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Networks and Strategic Interactions

@ Networks running through almost every complex environment
e social groups, markets, Web sites, ecosystems, supply chains, conflict

World Trade 1994
Reslduals Model 1
9

From Adamic From Krempel and Plumber From Adamic

E-mail communicgtiop A network representing _Nemork struf:ture of
(mapped onto organizational international trade political blogs prior to 2004

hierarchy) at HP Labs presidential elections

@ Each individual’s actions have consequences for outcomes of others

@ Understanding interconnected systems requires reasoning about network
structure as well as strategic behavior and feedback effects across individuals
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Learning and Network Dynamics

@ Belief formation crucial in social and economic networks

e Formation of political opinions in voting

o Learning about product quality

o Information aggregation in financial and economic networks
o Intentions in potential conflict situations

@ How to model information dynamics in networks?

o State of the system described by beliefs of individuals
o Beliefs form and evolve over time based on private information, mutual
information, and information exchange across individuals

@ Central Question: Under what conditions (on network, interaction, and
information structures) do these dynamics lead to efficient aggregation of
disperse information?

@ Similarity to cooperative engineering networks where there is aggregation of
local information from decentralized sensors/agents

e Same performance metrics: Accuracy and rate
e Big new challenge: Strategic interactions
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Roadmap

Example explaining strategic interactions

Distinction between different types of learning in different approaches
A model of “consensus" learning

A model of spread of misinformation and quantification of learning
Bayesian learning over social networks (observational learning)

Bayesian learning over social networks (communication learning)

Learning, dynamics, and control over networks
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A Motivating Example

@ [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]

o Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state 6 € {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.
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A Motivating Example

@ [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
o Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state 6 € {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.
@ Realization: Assume 6 = Indian
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A Motivating Example

@ [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]

o Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state 6 € {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.

e Agents observe prior decisions, but not the signals of others.
@ Realization: Assume 6 = Indian

o Agent 1 arrives. Her signal indicates ‘Chinese’.
e She chooses to have a Chinese dinner.

Signal = ‘Chinese’
Decision = ‘Chinese’
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A Motivating Example

@ [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
o Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state 6 € {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.
@ Realization: Assume 6 = Indian

o Agent 2 arrives. His signal indicates ‘Chinese’.
e He also chooses to eat Chinese food.

Signal = ‘Chinese’
Decision = ‘Chinese’ Decision = ‘Chinese’
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A Motivating Example

@ [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
o Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state 6 € {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.
@ Realization: Assume 6 = Indian

o Agent 3 arrives. Her signal indicates ‘Indian’.
o She disregards her signal and copies the decisions of agents 1 and 2.

Signal = ‘Indian’
Decision = ‘Chinese’ Decision = ‘Chinese’ Decision =‘Chinese’
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A Motivating Example

@ [Bikhchandani, Hirshleifer, Welch 92, Banerjee 92]
o Agents arrive in town sequentially and choose to dine in an Indian or in a
Chinese restaurant.
One restaurant is strictly better, underlying state 6 € {Chinese, Indian}.
Agents have independent binary private signals.
Signals indicate the better option with probability p > 1/2.
Agents observe prior decisions, but not the signals of others.
@ Realization: Assume 6 = Indian

o If the first two agents choose Chinese, everyone else selects Chinese.
e People do not converge on the better restaurant.

Decision = ‘Chinese’ Decision = ‘Chinese’ Decision =‘Chinese’
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Take-away lessons

@ Game theoretic reasoning
e Agents n > 3 infer the signals of agents 1 and 2 from their behavior,
because they conjecture the strategy used by these agents.
@ Game theoretic challenges to information aggregation

o Selfish behavior as a barrier to efficient information aggregation.

e Social planner would have “collected" the signals of several agents by
inducing them to act according to their signals.

o Informational externality: Decisions I take reveal information useful for
others, which does not feature in my decision making.

@ Game theoretic challenges to modeling
e How to analyze more realistic and complex networks with learning?
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Modeling

@ How do agents act in reality?
o Bayesian rational learning: (as in the example)

o Pro: Natural benchmark and often simple heuristics can replicate it
e Con: Often complex

e Non-Bayesian myopic learning: (rule-of-thumb)
e Pro: Simple and often realistic
o Con: Arbitrary rules-of-thumb, different performances from different rules,

how to choose the right one?
@ What do agents observe?

o Observational learning: observe past actions (as in the example)
@ Most relevant for markets

o Communication learning: communication of beliefs or estimates

@ Most relevant for friendship networks (such as Facebook)
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A Benchmark Myopic Learning Model

@ Beliefs updated by taking weighted averages of neighbors’ beliefs
[DeGroot 74], [Golub and Jackson 07]

@ A finite set {1,...,n} of agents

@ Interactions captured by an n X n nonnegative interaction matrix T

e T > 0 indicates the trust or weight that 7 puts on j
e T is a stochastic matrix (row sum=1)

@ There is an underlying state of the world § € R
@ Each agent has initial belief x;(0); we assume 6 = 1/n 7, x;(0)

@ Each agent at time k updates his belief x;(k) according to

xi(k+1) = i Tyjx;i(k)
=1

e Reasonable rule-of-thumb, but myopic

e Update rule similar to consensus and optimization algorithms
[Tsitsiklis 84], [Bertsekas, Tsitsiklis 95], [Jadbabaie, Lin, Morse 03], [Nedi¢,
Ozdaglar 07], [Lobel, Ozdaglar 08]
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Convergence and Learning

o Letting x(k) = [x;(k),...,x,(k)], the evolution of beliefs given by
x(k+1)=Tx(k)  forallk >0

@ Under mild conditions (strong connectedness and aperiodicity of the
directed graph induced by T'), beliefs converge to a consensus equal to a
weighted average of initial beliefs.

o Consider a sequence of networks (society) {T(n)} and let x(n) € R be
the limiting consensus belief in each T'(n).

@ We say that asymptotic learning occurs if

lim [x(n) — 6| =0

n—oo
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Influential Agents and Learning

o A set of agents B is called an
influential family if the
beliefs of all agents outside B
affected by beliefs of B (in
finitely many steps)

@ With a sequence of (uniformly) influential agents, no asymptotic learning
e Lack of doubly stochasticity of T

o Interpretation: Information of influential agents overrepresented

o Distressing result since influential families (e.g., media, local leaders)
common in practice
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Towards a Richer Model

@ Too myopic and mechanical: If communicating with same people over
and over again (deterministically), some recognition that this information
already been incorporated.

@ No notion of misinformation or extreme views that can spread in the
network.

@ No analysis of what happens in terms of quantification of learning
without doubly stochasticity
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A Model of Misinformation

Misinformation over networks [Acemoglu, Ozdaglar, ParandehGheibi 09]

Finite set V' = {1, ...,n} of agents, each with initial belief x;(0).

Time continuous: each agent recognized according to iid Poisson processes.

x;(k): belief of agent i after k" communication.
@ Conditional on being recognized, agent i meets agent j with probability p;;:

o With probability 3, the two agents agree and exchange information

xi(k+1) = xi(k+ 1) = (xi(k) + x;(k))/2-

e With probability v;;, disagreement and no exchange of information.
o With probability «;, i is influenced by j

xi(k+1) = ex;(k) + (1 — €)x;(k)
for some € > 0 small. Agent j’s belief remains unchanged.

@ We say that j is a forceful agent if «;; > 0 for some i.
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Evolution of Beliefs

@ Letting x(k) = [x|(k),...,x,(k)], evolution of beliefs written as
x(k+1) = W(k)x(k),
where W(k) is a random matrix given by

Ay =1—e=le=e) ith probability p;;3;/n,
W(k) =14 J;=1—(1—¢€)ei(e;—e;) with probability p;a;/n,
I with probability p;v;;/n.
@ The matrix W(k) is a (row) stochastic matrix for all k, and is iid over all , hence

E[W(k)]=W  forallk > 0.

@ We refer to the matrix W as the mean interaction matrix.
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Social Network and Influence Matrices

@ Using the belief update model, we can decompose W as:

~ 1

W= ZPU [ﬁiiAij + ailiy + %ﬂ}
= Zpu[ = 75)Ai + v ] ZPUO‘U i~ u
= T+ D.

Matrix T represents the underlying social interactions: social network matrix
Matrix D represents the influence structure in the society: influence matrix
Decomposition of W into a doubly stochastic and a remainder component

Social network graph the undirected (and weighted) graph (N, A), where
A= {{i,j} | T; > 0}, and the edge {i,j} weight given by T;; = T},

Interaction dynamics nonsymmetric version of gossip algorithms [Boyd, Ghosh,
Prabhakar, Shah 03]
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Assumptions

Assumption (Connectivity and Interaction)
(i) The graph (N, &), where € = {(i,)) | pj > 0}, is strongly connected.

(i1) We have
Bij+ iy >0  forall (i,j) € £.

@ Positive probability that even forceful agents obtain information from the
other agents in the society.

@ Captures the idea that “no man is an island"



Convergence to Consensus

Theorem

The beliefs {xi(k)}, i € N converge to a consensus belief, i.e., there exists a random
variable x such that

klim xi(k) =X  foralliwith probability one.

Moreover, there exists a probability vector T with lim;_, Wk = ex/ , such that
Z 7x:(0) = 7'x(0).

Convergence to consensus guaranteed; but with forceful agents, consensus
belief is a random variable.

We are interested in providing an upper bound on
1
[x - - Zx, ] = Z (ﬁi - f)x,-(O).
ze/\/ ieN "

@ 7 : consensus distribution, and 7; — 1

: excess influence of agent i




Global Bounds on Consensus Distribution

Theorem

Let 7 denote the consensus distribution. Then,

Hw_leHS 1 Zi,jpijaij7
nil=1-X n

where \; is the second largest eigenvalue of the social network matrix T.

@ Proof using perturbation theory of Markov Chains

o View W as a perturbation of matrix T by the influence matrix D

@ )\, related to mixing time of a Markov Chain

e When the spectral gap (1 — \,) is large, we say that the Markov Chain
induced by T is fast-mixing

@ In fast-mixing graphs, forceful agents will themselves be influenced by others
(since B + ay; > 0 for all i, j)

o Beliefs of forceful agents moderated by the society before they spread
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Location of Forceful Agents

@ Previous bound does not depend on the location of the forceful agents

Example: Consider 6 agents connected with social network graph induced by 7 and
two different misinformation scenarios:

@ forceful link over a bottleneck and forceful link inside a cluster

1

n
[
n

(a) (b)
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Location of Forceful Agents

@ Previous bound does not depend on the location of the forceful agents

Example: Consider 6 agents connected with social network graph induced by 7 and
two different misinformation scenarios:

@ forceful link over a bottleneck and forceful link inside a cluster

1

n
[
n

(a) (b)

The stationary distribution for each case is given by

1 1
mo = ¢(1.25,1.25,1.25,0.75,0.75,0.75)',  m = (082,118, 1,1, 1,1)"
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Exact Characterization with Mean First Passage Times

Theorem
Let 7 denote the consensus distribution. For every agent k,
1 pua,]

T — E = 2 ((1 —Ze)ﬁi+7_rj)(mik—mjk) forallk,
ij

where my; is the mean first passage time from state i to state j of a Markov chain
(X;,t=0,1,2,...) with transition matrix T, i.e.,
mj = E[T; | Xo =i,

where T; = inf{t > 0| X, = i}.

@ Excess influence of each agent depends on the relative distance of that agent to
the forceful and the influenced agent

o Explains the insensitivity of the agents in the right cluster in the previous
example.
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Information Bottlenecks — Relative Min-Cuts
Theorem

Let T be the consensus distribution. For all k, we have

_ 1 3pij0é[j(10gn>
_ < rymy (Ze
‘Wk n‘ - zz,;: 2n pij /7’

where pjj is the minimum normalized relative cut value between i and j of the Markov
chain induced by the social network matrix T, i.e.,

@ Proof relies on bounding the
mean commute time using
Max flow-Min cut Theorem.
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Shortcomings of This Model

@ Even though non-deterministic interaction pattern, information still
replicated.

@ Where do these rules come from?

o Line of Attack: Develop Bayesian models

@ Imagine the Chinese-Indian restaurant example, but with two realistic
features:

e Social network structure (every agent does not observe the full past)
e Heterogeneity of preferences
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Bayesian Learning over Networks— without heterogeneity

@ Learning over general networks [Acemoglu, Dahleh, Lobel, Ozdaglar 08]
@ Two possible states of the world 6 € {0, 1}, both equally likely

@ A sequence of agents (n = 1,2, ...) making decisions x, € {0, 1}.

@ Agent n obtains utility 1 if x, = 6, and utility O otherwise.

@ Each agent has an iid private signal s, in S. The signal is generated according to
distribution [Fy (signal structure)

@ Agent n has a neighborhood B(n) C {1,2,...,n — 1} and observes the decisions
xy for all k € B(n).

o The set B(n) is private information.

@ The neighborhood B(n) is generated according to an arbitrary distribution Q,
(independently for all n) (network topology)

o The sequence {Q, },cn is common knowledge.

@ Asymptotic Learning: Under what conditions does lim,, ... P(x, = 0) = 1?



An Example of a Social Network

1(s
t s
STATE G |—
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Perfect Bayesian Equilibria

@ Agent n’s information set is 7, = {s,, B(n),x; forall k € B(n)}
@ A strategy for individual nis 0, : Z, — {0, 1}
@ A strategy profile is a sequence of strategies o = {7, }ren-

o A strategy profile o induces a probability measure P, over {x, },¢en.
Definition

A strategy profile o™ is a pure-strategy Perfect Bayesian Equilibrium if for all n

*

7n(h) € o ) P 0 =0 1)

@ A pure strategy PBE exists. Denote the set of PBEs by >*.

Definition
We say that asymptotic learning occurs in equilibrium o if x,, converges to 6 in
probability,

lim P, (x, = ) = I

n—oo
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Some Difficulties of Bayesian Learning

@ No following the crowds
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Some Difficulties of Bayesian Learning

@ No following the crowds
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Some Difficulties of Bayesian Learning

o No following the crowds @ Less can be more
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Some Difficulties of Bayesian Learning

o No following the crowds @ Less can be more.
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Equilibrium Decision Rule

Lemma

The decision of agent n, x, = o(Z,), satisfies

1, ifPe(@=1]s)+Ps(6=1|B(n),xforallk € B(n)) > 1,
TV, i Py(0=1]s,)+ Py (0 =1|B(n),x forallk € B(n)) < 1,

and x, € {0, 1} otherwise.

@ Implication: The belief about the state decomposes into two parts:

o the Private Belief: P, (0 = 1| s,);
o the Social Belief: P, (0 = 1| B(n), x; for all k € B(n)).
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Private Beliefs

@ The private belief of agent n is

Pul(sn) = Po(0 = 1[s,) = <1 N dJFo(Sn)>

dF(sp)

Definition
The signal structure has unbounded private beliefs if
dFy

inf —(s) =0 and sup 00.
(s) Sup aF, ) =

o If the private beliefs are unbounded, then there exist agents with beliefs
arbitrarily strong in both directions.

o Gaussian signals yield unbounded beliefs; discrete signals yield bounded
beliefs.
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Properties of Network Topology

Definition
A network topology {Qj },en has expanding observations if for all K,

lim (@n<max b<K> =0.
n—00 beB(n)

@ Excessive influence:

o A finite group of agents is excessively influential if there exists an infinite
number of agents who, with probability uniformly bounded away from O,
observe only the actions of a subset of this group.

e For example, a group is excessively influential if it is the source of all
information for an infinitely large component of the network.

e Expanding observations < no excessively influential agents.
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Learning Theorem — with Unbounded Beliefs

Theorem

Assume unbounded private beliefs and expanding observations. Then, asymptotic
learning occurs in every equilibrium o € X*.

@ Implication: Influential, but not excessively influential, individuals do not
prevent learning.

o This contrasts with results in models of myopic learning.
o Intuition: The weight given to the information of influential individuals is
adjusted in Bayesian updating.

Proof of Theorem — A Roadmap

@ Characterization of equilibrium strategies when observing a single agent.
@ Strong improvement principle when observing one agent.
@ Generalized strong improvement principle.

@ Asymptotic learning with unbounded private beliefs and expanding observations.



Observing a Single Decision

Proposition

Let B(n) = {b} for some agent n. There exists L] and UJ] such that agent n’s
decision x, in 0 € ¥X* satisfies

Oa lf‘pn < LZ’
Xp = Xb, lfpn € (L}(;TvU}(;T);
L, ifp. > Uj.

@ Let G;(r) = P(p < r | 0 = j) be the conditional distribution of the private belief
with 3 and 3 denoting the lower and upper support

z, =10

Ty =1

dGU dG 1

dpn dpn
8 ‘ ‘ B Pn
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Strong Improvement Principle

@ Agent n has the option of copying the action of his neighbor b:
P,(x, = 0| B(n) = {b}) > Py(x, = 0).

@ Using the equilibrium decision rule and the properties of private beliefs, we
establish a strict gain of agent n over agent b.

Proposition (Strong Improvement Principle)

Let B(n) = {b} for some n and o € X* be an equilibrium. There exists a continuous,
increasing function Z : [1/2,1] — [1/2, 1] with Z(a)) > « such that

P,(x, = 0| B(n) ={b}) > Z (Py(x, = 0)).

@ If the private beliefs are unbounded, then:

o Z(a) >« forall a < 1.
o « = 1is the unique fixed point of Z(«).
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Generalized Strong Improvement Principle

@ With multiple agents, learning no worse than observing just one of them.

@ Equilibrium strategy is better than the following heuristic:

e Discard all decisions except the one from the most informed neighbor.
o Use equilibrium decision rule for this new information set.

Proposition (Generalized Strong Improvement Principle)

Foranyn € N, any set 3 C {1,...,n — 1} and any o € ¥*,

P, (x, =60 |Bn)=%B)>Z <%&%P0(xb = 0)) .

Proof of Theorem:
@ Under expanding observations, one can construct a sequence of agents along which the
generalized strong improvement principle applies
@ Unbounded private beliefs imply that along this sequence Z(«) strictly increases

@ Until unique fixed point o« = 1, corresponding to asymptotic learning
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No Learning with Bounded Beliefs

Theorem

Assume that the signal structure has bounded private beliefs. If there exists some
constant M such that |B(n)| < M for all n and

lim max b = oo with probability 1,
n—00 beB(n)

then asymptotic learning does not occur in any equilibrium o € ¥*.

@ Implication: With bounded beliefs, no learning from observing neighbors or
sampling the past.
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Learning with Bounded Beliefs

@ Theorem: There exist random network topologies for which learning occurs in
all equilibria.

Example

Let the network topology be

1,...,n—1}, with probability 1 — 1,
B(n) = P Y17
10, with probability %

Asymptotic learning occurs in all equilibria ¢ € ¥* for any signal structure (Fy, F;).

@ Result contrasts with prior literature.
@ Proof Idea:

e Social beliefs form a martingale.
e Martingale convergence implies almost sure convergence of actions.
o The rate of contrary actions gives away the state.
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Diversity and Learning

So far, all agents have the same preferences.

o They all prefer to take action = 6, and with the same intensity.

In realistic situations, not only diversity of opinions, but also diversity of
preferences.

How does diversity of preferences affect social learning?

Naive conjecture: diversity will introduce additional noise and make
learning harder or impossible.

@ Our Result: in the line topology, diversity always facilitates learning.
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Model with Heterogeneous Preferences

@ Assume B(n) = {1,...,n — 1} [Acemoglu, Dahleh, Lobel, Ozdaglar 09]
@ Let agent n have private preference 7, independently drawn from some H.

@ The payoff of agent n given by:

_JIO=1)+1~1, ifx, =1
Up (-xnvtme) _{ ](0:0)+tn ifx,, =0

@ Theorem: With unbounded preferences, i.e., [0, 1] C supp(H), asymptotic
learning occurs in all equilibria ¢ € X* for any signal structure (Fo, F).

e Heterogeneity pulls learning in opposite directions:
@ Actions of others are less informative (direct effect)
o Each agent uses more of his own signal in making decisions and, therefore,
there is more information in the history of past actions (indirect effect)
o Indirect effect dominates the direct effect! (relies on martingale
convergence for the social belief sequence)
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Extensions

@ Correlated neighborhoods

o Expanding observations not a sufficient condition
e Encompasses random graph models

Diversity of preferences with general network topologies

Rate of learning
o Presented by Ilan Lobel on Thursday

Previous model based on observational learning

In practice, belief formation also depends on communication with
friends, neighbors, and media sources

o What was captured by the myopic models

Next, a learning model with communication and observation.
e Much more of effect of network structure
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A Model of Communication Learning

@ Effect of communication on learning [Acemoglu, Bimpikis, Ozdaglar 09]
@ Two possible states of the world, 6 € {0, 1}

@ Aset N ={1,...,n} of agents and a friendship network given

Stage 1: Network Formation

o Additional link formation is costly, ¢j; : cost incurred by i to link with j
o Induces the communication network G" = (N, ")

Stage 2: Information Exchange (over the communication network G™)

e Each agent receives an iid private signal, s; ~ [Fy
o Agents receive all information acquired by their direct neighbors
o At each time period ¢ they can choose:

(1) irreversible action 0 (2) irreversible action 1 (3) wait
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Stage 1: Forming the communication network

L
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Stage 1: Forming the communication network
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Stage 2: Information Exchange

=0

40
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Stage 2: Information Exchange

40
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Stage 2: Information Exchange

=2

40
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Model

@ This talk: Focus on stage 2
@ Agent i’s payoff is given by

n 0w ifx!_ =6andx}!, = “wait" forr < 7

(x1,0) = bT b
0 otherwise
xi' = [x7,];>0: sequence of agent i’s decisions, x], € {0, 1, “wait” }

¢: discount factor (6 < 1)
7: time when action is taken (agent collects information up to 7)
7 payoff - normalized to 1

@ Assumption: Communication between agents is not strategic

e Agents cannot manipulate the information they send to neighbors
e Results extend to e-equilibrium with strategic communication!

@ Let B}, = {j # i | 3 adirected path from j to i with at most ¢ links in G" }
o All agents that are at most ¢ links away from i in G"
@ Agent i’s information set at time #:
I, = {s;,G",s; forall j € B},}

41
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Equilibrium and Learning

@ Given a sequence of communication networks {G"} (society):
o Strategy for agent i at time ¢ is o7, : Z7', — {“wait",0, 1}
Definition

A strategy profile o™* is a Perfect-Bayesian Equilibrium if for all i and ¢,

n,* s n
Tip € argye{“rfa?ff’o’l}E(yva'lﬁt) (i (3", O)I17,) -

@ Let
ifx; = 0 forsome T <t

0o 1
Mi, = { 0 otherwise
Definition

We say that asymptotic learning occurs in society {G"} if for every € > 0

limy— o0 limy o Pons ([1 320 (1 =M2,)] >€) =0

n Lai=1




Agent Decision Rule

Lemma
Let o™ be an equilibrium and I}, be an information set of agent i at time t. Then, the
decision of agent i, x}, = o, (I}',) satisfies
0, if log L(s;) + ZJGBn log L(s;) < — logAl ,,
xlr'l,z = 17 lf IOgL(S,) + Z]GB” IOgL( ) Z IOgA” 9
“wait",  otherwise,
d o \Si 0= . . . . . i
where L(s;) = w is the likelihood ratio of signal s;, and A" = i —hisa
dP, (5:]0=0) 1=pr,

time-dependent parameter.

° pZ}*: belief threshold that depends on time and graph structure
@ For this talk:

e Focus on blnary prlvate s1gnals 5 € éO 1}
o Assume L(1) = 725 and L(0 for some 3 > 1/2.
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Minimum Observation Radius
Lemma

.. . no__ _nx
The decision of agent i, x}, = o}, (I1,) satisfies

0, ifKy— k> logal - (log;
n n —
xi,t<1i,t) = 1, ifk:l‘l klO > logA ” (1 0g 7
“wait",  otherwise,

where ki | (ki ,) denotes the number of 1’s (0’s) agent i has observed up to time t.

Definition
We define the minimum observation radius of agent i, denoted by d7, as

-1
dr = argmtin{|BZ,| | |B| > log A7y - (log 1 fﬁ> }

@ Agent i receives at least | B} ;.| signals before she takes an irreversible action

@ B! ,: Minimum observation neighborhood of agent i



A Learning Theorem

Definition

For any integer k > 0, we define the k-radius set, denoted by V}!, as

Vi ={j e N'| [B}p| <k}

@ Set of agents with “finite minimum observation neighborhood"
@ Note that any agent i in the k-radius set has positive probability of taking the
wrong action.
Theorem
Asymptotic learning occurs in society {G"} if and only if
|Vi]

lim lim — =0

k—ocon—oo n

@ A “large" number of agents with finite obs. neighborhoods precludes learning.

45
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Information Hubs and Random Graph Models

@ A node i is an information hub if it has an infinite number of direct neighbors,

lim |Bf(i)] = o0
n—00
@ Asymptotic learning occurs if and only if for all but a negligible fraction of
agents, the shortest path to a hub is shorter than minimum observation radius.
Proposition
Asymptotic Learning occurs for
(a) Complete and Star Graphs
(b) Power Law Graphs with exponent v < 2 (with high probability)
o Intuition: The average degree is infinite - there exist many hubs.
Asymptotic Learning fails for
(a) Bounded Degree Graphs, e.g. expanders
(b) Preferential Attachment Graphs (with high probability)

o Intuition: Edges form with probability proportional to degree, but there
exist many low degree nodes.

46
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Networks, Dynamics, and Learning

@ This talk: A review of the emerging field of theoretical models of social
learning in networks

e Modeling strategic interactions between individuals
o Characterizing effects of network structure
o Game theory and stochastic dynamic analysis

@ Literature so far focuses on modeling and understanding dynamics

@ Next step: Control over networks

o How can misinformation be contained?
o Which networks are robust and resilient?
e How can information exchange be facilitated?

@ Mechanism Design approach (design of game forms) meets control theory over
networks

@ Large area of research at the intersection of Networks, Control Theory,
Economics, Computer Science, Operations Research, Sociology.. . .
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