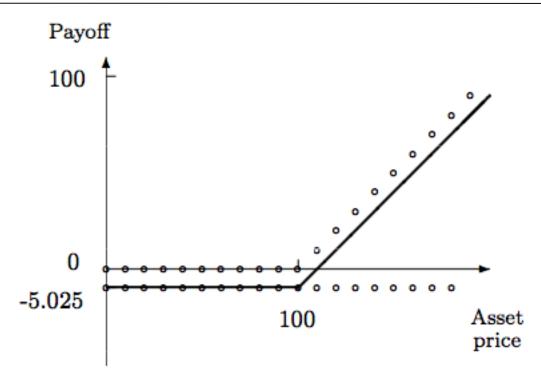


The net payoff from an option must includes its cost.

Example. A European call on IBM shares with an exercise price of \$100 and maturity of three months is trading at \$5. The 3-month interest rate, not annualized, is 0.5%. What is the price of IBM that makes the call break-even?

At maturity, the call's net payoff is as follows:

IBM Price	Action	Payoff	Net payoff
:	Not Exercise	0	- 5.025
80	Not Exercise	0	- 5.025
90	Not Exercise	0	- 5.025
100	Not Exercise	0	- 5.025
110	Exercise	10	4.975
120	Exercise	20	14.975
130	Exercise	30	24.975
:	Exercise	S_T-100	$S_T - 100 - 5.25$



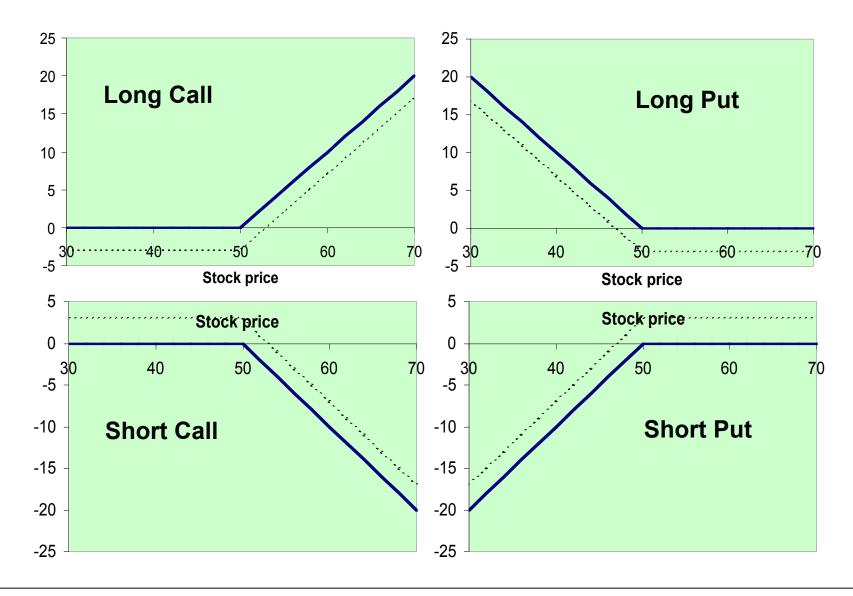
The break even point is given by:

Net payoff =
$$\max[S_T - K, 0] - C(1+r)^T$$

= $S_T - 100 - (5)(1 + 0.005)$
= 0

or

$$S_T = $105.025$$



Call option (price = C)

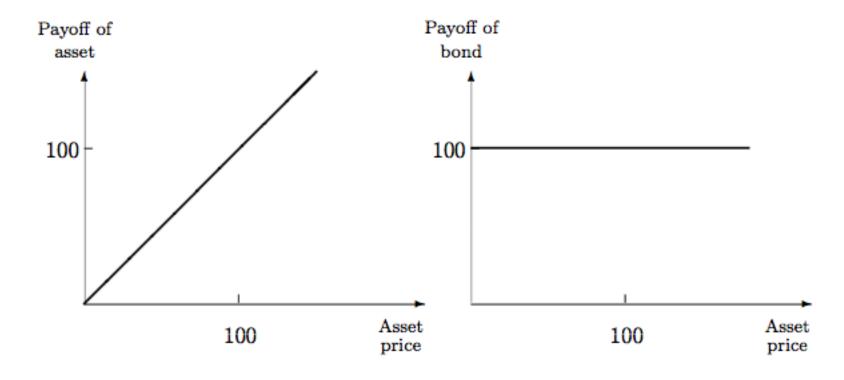
	if S < K	if S = K	if S > K
Payoff	0	0	S – K
Profit	-C(1+r) [™]	–C(1+r) [™]	$S - K - C(1+r)^{T}$

Put option (price = P)

	if S < K	if S = K	if S > K
Payoff	K-S	0	0
Profit	$K - S - P(1+r)^T$	–P(1+r) [⊤]	–P(1+r) [™]

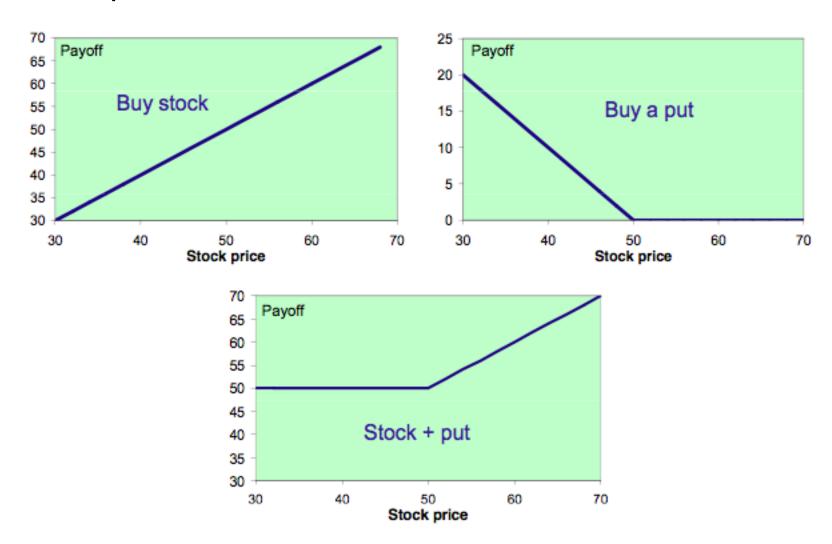
Using the payoff diagrams, we can also examine the payoff of a portfolio consisting of options as well as other assets.

Example. The underlying asset and the bond (with face value \$100) have the following payoff diagram:

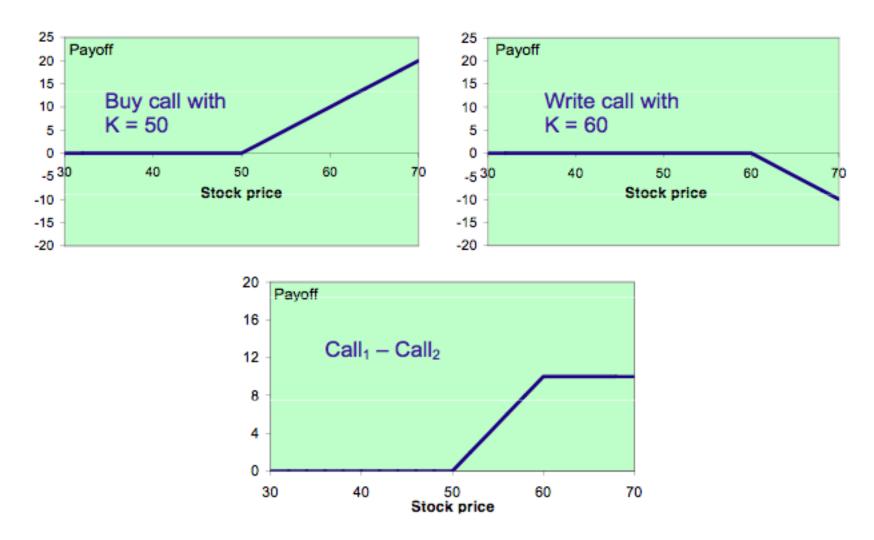


Lecture Notes 10

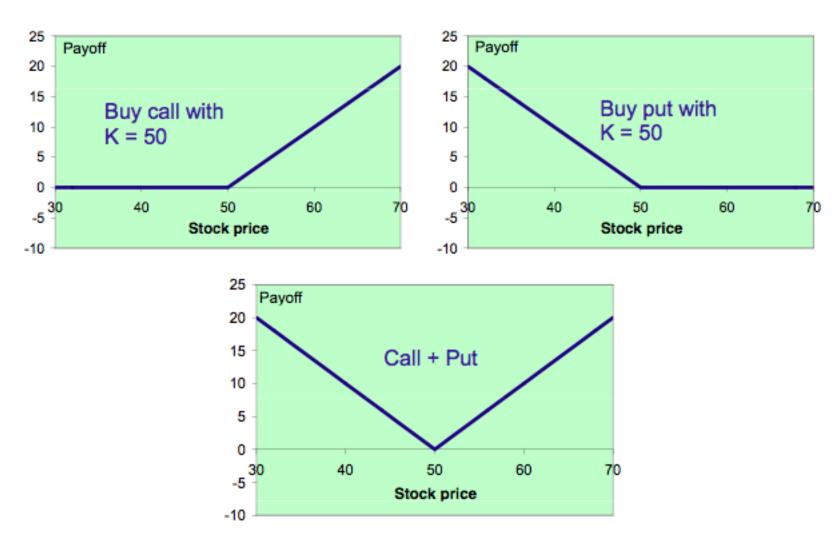
Stock + put



Call 1 - Call 2



Call + Put



Example. Consider two firms, A and B, with identical assets but different capital structures (in market value terms).

<u>Ba</u>	lance	$\frac{\text{sheet }}{}$	<u>of A</u>	$\underline{\mathbf{Ba}}$	lance	$\frac{1}{2}$	<u>of B</u>
Asset	\$30	\$0	Bond	Asset	\$30	\$25	Bond
		30	Equity			5	Equity
	\$30	\$30			\$30	\$30	

Firm B's bond has a face value of \$50. Thus default is likely.

Example. (Cont'd)

Consider the value of stock A, stock B, and a call on the underlying asset of firm B with an exercise price of \$50:

Asset value	Value of stock A	Value of stock B	Value of call
:	:	:	:
\$20	20	0	0
40	40	0	0
50	50	0	0
60	60	10	10
80	80	30	30
100	100	50	50
:	:	:	:
:	:		:

- _ Stock B gives the same payoff as a call option written on its asset
- Thus B's common stocks really are call options of firm's asset

Indeed, many corporate securities can be viewed as options:

Common stock: A call option on the assets of the firm with the

exercise price being its bond's redemption value.

Bond: A portfolio combining the firm's assets and a short

position in the call with exercise price equal bond

redemption value.

Equity
$$\equiv$$
 Max [0, $A-B$] Debt \equiv Min [A , B] $=A-$ Max [0, $A-B$] $=D+E$

Warrant: Call options on the stock issued by the firm.

Convertible bond: A portfolio combining straight bonds and a call

option on the firm's stock with the exercise price

related to the conversion ratio.

Callable bond: A portfolio combining straight bonds and a call

written on the bonds.

For convenience, we refer to the underlying asset as stock. It could also be a bond, foreign currency or some other asset.

Notation:

S: Price of stock now

S_T: Price of stock at T

B: Price of discount bond of par \$1 and maturity T (B≤1)

C: Price of a European call with strike K and maturity T

P: Price of a European put with strike K and maturity T

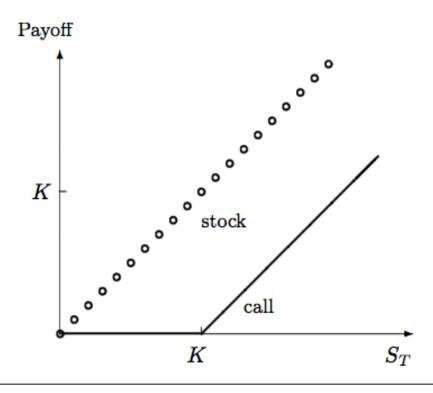
For our discussions:

- Consider only European options (no early exercise)
- Assume no dividends (option cash flow occurs only at maturity)

First consider European options on a non-dividend paying stock.

- $1. \ C \geq 0$
- $2. \ C \leq S$

The payoff of stock dominates that of call:

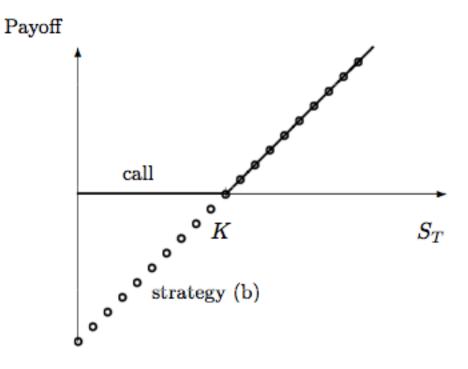


3. $C \ge S - K B$

Strategy (a): Buy a call

Strategy (b): Buy a share of stock by borrowing KB

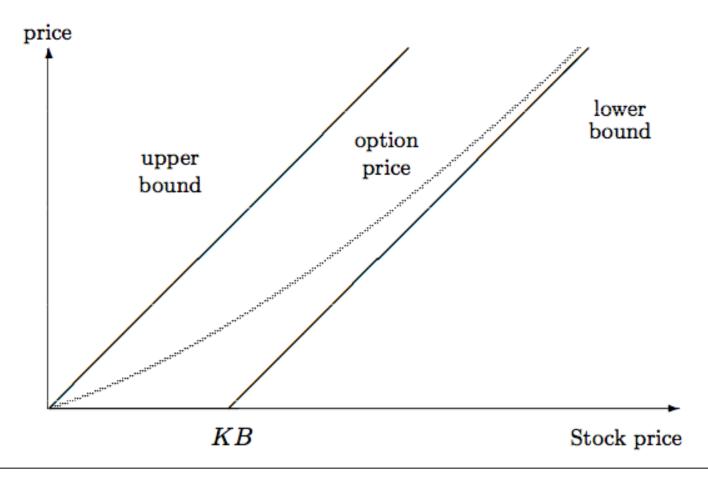
The payoff of strategy (a) dominates that of strategy (b):



Since $C \ge 0$, we have $C \ge \max[S - KB, 0]$

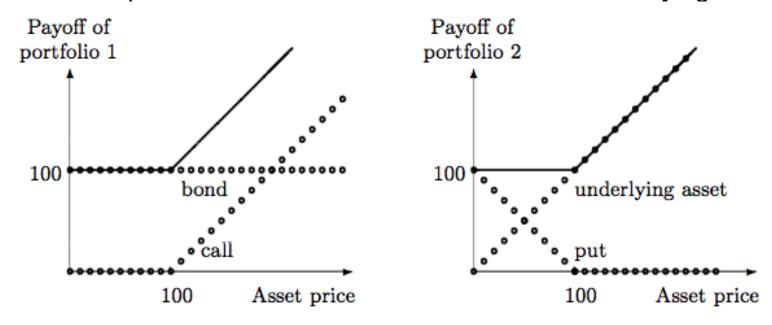
4. Combining the above, we have

$$\max\left[\,S\!-\!KB,\,0\,\right] \leq C \leq S$$



Portfolio 1: A call with strike \$100 and a bond with par \$100

Portfolio 2: A put with strike \$100 and a share of the underlying asset



Their payoffs are identical, so must be their prices:

$$C + K/(1+r)^T = P + S$$

This is called the put-call parity.

Option value increases with the volatility of underlying asset.

Example. Two firms, A and B, with the same current price of \$100. B has higher volatility of future prices. Consider call options written on A and B, respectively, with the same exercise price \$100.

	Good state	bad state
Probability	p	1-p
Stock A	120	80
Stock B	150	50
Call on A	20	0
Call on B	50	0

Clearly, call on stock B should be more valuable.

Determinants of option value:

Key factors in determining option value:

- 1. price of underlying asset S
- 2. strike price K
- 3. time to maturity T
- 4. interest rate r
- 5. volatility of underlying asset —

Additional factors that can sometimes influence option value:

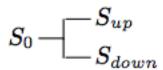
- 6. expected return on the underlying asset
- 7. investors' attitude toward risk, ...

In order to have a complete option pricing model, we need to make additional assumptions about

- 1. Price process of the underlying asset (stock)
- 2. Other factors

We will assume, in particular, that:

- Prices do not allow arbitrage
- Prices are ``reasonable"
- _ A benchmark model --- Price follows a binomial process.





Example. Valuation of a European call on a stock.

- _ Current stock price is \$50
- There is one period to go
- Stock price will either go up to \$75 or go down to \$25
- There are no cash dividends
- _ The strike price is \$50
- One period borrowing and lending rate is 10%

The stock and bond present two investment opportunities:

$$50 - \frac{75}{25}$$

$$1 - \begin{bmatrix} 1.1 \\ 1.1 \end{bmatrix}$$

The option's payoff at expiration is:

$$C_0 - \begin{bmatrix} -25 \\ 0 \end{bmatrix}$$

What is C_0 , the value of the option today?

Form a portfolio of stock and bond that replicates the call's payoff:

- > a shares of the stock
- b dollars in the riskless bond

such that

$$75a + 1.1b = 25$$

 $25a + 1.1b = 0$

Unique solution:
$$a = 0.5$$
 and $b = -11.36$

That is

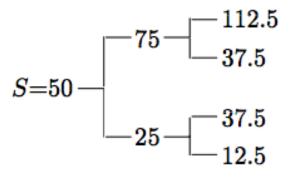
- buy half a share of stock and sell \$11.36 worth of bond
- payoff of this portfolio is identical to that of the call
- present value of the call must equal the current cost of this "replicating portfolio" which is

$$(50)(0.5) - 11.36 = 13.64$$

Number of shares needed to replicate one call option is called the option's hedge ratio or delta.

In the above problem, the option's delta is a = 1/2.

More than one period:



Call price process:

$$C$$
 $C_{uu} = 62.5$ $C_{uu} = 62.5$ $C_{uu} = 0$ $C_{uu} = 0$

- terminal value of the call is known, and
- C_u and C_d denote the option value next period when the stock price goes up and goes down, respectively
- Compute the current value by working backwards: first C_u and C_d
 and then C

Step 1. Start with Period 1:

- 1. Suppose the stock price goes up to \$75 in period 1:
- Construct the replicating portfolio at node (t = 1, up):

$$112.5a + 1.1b = 62.5$$

 $37.5a + 1.1b = 0$

- _ Unique solution: a = 0.833, b = 28.4
- _ The cost of this portfolio: (0.833)(75) 28.4 = 34.075
- The exercise value of the option: $75 50 = 25 \le 34.075$
- _ Thus, $C_u = 34.075$.
- 2. Suppose the stock price goes down to \$25 in period 1. Repeat the above for node (t =1, down):
- The replicating portfolio: a = 0, b = 0
- The call value at the lower node next period is $C_d = 0$.

Step 2. Now go back one period, to Period 0:

The option's value next period is either 34.075 or 0:

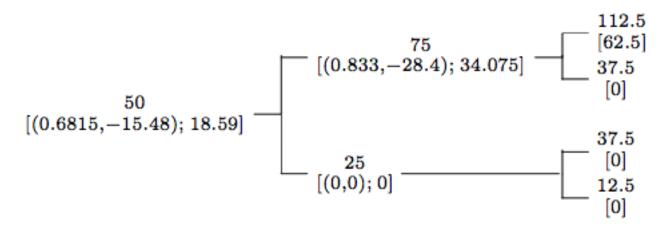
$$C_0 - C_u = 34.075$$
 $C_d = 0$

- If we can construct a portfolio of the stock and bond to replicate the value of the option next period, then the cost of this replicating portfolio must equal the option's present value.
- Find a and b so that

$$75a + 1.1b = 34.075$$

 $25a + 1.1b = 0$

- _ Unique solution: a = 0.6815, b = -15.48
- _ The cost of this portfolio: (0.6815)(50) 15.48 = 18.59
- The present value of the option must be $C_0 = 18.59$
- _ It is greater than the exercise value 0 (thus no early exercise)



Play Forward:

Period 0: Spend \$18.59 and borrow \$15.48 at 10% interest rate to buy 0.6815 shares of the stock

Period 1:

- ➤ When the stock price goes up, the portfolio value becomes 34.075. Re-balance the portfolio to include 0.833 stock shares, financed by borrowing 28.4 at 10%
 - ✓ One period later, the payoff of this portfolio exactly matches that of the call
- When the stock price goes down, the portfolio becomes worthless. Close out the position.
 - ✓ The portfolio payoff one period later is zero

Thus

- No early exercise.
- Replicating strategy gives payoffs identical to those of the call.
- _ Initial cost of the replicating strategy must equal the call price.

What we have used to calculate option's value:

- _ current stock price
- _ magnitude of possible future changes of stock price -- volatility
- interest rate
- _ strike price
- _ time to maturity

What we have not used:

- _ probabilities of upward and downward movements
- investor's attitude towards risk

Questions on the Binomial Model

- What is the length of a period?
- Price can take more than two possible values.
- _ Trading takes place continuously.

If we let the period-length get smaller and smaller, we obtain the Black-Scholes option pricing formula:

$$C(S,K,T) = SN\bigg(x\bigg) - KR^{-T}N\bigg(x - \sigma\sqrt{T}\bigg)$$

where

_ x is defined by $x = \frac{\ln\left(S/KR^{-T}\right)}{\sigma\sqrt{T}} + \frac{1}{2}\sigma\sqrt{T}$

- _ T is in units of a year
- R = 1+r, where r is the annual riskless interest rate
- $_{\rm }$ σ is the volatility of annual returns on the underlying asset
- N (.) is the cumulative normal density function

An interpretation of the Black-Scholes formula:

- The call is equivalent to a levered long position in the stock.
- S N(x) is the amount invested in the stock
- $-KR^{-T}N\left(x-\sigma\sqrt{T}\right)$ is the dollar amount borrowed
- The option delta is

$$N(x) = C_S$$

Example. Consider a European call option on a stock with the following data:

- _ S = 50, K = 50, T = 30 days
- The volatility σ is 30% per year
- The current annual interest rate is 5.895%

Then

$$x = \frac{\ln\left(50/50(1.05895)^{-\frac{30}{365}}\right)}{(0.3)\sqrt{\frac{30}{365}}} + \frac{1}{2}(0.3)\sqrt{\frac{30}{365}} = 0.0977$$

$$C = 50N(0.0977) - 50(1.05895)^{-\frac{30}{365}}N\left(0.0977 - 0.3\sqrt{\frac{30}{365}}\right)$$
$$= 50(0.53890) - 50(0.99530)(0.50468)$$
$$= 1.83$$

- _ Introduction to options
- Option payoffs
- Corporate securities as options
- Use of options
- Basic properties of options
- Binomial Option Pricing Model
- Black-Scholes option pricing formula