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Abstract

We present several new characterizations of correlated equilibria in games with
continuous utility functions. These have the advantage of being more computationally
and analytically tractable than the standard definition in terms of departure functions.
We use these characterizations to construct effective algorithms for approximating a
single correlated equilibrium or the entire set of correlated equilibria of a game with
polynomial utility functions. We then exhibit the rich structure of the set of corre-
lated equilibria by analyzing the simplest of polynomial games, the mixed extension
of matching pennies. We show that while the correlated equilibrium set is convex, the
structure of its extreme points can be quite complicated. In finite games there can
be a superexponential separation between the number of extreme Nash and extreme
correlated equilibria. In polynomial games there can exist extreme correlated equilibria
which are not finitely supported; we construct a large family of examples using tech-
niques from ergodic theory. These examples show that in general the set of correlated
equilibrium distributions of a polynomial game cannot be described by conditions on
finitely many joint moments, in marked contrast to the set of Nash equilibria which is
always expressible in terms of finitely many moments.

1 Introduction

In finite games correlated equilibria are simpler than Nash equilibria in several senses –
mathematically at least, if not conceptually. The set of correlated equilibria is a convex
polytope, described by finitely many explicit linear inequalities, while the set of (mixed)
Nash equilibria can be essentially any real algebraic variety (set described by polynomial
equations on real variables) [7]. The existence of correlated equilibria can be proven by
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Nash equilibria Nash equilibria correlated equilibria
(non-zero sum) (zero sum)

Finite games Semialgebraic set [17] LP LP [2]
Polynomial games Semialgebraic set [27] SDP [21] ?

Table 1: Comparison of the simplest known description of different classes of equilibrium
sets in finite and polynomial games.

elementary means (linear programming or game theoretic duality [12]), whereas the existence
of Nash equilibria seems to require nonconstructive methods (fixed point theorems) or the
analysis of complicated algorithms [18, 16]. Computing a sample correlated equilibrium or a
correlated equilibrium optimizing some quantity such as social welfare can be done efficiently
[11, 19]; strong evidence in complexity theory suggests that the corresponding problems for
Nash equilibria are hard [6, 4, 11].

There are several exceptional classes of games for which the above problems about Nash
equilibria become easy. The most important here are the zero-sum games. Broadly speaking,
Nash equilibria of these games have complexity similar to correlated equilibria of general
games. In particular, the set of Nash equilibria is an easily described convex polytope,
existence can be proven by duality, and a sample equilibrium can be computed efficiently.

The situation in games with infinite strategy sets is not nearly so clear. For now we restrict
attention to the simplest such class of games, those with finitely many players, strategy sets
equal to [−1, 1], and polynomial utility functions. Little is known about correlated equilibria
of these games, but much is known about Nash equilibria. Most importantly, the set of
mixed Nash equilibria is nonempty and admits a finite-dimensional description in terms of
the moments of the players’ mixed strategies [27].

This set of moments can be described explicitly in terms of polynomial equations and
inequalities [27]. The Nash equilibrium conditions are expressible via first order statements,
so the set of all moments of Nash equilibria is a real algebraic variety and can be computed
in theory, albeit not efficiently in general. In the two-player zero-sum case, the set of Nash
equilibria can be described by a semidefinite program (an SDP is a generalization of a linear
program which can be efficiently solved, see the appendix), hence we can compute a sample
Nash equilibrium or one which optimizes some linear functional in polynomial time [21]. A
summary of the results described so far is shown in Table 1.

Contributions The impetus for this paper was to address the bottom right cell of Table
1, the one with the question mark. The table seems to suggest that the set of correlated
equilibria of a polynomial game should be describable by a semidefinite program. We will see
that this is approximately true, but not exactly. The contribution of this paper is threefold.

• First, we present several new characterizations of correlated equilibria in games with
continuous utility functions (polynomiality is not needed here). In particular we show
that the standard definition of correlated equilibria in terms of measurable departure
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functions is equivalent to other definitions in which the utilities are integrated against
all test functions in some class (Theorem 2.9). This characterization does not have
any obvious game theoretic significance, but it is extremely useful analytically and it
forms the base for our other contributions.

• Second, we present several algorithms for approximating correlated equilibria within
an arbitrary degree of accuracy. We present one inefficient linear programming based
method as a benchmark, followed by two semidefinite programming based algorithms
which perform much better in practice. The first SDP algorithm, called adaptive
discretization, iteratively computes a sequence of approximate correlated equilibria
supported on finite sets (Section 3.2). We enlarge the support sets at each iteration
using a heuristic which guarantees convergence in general and yields fast convergence
in practice. The second SDP algorithm, called moment relaxation, does not discretize
the strategy spaces but instead works in terms of joint moments. It produces a nested
sequence of outer approximations to the set of joint moments of correlated equilibrium
distributions, and these approximate equilibrium sets are described by semidefinite
programs (Section 3.3). These relaxations depend crucially on one of the correlated
equilibrium characterizations we have developed.

• Third, we use our new characterizations to show that the set of correlated equilibria
can be surprisingly complex, even in simple games. To this end we analyze the mixed
extension of matching pennies, a polynomial game with bilinear payoffs, in detail. We
show that the set of correlated equilibria has extreme points with arbitrarily large
finite support and also with infinite support (Section 4.2). This cannot happen if a set
of measures can be written as those measures satisfying certain conditions on finitely
many joint moments, so it provides a counterexample showing that in general the set
of correlated equilibria of a polynomial cannot be described in this way (Proposition
4.5).

Related Literature The questions we address and the techniques we use are inspired by
existing literature in two main areas. First, our work is related to a number of papers in the
game theory literature.

• Aumann defined correlated equilibria in his famous paper [1], focusing on finite games
to establish the basic properties and important examples. He obtained existence as a
consequence of Nash’s theorem on the existence of Nash equilibria in finite games [18].

• Hart and Schmeidler showed that existence of correlated equilibria in finite games
could be proven directly by a duality argument [12]. They then use a careful limiting
argument to prove existence of correlated equilibria in continuous games with compact
Hausdorff strategy spaces (Theorem 3 of that paper). The germs of ideas in this
limiting argument are developed further in Section 2 of the present paper to yield
various characterizations of correlated equilibria. It is worth noting that in [12] the
authors also consider part (1) of Corollary 2.13 as a candidate definition of correlated
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equilibria. They discard it is as not obviously capturing the game theoretic idea of
correlated equilibrium, but we prove that it is nonetheless an equivalent definition.

• Stoltz and Lugosi have studied learning algorithms which converge to correlated equi-
libria in continuous games [28]. These procedures do not seem to lead to efficient
techniques for computing correlated equilibria, but are interesting in their own right.
The authors consider replacing the class of all measurable departure functions with a
smaller class, such as simple or continuous departure functions, and study when this
yields an equivalent equilibrium notion (see Lemma 2.10 below).

• Separately from the literature on correlated equilibria, the structure of Nash equilibria
in zero-sum games with polynomial or separable (polynomial-like) utility functions
have been studied in detail by Dresher, Karlin, and Shapley. They show how to
cast separable games as finite-dimensional “convex games” by replacing the infinite-
dimensional mixed strategy spaces with finite-dimensional spaces of moments [9] and
prove existence of equilibria via fixed point arguments [8]. There always exist finitely
supported equilibria in separable games as can be shown using the finite-dimensonality
of the moment spaces. The rich geometry of these spaces is studied in [14]. Most of
these results as well as ad hoc methods for computing equilibria in simple cases are
summarized in Karlin’s book [13]. The authors of the present paper have studied
generalizations and extensions of these results in nonzero-sum separable games [27].

Second, our work is related to results from the optimization and computer science liter-
ature.

• Aumann showed that the set of correlated equilibria of a finite game is defined by
polynomially many (in the size of the payoff tables) linear inequalities [2]. However, it
was not clear whether this meant they could be computed in polynomial time. This
question was settled in the affirmative when Khachian proved that linear programs
could be solved in polynomial time; for an overview of this and other more efficient
algorithms, see [3]. Papadimitriou extended this result, showing that correlated equi-
libria can be computed efficiently in many classes of games for which the payoffs can
be written succinctly, even if the explicit payoff tables would be exponential in size
[19].

• The breakthrough in optimization most directly related to the work in this paper is
the development of semidefinite programming, a far-reaching generalization of linear
programming which is still polynomial-time solvable (for an overview, see the appendix
and [30]). More specifically, the development of sum of squares methods has allowed
many optimization problems involving polynomials or moments of measures to be
solved efficiently [20]. Parrilo has applied these techniques to efficiently compute Nash
equilibria of two-player zero-sum polynomial games [21].

The remainder of this paper is organized as follows. In Section 2 we define the classes
of games we study and correlated equilibria thereof, then prove several characterization
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theorems. We present algorithms for approximating sample correlated equilibria and the
set of correlated equilibria of polynomial games in Section 3. Then we analyze the set of
correlated equilibria of the mixed extension of matching pennies in Section 4, with particular
emphasis on computing extreme points of this set. Finally, we close with conclusions and
directions for future work.

2 Characterizations of correlated equilibria

In this section we will define finite and continuous games along with correlated equilibria
thereof. We will present several known characterizations of correlated equilibria in finite
games and show how these naturally extend to continuous games.

Some notational conventions used throughout are that subscripts refer to players, while
superscripts are frequently used for other indices (it will be clear from the context when they
represent exponents). If Sj are sets for j = 1, . . . , n then S = Πn

j=1Sj and S−i = Πj 6=iSj.
The n-tuple s and the (n− 1)-tuple s−i are formed from the points sj similarly. The set of
regular Borel probability measures π over a compact Hausdorff space S is denoted by ∆(S).
For simplicity we will write π(s) in place of π({s}) for the measure of a singleton {s} ⊆ S.
All polynomials will be assumed to have real coefficients.

2.1 Finite Games

We start with the definition of a finite game.

Definition 2.1. A finite game consists of players i = 1, . . . , n, each of whom has a finite
pure strategy set Ci and a utility or payoff function ui : C → R, where C = Πn

j=1Cj.

Each player’s objective is to maximize his (expected) utility. We now consider what it
would mean for the players to maximize their utility if their strategy choices were correlated.
Let R be a random variable taking values in C distributed according to some measure
π ∈ ∆(C). A realization of R is a pure strategy profile (a choice of pure strategy for
each player) and the ith component of the realization Ri will be called the recommendation
to player i. Given such a recommendation, player i can use conditional probability to form
a posteriori beliefs about the recommendations given to the other players. A distribution
π is defined to be a correlated equilibrium if no player can ever expect to unilaterally gain
by deviating from his recommendation, assuming the other players play according to their
recommendations.

Definition 2.2. A correlated equilibrium of a finite game is a joint probability measure
π ∈ ∆(C) such that if R is a random variable distributed according to π then

E [ui(ti, R−i)− ui(R)|Ri = si] ≡
∑

s−i∈C−i

Prob(R = s|Ri = si) [ui(ti, s−i)− ui(s)] ≤ 0

for all players i, all si ∈ Ci such that Prob(Ri = si) > 0, and all ti ∈ Ci.
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While this definition captures the idea we have described above, the following character-
ization is easier to apply and visualize.

Proposition 2.3. A joint probability measure π ∈ ∆(C) is a correlated equilibrium of a
finite game if and only if ∑

s−i∈C−i

π(s) [ui(ti, s−i)− ui(s)] ≤ 0 (1)

for all players i and all si, ti ∈ Ci.

This proposition shows that the set of correlated equilibria is defined by a finite number
of linear equations and inequalities (those in (1) along with π(s) ≥ 0 for all s ∈ C and∑

s∈C π(s) = 1) and is therefore convex and even polyhedral. It can be shown via linear
programming duality that this set is nonempty [12]. This can be shown alternatively by
appealing to the fact that Nash equilibria exist and are the same as correlated equilibria
which are product distributions.

We can think of correlated equilibria as joint distributions corresponding to recommen-
dations which will be given to the players as part of an extended game. The players are then
free to play any function of their recommendation (this is called a departure function)
as their strategy in the game. If it is a Nash equilibrium of this extended game for each
player to play his recommended strategy (i.e. if no player has an incentive to unilaterally
deviate from using the identity departure function), then the distribution is a correlated
equilibrium. This interpretation is justified by the following alternative characterization of
correlated equilibria.

Proposition 2.4. A joint probability measure π ∈ ∆(C) is a correlated equilibrium of a
finite game if and only if ∑

s∈C

π(s) [ui(ζi(si), s−i)− ui(s)] ≤ 0 (2)

for all players i and all functions ζi : Ci → Ci.

2.2 Continuous Games

Again we begin with the definition of this class of games.

Definition 2.5. A continuous game consists of an arbitrary (possibly infinite) set I of
players i, each of whom has a pure strategy set Ci which is a compact Hausdorff space and
a utility function ui : C → R which is continuous.

Note that any finite set forms a compact Hausdorff space under the discrete topology
and any function out of such a set is continuous, so the class of continuous games includes
the finite games. Another class of continuous games are the polynomial games, which are
our primary focus when we study computation of correlated equilibria in the sections which
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follow. The theorems and proofs below can safely be read with polynomial games in mind,
ignoring such topological subtleties as regularity of measures. However the extra generality of
arbitrary continuous games requires little additional work in the proofs of the characterization
theorems, so we will not formally restrict our attention to polynomial games here.

Definition 2.6. A polynomial game is a continuous game with n <∞ players in which the
pure strategy spaces are Ci = [−1, 1] for all players and the utility functions are polynomials.

Defining correlated equilibria in continuous games requires somewhat more care than in
finite games. The standard definition as used in [12] is a straightforward generalization of
the characterization of correlated equilibria for finite games in Proposition 2.4. In this case
we must add the additional assumption that the departure functions be Borel measurable
to ensure that the integrals are defined.

Definition 2.7. A correlated equilibrium of a continuous game is a joint probability
measure π ∈ ∆(C) such that∫

[ui(ζi(si), s−i)− ui(s)] dπ(s) ≤ 0

for all i and all Borel measurable functions ζi : Ci → Ci.

The problem of computing Nash equilibria of polynomial games can be formulated ex-
actly as a finite-dimensional nonlinear program or as a system of polynomial equations and
inequalities [27]. The key feature of the problem which makes this possible is the fact that it
has an explicit finite-dimensional formulation in terms of the moments of the players’ mixed
strategies.

To see this, suppose that player 1 chooses his action x ∈ [−1, 1] according to a mixed
strategy σ (a probability distribution over [−1, 1]). Each player’s utility function is a mul-
tivariate polynomial which only contains terms whose degree in x is at most some constant
integer d. Then regardless of how everyone chooses their strategies, their expected utility
will only depend on σ through the moments

∫
xdσ(x),

∫
x2dσ(x), . . . ,

∫
xddσ(x). Therefore

player 1 can switch from σ to any other mixed strategy with the same first d moments with-
out affecting game play, and we can think of the Nash equilibrium problem as one in which
each player seeks to choose moments which correspond to an actual probability distribution
and form a Nash equilibrium.

On the other hand there is no exact finite-dimensional characterization of the set of
correlated equilibria in polynomial games; for a counterexample see Section 4. Given the
characterization of Nash equilibria in terms of moments, a natural attempt would be to try to
characterize correlated equilibria in terms of the joint moments, i.e. the values

∫
sk11 · · · sknn dπ

for nonnegative integers ki and joint measures π. In fact we will be able to obtain such a
characterization below, albeit in terms of infinitely many joint moments. The reason this
attempt fails to yield a finite dimensional formulation is that the definition of a correlated
equilibrium implicitly imposes constraints on the conditional distributions of the equilibrium
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measure. A finite set of moments does not contain enough information about these condi-
tional distributions to check the required constraints exactly. Therefore we also consider
approximate correlated equilibria.

Definition 2.8. An ε-correlated equilibrium of a continuous game is a joint probability
measure π ∈ ∆(C) such that∫

[ui(ζi(si), s−i)− ui(s)] dπ(s) ≤ ε

for all i and all Borel measurable functions ζi : Ci → Ci. This definition reduces to that of
a correlated equilibrium when ε = 0.

Compare this definition to the main characterization theorem for ε-correlated equilibria
immediately below. This theorem shows that ε-correlated equilibria can be defined by inte-
grating the utilities against any sufficiently rich class of test functions, instead of by using
measurable departure functions. While this characterization does not have an obvious game
theoretic interpretation, it allows us to compute correlated equilibria both algorithmically
(Section 3) and analytically (Section 4).

Theorem 2.9. A probability measure π ∈ ∆(C) is an ε-correlated equilibrium of a continuous
game if and only if for all players i, positive integers k, strategies t1i , . . . , t

k
i ∈ Ci, and

functions f 1
i , . . . , f

k
i : Ci → [0, 1] in one of the classes

1. Weighted measurable characteristic functions,

2. Measurable simple functions,

3. Measurable functions,

4. Continuous functions,

5. Squares of polynomials (if Ci ⊂ Rki for some ki).

such that
∑k

j=1 f
j
i (si) ≤ 1 for all si ∈ Ci, the inequality

k∑
j=1

∫
f ji (si)

[
ui(t

j
i , s−i)− ui(s)

]
dπ ≤ ε (3)

holds.

To prove this, we need several approximation lemmas.

Lemma 2.10 (A special case of Lemma 20 in [28]). Simple departure functions (those with
finite range) suffice to define ε-correlated equilibria in continuous games. That is to say, a
joint measure π is an ε-correlated equilibrium if and only if∫

[ui(ξi(si), s−i)− ui(s)] dπ(s) ≤ ε

for all players i and all Borel measurable simple functions ξi : Ci → Ci.
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Proof. The forward direction is trivial. To prove the reverse, first fix i. Then choose any
measurable departure function ζi and let δ > 0 be arbitrary. By the continuity of ui and
compactness of the strategy spaces there exists a finite open cover U1, . . . , Uk of Ci such
that si, s

′
i ∈ U j implies |ui(si, s−i) − ui(s′i, s−i)| < δ for all s−i ∈ C−i and j = 1, . . . , k. Fix

any sji ∈ Uk for all j. Define a simple measurable departure function ξi by ξi(si) = sji where
j = min{l : ζi(si) ∈ U l}. Then |ui(ζi(si), s−i)− ui(ξi(si), s−i)| < δ for all s ∈ C, so∫

[ui(ζi(si), s−i)− ui(s)] dπ(s) ≤
∫

[ui(ξi(si), s−i) + δ − ui(s)] dπ(s) ≤ ε+ δ.

Letting δ go to zero completes the proof.

Lemma 2.11. If C is a compact Hausdorff space, µ is a finite regular Borel measure on C,
f 1, . . . , fk : C → [0, 1] are measurable functions such that

∑k
j=1 f

j ≤ 1, and δ > 0, then there

exist continuous functions g1, . . . , gk : C → [0, 1] such that µ({x ∈ C : f j(x) 6= gj(x)}) < δ
for all j and

∑k
j=1 g

j ≤ 1.

Proof. We can apply Lusin’s theorem which states exactly this result in the case k = 1 [24].
If k > 1, then we can apply the k = 1 case with δ

k
in place of δ to each of the f j. Call

the resulting continuous functions g̃j. Then µ({x ∈ C : f j(x) 6= g̃j(x) for some j}) < δ.
But

∑k
j=1 f

j ≤ 1, so µ({x ∈ C :
∑k

j=1 g̃
j(x) > 1}) < δ. Let h(x) = max{1,

∑k
j=1 g̃

j(x)} so

h : C → [1,∞) is a continuous map. Define gj(x) = g̃j(x)
h(x)

. Then the gj are continuous, sum

to at most unity, and are equal to the f j wherever all of the g̃j equal the f j, i.e. except on
a set of measure at most δ.

Lemma 2.12. If C ⊂ Rd is compact, f 1, . . . , fk : C → [0, 1] are continuous functions such
that

∑k
j=1 f

j ≤ 1, and δ > 0, then there exist polynomials p1, . . . , pk : C → [0, 1] which are

squares such that |f j(x)− pj(x)| ≤ δ for all x ∈ C and
∑k

j=1 p
j ≤ 1.

Proof. By the Stone-Weierstrass theorem, any continuous function on a compact subset of
Rd can be approximated by a polynomial arbitrarily well with respect to the sup norm.
Approximating the square root of a nonnegative function f using this theorem and squaring
the resulting polynomial shows that a nonnegative continuous function on a compact subset
of Rd can be approximated arbitrarily well by a square of a polynomial with respect to the
sup norm.

Let p̃j be a square of a polynomial which approximates f j within δ
2k

in the sup norm.

Let pj = p̃j

1+ δ
2

. Then pj is always within δ
2

of p̃j, hence pj approximates f j within δ in the

sup norm. Furthermore for all x ∈ C we have

k∑
j=1

pj(x) =
1

1 + δ
2

k∑
j=1

p̃j(x) ≤ 1

1 + δ
2

k∑
j=1

(
f j(x) +

δ

2k

)
≤ 1

1 + δ
2

(
1 +

δ

2

)
= 1.

Proof of Theorem 2.9. First we prove that if π is an ε-correlated equilibrium then (3) holds
in the case where the f ji are simple. We can choose a partition B1

i , . . . , B
l
i of Ci into disjoint
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measurable sets such that f ji =
∑l

m=1 cjmχBmi where cjm ∈ [0, 1] and χBmi denotes the
indicator function which is unity on Bm

i and zero elsewhere. Define a departure function
ζi : Ci → Ci piecewise on the Bm

i as follows. If∫
Bmi ×C−i

[
ui(t

j
i , s−i)− ui(s)

]
dπ

is nonnegative for some j define ζi(si) = tji for all si ∈ Bm
i where j is chosen to maximize

the above integral. If the integral is negative for all j define ζi(si) = si for all si ∈ Bm
i . Then

we have

k∑
j=1

cjm

∫
Bmi ×C−i

[
ui(t

j
i , s−i)− ui(s)

]
dπ ≤

∫
Bmi ×C−i

[ui(ζi(si), s−i)− ui(s)]

for all m. Summing over m and using the definition of an ε-correlated equilibrium yields (3)
in the case where the f ji are simple.

Conversely suppose that (3) holds for all measurable simple functions. Let ζi : Ci → Ci
be any simple departure function. Let t1i , . . . , t

k
i be the range of ζi and Bj

i = ζ−1
i ({tji}).

Defining f ji = χBji
, (3) says exactly that π satisfies the ε-correlated equilibrium condition for

the departure function ζi. By Lemma 2.10, π is an ε-correlated equilibrium.
Any simple function can be written as a sum of weighted characteristic functions, so by

making several of the tji the same, we see that (3) for weighted characteristic functions is
the same as (3) for simple measurable functions. If the inequality (3) holds for all simple
measurable functions, a standard limiting argument proves that it holds for all measurable
f ji , hence for all continuous f ji .

Suppose conversely that (3) holds for all continuous f ji . Fix any measurable f ji sat-
isfying the assumptions of the theorem. Define a signed measure πji on Ci by πji (Bi) =∫
Bi×C−i

[
ui(t

j
i , s−i)− ui(s)

]
dπ. Let µi =

∑k
j=1|π

j
i | and fix any δ > 0. Then by the Lemma

2.11 there exist continuous functions gji : Ci → [0, 1] which sum to at most unity and equal
the f ji except on a set of µi measure at most δ. Therefore∣∣∣∣∣

k∑
j=1

∫
f ji (si)

[
ui(t

j
i , s−i)− ui(s)

]
dπ −

k∑
j=1

∫
gji (si)

[
ui(t

j
i , s−i)− ui(s)

]
dπ

∣∣∣∣∣
≤

k∑
j=1

∫
|f ji (si)− gji (si)|dπ

j
i ≤ 2kδ,

so
k∑
j=1

∫
f ji (si)

[
ui(t

j
i , s−i)− ui(s)

]
dπ ≤ ε+ 2kδ.

But δ was arbitrary, so (3) holds for all measurable f ji .
Finally assume Ci ⊂ Rki for some ki. If (3) holds for all continuous f ji , then it holds for

all squares of polynomials. Suppose conversely that it holds for all squares of polynomials.
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Let f ji be any continuous functions satisfying the assumptions of the theorem and δ > 0. Let
pji be polynomials squares which approximate the f ji within δ in the sup norm and satisfy
the assumptions of the theorem, as provided by Lemma 2.12. Then∣∣∣∣∣

k∑
j=1

∫
f ji (si)

[
ui(t

j
i , s−i)− ui(s)

]
dπ −

k∑
j=1

∫
pji (si)

[
ui(t

j
i , s−i)− ui(s)

]
dπ

∣∣∣∣∣
≤

k∑
j=1

∫
|f ji (si)− pji (si)|dπ

j
i ≤ δ

k∑
j=1

∫
dπji ,

so
k∑
j=1

∫
f ji (si)

[
ui(t

j
i , s−i)− ui(s)

]
dπ ≤ ε+ δ

k∑
j=1

∫
dπji .

But δ was arbitrary and the integrals on the right are finite, so (3) holds for all continuous
f ji .

Several simplifications occur when specializing Theorem 2.9 to the ε = 0 case, yielding
the following characterization. We will use the polynomial condition of this corollary in
Section 3 to develop algorithms for computing (approximate) correlated equilibria. The
characteristic function condition will allow us to compute extreme correlated equilibria of an
example game in Section 4.

Corollary 2.13. A joint measure π is a correlated equilibrium of a continuous game if and
only if ∫

fi(si) [ui(ti, s−i)− ui(s)] dπ(s) ≤ 0 (4)

for all i and ti ∈ Ci as fi ranges over any of the following sets of functions from Ci to [0,∞):

1. Characteristic functions of measurable sets,

2. Measurable simple functions,

3. Bounded measurable functions,

4. Continuous functions,

5. Squares of polynomials (if Ci ⊂ Rki for some ki).

Proof. When ε = 0 the k = 1 case of equation (3) implies the k > 1 cases. Furthermore
ε = 0 makes (3) homogeneous, so it is unaffected by positive scaling of the f ji , which allows
us to drop the assumption fi ≤ 1.

Theorem 2.9 also has important topological implications for the structure of ε-correlated
equilibria. Recall that the weak* topology on the set of probability distributions ∆(C) over
a compact Hausdorff space is the weakest topology which makes π 7→

∫
fdπ a continuous

functional whenever f : C → R is a continuous function.
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Corollary 2.14. The set of ε-correlated equilibria of a continuous game is weak* compact.

Proof. By the continuous test function condition in Theorem 2.9, the set of ε-correlated
equilibria is defined by conditions of the form

∫
fdπ ≤ ε where f ranges over continuous

functions of the form
∑k

j=1 f
j
i (si)

[
ui(t

j
i , s−i)− ui(s)

]
. By definition this presents the set of

ε-correlated equilibria as the intersection of a family of weak* closed sets. Hence the set of ε-
correlated equilibria is a closed subset of ∆(C). But ∆(C) is compact by the Banach-Alaoglu
theorem [25], so the set of ε-correlated equilibria is compact.

Corollary 2.15. If πk is a sequence of εk-correlated equilibria and εk → 0, then some πk is a
correlated equilibrium or the sequence πk has a limit point which is a correlated equilibrium.

Proof. Assume no πk is a correlated equilibrium. Then since εk → 0, the sequence πk

contains infinitely many points. The space ∆(C) with the weak* topology is compact by
the Banach-Alaoglu theorem [25], hence any infinite set has a limit point. Let π ∈ ∆(C)
be a limit point of the sequence πk. For any ε > 0 there exists k0 such that for all k ≥ k0,
πk is an ε-correlated equilibrium. The set ∆(C) is Hausdorff [25], so π is also a limit point
of {πk}k≥k0 . Since the set of ε-correlated equilibria is compact by Corollary 2.14, the limit
point π must be an ε-correlated equilibrium for all ε > 0, i.e. a correlated equilibrium.

Finally, we consider ε-correlated equilibria which are supported on some finite subset. In
this case, we obtain another generalization of Proposition 2.3.

Theorem 2.16. A probability measure π ∈ ∆(C̃), where C̃ = Πj∈IC̃j is a finite subset of C,
is an ε-correlated equilibrium of a continuous game if and only if there exist εi,si such that∑

s−i∈C̃−i

π(s) [ui(ti, s−i)− ui(s)] ≤ εi,si

for all players i, all si ∈ C̃i, and all ti ∈ Ci, and∑
si∈C̃i

εi,si ≤ ε

for all players i.

Proof. If we replace ti with ζi(si) in the first inequality then sum over all si ∈ C̃i and combine
with the second inequality, we get the equivalent condition that∑

s∈C̃

π(s) [ui(ζi(si), s−i)− ui(s)] ≤ ε

holds for all i and any function ζi : C̃i → Ci. This is exactly the definition of an ε-correlated
equilibrium in the case when π is supported on C̃.

12



3 Computing correlated equilibria

We focus in this section on developing algorithms that can compute approximate correlated
equilibria with arbitrary accuracy. We consider three types of algorithms, which we will
illustrate in turn using the example below.

Example 3.1. Consider the polynomial game with two players, x and y, each choosing their
strategies from the interval Cx = Cy = [−1, 1]. Their utilities are given by

ux(x, y) = 0.596x2 + 2.072xy − 0.394y2 + 1.360x− 1.200y + 0.554 and

uy(x, y) = −0.108x2 + 1.918xy − 1.044y2 − 1.232x+ 0.842y − 1.886.

The coefficients have been selected at random. This example is convenient, because as Figure
3 shows, the game has a unique correlated equilibrium (the players choose x = y = 1 with
probability one). For the purposes of visualization and comparison, we will project the
computed equilibria and approximations thereof into expected utility space, i.e. we will plot
pairs

(∫
uxdπ,

∫
uydπ

)
.

3.1 Static Discretization Methods

The techniques in this subsection are general enough to apply to arbitrary continuous games
with finitely many players, so we will not restrict our attention to polynomial games here.
The basic idea of static discretization methods is to select some finite subset C̃i ⊂ Ci
of strategies for each player and limit his strategy choice to that set. Restricting the utility
functions to the product set C̃ = Πn

i=1C̃i produces a finite game, called a sampled game or
sampled version of the original continuous game. The simplest computational approach is
then to consider the set of correlated equilibria of this sampled game. This set is defined by
the linear inequalities in Proposition 2.3 along with the conditions that π be a probability
measure on C̃. The complexity of this approach in practice depends on the number of points
in the discretization.

The question is then: what kind of approximation does this technique yield? In general
the correlated equilibria of the sampled game may not have any relation to the set of corre-
lated equilibria of the original game. The sampled game could, for example, be constructed
by selecting a single point from each strategy set, in which case the unique probability mea-
sure over C̃ is automatically a correlated equilibrium of the sampled game but is a correlated
equilibrium of the original game if and only if the points chosen form a pure strategy Nash
equilibrium. Nonetheless, it seems intuitively plausible that if a large number of points were
chosen such that any point of Ci were near a point of C̃i then the set of correlated equilibria
of the finite game would be “close to” the set of correlated equilibria of the original game in
some sense, despite the fact that each set might contain points not contained in the other.

To make this precise, we will show how to choose a discretization so that the correlated
equilibria of the finite game are ε-correlated equilibria of the original game.

Proposition 3.2. Consider a continuous game with finitely many players, strategy sets Ci,
and payoffs ui. For any ε > 0, there exists a finite open cover U1

i , . . . , U
li
i of Ci such that if

13



C̃i ⊆ Ci is a finite set chosen to contain at least one point from each U l
i , then all correlated

equilibria of the finite game with strategy spaces C̃i and utilities ui|C̃ will be ε-correlated
equilibria of the original game.

Proof. Note that the utilities are continuous functions on a compact set, so for any ε > 0
we can choose a finite open cover U1

i , . . . , U
li
i such that if si varies within one of the U l

i and
s−i ∈ C−i is held fixed, the value of ui changes by no more than ε. Let C̃ satisfy the stated
assumption and let π be any correlated equilibrium of the corresponding finite game. Then
by Proposition 2.3, ∑

s−i∈C̃−i

π(s) [ui(ti, s−i)− ui(s)] ≤ 0

for all i and all si, ti ∈ C̃i. Any ti ∈ Ci belongs to the same U l
i as some t̃i ∈ C̃i, so∑

s−i∈C̃−i

π(s) [ui(ti, s−i)− ui(s)] ≤
∑

s−i∈C̃−i

π(s)
[
ui
(
t̃i, s−i

)
− ui(s) + ε

]
≤ ε

∑
s−i∈C̃−i

π(s) = ε.

Therefore the assumptions of Theorem 2.16 are satisfied with εi,si = ε
∑

s−i∈C̃−i π(s).

Combined with Corollary 2.15 and the fact that all finite games have correlated equilibria
[12], this proposition shows that any continuous game with finitely many players has a
correlated equilibrium (the case of an arbitrary set of players has appeared in [12]) which
can be computed as a limit point of a sequence of correlated equilibria of sampled games
when the discretization gets finer and finer. The proof also shows that if the utilities are
Lipschitz functions, such as polynomials, then the U l

i can in fact be chosen to be balls with
radius proportional to ε. If the strategy spaces are Ci = [−1, 1] as in a polynomial game,
then C̃i can be chosen to be uniformly spaced within [−1, 1]. In this case ε = O

(
1
d

)
where

d = maxi

∣∣∣C̃i∣∣∣.
Example 3.1 (continued). Figure 1 is a sequence of static discretizations for this game for
increasing values of d, where d is the number of points in C̃x and C̃y. These points are
selected by dividing [−1, 1] into d subintervals of equal length and letting C̃x = C̃y be the
set of midpoints of these subintervals. For this game it is possible to show that the rate of
convergence is in fact Θ

(
1
d

)
so the worst case bound on convergence rate is achieved in this

example.

In fact we can improve this convergence rate to ε = O
(

1
d2

)
if we include the endpoints

±1 in C̃i as well and assume that the utilities have bounded second derivatives. This fact is
based on the following technical lemma.

Lemma 3.3. Let x0 > 0. If f(±x0) ≤ 0 and d2f
dx2 ≥ −M on [−x0, x0], then f(x) ≤ Mx2

0

2
for

all x ∈ [−x0, x0]. Furthermore this bound is achieved by f(x) = M
2

(x0− x)(x0 + x) at x = 0.

Proof. Fix x1 ∈ arg max[−x0,x0] f(x). Replacing f(x) by f(−x) if necessary we can assume

that x1 ≥ 0. Then df
dx

(x1) = 0, so the function g(x) = f(x1 + x0−x1

x0
|x|) satisfies all the
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Figure 1: Convergence of a sequence of ε-correlated equilibria of the game in Example 3.1
computed by a sequence of static discretizations, each with some number d of equally spaced
strategies chosen for each player. The axes represent the utilities received by players x and
y. It can be shown that the convergence in this example happens at a rate Θ

(
1
d

)
.

assumptions of the theorem (in particular it is twice differentiable despite the |x| term) and
and achieves its maximum value of f(x1) at x = 0.

Therefore to prove the lemma it suffices to prove that f(0) ≤ x2
0

2
under the additional

assumption that df
dx

(0) = 0. By assumption d2f
dx2 ≥ −M . Integrating from 0 to x, we have

df
dx

(x) ≥ −Mx. Integrating again from 0 to x0 yields f(0)− Mx2
0

2
≤ f(x0) ≤ 0.

Corollary 3.4. If f : [−1, 1] → R is a function whose second derivatives is bounded below
by −M such that f is nonpositive at d+ 1 evenly spaced points from −1 to 1 inclusive, then
max−1≤x≤1 f(x) ≤ M

2d2
.

Proof. Apply Lemma 3.3 between each pair of adjacent points where f is nonpositive.

The extremal example in Lemma 3.3 makes it clear that we cannot achieve a tighter
bound on the values of f by constraining higher derivatives. Furthermore, if we do not
constrain f to be nonpositive at the endpoints ±1, then we can produce a linear f with
max−1≤x≤1 = Θ

(
1
d

)
even if we constrain the first derivative of f . This weaker convergence

bound leads to ε = Θ
(

1
d

)
in the example above.

Corollary 3.5. Consider a continuous game with strategy spaces Ci = [−1, 1] for all players

and utilities such that ∂2ui
∂s2i
≥ −M for some M . Let C̃i be the set which consists of d + 1

points equally spaced between −1 and 1 inclusive for all i. Then a correlated equilibrium of
the finite game with strategy spaces C̃i and utilities ui|C̃i is an M

2d2
-correlated equilibrium of

the original game.
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Proof. Let π be such a correlated equilibrium. Then by assumption the function:

fi,si(ti) =
∑

s−i∈C̃−i

π(s) [ui(ti, s−i)− ui(s)]

is zero for ti ∈ C̃i and has second derivative bounded below byM
∑

s−i∈C̃−i π(s). By Corollary

3.4, εi,si = max−1≤ti≤1 fi,si(ti) ≤ M
2d2

∑
s−i∈C̃−i π(s). Therefore ε = maxi

∑
si∈C̃i εi,si ≤

M
2d2

and
Theorem 2.16 completes the proof.

3.2 Adaptive Discretization Methods

3.2.1 A family of convergent adaptive discretization algorithms

In this section we consider continuous games with finitely many players and provide two
algorithms (the second is in fact a parametrized family of algorithms which generalizes
the first) to compute a sequence of εk-correlated equilibria such that limk→∞ ε

k = 0. By
Corollary 2.15 any limit point of this sequence is a correlated equilibrium. We will show that
for polynomial games these algorithms can be implemented efficiently using semidefinite
programming.

Informally, these algorithms work as follows. Each iteration k begins with a finite set
C̃k
i ⊆ Ci of strategies which each player i is allowed to play with positive probability in that

iteration; the initial choice of this set at iteration k = 0 is arbitrary. We then compute the
“best” ε-correlated equilibrium in which players are restricted to use only these strategies,
i.e., the one which minimizes ε (subject to some extra technical conditions needed to ensure
convergence).

Given the optimal objective value εk and optimal probability distribution πk, there is some
player i who can improve his payoff by εk if he switches from his recommended strategies to
certain other strategies. We interpret these other strategies as good choices for that player
to use to help make εk smaller in later iterations k. Therefore we add these strategies to C̃k

i

to get C̃k+1
i and repeat this process for iteration k + 1.

Algorithm 3.6. Fix a continuous game with finitely many players. Let k = 0 and for each
player fix a finite subset C̃0

i ⊆ Ci.

• Let πk be an εk-correlated equilibrium of the game having minimal εk subject to two
extra conditions. First, πk must be supported on C̃k. Second, we require that πk be
an exact correlated equilibrium of the finite game induced when deviations from the
recommended strategies are restricted to the set C̃k, i.e. when we replace the condition
ti ∈ Ci in Definition 2.8 with ti ∈ C̃k

i .

That is to say, let εk be the optimal value of the following optimization problem, and
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πk be an optimal assignment to the decision variables.

minimize ε
subject to∑

s−i∈C̃k−i

π(s) [ui(ti, s−i)− ui(s)] ≤ 0 for all i and si, ti ∈ C̃k
i∑

s−i∈C̃k−i

π(s) [ui(ti, s−i)− ui(s)] ≤ εi,si for all i, si ∈ C̃k
i and ti ∈ Ci∑

si∈C̃ki

εi,si ≤ ε for all i

π(s) ≥ 0 for all s ∈ C̃∑
s∈C̃k

π(s) = 1

• If εk = 0, terminate.

• For each player i for whom
∑

si∈C̃i εi,si = ε, form C̃k+1
i from C̃k

i by adding in at least

one strategy ti which makes
∑

s−i∈C̃−i π(s) [ui(ti, s−i)− ui(s)] = εi,si for each si ∈ C̃k
i

such that εi,si > 0.

• For all other players i, let C̃k+1
i = C̃k

i .

• Let k = k + 1 and repeat.

Note that all steps of this algorithm are well-defined. First, the optimization problem
is feasible. To see this let πk be any exact correlated equilibrium of the finite game with
strategy spaces C̃k

i and utilities ui restricted to C̃k; such an equilibrium exists because all
finite games have correlated equilibria [12]. The ui are bounded on C (being continuous
functions on a compact set), so by making ε and the εi,si large, we see that πk is a feasible
solution of the problem. Second, the optimal objective value is achieved by some πk because
the space of probability measures on C̃k is compact and ε is bounded below by zero. Third,
the set of ti ∈ Ci making the ε-correlated equilibrium constraints tight at the optimum is
nonempty by optimality of πk and continuity of ui. This set consists only of strategies which
are not in C̃k

i because we have the constraint that the deviations in utility be nonpositive
for ti ∈ C̃k

i .
To show that Algorithm 3.6 converges, we will view it as a member of the following

family of algorithms with the parameters set to α = 0 and β = 1. Varying these parameters
corresponds to adding some slack in the exact correlated equilibrium constraints and allowing
some degree of suboptimality in the choice of strategies added to C̃k

i to form C̃k+1
i . Such

changes make little conceptual difference, but could be helpful in practice by making the
optimization problem strictly feasible and allowing it to be solved to within a known fraction
of the optimal objective value rather than all the way to optimality. We will prove that all
algorithms in this family converge, that is, with these algorithms εk converges to zero in the
limit.
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Algorithm 3.7. Fix a continuous game with finitely many players and parameters 0 ≤ α <
β ≤ 1. Let k = 0 and for each player fix a finite subset C̃0

i ⊆ Ci.

• Choose εk to be the smallest number for which there exists πk such that:

– πk is a probability distribution supported on C̃k,

– πk is an εk-correlated equilibrium of the game,

– πk is not an ε-correlated equilibrium for any ε < εk,

– πk is an αεk-correlated equilibrium of the game when strategy deviations are
restricted to C̃k (i.e., when the condition ti ∈ Ci is changed to ti ∈ C̃k

i in Definition
2.8).

• If εk = 0, terminate.

• For at least one value of i, form C̃k+1
i from C̃k

i by adding strategies ti,si ∈ Ci such that∑
s∈C̃k

πk(s) [ui(ti,si , s−i)− ui(s)] ≥ βεk.

• For all other values of i, let C̃k+1
i = C̃k

i .

• Let k = k + 1 and repeat.

In this case it is not immediately obvious that the first step of the algorithm is well-
defined, i.e. that a minimal εk exists. To see this note that we could choose πk to be an exact
correlated equilibrium when strategy deviations are restricted to C̃k, so there exists a pair
(πk,1, εk,1) satisfying the four conditions under the first bullet above. Choose some sequence
(πk,l, εk,l), l = 1, 2, . . ., of pairs satisfying these conditions such that εk = liml→∞ ε

k,l is the
infimum over all εk values of pairs satisfying these conditions. Passing to a subsequence if
necessary we can assume without loss of generality that the πk,l converge to some πk. It is
clear from the proof of Corollary 2.15 that πk is an εk-correlated equilibrium supported on
C̃k which is an αεk-correlated equilibrium when deviations are restricted to C̃k.

From Theorem 2.16 we see that a small change in the probabilities π(s) of a distribution
supported on a finite set results in a correspondingly small change of the minimal ε for
which that distribution is an ε-correlated equilibrium. Therefore πk is not an ε-correlated
equilibrium for any ε < εk. Note that this final step depends crucially on the fact that C̃k

is finite and fixed while l varies. Also note that this subtlety disappears if α = 0 because
in that case it wouldn’t matter if the limiting distribution had a smaller ε value. It is clear
that the remaining steps of the algorithm are well-defined.

Theorem 3.8. Fix a continuous game with finitely many players. Algorithms 3.6 and 3.7
converge in the sense that εk → 0.
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Proof. Suppose not, so there exists ε > 0 and infinitely many values of k such that εk ≥ ε. For
each i let B1

i , . . . , B
li
i be a finite open cover of Ci such that ui(si, s−i)−ui(ti, s−i) ≤ 1

2
(β−α)ε

when si and ti belong to the same set Bl
i and s−i ∈ C−i. Such a cover exists by the

compactness of the Ci and the continuity of the ui. There are finitely many sets Bl
i so there

is some iteration k, which we can take to satisfy εk ≥ ε, such that for all i all of the sets Bl
i

which will ever contain an element of C̃k
i at some iteration k already do.

Note that πk is an αεk-correlated equilibrium when strategy choices are restricted to C̃k
i ,

and εk > 0 so we have βεk > αεk. By the minimality of εk, the set C̃k+1
i \ C̃k

i is nonempty for
some player i (that is to say, it is always possible to perform the third step of the algorithm).
Choose such an i and let ti,si ∈ C̃k+1

i satisfy∑
s∈C̃k

πk(s) [ui(ti,si , s−i)− ui(s)] ≥ βεk

for all si ∈ C̃k
i . By assumption, for any choice of ri,si ∈ C̃k

i we have∑
s∈C̃k

πk(s) [ui(ri,si , s−i)− ui(s)] ≤ αεk,

so ∑
s∈C̃k

πk(s) [ui(ti,si , s−i)− ui(ri,si , s−i)] ≥ (β − α)εk.

By construction of k, we can choose ri,si ∈ C̃k
i to lie in the same set Bl

i as ti,si for each
si ∈ C̃k

i . Thus

(β − α)ε ≤ (β − α)εk

≤

∣∣∣∣∣∣
∑
s∈C̃k

πk(s) [ui(ti,si , s−i)− ui(ri,si , s−i)]

∣∣∣∣∣∣
≤
∑
s∈C̃k

πk(s) |ui(ti,si , s−i)− ui(ri,si , s−i)|

≤
∑
s∈C̃k

πk(s)
(β − α)ε

2
=

(β − α)ε

2
,

a contradiction.

Now we will illustrate Algorithm 3.6 on two examples.

Example 3.1 (continued). In Figure 2 we illustrate Algorithm 3.6 initialized with C̃0
x = C̃0

y =
{0}. In this case convergence is obtained in three iterations, significantly faster than the
static discretization method. The resulting strategy sets were C̃2

x = C̃2
y = {0, 1}.
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Figure 2: Convergence of Algorithm 3.6 (note the change in scale from Figure 1). At each
iteration, the expected utility pair is plotted along with the computed value of ε for which
that iterate is an ε-correlated equilibrium of the game. In this case convergence to ε = 0 (to
within numerical error) occurred in three iterations.
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k εk C̃k
x \ C̃k−1

x C̃k
y \ C̃k−1

y C̃k
z \ C̃k−1

z

0 0.99 {0} {0} {0}
1 4.16 {0.89}
2 5.76 {−1}
3 0.57 {1}
4 0.28 {0.53} {0.50, 0.63}
5 0.16 {0.49, 0.70}
6 10−7 {−1, 0.60} {−0.60, 0.47}

Table 2: Output of Algorithm 3.6 on a three player polynomial game with utilities of degree
4 and randomly chosen coefficients.

Example 3.9. For a more complex illustration, we consider a polynomial game with three
players, choosing strategies x, y, and z ∈ [−1, 1]. The utilities were chosen to be polynomials
with terms up to degree 4 in all the variables and the coefficients were chosen independently
according to a normal distribution with zero mean and unit variance (their actual values are
omitted). Algorithm 3.6 proceeds as in Table 2, which shows the value of εk and the new
strategies added on each iteration. The terminal probability distribution π6 does not display
any obvious structure; in particular it is not a Nash equilibrium (product distribution).

3.2.2 Implementing these algorithms with semidefinite programs

To implement these algorithms for polynomial games, we must be able to do two things.
First, we need to solve optimization problems with finitely many decision variables, linear
objective functions and two types of constraints: nonnegativity constraints on linear func-
tionals of the decision variables, and nonnegativity constraints on univariate polynomials
whose coefficients are linear functionals of the decision variables. That is to say, we must be
able to handle constraints of the form p(t) ≥ 0 for all t ∈ [−1, 1], where the coefficients of
the polynomial p are linear in the decision variables. Second, we need to extract values of t
for which such polynomial inequalities are tight at the optimum.

Both of these tasks can be done simultaneously by casting the problem as a semidefinite
program (SDP). For an overview of semidefinite programs and a summary of the necessary
results (both of which are classical), see the appendix.

In the optimization problem in Algorithm 3.6 we have a finite number of univariate
polynomials in ti whose coefficients are linear in the decision variables π(s) and εi,si . We
wish to constrain these coefficients to allow only polynomials which are nonnegative for all
ti ∈ [−1, 1]. By Propositions A.3 and A.4 in the appendix this is the same as asking that
these coefficients equal certain linear functions of matrices (i.e., sums along antidiagonals)
which are constrained to be symmetric and positive semidefinite. Therefore we can write
this optimization problem as a semidefinite program.

As a special case of convex programs, semidefinite programs have a rich duality theory
which is useful for theoretical and computational purposes. In particular, SDP solvers keep
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a b c
a 0 1 0
b 1 5 7
c 0 7 0

Table 3: A finite symmetric game with identical utilities for which Algorithm 3.7 with
α = β = 1 does not converge when started with strategy sets C̃0

1 = C̃0
2 = {a}.

track of feasible primal and dual solutions in order to determine when optimality is reached.
It can be shown that the dual data obtained by an SDP solver run on this optimization
problem will encode the values of ti making the polynomial inequalities tight at the optimum
[20].

The process of generating an SDP from the optimization problem in the algorithms above,
solving it, and extracting an optimal solution along with ti values from the dual can all be
automated. We have done so using the SOSTOOLS MATLAB toolbox for the pre- and
post-processing and SeDuMi for solving the semidefinite programs efficiently [22, 29].

3.2.3 A nonconvergent limiting case

Note that in the algorithms above the convergence of the sequence εk is not necessarily
monotone. If we were to let α = β (a case we did not allow above), the sequence would
become monotone nonincreasing. If we were to furthermore fix α = β = 1, then the condition
that π be an exact (or αεk-) correlated equilibrium when deviations are restricted to C̃k

i would
become redundant and could be removed.

These changes would simplify the behavior of Algorithm 3.7 conceptually as well as
reducing the size of the SDP solved at each iteration, so we would like to adopt them if
possible. However, the resulting algorithm may not converge, in the sense that εk may
remain bounded away from zero.

Example 3.10. Consider the game shown in Table 3, which is symmetric and has identical
utilities for both players. Let C̃0

1 = C̃0
2 = {a} and apply Algorithm 3.6, but remove the

condition that πk be an exact correlated equilibrium when deviations are restricted to C̃k
i .

The only probability distribution supported on C̃0 is δ(a,a) which has an objective value of

ε0 = 1. It is easy to see that C̃1
i is formed by simply adding each player’s best response to

a, so that C̃1
1 = C̃1

2 = {a, b}. We will argue that the unique solution to the optimization
problem in iteration k = 1 is also δ(a,a), hence C̃2

i = C̃1
i and the algorithm gets “stuck”, so

that εk = ε0 = 1 for all k.
For a probability distribution π, let πT denote π with the players interchanged. By

symmetry and convexity, if π is an optimal solution then so is π+πT

2
, which is a symmetric

probability distribution with respect to the two players. Hence an optimal solution which
is symmetric always exists. We will parametrize such distributions by π = pδ(a,a) + qδ(a,b) +
qδ(b,a) + rδ(b,b), where p, q, r ≥ 0 and p+ 2q+ r = 1. Define a departure function ζ : C1 → C1

by ζ(a) = b, ζ(b) = ζ(c) = c. Then for π to be an ε-correlated equilibrium it must satisfy
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k εk C̃k
x \ C̃k−1

x C̃k
y \ C̃k−1

y

0 2 {−1} {−1}
1 4 {0} {0}
2 0 {1} {1}

Table 4: Output of Algorithm 3.6 for a polynomial game on which Algorithm 3.7 with
α = β = 1 does not converge to a correlated equilibrium.

the following condition:

ε ≥
∑
s1∈C̃1

1

ε1,s1 ≥
∑
s∈C̃1

π(s) [u1(ζ(s1), s2)− u1(s1, s2)]

= p+ 4q − q + 2r = 1 + q + r.

We know we can achieve ε = 1 with p = 1 (i.e. π = π0 = δ(a,a)), and this inequality
shows that if p < 1 then ε > 1. Therefore the minimal ε value in iteration k = 1 is
unity and is achieved by π = δ(a,a). Furthermore we have shown that this is the unique
symmetric probability distribution which achieves the minimal value of ε. Hence any other
(not necessarily symmetric) optimal solution π̂ satisfies π̂+π̂T

2
= δ(a,a). But δ(a,a) is an extreme

point of the convex set of probability distributions on C̃1, so we must in fact have π̂ = δ(a,a).
Therefore π1 = π0 = δ(a,a) is the unique optimal solution on iteration k = 1, so the procedure

must get stuck as claimed. That is, C̃k
i = {a, b} and εk = 1 for all k ≥ 1.

The same behavior can occur in polynomial games, as can be shown by “embedding” the
above finite game in a polynomial game. For example, we can take Cx = Cy = [−1, 1] and

ux(x, y) = uy(x, y) = (1− x2)(3y2 + 6y + 5)

+ (1− y2)(3x2 + 6x+ 5).

Then if C̃0
x = C̃0

y = {−1} the same analysis as above shows that C̃k
x = C̃k

y = {−1, 0} and
εk = 2 for all k ≥ 1.

Example 3.11. If we run Algorithm 3.6 on this polynomial game, the iterations proceed as
in Table 4. The correlated equilibrium obtained in iteration 2 is

π2 = 0.4922δ(x = 0, y = 1) + 0.4922δ(x = 1, y = 0)

+ 0.0156δ(x = 1, y = 1),

i.e., a probability of 0.4922 is assigned to each of the outcomes (x, y) = (0, 1) and (x, y) =
(1, 0) and a probability of 0.0156 is assigned to (x, y) = (1, 1).

3.3 Moment Relaxation Methods

In this subsection we again consider only polynomial games. The moment relaxation
methods for computing correlated equilibria have a different flavor from the discretization
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methods discussed above. Instead of using tractable finite approximations of the correlated
equilibrium problem derived via discretizations, we begin with the alternative exact char-
acterization given in condition 5 of Corollary 2.13. In particular, a measure π on C is a
correlated equilibrium if and only if∫

p2(si) [ui(ti, s−i)− ui(s)] dπ(s) ≤ 0 (5)

for all i, ti ∈ Ci, and polynomials p. If we wish to check all these conditions for polynomials
p of degree less than or equal to d, we can form the matrices

Sdi =


1 si s2

i · · · sdi
si s2

i s3
i · · · sd+1

i

s2
i s3

i s4
i · · · sd+2

i
...

...
...

. . .
...

sdi sd+1
i sd+2

i · · · s2d
i

 .

Let c be a column vector of length d + 1 whose entries are the coefficients of p, so p2(si) =
c′Sdi c. If we define

Md
i (ti) =

∫
Sdi [ui(ti, s−i)− ui(s)] dπ(s),

then (5) is satisfied for all p of degree at most d if and only if c′Md
i (ti)c ≤ 0 for all c ∈ Rd+1

and ti ∈ Ci, i.e. if and only if Md
i (ti) is negative semidefinite for all ti ∈ Ci.

The matrix Md
i (ti) has entries which are polynomials in ti with coefficients which are

linear in the joint moments of π. To check the condition that Md
i (ti) be negative semidefinite

for all ti ∈ [−1, 1] for a given d we can use a semidefinite program (Proposition A.5 in the
appendix), so as d increases we obtain a sequence of semidefinite relaxations of the correlated
equilibrium problem and these converge to the exact condition for a correlated equilibrium.

We can also let the measure π vary by replacing the moments of π with variables and
constraining these variables to satisfy some necessary conditions for the moments of a joint
measure on C (see appendix). These conditions can be expressed in terms of semidefinite
conditions and there is a sequence of these conditions which converges to a description
of the exact set of moments of a joint measure π. Thus we obtain a nested sequence of
semidefinite relaxations of the set of moments of measures which are correlated equilibria,
and this sequence converges to the set of correlated equilibria.

Example 3.1 (continued). Figure 3 shows moment relaxations of orders d = 0, 1, and 2.
Since moment relaxations are outer approximations of the set of a correlated equilibria and
the 2nd order moment relaxation corresponds to a unique point in expected utility space, all
correlated equilibria of the example game have exactly this expected utility. In fact, the set
of points in this relaxation is a singleton (even before being projected into utility space), so
this proves that this example game has a unique correlated equilibrium.
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(unique payoffs)

Figure 3: Semidefinite relaxations approximating the set of correlated equilibrium payoffs.
The second order relaxation is a singleton, so this game has a unique correlated equilibrium
payoff (and in fact a unique correlated equilibrium).

4 Structure of the set of correlated equilibria

We will demonstrate the complexity of the extreme points of the set of correlated equilibria
through several example games. In particular we will show that there can be a superexpo-
nential separation between the number of extreme Nash and extreme correlated equilibria
of a finite game, and that polynomial games can have extreme correlated equilibria which
are not finitely supported. This implies that in general the condition that a measure µ be a
correlated equilibrium of a given polynomial game cannot be defined in terms of conditions
on finitely many joint moments of µ. In contrast, the condition that an n-tuple of mixed
strategies be a Nash equilibrium of a polynomial game can always be expressed in terms of
finitely many moments [27].

First we fix notation. Given a space S the set ∆(S) will denote the set of Borel probability
measures on S (as above) and the set ∆∗(S) will denote the set of finite positive measures
on S. In particular ∆(S) is the set of measures in ∆∗(S) with unit mass. If S is finite then
∆(S) is a simplex and ∆∗(S) is an orthant in R|S|. For any p ∈ S, define δp ∈ ∆(S) to be
the measure which assigns unit mass to the point p. Let I = [−1, 1] ⊂ R.

We will focus on two related examples, one with finite strategy sets and one with infinite
strategy sets. We will develop them in parallel by analyzing arbitrary games satisfying the
following condition.

Assumption 4.1. The game is a zero-sum continuous game with two players, called x and
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Table 5: Utilities for matching pennies
(ux, uy) x = −1 x = 1
y = −1 (1,−1) (−1, 1)
y = 1 (−1, 1) (1,−1)

y. The strategy sets Cx and Cy are compact subsets of I = [−1, 1], each of which contains
a positive element and a negative element. Player x chooses a strategy x ∈ Cx and player y
chooses y ∈ Cy. The utility functions are ux(x, y) = xy = −uy(x, y).

Example 4.2. Fix an integer n > 0. Let Cx and Cy each have 2n elements, n of which are
positive and n of which are negative. If we take n = 1 and Cx = Cy = {−1, 1} then we
recover the matching pennies game1, as shown in Table 5.

Example 4.3. Let Cx = Cy = [−1, 1]. Then the game is essentially the mixed extension of
matching pennies. That is to say, suppose two players play matching pennies and choose
their strategies independently, playing 1 with probabilities p ∈ [0, 1] and q ∈ [0, 1]. Define
the utilities for the mixed extension to be the expected utilities under this random choice
of strategies. Letting x = 2p − 1 and y = 2q − 1, the utility to the first player is xy and
the utility to the second player is −xy. Therefore this example is the mixed extension of
matching pennies, up to an affine scaling of the strategies.

4.1 Extreme Nash equilibria

We will now show that the extreme points of the sets of Nash equilibria in games satisfying
Assumption 4.1 are well-behaved. Since these games are zero-sum, the set of Nash equilibria
can be viewed as a Cartesian product of two (weak*) compact convex sets, the sets of
maximin and minimax strategies. By the Krein-Milman theorem, such sets can be completely
characterized in terms of their extreme points [25].

We define Nash equilibria in two-player games, which will be sufficient for our purposes,
as well as the standard notions of extreme point and extreme ray from convex analysis.

Definition 4.4. A Nash equilibrium is a pair (σ, τ) ∈ ∆(Cx)×∆(Cy) such that ux(x, τ) ≤
ux(σ, τ) for all x ∈ Cx and uy(σ, y) ≤ uy(σ, τ) for all y ∈ Cy.

Definition 4.5. A point x in a convex set K is an extreme point if x = λy+ (1− λ)z for
y, z ∈ K and λ ∈ [0, 1] implies x = y = z.

Definition 4.6. A convex set K such that x ∈ K and λ ≥ 0 implies λx ∈ K is called a
convex cone. A point x 6= 0 is an extreme ray of the convex cone K if x = y + z and
y, z ∈ K implies that y or z is a scalar multiple of x.

1By inspection of the utilities we can see that for any Cx and Cy with at least two points, the rank of
this game in the sense of [27] is (1, 1) (and in fact also in the stronger sense of Theorem 3.3 of that paper).
The notion of the rank of a game is related to the rank of the payoff matrices and will not play a significant
role in this paper; we merely wish to note that under this definition of complexity of payoffs the games we
consider are extremely simple.
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The Nash equilibria of games satisfying Assumption 4.1 take the following particularly
simple form.

Proposition 4.7. A pair (σ, τ) ∈ ∆(Cx)×∆(Cy) is a Nash equilibrium of a game satisfying
Assumption 4.1 if and only if

∫
xdσ(x) =

∫
ydτ(y) = 0.

Proof. If
∫
xdσ(x) = 0 then uy(σ, y) = 0 for all y ∈ Cy, so any τ ∈ ∆(Cy) is a best response to

σ. If
∫
ydτ(y) = 0 as well then σ is also a best response to τ , so (σ, τ) is a Nash equilibrium.

Suppose for a contradiction that there exists a Nash equilibrium (σ, τ) such that
∫
xdσ(x) >

0; the other cases are similar. Player y must play a best response, so
∫
ydτ(y) < 0, which

is possible by assumption. Player x plays a best response to that, so
∫
xdσ(x) < 0, a

contradiction.

We introduce the notion of extreme Nash equilibrium in the context of zero-sum games.
For an extension of this definition to two-player non-zero sum finite games and a proof that
extreme Nash equilibria are always extreme points of the set of correlated equilibria in this
setting, see [5] or [10].

Definition 4.8. A Nash equilibrium (σ, τ) ∈ ∆(Cx) × ∆(Cy) is extreme if σ and τ
are extreme points of the maximin ({σ ∈ ∆(Cx)|

∫
xdσ(x) = 0}) and minimax ({τ ∈

∆(Cy)|
∫
ydτ(y) = 0}) sets, respectively.

Proposition 4.9. Consider a game satisfying Assumption 4.1. A pair (σ, τ) ∈ ∆(Cx) ×
∆(Cy) is an extreme Nash equilibrium if and only if σ and τ are each either δ0 or of the
form αδu + βδv where u < 0, v, α, β > 0, α + β = 1, and αu+ βv = 0.

Proof. By Proposition 4.7 we must show that these distributions are the extreme points of
the set of probability distributions having zero mean. Since δ0 is an extreme point of the
set of probability distributions, it must be an extreme point of the subset which has zero
mean. To see that αδu + βδv is also an extreme point, suppose we could write it as a convex
combination of two other probability distributions with zero mean. The condition that both
be positive measures implies that both must be of the form α′δu + β′δv. But α and β as
specified above are the unique coefficients which make this be a probability measure with
zero mean. Therefore α′ = α and β′ = β, so αδu + βδv cannot be written as a nontrivial
convex combination of probability distributions with zero mean, so it is an extreme point.

Suppose σ were an extreme point which was not of one of these types. Then σ could
not be supported on one or two points, so either [0, 1] or [−1, 0) could be partitioned into
two sets of positive measure. We will only treat the first case; the second is similar. Let
[0, 1] = A ∪ B where A ∩ B = ∅ and σ(A), σ(B) > 0. Since σ has zero mean we must have
σ([−1, 0)) > 0 as well.

For a set D we define the restriction measure σ|D by σ|D(C) = σ(D ∩ C) for all C.
Then σ = σ|A + σ|B + σ|[−1,0). Let a =

∫
A
xdσ(x), b =

∫
B
xdσ(x), and c =

∫
[−1,0)

xdσ(x).

Since σ([−1, 0)) > 0 and x is less than zero everywhere on [−1, 0), we must have c < 0. By
assumption a+ b+ c = 0. Therefore we can write:

σ =

(
σ|A +

a

|c|
σ|[−1,0)

)
+

(
σ|B +

b

|c|
σ|[−1,0)

)
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Being an extreme point of the set of probability measures with zero mean, σ must be an
extreme ray of the set of positive measures with first moment equal to zero. But this means
that we cannot write σ = σ1 + σ2 where the σi are positive measures with zero first moment
unless σi is a multiple of σ. Neither of the measures in parentheses above is a multiple of σ,
so we have a contradiction.

We illustrate this proposition on both examples introduced at the beginning of this
section.

Example 4.2 (cont’d). In this case neither Cx nor Cy contains zero, so the only extreme Nash
equilibria are those in which σ and τ are of the form αδu + βδv for u < 0 and v > 0. For
any choice of u and v there are unique α and β satisfying the conditions of Proposition 4.9.
There are n possible choices for each of u and v for each of the two players, so there are n4

extreme Nash equilibria.

Example 4.3 (cont’d). Since Cx = Cy = [−1, 1], there are infinitely many extreme Nash
equilibria in this case. However, they are all finitely supported and the size of their support
is always either one or two. Furthermore the condition that (σ, τ) be a Nash equilibrium
is equivalent to both having zero mean. This illustrates the general facts that in games
with polynomial utility functions the Nash equilibrium conditions only involve finitely many
moments of σ and τ and the extreme Nash equilibria (when defined, i.e., for zero-sum games)
have uniformly bounded support.

4.2 Extreme correlated equilibria

We will show that even in finite games, the number of extreme correlated equilibria can be
many more than the number of extreme Nash equilibria. It makes sense to compare these
because all extreme Nash equilibria of a two-player finite game are automatically extreme
correlated equilibria [10]. Also, for rank (1, 1) finite games we will show that the size of the
support of extreme correlated equilibria can be arbitrarily large.

In the case of polynomial games we will show that even in the rank (1, 1) case, there
can be extreme correlated equilibria with arbitrarily large finite support and without finite
support. This implies that the set of correlated equilibria cannot be characterized in terms
of finitely many joint moments.

Note that all of the characterizations of exact correlated equilibria in Section 2 are in
terms of homogeneous (that is, invariant under positive scaling) linear constraints on µ.
The only requirement on µ that is not homogeneous is the probability measure condition
µ(I × I) = 1. It will be convenient to consider measures µ ∈ ∆∗(Cx × Cy) satisfying all the
correlated equilibrium conditions except for this normalization.

Definition 4.10. We refer to a measure µ ∈ ∆(Cx×Cy) satisfying the conditions of Defini-
tion 2.7 as a proper correlated equilibrium and a measure µ ∈ ∆∗(Cx×Cy) satisfying all
the conditions except normalization as a homogeneous correlated equilibrium. When
the distinction is irrelevant or clear from context we simply use the term correlated equi-
librium to refer to either. In the context of homogeneous correlated equilibria the term
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extreme will refer to extreme rays; for proper correlated equilibria it will refer to extreme
points.

When µ 6= 0 is a homogenous correlated equilibrium, 1
µ(I×I)µ is a proper correlated

equilibrium. The set of homogenous correlated equilibria is a convex cone. The extreme
rays of this cone are exactly those measures which are positive multiples of the extreme
points of the set of proper correlated equilibria.

The following proposition characterizes correlated equilibria of games satisfying Assump-
tion 4.1 and is analogous to Proposition 4.7 for Nash equilibria. Note how the Nash equi-
librium measures were characterized in terms of their moments but the correlated equilibria
are not.

Proposition 4.11. For a game satisfying Assumption 4.1 and a measure µ ∈ ∆∗(Cx×Cy),
the following are equivalent:

1. µ is a correlated equilibrium;

2. If dκ = xydµ then the marginals

κx(A) :=

∫
A×I

xydµ(x, y) and κy(A) :=

∫
I×A

xydµ(x, y)

are both the zero measure, i.e., equal zero for all measurable A ⊆ I;

3.

λx(A) :=

∫
A×I

ydµ(x, y) and λy(A) :=

∫
I×A

xdµ(x, y)

are both the zero measure.

Proof. (1 ⇒ 2) We will consider only κx; κy is similar. The characteristic function version
of Corollary 2.13 with fi = χI implies that

x′
∫
I×I

ydµ(x, y) ≤
∫
I×I

xydµ(x, y) ≤ y′
∫
I×I

xdµ(x, y)

for all x′ ∈ Cx, y′ ∈ Cy. By assumption it is possible to choose x′ and y′ either positive or
negative, so

∫
I×I xydµ(x, y) = 0. Furthermore the same argument with any A implies that∫

A×I xydµ(x, y) ≥ 0. Therefore we have

0 =

∫
I×I

xydµ(x, y) =

∫
A×I

xydµ(x, y) +

∫
(I\A)×I

xydµ(x, y) ≥ 0 + 0 = 0

for all A, so the inequality must be tight and we get
∫
A×I xydµ(x, y) = 0 for all A.

(2 ⇒ 3) Substituting this equation into the characteristic function version of Corollary
2.13 yields x′

∫
A×I ydµ(x, y) ≤ 0 for all x′ ∈ Cx and all measurable A. But we can choose

x′ to be positive or negative by assumption, so we must have
∫
A×I ydµ(x, y) = 0 for all

measurable A ⊆ I.
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(3 ⇒ 1) Suppose we know that λx is the zero measure. We can approximate xy on I × I
by functions of the form

∑r
k=1 xiyχAi(x), where the measurable sets Ai have small diameter

and partition I, xi ∈ Ai, and χAi is the indicator function for Ai. By definition of the
Lebesgue integral and the dominated convergence theorem [24] we have∫

A×I
xydµ(x, y) =

∫
A

xdλx(x) =

∫
A

xd0(x) = 0.

Thus
∫
A×I(x− x

′)ydµ(x, y) ≥ 0 for all x′ ∈ Cx and all A.

Proposition 4.12. Fix a game satisfying Assumption 4.1. Let k > 0 be even and x1, . . . , x2k

and y1, . . . , y2k be such that:

1. xi ∈ Cx and yi ∈ Cy are all nonzero;

2. the sequences x1, x3, . . . , x2k−1 and y1, y3, . . . , y2k−1 alternate in sign;

3. x2i = x2i−1 and y2i = y2i+1 for all i when subscripts are interpreted mod 2k.

Then µ =
∑2k

i=1
1
|xiyi|δ(xi,yi) is an extreme correlated equilibrium. Furthermore, all finitely

supported extreme correlated equilibria whose support does not contain points with x = 0 or
y = 0 are of this form.

Proof. To show that µ is a correlated equilibrium define dκ(x, y) = xydµ(x, y). Then κ =∑2k
i=1 sign(xi) sign(yi)δ(xi,yi). Defining the projection κx as in Proposition 4.11, we have

κx =
2k∑
i=1

sign(xi) sign(yi)δxi =
k∑
i=1

sign(x2i) (sign(y2i) + sign(y2i−1)) δx2i

=
k∑
i=1

sign(x2i)(0)δx2i
= 0,

because x2i = x2i−1 and y2i differs in sign from y2i−1 by assumption. The same argument
shows that κy = 0, so µ is a correlated equilibrium.

To see that µ is extreme, suppose µ = µ′ + µ′′ where µ′ and µ′′ are correlated equi-
libria. Clearly µ′ =

∑2k
i=1 αiδ(xi,yi) for some αi ≥ 0. Define dκ′ = xydµ′(x, y), so κ′ =∑2k

i=1 αixiyiδ(xi,yi). By assumption

κ′x =
2k∑
i=1

x2i (α2i−1y2i−1 + α2iy2i) δx2i

is the zero measure. Since the x2i are distinct and nonzero we must have α2i−1y2i−1+α2iy2i =
0 for all i. Similarly since κ′y = 0 we have α2i+1x2i+1 + α2ix2i = 0 for all i (with subscripts
interpreted mod 2k).

The xi and yi are all nonzero, so fixing one αi fixes all the others by these equations.
That is to say, these equations have a unique solution up to multiplication by a scalar, so
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Figure 4: The support of an extreme correlated equilibrium. In the notation of Proposition
4.12, k = 1, x1 = 0.4, x3 = −0.6, y1 = 0.2, and y3 = −0.8.

µ′ is a positive scalar multiple of µ. But the splitting µ = µ′ + µ′′ was arbitrary, so µ is
extreme.

A similar argument shows that any finitely supported correlated equilibrium µ whose
support does not contain any points with x = 0 or y = 0 can be written as µ = µ′ + µ′′

where µ′ is a correlated equilibrium and µ′′ is a correlated equilibrium of the above form.
Therefore µ cannot be extreme unless it is of this form.

Example 4.2 (cont’d). For some examples of extreme correlated equilibria of games of this
type, see Figures 4 and 5.

To count the number of extreme correlated equilibria of this game for general n we must
count the number of essentially different sequences of xi and yi of the type mentioned in
Proposition 4.12. Fix k and let k = 2r where 1 ≤ r ≤ n. Note that cyclically shifting
the sequences of xi’s and yi’s by two does not change µ, nor does reversing the sequence.
Therefore we can assume without loss of generality that x1, y1 > 0. We then have n possible
choices for x1, y1, x3, and y3, n− 1 possible choices for x5, x7, y5, and y7, etc., for a total of(

n!
(n−r)!

)4

possible choices of the xi and yi. These will always be essentially different (i.e., give

rise to different µ) unless we cyclically permute the sequences of xi and yi by some multiple
of four, in which case the resulting sequence is essentially the same. The number of such
cyclic permutations is r. Therefore the total number of extreme correlated equilibria is

e(n) =
n∑
r=1

1

r

(
n!

(n− r)!

)4

.

We will see that e(n) = Θ
(

1
n
(n!)4

)
. That is to say, e(n) is asymptotically upper and

lower bounded by a constant times 1
n
(n!)4. The expression 1

n
(n!)4 is just the final term in
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Figure 5: The support of another extreme correlated equilibrium. In the notation of Propo-
sition 4.12, k = 2, x1 = 0.4, x3 = −0.4, x5 = 0.6, x7 = −0.6, y1 = 0.6, y3 = −0.4, y5 = 0.4,
and y7 = −0.6.

the summation for e(n), so the lower bound is clear. Define

f(n) =
e(n)

1
n
(n!)4

=
n−1∑
s=0

n

n− s
· 1

(s!)4
.

Then f(n) ≥ 1 for all n. We will now show that f(n) is also bounded above. Intuitively this
is not surprising as the terms in the summation for f(n) die off extremely fast as s grows.

For all 1 ≤ s < n− 1 we have that the ratio of term s+ 1 in the summation to term s is:

n
n−s−1

· 1
((s+1)!)4

n
n−s ·

1
(s!)4

=
n− s

n− s− 1
· 1

(s+ 1)4
≤ 1

8
,

so for n > 1 we can bound the sum by a geometric series:

f(n)− 1 =
n−1∑
s=1

n

n− s
· 1

(s!)4
≤ n

n− 1

∞∑
t=0

1

8t
=

8n

7(n− 1)
≤ 16

7
.

Therefore 1 ≤ f(n) ≤ 23
7

for all n, so e(n) = Θ
(

1
n
(n!)4

)
as claimed. Comparing this

to the results of the previous section in which we saw that the number of extreme Nash
equilibria of this game is n4, we see that in this case there is a super-exponential separation
between the number of extreme Nash and the number of extreme correlated equilibria. This
implies, for example, that computing all extreme correlated equilibria is not an efficient
method for computing all extreme Nash equilibria, even though all extreme Nash equilibria
are extreme correlated equilibria and recognizing whether an extreme correlated equilibrium
is an extreme Nash equilibrium is easy. There are simply too many extreme correlated
equilibria.
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Next we will prove a more abstract version of Proposition 4.12 which includes certain
extreme points which are not finitely supported. First we need a brief digression to ergodic
theory. The first definition is the standard definition of compatibility between a measure and
a transformation on a space. The second definition expresses one notion of what it means for
a transformation to “mix up” a space – in this case that the space cannot be partitioned into
two sets of positive measure which do not interact under the transformation. Then we state
the main ergodic theorem and a corollary which we will apply to exhibit extreme correlated
equilibria of games satisfying Assumption 4.1.

Definition 4.13. Given a measure µ ∈ ∆∗(S) on a space S, a measurable function g : S → S
is called (µ-)measure preserving if µ(g−1(A)) = µ(A) for all measurable A ⊆ S. Note that
if g is invertible (in the measure theoretic sense that an almost everywhere inverse exists),
then this is equivalent to the condition that µ(g(A)) = µ(A) for all A.

Definition 4.14. Given a measure µ ∈ ∆∗(S), a µ-measure preserving transformation g is
called ergodic if µ(A4g−1(A)) = 0 implies µ(A) = 0 or µ(A) = µ(S), where A4B denotes
the symmetric difference (A \B) ∪ (B \ A).

Example 4.15. Fix a finite set S and a permutation g : S → S. Let µ be counting measure
on S. Then g is measure preserving. Furthemore, a set T satisfies µ(g−1(T )4 T ) = 0 if and
only if g−1(T ) = T if and only if T is a union of cycles of g. Therefore g is ergodic if and
only if it consists of a single cycle.

Example 4.16. Fix α ∈ R. Let S = [0, 1) and let µ be Lebesgue measure on S. Define
g : S → S by g(x) = (x + α) mod 1 = (x + α)− bx + αc. Then g is µ-measure preserving
because Lebesgue measure is translation invariant. It can be shown that g is ergodic if and
only if α is irrational. For a proof and more examples, see [26].

The following is one of the core theorems of ergodic theory. We will only use it to prove
the corollary which follows, so it need not be read in detail. The proof can be found in any
text on ergodic theory, e.g. [26].

Theorem 4.17 (Birkhoff’s ergodic theorem). Fix a probability measure µ and a µ-measure
preserving transformation g. Then for any f ∈ L1(µ):

• f̃(x) = limn→∞
1
n

∑n−1
k=0 f(gn(x)) exists µ-almost everywhere,

• f̃ ∈ L1(µ),

•
∫
f̃dµ =

∫
fdµ,

• f̃(g(x)) = f̃(x) µ-almost everywhere, and

• if g is ergodic then f̃(x) =
∫
fdµ µ-almost everywhere.

Corollary 4.18. Suppose µ and ν are probability measures such that ν is absolutely contin-
uous with respect to µ. If a transformation g preserves both µ and ν and g is ergodic with
respect to µ, then ν = µ.

33



Proof. Fix any measurable set A. Let f be the indicator function for A, i.e. the function
equal to unity on A and zero elsewhere. Applying Birkhoff’s ergodic theorem to f and µ
yields f̃(x) = µ(A) µ-almost everywhere. Since ν is absolutely continuous with respect to µ,
f̃(x) = µ(A) ν-almost everywhere also. If we now apply Birkhoff’s ergodic theorem to ν we
get:

ν(A) =

∫
fdν =

∫
f̃dν =

∫
µ(A)dν = µ(A).

Proposition 4.19. Fix measures ν1, ν2, ν3, and ν4 ∈ ∆∗((0, 1]) and maps fi : (0, 1]→ (0, 1]
such that νi+1 = νi ◦ f−1

i (interpreting subscripts mod 4). The portion of the measure µ in
the ith quadrant of I × I will be constructed in terms of fi and νi. Define ji : (0, 1]→ I × I
by j1(x) = (x, f1(x)), j2(x) = (−f2(x), x), j3(x) = (−x,−f3(x)), and j4(x) = (f4(x),−x).
Let |κ| =

∑4
i=1 νi ◦ j

−1
i . If Assumption 4.1 is satisfied, supp|κ| ⊆ Cx×Cy, and 1

|xy| ∈ L
1(|κ|)

then dµ = 1
|xy|d|κ| is a correlated equilibrium.

If in addition f4 ◦ f3 ◦ f2 ◦ f1 : (0, 1] → (0, 1] is ergodic with respect to ν1, then µ is
extreme.

Proof. First we must show that µ is a correlated equilibrium. It is a finite measure by the
assumption 1

|xy| ∈ L
1(|κ|). Define g : I × I → I × I as follows.

g(x, y) =



j1(x) if x > 0, y < 0

j2(y) if x > 0, y > 0

j3(−x) if x < 0, y > 0

j4(−y) if x < 0, y < 0

arbitrary otherwise

The function g is |κ|-measure preserving. To see this fix any measurable set B ⊆ (0, 1] ×
(0, 1]. Let A = j−1

1 (B). Then |κ|(B) = |κ|(A × (0, 1]) = ν1(A) by definition of |κ|. But
g−1(B) = g−1(A × (0, 1]) = A × [−1, 0), so |κ|(g−1(B)) = |κ|(A × [−1, 0)) = ν4(j

−1
4 (A ×

[−1, 0))) = ν4(f
−1
4 (A)) = ν1(A) by assumption. Therefore g is measure preserving for subsets

of (0, 1] × (0, 1]. The arguments for the other quadrants are similar and since g maps each
quadrant into a different quadrant, g is measure preserving on its entire domain.

Using the terminology of Proposition 4.11, dκ = sign(x) sign(y)d|κ|. We have seen that
|κ|(A× (0, 1]) = |κ|(A× [−1, 0)), so κ(A× (0, 1]) = −κ(A× [−1, 0)). Since κ(A× {0}) = 0,
we have κ(A× I) = 0, or equivalently, κx(A) = 0. A similar argument implies κx(A) = 0 if
A ⊆ [−1, 0). Clearly κx({0}) = 0 by definition of κx, so κx is the zero measure. A similar
argument shows that κy is the zero measure, so µ is a correlated equilibrium by Proposition
4.11.

Now we will show via several steps that µ is extreme. Write µ = µ1 + µ2 where the µi
are nonzero correlated equilibria. Since these are all positive measures, the µi are absolutely
continuous with respect to µ. Define d|κi| = |xy|dµi.

Next we show that g is |κi|-measure preserving. We will demonstrate this fact for B ⊆
(0, 1] × (0, 1]. As above, we define A = j−1

1 (B). Then |κi|(B) = |κi|(A × (0, 1]) since
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(A × (0, 1]) 4 B has |κ| measure zero and |κi| is absolutely continuous with respect to
|κ|. Furthermore, |κi|(g−1(B)) = |κi|(A × [−1, 0)). But µi is a correlated equilibrium so
κi(A× (0, 1]) = −κi(A× [−1, 0)). Hence |κi|(g−1(B)) = |κi|(A× [−1, 0)) = |κi|(A× (0, 1]) =
|κi|(B). Again, the proof is the same for B contained in other quadrants, so g is |κi|-measure
preserving.

For the second-to-last step we prove that g is ergodic with respect to |κ|. Suppose
B ⊆ I × I is such that |κ|(g−1(B) 4 B) = 0. Let Qi be the intersection of B with the
ith quadrant. Then |κ|(g−1(Qi+1)4 Qi) = 0, so |κ|(g−4(Q1)4 Q1) = 0. Let A = j−1

1 (Q1).
Then |κ|(g−4(Q1) 4 Q1) = ν1((f4 ◦ f3 ◦ f2 ◦ f1)

−1(A) 4 A) = 0. By assumption the map
f4 ◦ f3 ◦ f2 ◦ f1 is ergodic, so ν1(A) = 0 or ν1(A) = ν1((0, 1]) = |κ|((0, 1]× (0, 1]). Therefore
|κ|(Q1) = ν1(A) = 0 or |κ|(Q1) = |κ|((0, 1] × (0, 1]). In either case since g is |κ|-measure
preserving we get |κ|(Qi) = |κ|(Q1) for all i. Therefore |κ|(B) = 0 or |κ|(B) = |κ|(I × I), so
g is ergodic with respect to |κ|.

Normalizing |κ| and |κi| to be probability measures, we can apply Corollary 4.18 to obtain

|κi| = |κi|(I×I)
|κ|(I×I) |κ|. By assumption the set on which |xy| is zero has µ measure zero. Therefore

dµi =
1

|xy|
d|κi| =

|κi|(I × I)

|κ|(I × I)

1

|xy|
d|κ| = |κi|(I × I)

|κ|(I × I)
dµ,

so µi = |κi|(I×I)
|κ|(I×I) µ and µ is extreme.

Above we have constructed µ and g so that g maps the quadrants counter-clockwise –
quadrant 1 to quadrant 2, etc. However, the same argument would go through if g mapped
the quadrants clockwise.

To view Proposition 4.12 as a special case of Proposition 4.19, let each νi be a uniform
probability measure over a finite subset of (0, 1]. The function g is defined by g(xi, yi) =
(xi+1, yi+1) and the fi are defined to be compatible with this. The map f4 ◦ f3 ◦ f2 ◦ f1 is a
permutation on the support of ν1, which is precisely the positive values of xi. By construction
this permutation consists of a single cycle, hence it is ergodic.

Example 4.3 (cont’d). We can combine Example 4.16 and Proposition 4.19 to exhibit extreme
points of the set of correlated equilibria for this game which are not finitely supported. Let
0 < a < b < 1. Let νi be Lebesgue measure on [a, b) for all i. Fix α such that α

b−a is irrational.
Define f1 : [a, b) → [a, b) by f(x) = (x − a + α mod (b − a)) + a. This is just an affinely
scaled version of Example 4.16 so f1 is νi-measure preserving and ergodic. Define f1 on
(0, 1]\ [a, b) arbitrarily, because that is a set of measure zero. Let f2, f3, f4 : (0, 1]→ (0, 1] be
the identity. These data satisfy all the assumptions of Proposition 4.19. In particular, since
0 < a < b < 1, xy is bounded away from zero on the support of |κ|. Therefore 1

|xy| ∈ L
1(|κ|).

Since νi is not finitely supported, µ is an extreme correlated equilibrium which is not finitely
supported. The support of µ is shown in Figure 6 with parameters a = 0.2, b = 0.8, and
α = 1√

5
.

Definition 4.4. Given a compact Hausdorff space K we say that a set of measuresM⊆ ∆(K)
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Figure 6: The support set of an extreme correlated equilibrium which is not finitely sup-
ported. Extremality of this equilibrium depends sensitively on the choices of endpoints for the
line segments. In the case pictured there are segments connecting: (0.2,−0.2) to (0.8,−0.8);

(−0.2,−0.2) to (−0.8,−0.8); (−0.2, 0.2) to (−0.8, 0.8);
(

0.2, 0.2 + 1√
5

)
to
(

0.8− 1√
5
, 0.8

)
;

and
(

0.8− 1√
5
, 0.2

)
to
(

0.8, 0.2 + 1√
5

)
.

is describable by moments if there exists an integer d, continuous maps g1, . . . , gd : K →
R, and a set M ⊆ Rd such that a measure µ is inM if and only if

(∫
g1dµ, . . . ,

∫
gddµ

)
∈M .

The results of [21] show that the maximin and minimax strategy sets of a two-player zero-
sum polynomial game can always be described by moments. Introducing a similar notion for
n-tuples of moments, the set of Nash equilibria can always be described by moments in any
polynomial game [27]. However, combining this example with the following proposition we
see that the set of correlated equilibria of a polynomial game cannot in general be described
by moments.

Proposition 4.5. Let M ⊆ ∆∗(K) be a set of measures describable by moments. Then
all extreme points of M have finite support and this support is uniformly bounded by d+ 1,
where d is the integer associated with the description of M by moments.

Proof. Suppose there exists a measure µ ∈M which is extreme and supported on more than
d + 1 points, so we can partition the domain of µ into d + 2 sets B1, . . . , Bd+2 of positive
measure. Then µ is a convex combination of the measures (d + 2)µ|Bi , but only if all the
weights in the convex combination are equal to 1

d+2
> 0. The moments of µ are a convex

combination of the moments of these measures. Since there are d moments, there exist
convex combinations of at most d + 1 of the measures (d + 2)µ|Bi with the same moments
as µ by Carathéodory’s theorem. We can write µ as a strict convex combination of such
measures, contradicting extremality of µ.
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5 Conclusions

We have proven several new characterizations of correlated equilibria in continuous games,
and applied them to compute correlated equilibria, both algorithmically and analytically.
This has allowed us to prove that in general the set of correlated equilibria of a polynomial
game cannot be described exactly in terms of finitely many moments. Nonetheless, a sample
correlated equilibrium or the entire set of correlated equilibria can be approximated within
an arbitrary degree of accuracy by a sequence of semidefinite programs.

These results leave several open questions. If we define a moment map to be any map
of the form π 7→

(∫
f1dπ,

∫
f2dπ, . . . , fkdπ

)
, then we have shown that the set of correlated

equilibria is not the inverse image of any set under any moment map. On the other hand,
since moment maps are linear and weak* continuous, we know that the image of the set of
correlated equilibria under any moment map is convex and compact. Supposing the utilities
and the fi are polynomials, is there anything more we can say about this image? In particular,
is it semialgebraic (i.e., describable in terms of finitely many polynomial inequalities)?

For any continuous game, the set of correlated equilibria is nonempty, and this can be
proven constructively as in [12]. Under the same assumptions we can prove the existence
of a Nash equilibrium, but the proof is nonconstructive, or at least does not seem to give
an efficient algorithm for constructing an equilibrium [27]. In the case of polynomial games,
existence of a Nash equilibrium immediately gives existence of a finitely supported Nash
equilibrium by Carathéodory’s theorem, which is constructive [27]. Therefore there exists
a finitely supported correlated equilibrium of any polynomial game. Is there a construc-
tive way to prove this fact directly, without going through Nash equilibria? Such a proof
could potentially lead to a provably efficient algorithm for computing a sample correlated
equilibrium of a polynomial game.

Finally, we note that while the adaptive discretization and moment relaxation algorithms
converge in general and work well in practice, we do not know of any results regarding rate
of convergence. If we regard the probability distributions produced by these algorithms at
the kth iteration as εk-correlated equilibria, how fast does εk converge to zero?
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A Semidefinite programming, sums of squares, and

moments of measures

Definition A.1. A semidefinite program is an optimization problem of the form:

minimize L(S)
subject to T (S) = v

S is a symmetric matrix
S � 0 (positive semidefinite),

where L is a given linear functional, T is a given linear transformation, v is a given vector,
and S is a square matrix of decision variables.

Semidefinite programs are convex and generalize linear programs (T and v can be designed
to make S diagonal, in which case the condition S � 0 is the same as the condition that S ≥ 0
elementwise). Many problems can be expressed exactly or approximately as semidefinite
programs, and this is important because semidefinite programs can be solved efficiently by
interior point methods. For details and a variety of examples see [30] and [20].

The square of a real-valued function is nonnegative on its entire domain, as is a sum of
squares of real-valued functions. In particular, any polynomial of the form p(x) =

∑
p2
k(x),

where pk are polynomials, is guaranteed to be nonnegative for all x. This gives a sufficient
condition for a polynomial to be nonnegative. It is a classical result that this condition is
also necessary if p is univariate [23].

Proposition A.2. A univariate polynomial p is nonnegative on R if and only if it is a sum
of squares.

Proof. A simpler version of the proof of the following proposition.

Proposition A.3 (Markov-Lukács [15]). A univariate polynomial p(x) is nonnegative on
the interval [−1, 1] if and only if p(x) = s(x) + (1− x2)t(x) where s and t are both sums of
squares of polynomials.

Proof. Direct algebraic manipulations show that the set of polynomials of the form s(x)+(1−
x2)t(x) where s and t are sums of squares of polynomials in x is closed under multiplication
and contains all polynomials of the following forms: a for a ≥ 0, (x − a)2 + b2 for a, b ∈ R,
x− a for a ≤ −1, and a− x for a ≥ 1. By assumption p(x) factors as a product of terms of
these types, because any real root of p in the interval (−1, 1) must have even multiplicity.

These sum of squares conditions are easy to express using linear equations and semidefi-
nite constraints.

Proposition A.4. A univariate polynomial p(x) =
∑2d

k=0 pkx
k of degree at most 2d is a sum

of squares of polynomials if and only if there exists a symmetric positive semidefinite matrix
Q ∈ R(d+1)×(d+1) such that pk =

∑
i+j=kQij (numbering the rows and columns of Q from 0

to d).
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Proof. Relating the coefficients of p(x) to the entries of Q in this way is the same as writing

p(x) = xTQx where x =
[
1 x x2 · · · xd

]T
. Thought of in this way, saying that p(x) is

a sum of squares is the same as saying that Q =
∑

i qiq
T
i for some column vectors qi and

in this case Q is clearly positive semidefinite. Conversely, if Q is positive semidefinite then
there exists a matrix F such that Q = F TF , so p(x) = xTQx =

∑
i [Fx]2i .

Similar semidefinite characterizations exist for multivariate polynomials to be sums of
squares. While the condition of being a sum of squares does not characterize general non-
negative multivariate polynomials exactly, there exist sequences of sum of squares relaxations
which can approximate the set of nonnegative polynomials (on e.g. Rk, [−1, 1]k, or a more
general semialgebraic set) arbitrarily tightly [23]. Furthermore, for some special classes of
multivariate polynomials, the sum of squares condition is exact.

Proposition A.5. A matrix M(t) whose entries are univariate polynomials in t is positive
semidefinite on [−1, 1] if and only if x′M(t)x = S(x, t) + (1− t2)T (x, t) where S and T are
polynomials which are sums of squares.

Now suppose we wish to answer the question of whether a finite sequence (µ0, . . . , µk) of
reals correspond to the moments of a measure on [−1, 1], i.e. whether there exists a positive
measure µ on [−1, 1] such that µi =

∫
xidµ(x). Clearly if such a measure exists then we

must have
∫
p(x)dµ(x) ≥ 0 for any polynomial p of degree at most k which is nonnegative

on [−1, 1]. This necessary condition for moments to correspond to a measure turns out to
be sufficient [14] and can be written in terms of semidefinite constraints.

Proposition A.6. The condition that a finite sequence of numbers (µ0, . . . , µk) be the mo-
ments of a positive measure on [−1, 1] can be written in terms of linear equations and semidef-
inite matrix constraints.

One can formulate similar questions about whether a finite sequence of numbers cor-
responds to the joint moments

∫
xi11 · · ·x

ik
k dµ(x) of a positive measure µ on [−1, 1]k (or a

more general semialgebraic set). Using a sequence of semidefinite relaxations of the set of
nonnegative polynomials on [−1, 1]k, a sequence of necessary conditions for joint moments
is obtained. These conditions approximate the set of joint moments arbitrarily closely.
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[15] M. G. Krěın and A. A. Nudel’man. The Markov Moment Problem and Extremal Prob-
lems, volume 50 of Translations of Mathematical Monographs. American Mathematical
Society, 1977.

[16] C. E. Lemke and J. T. Howson, Jr. Equilibrium points in bimatrix games. SIAM
Journal on Applied Math, 12:413 – 423, 1964.

40



[17] R. J. Lipton and E. Markakis. Nash equilibria via polynomial equations. In Proceedings
of LATIN, 2004.

[18] J. F. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286 – 295, September
1951.

[19] C. H. Papadimitriou. Computing correlated equilibria in multi-player games. In Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), New
York, NY, 2005. ACM Press.

[20] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods
in Robustness and Optimization. PhD thesis, California Institute of Technology, May
2000.

[21] P. A. Parrilo. Polynomial games and sum of squares optimization. In Proceedings of the
45th IEEE Conference on Decision and Control (CDC), 2006.

[22] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of
squares optimization toolbox for MATLAB, 2004.

[23] B. Reznick. Some concrete aspects of Hilbert’s 17th problem. In C. N. Delzell and J. J.
Madden, editors, Real Algebraic Geometry and Ordered Structures, pages 251 – 272.
American Mathematical Society, 2000.

[24] W. Rudin. Real & Complex Analysis. WCB / McGraw-Hill, New York, 1987.

[25] W. Rudin. Functional Analysis. McGraw-Hill, New York, 1991.

[26] C. E. Silva. Invitation to Ergodic Theory. American Mathematical Society, Providence,
RI, 2007.

[27] N. D. Stein, A. Ozdaglar, and P. A. Parrilo. Separable and low-rank continuous games.
International Journal of Game Theory, To appear.

[28] G. Stoltz and G. Lugosi. Learning correlated equilibria in games with compact sets of
strategies. Games and Economic Behavior, to appear.

[29] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optim. Methods Softw., 11/12(1-4):625–653, 1999. Interior point methods.

[30] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49 –
95, 1996.

41


