
Learning and Dynamics in Networks

Asu Ozdaglar

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

American Control Conference
June, 2009

1



Networks and Strategic Interactions

Networks running through almost every complex environment
social groups, markets, Web sites, ecosystems, supply chains, conflict

From Adamic From AdamicFrom Krempel and Plumber

E-mail communication 
(mapped onto organizational 

hierarchy) at HP Labs

A network representing 
international trade

Network structure of
political blogs prior to 2004

presidential elections

Each individual’s actions have consequences for outcomes of others

Understanding interconnected systems requires reasoning about network
structure as well as strategic behavior and feedback effects across individuals
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Learning and Network Dynamics

Belief formation crucial in social and economic networks
Formation of political opinions in voting
Learning about product quality
Information aggregation in financial and economic networks
Intentions in potential conflict situations

How to model information dynamics in networks?
State of the system described by beliefs of individuals
Beliefs form and evolve over time based on private information, mutual
information, and information exchange across individuals

Central Question: Under what conditions (on network, interaction, and
information structures) do these dynamics lead to efficient aggregation of
disperse information?

Similarity to cooperative engineering networks where there is aggregation of
local information from decentralized sensors/agents

Same performance metrics: Accuracy and rate
Big new challenge: Strategic interactions
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Roadmap

Example explaining strategic interactions

Distinction between different types of learning in different approaches

A model of “consensus" learning

A model of spread of misinformation and quantification of learning

Bayesian learning over social networks (observational learning)

Bayesian learning over social networks (communication learning)

Learning, dynamics, and control over networks
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A Motivating Example

[Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state θ ∈ {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.

Realization: Assume θ = Indian
Agent 1 arrives. Her signal indicates ‘Chinese’.
She chooses to have a Chinese dinner.
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A Motivating Example

[Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state θ ∈ {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.

Realization: Assume θ = Indian
Agent 2 arrives. His signal indicates ‘Chinese’.
He also chooses to eat Chinese food.

1

Decision = ‘Chinese’

2

Signal = ‘Chinese’
Decision = ‘Chinese’
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A Motivating Example

[Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state θ ∈ {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.

Realization: Assume θ = Indian
Agent 3 arrives. Her signal indicates ‘Indian’.
She disregards her signal and copies the decisions of agents 1 and 2.

1

Decision = ‘Chinese’

2

Decision = ‘Chinese’

3

Signal = ‘Indian’
Decision = ‘Chinese’
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A Motivating Example

[Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state θ ∈ {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.

Realization: Assume θ = Indian
If the first two agents choose Chinese, everyone else selects Chinese.
People do not converge on the better restaurant.

1

Decision = ‘Chinese’

2

Decision = ‘Chinese’

3

Decision = ‘Chinese’
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Take-away lessons

Game theoretic reasoning
Agents n ≥ 3 infer the signals of agents 1 and 2 from their behavior,
because they conjecture the strategy used by these agents.

Game theoretic challenges to information aggregation
Selfish behavior as a barrier to efficient information aggregation.
Social planner would have “collected" the signals of several agents by
inducing them to act according to their signals.
Informational externality: Decisions I take reveal information useful for
others, which does not feature in my decision making.

Game theoretic challenges to modeling
How to analyze more realistic and complex networks with learning?
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Modeling

How do agents act in reality?
Bayesian rational learning: (as in the example)

Pro: Natural benchmark and often simple heuristics can replicate it
Con: Often complex

Non-Bayesian myopic learning: (rule-of-thumb)
Pro: Simple and often realistic
Con: Arbitrary rules-of-thumb, different performances from different rules,
how to choose the right one?

What do agents observe?
Observational learning: observe past actions (as in the example)

Most relevant for markets
Communication learning: communication of beliefs or estimates

Most relevant for friendship networks (such as Facebook)
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A Benchmark Myopic Learning Model

Beliefs updated by taking weighted averages of neighbors’ beliefs
[DeGroot 74], [Golub and Jackson 07]

A finite set {1, . . . , n} of agents

Interactions captured by an n× n nonnegative interaction matrix T
Tij > 0 indicates the trust or weight that i puts on j
T is a stochastic matrix (row sum=1)

There is an underlying state of the world θ ∈ R
Each agent has initial belief xi(0); we assume θ = 1/n

∑n
i=1 xi(0)

Each agent at time k updates his belief xi(k) according to

xi(k + 1) =
n∑

j=1

Tijxj(k)

Reasonable rule-of-thumb, but myopic
Update rule similar to consensus and optimization algorithms
[Tsitsiklis 84], [Bertsekas, Tsitsiklis 95], [Jadbabaie, Lin, Morse 03], [Nedić,
Ozdaglar 07], [Lobel, Ozdaglar 08]
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Convergence and Learning

Letting x(k) = [x1(k), . . . , xn(k)], the evolution of beliefs given by

x(k + 1) = Tx(k) for all k ≥ 0

Under mild conditions (strong connectedness and aperiodicity of the
directed graph induced by T), beliefs converge to a consensus equal to a
weighted average of initial beliefs.

Consider a sequence of networks (society) {T(n)} and let x̄(n) ∈ R be
the limiting consensus belief in each T(n).

We say that asymptotic learning occurs if

lim
n→∞

|x̄(n)− θ| = 0
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Influential Agents and Learning

A set of agents B is called an
influential family if the
beliefs of all agents outside B
affected by beliefs of B (in
finitely many steps)

B

With a sequence of (uniformly) influential agents, no asymptotic learning
Lack of doubly stochasticity of T
Interpretation: Information of influential agents overrepresented

Distressing result since influential families (e.g., media, local leaders)
common in practice
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Towards a Richer Model

Too myopic and mechanical: If communicating with same people over
and over again (deterministically), some recognition that this information
already been incorporated.

No notion of misinformation or extreme views that can spread in the
network.

No analysis of what happens in terms of quantification of learning
without doubly stochasticity
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A Model of Misinformation

Misinformation over networks [Acemoglu, Ozdaglar, ParandehGheibi 09]

Finite set N = {1, . . . , n} of agents, each with initial belief xi(0).

Time continuous: each agent recognized according to iid Poisson processes.

xi(k): belief of agent i after kth communication.

Conditional on being recognized, agent i meets agent j with probability pij:

With probability βij, the two agents agree and exchange information

xi(k + 1) = xj(k + 1) = (xi(k) + xj(k))/2.

With probability γij, disagreement and no exchange of information.
With probability αij, i is influenced by j

xi(k + 1) = εxi(k) + (1− ε)xj(k)

for some ε > 0 small. Agent j’s belief remains unchanged.

We say that j is a forceful agent if αij > 0 for some i.
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Evolution of Beliefs

Letting x(k) = [x1(k), . . . , xn(k)], evolution of beliefs written as

x(k + 1) = W(k)x(k),

where W(k) is a random matrix given by

W(k) =

 Aij ≡ I − (ei−ej)(ei−ej)
′

2 with probability pijβij/n,
Jij ≡ I − (1− ε) ei(ei − ej)′ with probability pijαij/n,

I with probability pijγij/n.

The matrix W(k) is a (row) stochastic matrix for all k, and is iid over all k, hence

E[W(k)] = W̃ for all k ≥ 0.

We refer to the matrix W̃ as the mean interaction matrix.
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Social Network and Influence Matrices

Using the belief update model, we can decompose W̃ as:

W̃ =
1
n

∑
i,j

pij

[
βijAij + αijJij + γijI

]
=

1
n

∑
i,j

pij

[
(1− γij)Aij + γijI

]
+

1
n

∑
i,j

pijαij
[
Jij − Aij

]
= T + D.

Matrix T represents the underlying social interactions: social network matrix

Matrix D represents the influence structure in the society: influence matrix

Decomposition of W̃ into a doubly stochastic and a remainder component

Social network graph: the undirected (and weighted) graph (N ,A), where
A = {{i, j} | Tij > 0}, and the edge {i, j} weight given by Tij = Tji

Interaction dynamics nonsymmetric version of gossip algorithms [Boyd, Ghosh,
Prabhakar, Shah 03]
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Assumptions

Assumption (Connectivity and Interaction)

(i) The graph (N , E), where E = {(i, j) | pij > 0}, is strongly connected.

(ii) We have
βij + αij > 0 for all (i, j) ∈ E .

Positive probability that even forceful agents obtain information from the
other agents in the society.

Captures the idea that “no man is an island"
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Convergence to Consensus

Theorem
The beliefs {xi(k)}, i ∈ N converge to a consensus belief, i.e., there exists a random
variable x̄ such that

lim
k→∞

xi(k) = x̄ for all i with probability one.

Moreover, there exists a probability vector π̄ with limk→∞ W̃k = eπ̄′, such that

E[x̄] =
n∑

i=1

π̄ixi(0) = π̄′x(0).

Convergence to consensus guaranteed; but with forceful agents, consensus
belief is a random variable.

We are interested in providing an upper bound on

E
[
x̄− 1

n

∑
i∈N

xi(0)
]

=
∑
i∈N

(
π̄i −

1
n

)
xi(0).

π̄ : consensus distribution, and π̄i − 1
n : excess influence of agent i
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Global Bounds on Consensus Distribution

Theorem
Let π denote the consensus distribution. Then,∥∥∥π − 1

n
e
∥∥∥

2
≤ 1

1− λ2

∑
i,j pijαij

n
,

where λ2 is the second largest eigenvalue of the social network matrix T.

Proof using perturbation theory of Markov Chains
View W̃ as a perturbation of matrix T by the influence matrix D

λ2 related to mixing time of a Markov Chain
When the spectral gap (1− λ2) is large, we say that the Markov Chain
induced by T is fast-mixing

In fast-mixing graphs, forceful agents will themselves be influenced by others
(since βij + αij > 0 for all i, j)

Beliefs of forceful agents moderated by the society before they spread
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Location of Forceful Agents

Previous bound does not depend on the location of the forceful agents

Example: Consider 6 agents connected with social network graph induced by T and
two different misinformation scenarios:

forceful link over a bottleneck and forceful link inside a cluster

The stationary distribution for each case is given by

πa =
1
6

(1.25, 1.25, 1.25, 0.75, 0.75, 0.75)′, πb =
1
6

(0.82, 1.18, 1, 1, 1, 1)′.

18



Location of Forceful Agents

Previous bound does not depend on the location of the forceful agents

Example: Consider 6 agents connected with social network graph induced by T and
two different misinformation scenarios:

forceful link over a bottleneck and forceful link inside a cluster

The stationary distribution for each case is given by

πa =
1
6

(1.25, 1.25, 1.25, 0.75, 0.75, 0.75)′, πb =
1
6

(0.82, 1.18, 1, 1, 1, 1)′.

18



Exact Characterization with Mean First Passage Times

Theorem
Let π̄ denote the consensus distribution. For every agent k,

π̄k −
1
n

=
∑

i,j

pijαij

2n2 ((1− 2ε)π̄i + π̄j)
(
mik − mjk

)
for all k,

where mij is the mean first passage time from state i to state j of a Markov chain
(Xt, t = 0, 1, 2, . . .) with transition matrix T, i.e.,

mij = E[Tj | X0 = i],

where Ti = inf{t ≥ 0 | Xt = i}.

Excess influence of each agent depends on the relative distance of that agent to
the forceful and the influenced agent

Explains the insensitivity of the agents in the right cluster in the previous
example.
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Information Bottlenecks – Relative Min-Cuts
Theorem
Let π̄ be the consensus distribution. For all k, we have∣∣∣π̄k −

1
n

∣∣∣ ≤∑
i,j

3pijαij

2n

( log n
ρij

)
,

where ρij is the minimum normalized relative cut value between i and j of the Markov
chain induced by the social network matrix T, i.e.,

ρij = inf
S⊂N

{∑
h∈S

∑
l∈Sc Thl

|S|
| i ∈ S, j /∈ S

}
.

Proof relies on bounding the
mean commute time using
Max flow-Min cut Theorem.

C1

j

C0

i
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Shortcomings of This Model

Even though non-deterministic interaction pattern, information still
replicated.

Where do these rules come from?

Line of Attack: Develop Bayesian models
Imagine the Chinese-Indian restaurant example, but with two realistic
features:

Social network structure (every agent does not observe the full past)
Heterogeneity of preferences
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Bayesian Learning over Networks– without heterogeneity

Learning over general networks [Acemoglu, Dahleh, Lobel, Ozdaglar 08]

Two possible states of the world θ ∈ {0, 1}, both equally likely

A sequence of agents (n = 1, 2, ...) making decisions xn ∈ {0, 1}.

Agent n obtains utility 1 if xn = θ, and utility 0 otherwise.

Each agent has an iid private signal sn in S. The signal is generated according to
distribution Fθ (signal structure)

Agent n has a neighborhood B(n) ⊆ {1, 2, ..., n− 1} and observes the decisions
xk for all k ∈ B(n).

The set B(n) is private information.

The neighborhood B(n) is generated according to an arbitrary distribution Qn

(independently for all n) (network topology)

The sequence {Qn}n∈N is common knowledge.

Asymptotic Learning: Under what conditions does limn→∞ P(xn = θ) = 1?
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An Example of a Social Network

7

4

1
3

5

6

2

STATE 
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Perfect Bayesian Equilibria

Agent n’s information set is In = {sn,B(n), xk for all k ∈ B(n)}
A strategy for individual n is σn : In → {0, 1}
A strategy profile is a sequence of strategies σ = {σn}n∈N.

A strategy profile σ induces a probability measure Pσ over {xn}n∈N.
Definition
A strategy profile σ∗ is a pure-strategy Perfect Bayesian Equilibrium if for all n

σ∗n (In) ∈ arg max
y∈{0,1}

P(y,σ∗−n)
(y = θ | In)

A pure strategy PBE exists. Denote the set of PBEs by Σ∗.

Definition
We say that asymptotic learning occurs in equilibrium σ if xn converges to θ in
probability,

lim
n→∞

Pσ(xn = θ) = 1
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Some Difficulties of Bayesian Learning

No following the crowds
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Some Difficulties of Bayesian Learning

No following the crowds

1

X1 = 1

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 0

X1 = 0 X1 = 1

Less can be more.

1

2

3

4

5

6

Pσ(X6 = Ө)

25



Equilibrium Decision Rule

Lemma
The decision of agent n, xn = σ(In), satisfies

xn =
{

1, if Pσ(θ = 1 | sn) + Pσ
(
θ = 1 | B(n), xk for all k ∈ B(n)

)
> 1,

0, if Pσ(θ = 1 | sn) + Pσ
(
θ = 1 | B(n), xk for all k ∈ B(n)

)
< 1,

and xn ∈ {0, 1} otherwise.

Implication: The belief about the state decomposes into two parts:

the Private Belief: Pσ(θ = 1 | sn);
the Social Belief: Pσ(θ = 1 | B(n), xk for all k ∈ B(n)).
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Private Beliefs

The private belief of agent n is

pn(sn) = Pσ(θ = 1|sn) =
(

1 +
dF0(sn)
dF1(sn)

)−1

.

Definition
The signal structure has unbounded private beliefs if

inf
s∈S

dF0

dF1
(s) = 0 and sup

s∈S

dF0

dF1
(s) =∞.

If the private beliefs are unbounded, then there exist agents with beliefs
arbitrarily strong in both directions.

Gaussian signals yield unbounded beliefs; discrete signals yield bounded
beliefs.

27



Properties of Network Topology

Definition
A network topology {Qn}n∈N has expanding observations if for all K,

lim
n→∞

Qn

(
max

b∈B(n)
b < K

)
= 0.

Excessive influence:
A finite group of agents is excessively influential if there exists an infinite
number of agents who, with probability uniformly bounded away from 0,
observe only the actions of a subset of this group.

For example, a group is excessively influential if it is the source of all
information for an infinitely large component of the network.

Expanding observations⇔ no excessively influential agents.
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Learning Theorem – with Unbounded Beliefs

Theorem
Assume unbounded private beliefs and expanding observations. Then, asymptotic
learning occurs in every equilibrium σ ∈ Σ∗.

Implication: Influential, but not excessively influential, individuals do not
prevent learning.

This contrasts with results in models of myopic learning.
Intuition: The weight given to the information of influential individuals is
adjusted in Bayesian updating.

Proof of Theorem – A Roadmap
Characterization of equilibrium strategies when observing a single agent.

Strong improvement principle when observing one agent.

Generalized strong improvement principle.

Asymptotic learning with unbounded private beliefs and expanding observations.
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Observing a Single Decision

Proposition
Let B(n) = {b} for some agent n. There exists Lσb and Uσ

b such that agent n’s
decision xn in σ ∈ Σ∗ satisfies

xn =

 0, if pn < Lσb ;
xb, if pn ∈ (Lσb ,U

σ
b );

1, if pn > Uσ
b .

Let Gj(r) = P(p ≤ r | θ = j) be the conditional distribution of the private belief
with β and β denoting the lower and upper support
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Strong Improvement Principle

Agent n has the option of copying the action of his neighbor b:

Pσ(xn = θ | B(n) = {b}) ≥ Pσ(xb = θ).

Using the equilibrium decision rule and the properties of private beliefs, we
establish a strict gain of agent n over agent b.

Proposition (Strong Improvement Principle)
Let B(n) = {b} for some n and σ ∈ Σ∗ be an equilibrium. There exists a continuous,
increasing function Z : [1/2, 1]→ [1/2, 1] with Z(α) ≥ α such that

Pσ(xn = θ | B(n) = {b}) ≥ Z (Pσ(xb = θ)) .

If the private beliefs are unbounded, then:

Z(α) > α for all α < 1.
α = 1 is the unique fixed point of Z(α).
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Generalized Strong Improvement Principle

With multiple agents, learning no worse than observing just one of them.

Equilibrium strategy is better than the following heuristic:
Discard all decisions except the one from the most informed neighbor.
Use equilibrium decision rule for this new information set.

Proposition (Generalized Strong Improvement Principle)
For any n ∈ N, any set B ⊆ {1, ..., n− 1} and any σ ∈ Σ∗,

Pσ (xn = θ | B(n) = B) ≥ Z
(

max
b∈B

Pσ(xb = θ)
)
.

Proof of Theorem:

Under expanding observations, one can construct a sequence of agents along which the
generalized strong improvement principle applies

Unbounded private beliefs imply that along this sequence Z(α) strictly increases

Until unique fixed point α = 1, corresponding to asymptotic learning
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No Learning with Bounded Beliefs

Theorem
Assume that the signal structure has bounded private beliefs. If there exists some
constant M such that |B(n)| ≤ M for all n and

lim
n→∞

max
b∈B(n)

b =∞ with probability 1,

then asymptotic learning does not occur in any equilibrium σ ∈ Σ∗.

Implication: With bounded beliefs, no learning from observing neighbors or
sampling the past.
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Learning with Bounded Beliefs

Theorem: There exist random network topologies for which learning occurs in
all equilibria.

Example
Let the network topology be

B(n) =
{
{1, ..., n− 1}, with probability 1− 1

n ,
∅, with probability 1

n .

Asymptotic learning occurs in all equilibria σ ∈ Σ∗ for any signal structure (F0,F1).

Result contrasts with prior literature.

Proof Idea:
Social beliefs form a martingale.
Martingale convergence implies almost sure convergence of actions.
The rate of contrary actions gives away the state.
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Diversity and Learning

So far, all agents have the same preferences.

They all prefer to take action = θ, and with the same intensity.

In realistic situations, not only diversity of opinions, but also diversity of
preferences.

How does diversity of preferences affect social learning?

Naive conjecture: diversity will introduce additional noise and make
learning harder or impossible.

Our Result: in the line topology, diversity always facilitates learning.
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Model with Heterogeneous Preferences

Assume B(n) = {1, ..., n− 1} [Acemoglu, Dahleh, Lobel, Ozdaglar 09]

Let agent n have private preference tn independently drawn from some H.

The payoff of agent n given by:

un (xn, tn, θ) =
{

I (θ = 1) + 1− tn if xn = 1
I (θ = 0) + tn if xn = 0

Theorem: With unbounded preferences, i.e., [0, 1] ⊆ supp(H), asymptotic
learning occurs in all equilibria σ ∈ Σ∗ for any signal structure (F0,F1).

Heterogeneity pulls learning in opposite directions:
Actions of others are less informative (direct effect)
Each agent uses more of his own signal in making decisions and, therefore,
there is more information in the history of past actions (indirect effect)

Indirect effect dominates the direct effect! (relies on martingale
convergence for the social belief sequence)
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Extensions

Correlated neighborhoods
Expanding observations not a sufficient condition
Encompasses random graph models

Diversity of preferences with general network topologies
Rate of learning

Presented by Ilan Lobel on Thursday

Previous model based on observational learning
In practice, belief formation also depends on communication with
friends, neighbors, and media sources

What was captured by the myopic models
Next, a learning model with communication and observation.

Much more of effect of network structure

37



A Model of Communication Learning

Effect of communication on learning [Acemoglu, Bimpikis, Ozdaglar 09]

Two possible states of the world, θ ∈ {0, 1}

A set N = {1, . . . , n} of agents and a friendship network given

Stage 1: Network Formation

Additional link formation is costly, cn
ij : cost incurred by i to link with j

Induces the communication network Gn = (N , En)

Stage 2: Information Exchange (over the communication network Gn)

Each agent receives an iid private signal, si ∼ Fθ
Agents receive all information acquired by their direct neighbors
At each time period t they can choose:
(1) irreversible action 0 (2) irreversible action 1 (3) wait
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Stage 1: Forming the communication network
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Stage 1: Forming the communication network

Agent 1 forms the directed links (2, 1) and (6, 1) incurring the costs c12 and c16.
39



Stage 2: Information Exchange
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Stage 2: Information Exchange
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Stage 2: Information Exchange
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Model

This talk: Focus on stage 2

Agent i’s payoff is given by

ui(xn
i , θ) =

{
δτπ if xn

i,τ = θ and xn
i,t = “wait" for t < τ

0 otherwise
xn

i = [xn
i,t]t≥0: sequence of agent i’s decisions, xn

i,t ∈ {0, 1, “wait”}
δ: discount factor (δ < 1)
τ : time when action is taken (agent collects information up to τ )
π: payoff - normalized to 1

Assumption: Communication between agents is not strategic
Agents cannot manipulate the information they send to neighbors
Results extend to ε-equilibrium with strategic communication!

Let Bn
i,t = {j 6= i | ∃ a directed path from j to i with at most t links in Gn}
All agents that are at most t links away from i in Gn

Agent i’s information set at time t:

In
i,t = {si,Gn, sj for all j ∈ Bn

i,t}
41



Equilibrium and Learning

Given a sequence of communication networks {Gn} (society):

Strategy for agent i at time t is σn
i,t : In

i,t → {“wait", 0, 1}

Definition
A strategy profile σn,∗ is a Perfect-Bayesian Equilibrium if for all i and t,

σn,∗
i,t ∈ arg max

y∈{“wait”,0,1}
E(y,σn,∗

−i,t)

(
ui(xn

i , θ)|In
i,t

)
.

Let

Mn
i,t =

{
1 if xi,τ = θ for some τ ≤ t
0 otherwise

Definition
We say that asymptotic learning occurs in society {Gn} if for every ε > 0

limn→∞ limt→∞ Pσn,∗
([ 1

n

∑n
i=1

(
1−Mn

i,t

)]
> ε
)

= 0
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Agent Decision Rule

Lemma
Let σn,∗ be an equilibrium and In

i,t be an information set of agent i at time t. Then, the
decision of agent i, xn

i,t = σn,∗
i,t (In

i,t) satisfies

xn
i,t =


0, if log L(si) +

∑
j∈Bn

i,t
log L(sj) ≤ − log An,∗

i,t ,

1, if log L(si) +
∑

j∈Bn
i,t

log L(sj) ≥ log An,∗
i,t ,

“wait", otherwise,

where L(si) =
dPσ(si

∣∣θ=1)

dPσ(si

∣∣θ=0)
is the likelihood ratio of signal si, and An,∗

i,t =
pn,∗

i,t

1−pn,∗
i,t

, is a

time-dependent parameter.

pn,∗
i,t : belief threshold that depends on time and graph structure

For this talk:

Focus on binary private signals si ∈ {0, 1}
Assume L(1) = β

1−β and L(0) = 1−β
β for some β > 1/2.
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Minimum Observation Radius
Lemma
The decision of agent i, xn

i,t = σn,∗
i,t (In

i,t) satisfies

xn
i,t(In

i,t) =


0, if kt

i,0 − kt
i,1 ≥ log An,∗

i,t ·
(

log β
1−β

)−1
,

1, if kt
i,1 − kt

i,0 ≥ log An,∗
i,t ·

(
log β

1−β

)−1
,

“wait", otherwise,

where kt
i,1 (kt

i,0) denotes the number of 1’s (0’s) agent i has observed up to time t.

Definition
We define the minimum observation radius of agent i, denoted by dn

i , as

dn
i = arg min

t

{∣∣Bn
i,t

∣∣ ∣∣ ∣∣Bn
i,t

∣∣ ≥ log An,∗
i,t ·

(
log

β

1− β

)−1
}
.

Agent i receives at least |Bn
i,dn

i
| signals before she takes an irreversible action

Bn
i,dn

i
: Minimum observation neighborhood of agent i
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A Learning Theorem

Definition
For any integer k > 0, we define the k-radius set, denoted by Vn

k , as

Vn
k = {j ∈ N

∣∣ ∣∣Bn
j,dn

j

∣∣ ≤ k}

Set of agents with “finite minimum observation neighborhood"

Note that any agent i in the k-radius set has positive probability of taking the
wrong action.

Theorem
Asymptotic learning occurs in society {Gn} if and only if

lim
k→∞

lim
n→∞

∣∣Vn
k

∣∣
n

= 0

A “large" number of agents with finite obs. neighborhoods precludes learning.
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Information Hubs and Random Graph Models

A node i is an information hub if it has an infinite number of direct neighbors,
lim

n→∞
|Bn

1(i)| =∞

Asymptotic learning occurs if and only if for all but a negligible fraction of
agents, the shortest path to a hub is shorter than minimum observation radius.

Proposition
Asymptotic Learning occurs for

(a) Complete and Star Graphs

(b) Power Law Graphs with exponent γ ≤ 2 (with high probability)

Intuition: The average degree is infinite - there exist many hubs.

Asymptotic Learning fails for

(a) Bounded Degree Graphs, e.g. expanders

(b) Preferential Attachment Graphs (with high probability)

Intuition: Edges form with probability proportional to degree, but there
exist many low degree nodes.

46



Networks, Dynamics, and Learning

This talk: A review of the emerging field of theoretical models of social
learning in networks

Modeling strategic interactions between individuals
Characterizing effects of network structure
Game theory and stochastic dynamic analysis

Literature so far focuses on modeling and understanding dynamics

Next step: Control over networks

How can misinformation be contained?
Which networks are robust and resilient?
How can information exchange be facilitated?

Mechanism Design approach (design of game forms) meets control theory over
networks

Large area of research at the intersection of Networks, Control Theory,
Economics, Computer Science, Operations Research, Sociology,. . .
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