### Learning and Dynamics in Networks

### Asu Ozdaglar

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

> American Control Conference June, 2009

## Networks and Strategic Interactions

- Networks running through almost every complex environment
  - social groups, markets, Web sites, ecosystems, supply chains, conflict



- Each individual's actions have consequences for outcomes of others
- Understanding interconnected systems requires reasoning about network structure as well as strategic behavior and feedback effects across individuals

## Learning and Network Dynamics

- Belief formation crucial in social and economic networks
  - Formation of political opinions in voting
  - Learning about product quality
  - Information aggregation in financial and economic networks
  - Intentions in potential conflict situations
- How to model information dynamics in networks?
  - State of the system described by beliefs of individuals
  - Beliefs form and evolve over time based on private information, mutual information, and information exchange across individuals
- Central Question: Under what conditions (on network, interaction, and information structures) do these dynamics lead to efficient aggregation of disperse information?
- Similarity to cooperative engineering networks where there is aggregation of local information from decentralized sensors/agents
  - Same performance metrics: Accuracy and rate
  - Big new challenge: Strategic interactions

### Roadmap

- Example explaining strategic interactions
- Distinction between different types of learning in different approaches
- A model of "consensus" learning
- A model of spread of misinformation and quantification of learning
- Bayesian learning over social networks (observational learning)
- Bayesian learning over social networks (communication learning)
- Learning, dynamics, and control over networks

- [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
  - Agents arrive in town sequentially and choose to dine in an Indian or in a Chinese restaurant.
  - One restaurant is strictly better, underlying state  $\theta \in \{Chinese, Indian\}$ .
  - Agents have independent binary private signals.
  - Signals indicate the better option with probability p > 1/2.
  - Agents observe prior decisions, but not the signals of others.
- Realization: Assume  $\theta = Indian$ 
  - Agent 1 arrives. Her signal indicates 'Chinese'.
  - She chooses to have a Chinese dinner.

- [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
  - Agents arrive in town sequentially and choose to dine in an Indian or in a Chinese restaurant.
  - One restaurant is strictly better, underlying state  $\theta \in \{Chinese, Indian\}$ .
  - Agents have independent binary private signals.
  - Signals indicate the better option with probability p > 1/2.
  - Agents observe prior decisions, but not the signals of others.
- Realization: Assume  $\theta = Indian$ 
  - Agent 1 arrives. Her signal indicates 'Chinese'.
  - She chooses to have a Chinese dinner.

- [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
  - Agents arrive in town sequentially and choose to dine in an Indian or in a Chinese restaurant.
  - One restaurant is strictly better, underlying state  $\theta \in \{Chinese, Indian\}$ .
  - Agents have independent binary private signals.
  - Signals indicate the better option with probability p > 1/2.
  - Agents observe prior decisions, but not the signals of others.
- Realization: Assume  $\theta = Indian$ 
  - Agent 1 arrives. Her signal indicates 'Chinese'.
  - She chooses to have a Chinese dinner.



Signal = 'Chinese' Decision = 'Chinese'

- [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
  - Agents arrive in town sequentially and choose to dine in an Indian or in a Chinese restaurant.
  - One restaurant is strictly better, underlying state  $\theta \in \{Chinese, Indian\}$ .
  - Agents have independent binary private signals.
  - Signals indicate the better option with probability p > 1/2.
  - Agents observe prior decisions, but not the signals of others.
- Realization: Assume  $\theta = Indian$ 
  - Agent 2 arrives. His signal indicates 'Chinese'.
  - He also chooses to eat Chinese food.



Signal = 'Chinese'
Decision = 'Chinese'
Decision = 'Chinese'

- [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
  - Agents arrive in town sequentially and choose to dine in an Indian or in a Chinese restaurant.
  - One restaurant is strictly better, underlying state  $\theta \in \{Chinese, Indian\}$ .
  - Agents have independent binary private signals.
  - Signals indicate the better option with probability p > 1/2.
  - Agents observe prior decisions, but not the signals of others.
- Realization: Assume  $\theta = Indian$ 
  - Agent 3 arrives. Her signal indicates 'Indian'.
  - She disregards her signal and copies the decisions of agents 1 and 2.



Decision = 'Chinese' Decision = 'Chinese' Decision = 'Chinese'

- [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
  - Agents arrive in town sequentially and choose to dine in an Indian or in a Chinese restaurant.
  - One restaurant is strictly better, underlying state  $\theta \in \{Chinese, Indian\}$ .
  - Agents have independent binary private signals.
  - Signals indicate the better option with probability p > 1/2.
  - Agents observe prior decisions, but not the signals of others.
- Realization: Assume  $\theta = Indian$ 
  - If the first two agents choose Chinese, everyone else selects Chinese.
  - People do not converge on the better restaurant.



Decision = 'Chinese' Decision = 'Chinese' Decision = 'Chinese'

### Take-away lessons

- Game theoretic reasoning
  - Agents  $n \ge 3$  infer the signals of agents 1 and 2 from their behavior, because they conjecture the strategy used by these agents.
- Game theoretic challenges to information aggregation
  - Selfish behavior as a barrier to efficient information aggregation.
  - Social planner would have "collected" the signals of several agents by inducing them to act according to their signals.
  - Informational externality: Decisions I take reveal information useful for others, which does not feature in my decision making.
- Game theoretic challenges to modeling
  - How to analyze more realistic and complex networks with learning?

## Modeling

- How do agents act in reality?
  - Bayesian rational learning: (as in the example)
    - Pro: Natural benchmark and often simple heuristics can replicate it
    - Con: Often complex
  - Non-Bayesian myopic learning: (rule-of-thumb)
    - Pro: Simple and often realistic
    - Con: Arbitrary rules-of-thumb, different performances from different rules, how to choose the right one?
- What do agents observe?
  - Observational learning: observe past actions (as in the example)
    - Most relevant for markets
  - Communication learning: communication of beliefs or estimates
    - Most relevant for friendship networks (such as Facebook)

## A Benchmark Myopic Learning Model

- Beliefs updated by taking weighted averages of neighbors' beliefs [DeGroot 74], [Golub and Jackson 07]
- A finite set  $\{1, \ldots, n\}$  of agents
- Interactions captured by an  $n \times n$  nonnegative interaction matrix T
  - $T_{ij} > 0$  indicates the trust or weight that i puts on j
  - T is a stochastic matrix (row sum=1)
- There is an underlying state of the world  $\theta \in \mathbb{R}$
- Each agent has initial belief  $x_i(0)$ ; we assume  $\theta = 1/n \sum_{i=1}^n x_i(0)$
- Each agent at time k updates his belief  $x_i(k)$  according to

$$x_i(k+1) = \sum_{j=1}^n T_{ij} x_j(k)$$

- Reasonable rule-of-thumb, but myopic
- Update rule similar to consensus and optimization algorithms
   [Tsitsiklis 84], [Bertsekas, Tsitsiklis 95], [Jadbabaie, Lin, Morse 03], [Nedić, Ozdaglar 07], [Lobel, Ozdaglar 08]

# Convergence and Learning

• Letting  $x(k) = [x_1(k), \dots, x_n(k)]$ , the evolution of beliefs given by

$$x(k+1) = Tx(k)$$
 for all  $k \ge 0$ 

- Under mild conditions (strong connectedness and aperiodicity of the directed graph induced by *T*), beliefs converge to a consensus equal to a weighted average of initial beliefs.
- Consider a sequence of networks (society)  $\{T(n)\}$  and let  $\bar{x}(n) \in \mathbb{R}$  be the limiting consensus belief in each T(n).
- We say that asymptotic learning occurs if

$$\lim_{n\to\infty}|\bar{x}(n)-\theta|=0$$

,

## Influential Agents and Learning

 A set of agents B is called an influential family if the beliefs of all agents outside B affected by beliefs of B (in finitely many steps)



- With a sequence of (uniformly) influential agents, no asymptotic learning
  - Lack of doubly stochasticity of T
  - Interpretation: Information of influential agents overrepresented
- Distressing result since influential families (e.g., media, local leaders) common in practice

### Towards a Richer Model

- Too myopic and mechanical: If communicating with same people over and over again (deterministically), some recognition that this information already been incorporated.
- No notion of misinformation or extreme views that can spread in the network.
- No analysis of what happens in terms of quantification of learning without doubly stochasticity

### A Model of Misinformation

- Misinformation over networks [Acemoglu, Ozdaglar, ParandehGheibi 09]
- Finite set  $\mathcal{N} = \{1, \dots, n\}$  of agents, each with initial belief  $x_i(0)$ .
- Time continuous: each agent recognized according to iid Poisson processes.
- $x_i(k)$ : belief of agent *i* after  $k^{th}$  communication.
- Conditional on being recognized, agent i meets agent j with probability  $p_{ij}$ :
  - With probability  $\beta_{ij}$ , the two agents agree and exchange information

$$x_i(k+1) = x_j(k+1) = (x_i(k) + x_j(k))/2.$$

- With probability  $\gamma_{ii}$ , disagreement and no exchange of information.
- With probability  $\alpha_{ij}$ , i is influenced by j

$$x_i(k+1) = \epsilon x_i(k) + (1-\epsilon)x_i(k)$$

for some  $\epsilon > 0$  small. Agent j's belief remains unchanged.

• We say that j is a forceful agent if  $\alpha_{ij} > 0$  for some i.

### **Evolution of Beliefs**

• Letting  $x(k) = [x_1(k), \dots, x_n(k)]$ , evolution of beliefs written as

$$x(k+1) = W(k)x(k),$$

where W(k) is a random matrix given by

$$W(k) = \left\{ \begin{array}{ll} A_{ij} \equiv I - \frac{(e_i - e_j)(e_i - e_j)'}{2} & \text{with probability } p_{ij}\beta_{ij}/n, \\ J_{ij} \equiv I - (1 - \epsilon) \, e_i(e_i - e_j)' & \text{with probability } p_{ij}\alpha_{ij}/n, \\ I & \text{with probability } p_{ij}\gamma_{ij}/n. \end{array} \right.$$

• The matrix W(k) is a (row) stochastic matrix for all k, and is iid over all k, hence

$$E[W(k)] = \tilde{W}$$
 for all  $k \ge 0$ .

• We refer to the matrix  $\tilde{W}$  as the mean interaction matrix.

### Social Network and Influence Matrices

• Using the belief update model, we can decompose  $\tilde{W}$  as:

$$\widetilde{W} = \frac{1}{n} \sum_{i,j} p_{ij} \left[ \beta_{ij} A_{ij} + \alpha_{ij} J_{ij} + \gamma_{ij} I \right] 
= \frac{1}{n} \sum_{i,j} p_{ij} \left[ (1 - \gamma_{ij}) A_{ij} + \gamma_{ij} I \right] + \frac{1}{n} \sum_{i,j} p_{ij} \alpha_{ij} \left[ J_{ij} - A_{ij} \right] 
= T + D.$$

- Matrix T represents the underlying social interactions: social network matrix
- Matrix D represents the influence structure in the society: influence matrix
- Decomposition of  $\tilde{W}$  into a doubly stochastic and a remainder component
- Social network graph: the undirected (and weighted) graph  $(\mathcal{N}, \mathcal{A})$ , where  $\mathcal{A} = \{\{i, j\} \mid T_{ij} > 0\}$ , and the edge  $\{i, j\}$  weight given by  $T_{ij} = T_{ji}$
- Interaction dynamics nonsymmetric version of gossip algorithms [Boyd, Ghosh, Prabhakar, Shah 03]

## Assumptions

#### Assumption (Connectivity and Interaction)

- (i) The graph  $(\mathcal{N}, \mathcal{E})$ , where  $\mathcal{E} = \{(i,j) \mid p_{ij} > 0\}$ , is strongly connected.
- (ii) We have

$$\beta_{ij} + \alpha_{ij} > 0$$
 for all  $(i,j) \in \mathcal{E}$ .

- Positive probability that even forceful agents obtain information from the other agents in the society.
- Captures the idea that "no man is an island"

### Convergence to Consensus

#### Theorem

The beliefs  $\{x_i(k)\}$ ,  $i \in \mathcal{N}$  converge to a consensus belief, i.e., there exists a random variable  $\bar{x}$  such that

$$\lim_{k\to\infty} x_i(k) = \bar{x} \qquad \textit{for all i with probability one.}$$

Moreover, there exists a probability vector  $\bar{\pi}$  with  $\lim_{k\to\infty} \tilde{W}^k = e\bar{\pi}'$ , such that

$$E[\bar{x}] = \sum_{i=1}^{n} \bar{\pi}_i x_i(0) = \bar{\pi}' x(0).$$

- Convergence to consensus guaranteed; but with forceful agents, consensus belief is a random variable.
- We are interested in providing an upper bound on

$$E\Big[\bar{x} - \frac{1}{n} \sum_{i \in \mathcal{N}} x_i(0)\Big] = \sum_{i \in \mathcal{N}} \Big(\bar{\pi}_i - \frac{1}{n}\Big) x_i(0).$$

•  $\bar{\pi}$ : consensus distribution, and  $\bar{\pi}_i - \frac{1}{n}$ : excess influence of agent i

### Global Bounds on Consensus Distribution

#### Theorem

Let  $\pi$  denote the consensus distribution. Then,

$$\left\|\pi - \frac{1}{n}e\right\|_{2} \le \frac{1}{1 - \lambda_{2}} \frac{\sum_{i,j} p_{ij}\alpha_{ij}}{n},$$

where  $\lambda_2$  is the second largest eigenvalue of the social network matrix T.

- Proof using perturbation theory of Markov Chains
  - View  $\tilde{W}$  as a perturbation of matrix T by the influence matrix D
- $\lambda_2$  related to mixing time of a Markov Chain
  - When the spectral gap  $(1 \lambda_2)$  is large, we say that the Markov Chain induced by T is fast-mixing
- In fast-mixing graphs, forceful agents will themselves be influenced by others (since  $\beta_{ij} + \alpha_{ij} > 0$  for all i, j)
  - Beliefs of forceful agents moderated by the society before they spread

### Location of Forceful Agents

• Previous bound does not depend on the location of the forceful agents

**Example:** Consider 6 agents connected with social network graph induced by *T* and two different misinformation scenarios:

• forceful link over a bottleneck and forceful link inside a cluster



The stationary distribution for each case is given by

$$\pi_a = \frac{1}{6}(1.25, 1.25, 1.25, 0.75, 0.75, 0.75)', \quad \pi_b = \frac{1}{6}(0.82, 1.18, 1, 1, 1, 1)'.$$

### Location of Forceful Agents

• Previous bound does not depend on the location of the forceful agents

**Example:** Consider 6 agents connected with social network graph induced by *T* and two different misinformation scenarios:

• forceful link over a bottleneck and forceful link inside a cluster



The stationary distribution for each case is given by

$$\pi_a = \frac{1}{6}(1.25, 1.25, 1.25, 0.75, 0.75, 0.75)', \quad \pi_b = \frac{1}{6}(0.82, 1.18, 1, 1, 1, 1)'.$$

## Exact Characterization with Mean First Passage Times

#### Theorem

Let  $\bar{\pi}$  denote the consensus distribution. For every agent k,

$$\bar{\pi}_k - \frac{1}{n} = \sum_{i,j} \frac{p_{ij}\alpha_{ij}}{2n^2} ((1 - 2\epsilon)\bar{\pi}_i + \bar{\pi}_j) \left( m_{ik} - m_{jk} \right) \quad \text{for all } k,$$

where  $m_{ij}$  is the mean first passage time from state i to state j of a Markov chain  $(X_t, t = 0, 1, 2, ...)$  with transition matrix T, i.e.,

$$m_{ij}=\mathbb{E}[T_j\mid X_0=i],$$

where 
$$T_i = \inf\{t \geq 0 \mid X_t = i\}.$$

- Excess influence of each agent depends on the relative distance of that agent to the forceful and the influenced agent
  - Explains the insensitivity of the agents in the right cluster in the previous example.

### Information Bottlenecks – Relative Min-Cuts

#### Theorem

Let  $\bar{\pi}$  be the consensus distribution. For all k, we have

$$\left|\bar{\pi}_k - \frac{1}{n}\right| \le \sum_{i,j} \frac{3p_{ij}\alpha_{ij}}{2n} \left(\frac{\log n}{\rho_{ij}}\right),$$

where  $\rho_{ij}$  is the minimum normalized relative cut value between i and j of the Markov chain induced by the social network matrix T, i.e.,

$$\rho_{ij} = \inf_{S \subset \mathcal{N}} \left\{ \frac{\sum_{h \in S} \sum_{l \in S^c} T_{hl}}{|S|} \mid i \in S, j \notin S \right\}.$$

 Proof relies on bounding the mean commute time using Max flow-Min cut Theorem.



## Shortcomings of This Model

- Even though non-deterministic interaction pattern, information still replicated.
- Where do these rules come from?
- Line of Attack: Develop Bayesian models
- Imagine the Chinese-Indian restaurant example, but with two realistic features:
  - Social network structure (every agent does not observe the full past)
  - Heterogeneity of preferences

## Bayesian Learning over Networks- without heterogeneity

- Learning over general networks [Acemoglu, Dahleh, Lobel, Ozdaglar 08]
- Two possible states of the world  $\theta \in \{0, 1\}$ , both equally likely
- A sequence of agents (n = 1, 2, ...) making decisions  $x_n \in \{0, 1\}$ .
- Agent *n* obtains utility 1 if  $x_n = \theta$ , and utility 0 otherwise.
- Each agent has an iid private signal  $s_n$  in S. The signal is generated according to distribution  $\mathbb{F}_{\theta}$  (signal structure)
- Agent *n* has a neighborhood  $B(n) \subseteq \{1, 2, ..., n-1\}$  and observes the decisions  $x_k$  for all  $k \in B(n)$ .
  - The set B(n) is private information.
- The neighborhood B(n) is generated according to an arbitrary distribution  $\mathbb{Q}_n$  (independently for all n) (network topology)
  - The sequence  $\{\mathbb{Q}_n\}_{n\in\mathbb{N}}$  is common knowledge.
- Asymptotic Learning: Under what conditions does  $\lim_{n\to\infty} \mathbb{P}(x_n=\theta)=1$ ?

# An Example of a Social Network



### Perfect Bayesian Equilibria

- Agent *n*'s information set is  $I_n = \{s_n, B(n), x_k \text{ for all } k \in B(n)\}$
- A strategy for individual *n* is  $\sigma_n : \mathcal{I}_n \to \{0, 1\}$
- A strategy profile is a sequence of strategies  $\sigma = {\sigma_n}_{n \in \mathbb{N}}$ .
  - A strategy profile  $\sigma$  induces a probability measure  $\mathbb{P}_{\sigma}$  over  $\{x_n\}_{n\in\mathbb{N}}$ .

#### Definition

A strategy profile  $\sigma^*$  is a pure-strategy Perfect Bayesian Equilibrium if for all n

$$\sigma_n^*(I_n) \in \arg\max_{y \in \{0,1\}} \mathbb{P}_{(y,\sigma_{-n}^*)}(y = \theta \mid I_n)$$

• A pure strategy PBE exists. Denote the set of PBEs by  $\Sigma^*$ .

#### Definition

We say that asymptotic learning occurs in equilibrium  $\sigma$  if  $x_n$  converges to  $\theta$  in probability,

$$\lim_{n\to\infty}\mathbb{P}_{\sigma}(x_n=\theta)=1$$

• No following the crowds

• No following the crowds



• No following the crowds



• No following the crowds

• Less can be more





• No following the crowds

• Less can be more.





## **Equilibrium Decision Rule**

#### Lemma

The decision of agent n,  $x_n = \sigma(\mathcal{I}_n)$ , satisfies

$$x_n = \begin{cases} 1, & \text{if } \mathbb{P}_{\sigma}(\theta = 1 \mid s_n) + \mathbb{P}_{\sigma}(\theta = 1 \mid B(n), x_k \text{ for all } k \in B(n)) > 1, \\ 0, & \text{if } \mathbb{P}_{\sigma}(\theta = 1 \mid s_n) + \mathbb{P}_{\sigma}(\theta = 1 \mid B(n), x_k \text{ for all } k \in B(n)) < 1, \end{cases}$$

and  $x_n \in \{0, 1\}$  otherwise.

- Implication: The belief about the state decomposes into two parts:
  - the Private Belief:  $\mathbb{P}_{\sigma}(\theta = 1 \mid s_n)$ ;
  - the Social Belief:  $\mathbb{P}_{\sigma}(\theta = 1 \mid B(n), x_k \text{ for all } k \in B(n)).$

### **Private Beliefs**

• The private belief of agent n is

$$p_n(s_n) = \mathbb{P}_{\sigma}(\theta = 1|s_n) = \left(1 + \frac{d\mathbb{F}_0(s_n)}{d\mathbb{F}_1(s_n)}\right)^{-1}.$$

#### **Definition**

The signal structure has unbounded private beliefs if

$$\inf_{s \in S} \frac{d\mathbb{F}_0}{d\mathbb{F}_1}(s) = 0 \quad \text{and} \quad \sup_{s \in S} \frac{d\mathbb{F}_0}{d\mathbb{F}_1}(s) = \infty.$$

- If the private beliefs are unbounded, then there exist agents with beliefs arbitrarily strong in both directions.
  - Gaussian signals yield unbounded beliefs; discrete signals yield bounded beliefs.

## Properties of Network Topology

#### Definition

A network topology  $\{\mathbb{Q}_n\}_{n\in\mathbb{N}}$  has expanding observations if for all K,

$$\lim_{n \to \infty} \mathbb{Q}_n \left( \max_{b \in B(n)} b < K \right) = 0.$$

#### • Excessive influence:

- A finite group of agents is excessively influential if there exists an infinite number of agents who, with probability uniformly bounded away from 0, observe only the actions of a subset of this group.
  - For example, a group is excessively influential if it is the source of all information for an infinitely large component of the network.
- Expanding observations  $\Leftrightarrow$  no excessively influential agents.

## Learning Theorem – with Unbounded Beliefs

#### Theorem

Assume unbounded private beliefs and expanding observations. Then, asymptotic learning occurs in every equilibrium  $\sigma \in \Sigma^*$ .

- Implication: Influential, but not excessively influential, individuals do not prevent learning.
  - This contrasts with results in models of myopic learning.
  - Intuition: The weight given to the information of influential individuals is adjusted in Bayesian updating.

### Proof of Theorem – A Roadmap

- Characterization of equilibrium strategies when observing a single agent.
- Strong improvement principle when observing one agent.
- Generalized strong improvement principle.
- Asymptotic learning with unbounded private beliefs and expanding observations.

## Observing a Single Decision

### Proposition

Let  $B(n) = \{b\}$  for some agent n. There exists  $L_b^{\sigma}$  and  $U_b^{\sigma}$  such that agent n's decision  $x_n$  in  $\sigma \in \Sigma^*$  satisfies

$$x_n = \begin{cases} 0, & \text{if } p_n < L_b^{\sigma}; \\ x_b, & \text{if } p_n \in (L_b^{\sigma}, U_b^{\sigma}); \\ 1, & \text{if } p_n > U_b^{\sigma}. \end{cases}$$

• Let  $\mathbb{G}_j(r) = \mathbb{P}(p \le r \mid \theta = j)$  be the conditional distribution of the private belief with  $\beta$  and  $\overline{\beta}$  denoting the lower and upper support



## **Strong Improvement Principle**

• Agent *n* has the option of copying the action of his neighbor *b*:

$$\mathbb{P}_{\sigma}(x_n = \theta \mid B(n) = \{b\}) \ge \mathbb{P}_{\sigma}(x_b = \theta).$$

• Using the equilibrium decision rule and the properties of private beliefs, we establish a strict gain of agent *n* over agent *b*.

### Proposition (Strong Improvement Principle)

Let  $B(n) = \{b\}$  for some n and  $\sigma \in \Sigma^*$  be an equilibrium. There exists a continuous, increasing function  $\mathcal{Z} : [1/2, 1] \to [1/2, 1]$  with  $\mathcal{Z}(\alpha) \ge \alpha$  such that

$$\mathbb{P}_{\sigma}(x_n = \theta \mid B(n) = \{b\}) \geq \mathcal{Z}(\mathbb{P}_{\sigma}(x_b = \theta)).$$

- If the private beliefs are unbounded, then:
  - $\mathcal{Z}(\alpha) > \alpha$  for all  $\alpha < 1$ .
  - $\alpha = 1$  is the unique fixed point of  $\mathcal{Z}(\alpha)$ .

## Generalized Strong Improvement Principle

- With multiple agents, learning no worse than observing just one of them.
- Equilibrium strategy is better than the following heuristic:
  - Discard all decisions except the one from the most informed neighbor.
  - Use equilibrium decision rule for this new information set.

### Proposition (Generalized Strong Improvement Principle)

For any  $n \in \mathbb{N}$ , any set  $\mathfrak{B} \subseteq \{1,...,n-1\}$  and any  $\sigma \in \Sigma^*$ ,

$$\mathbb{P}_{\sigma}(x_n = \theta \mid B(n) = \mathfrak{B}) \geq \mathcal{Z}\left(\max_{b \in \mathfrak{B}} \mathbb{P}_{\sigma}(x_b = \theta)\right).$$

#### Proof of Theorem:

- Under expanding observations, one can construct a sequence of agents along which the generalized strong improvement principle applies
- Unbounded private beliefs imply that along this sequence  $\mathcal{Z}(\alpha)$  strictly increases
- Until unique fixed point  $\alpha = 1$ , corresponding to asymptotic learning

## No Learning with Bounded Beliefs

#### Theorem

Assume that the signal structure has bounded private beliefs. If there exists some constant M such that  $|B(n)| \leq M$  for all n and

$$\lim_{n\to\infty} \max_{b\in B(n)} b = \infty \text{ with probability } 1,$$

then asymptotic learning does not occur in any equilibrium  $\sigma \in \Sigma^*$ .

• Implication: With bounded beliefs, no learning from observing neighbors or sampling the past.

## Learning with Bounded Beliefs

 Theorem: There exist random network topologies for which learning occurs in all equilibria.

### Example

Let the network topology be

$$B(n) = \begin{cases} \{1, ..., n-1\}, & \text{with probability } 1 - \frac{1}{n}, \\ \emptyset, & \text{with probability } \frac{1}{n}. \end{cases}$$

Asymptotic learning occurs in all equilibria  $\sigma \in \Sigma^*$  for any signal structure  $(\mathbb{F}_0, \mathbb{F}_1)$ .

- Result contrasts with prior literature.
- Proof Idea:
  - Social beliefs form a martingale.
  - Martingale convergence implies almost sure convergence of actions.
  - The rate of contrary actions gives away the state.

## Diversity and Learning

- So far, all agents have the same preferences.
  - They all prefer to take action =  $\theta$ , and with the same intensity.
- In realistic situations, not only diversity of opinions, but also diversity of preferences.
- How does diversity of preferences affect social learning?
- Naive conjecture: diversity will introduce additional noise and make learning harder or impossible.
- Our Result: in the line topology, diversity always facilitates learning.

## Model with Heterogeneous Preferences

- Assume  $B(n) = \{1, ..., n-1\}$  [Acemoglu, Dahleh, Lobel, Ozdaglar 09]
- Let agent *n* have private preference  $t_n$  independently drawn from some  $\mathbb{H}$ .
- The payoff of agent *n* given by:

$$u_n(x_n, t_n, \theta) = \begin{cases} I(\theta = 1) + 1 - t_n & \text{if } x_n = 1\\ I(\theta = 0) + t_n & \text{if } x_n = 0 \end{cases}$$

- Theorem: With unbounded preferences, i.e.,  $[0,1] \subseteq supp(\mathbb{H})$ , asymptotic learning occurs in all equilibria  $\sigma \in \Sigma^*$  for any signal structure  $(\mathbb{F}_0, \mathbb{F}_1)$ .
  - Heterogeneity pulls learning in opposite directions:
    - Actions of others are less informative (direct effect)
    - Each agent uses more of his own signal in making decisions and, therefore, there is more information in the history of past actions (indirect effect)
  - Indirect effect dominates the direct effect! (relies on martingale convergence for the social belief sequence)

### Extensions

- Correlated neighborhoods
  - Expanding observations not a sufficient condition
  - Encompasses random graph models
- Diversity of preferences with general network topologies
- Rate of learning
  - Presented by Ilan Lobel on Thursday
- Previous model based on observational learning
- In practice, belief formation also depends on communication with friends, neighbors, and media sources
  - What was captured by the myopic models
- Next, a learning model with communication and observation.
  - Much more of effect of network structure

## A Model of Communication Learning

- Effect of communication on learning [Acemoglu, Bimpikis, Ozdaglar 09]
- Two possible states of the world,  $\theta \in \{0, 1\}$
- A set  $\mathcal{N} = \{1, ..., n\}$  of agents and a friendship network given

### Stage 1: Network Formation

- Additional link formation is costly,  $c_{ii}^n$ : cost incurred by i to link with j
- Induces the communication network  $G^n = (\mathcal{N}, \mathcal{E}^n)$

### Stage 2: Information Exchange (over the communication network $G^n$ )

- Each agent receives an iid private signal,  $s_i \sim \mathbb{F}_{\theta}$
- Agents receive all information acquired by their direct neighbors
- At each time period t they can choose:
  (1) irreversible action 0 (2) irreversible action 1 (3) wait

# Stage 1: Forming the communication network



# Stage 1: Forming the communication network



## Stage 2: Information Exchange



## Stage 2: Information Exchange



## Stage 2: Information Exchange



### Model

- This talk: Focus on stage 2
- Agent *i*'s payoff is given by

$$u_i(\mathbf{x_i^n}, \theta) = \begin{cases} \delta^{\tau} \pi & \text{if } x_{i,\tau}^n = \theta \text{ and } x_{i,t}^n = \text{"wait" for } t < \tau \\ 0 & \text{otherwise} \end{cases}$$

- $\mathbf{x_i^n} = [x_{i,t}^n]_{t \ge 0}$ : sequence of agent *i*'s decisions,  $x_{i,t}^n \in \{0, 1, \text{``wait''}\}$
- $\delta$ : discount factor ( $\delta < 1$ )
- $\tau$ : time when action is taken (agent collects information up to  $\tau$ )
- $\pi$ : payoff normalized to 1
- Assumption: Communication between agents is not strategic
  - Agents cannot manipulate the information they send to neighbors
  - Results extend to  $\epsilon$ -equilibrium with strategic communication!
- Let  $B_{i,t}^n = \{j \neq i \mid \exists \text{ a directed path from } j \text{ to } i \text{ with at most } t \text{ links in } G^n \}$ 
  - All agents that are at most t links away from i in  $G^n$
- Agent *i*'s information set at time *t*:

$$I_{i,t}^n = \{s_i, G^n, s_j \text{ for all } j \in B_{i,t}^n\}$$

## Equilibrium and Learning

- Given a sequence of communication networks  $\{G^n\}$  (society):
  - Strategy for agent *i* at time *t* is  $\sigma_{i,t}^n : \mathcal{I}_{i,t}^n \to \{\text{``wait''}, 0, 1\}$

### **Definition**

A strategy profile  $\sigma^{n,*}$  is a Perfect-Bayesian Equilibrium if for all i and t,

$$\sigma_{i,t}^{n,*} \in \arg\max_{\mathbf{y} \in \{\text{``wait''},0,1\}} E_{(\mathbf{y},\sigma_{-i,t}^{n,*})} \left(u_i(\mathbf{x_i^n},\theta)|I_{i,t}^n\right).$$

Let

$$M_{i,t}^n = \begin{cases} 1 & \text{if } x_{i,\tau} = \theta \text{ for some } \tau \leq t \\ 0 & \text{otherwise} \end{cases}$$

### Definition

We say that asymptotic learning occurs in society  $\{G^n\}$  if for every  $\epsilon > 0$ 

$$\lim_{n\to\infty}\lim_{t\to\infty}P_{\sigma^{n,*}}\left(\left[\frac{1}{n}\sum_{i=1}^n\left(1-M_{i,t}^n\right)\right]>\epsilon\right)=0$$

## **Agent Decision Rule**

#### Lemma

Let  $\sigma^{n,*}$  be an equilibrium and  $I_{i,t}^n$  be an information set of agent i at time t. Then, the decision of agent i,  $x_{i,t}^n = \sigma_{i,t}^{n,*}(I_{i,t}^n)$  satisfies

$$x_{i,t}^{n} = \begin{cases} 0, & \text{if } \log L(s_{i}) + \sum_{j \in B_{i,t}^{n}} \log L(s_{j}) \leq -\log A_{i,t}^{n,*}, \\ 1, & \text{if } \log L(s_{i}) + \sum_{j \in B_{i,t}^{n}} \log L(s_{j}) \geq \log A_{i,t}^{n,*}, \\ \text{"wait"}, & \text{otherwise,} \end{cases}$$

where  $L(s_i) = \frac{dP_{\sigma}(s_i|\theta=1)}{dP_{\sigma}(s_i|\theta=0)}$  is the likelihood ratio of signal  $s_i$ , and  $A_{i,t}^{n,*} = \frac{p_{i,t}^{n,*}}{1-p_{i,t}^{n,*}}$ , is a time-dependent parameter.

- $p_{i,t}^{n,*}$ : belief threshold that depends on time and graph structure
- For this talk:

  - Focus on binary private signals s<sub>i</sub> ∈ {0, 1}
     Assume L(1) = β/1-β and L(0) = 1-β/β for some β > 1/2.

### Minimum Observation Radius

#### Lemma

The decision of agent i,  $x_{i,t}^n = \sigma_{i,t}^{n,*}(I_{i,t}^n)$  satisfies

$$x_{i,t}^{n}(I_{i,t}^{n}) = \begin{cases} 0, & \text{if } k_{i,0}^{t} - k_{i,1}^{t} \ge \log A_{i,t}^{n,*} \cdot \left(\log \frac{\beta}{1-\beta}\right)^{-1}, \\ 1, & \text{if } k_{i,1}^{t} - k_{i,0}^{t} \ge \log A_{i,t}^{n,*} \cdot \left(\log \frac{\beta}{1-\beta}\right)^{-1}, \\ \text{"wait"}, & \text{otherwise}, \end{cases}$$

where  $k_{i,1}^t$  ( $k_{i,0}^t$ ) denotes the number of 1's (0's) agent i has observed up to time t.

#### Definition

We define the minimum observation radius of agent i, denoted by  $d_i^n$ , as

$$d_i^n = \arg\min_{t} \left\{ \left| B_{i,t}^n \right| \mid \left| B_{i,t}^n \right| \ge \log A_{i,t}^{n,*} \cdot \left( \log \frac{\beta}{1-\beta} \right)^{-1} \right\}.$$

- Agent *i* receives at least  $|B_{i,d_i^n}^n|$  signals before she takes an irreversible action
- $B_{i,d_i}^n$ : Minimum observation neighborhood of agent i

### A Learning Theorem

#### Definition

For any integer k > 0, we define the k-radius set, denoted by  $V_k^n$ , as

$$V_k^n = \{ j \in \mathcal{N} \mid \left| B_{j,d_j^n}^n \right| \le k \}$$

- Set of agents with "finite minimum observation neighborhood"
- Note that any agent *i* in the *k*-radius set has positive probability of taking the wrong action.

#### Theorem

Asymptotic learning occurs in society  $\{G^n\}$  if and only if

$$\lim_{k\to\infty}\lim_{n\to\infty}\frac{\left|V_k^n\right|}{n}=0$$

• A "large" number of agents with finite obs. neighborhoods precludes learning.

### Information Hubs and Random Graph Models

• A node *i* is an information hub if it has an infinite number of direct neighbors,

$$\lim_{n\to\infty} |B_1^n(i)| = \infty$$

 Asymptotic learning occurs if and only if for all but a negligible fraction of agents, the shortest path to a hub is shorter than minimum observation radius.

### Proposition

Asymptotic Learning occurs for

- (a) Complete and Star Graphs
- (b) *Power Law Graphs* with exponent  $\gamma \leq 2$  (with high probability)
  - Intuition: The average degree is infinite there exist many hubs.

Asymptotic Learning fails for

- (a) Bounded Degree Graphs, e.g. expanders
- (b) Preferential Attachment Graphs (with high probability)
  - Intuition: Edges form with probability proportional to degree, but there exist many low degree nodes.

## Networks, Dynamics, and Learning

- This talk: A review of the emerging field of theoretical models of social learning in networks
  - Modeling strategic interactions between individuals
  - Characterizing effects of network structure
  - Game theory and stochastic dynamic analysis
- Literature so far focuses on modeling and understanding dynamics
- Next step: Control over networks
  - How can misinformation be contained?
  - Which networks are robust and resilient?
  - How can information exchange be facilitated?
- Mechanism Design approach (design of game forms) meets control theory over networks
- Large area of research at the intersection of Networks, Control Theory, Economics, Computer Science, Operations Research, Sociology,...