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ENHANCED FRITZ JOHN CONDITIONS FOR
CONVEX PROGRAMMING∗

DIMITRI P. BERTSEKAS† , ASUMAN E. OZDAGLAR† , AND PAUL TSENG‡

Abstract. We consider convex constrained optimization problems, and we enhance the clas-
sical Fritz John optimality conditions to assert the existence of multipliers with special sensitivity
properties. In particular, we prove the existence of Fritz John multipliers that are informative in
the sense that they identify constraints whose relaxation, at rates proportional to the multipliers,
strictly improves the primal optimal value. Moreover, we show that if the set of geometric multipliers
is nonempty, then the minimum-norm vector of this set is informative and defines the optimal rate of
cost improvement per unit constraint violation. Our assumptions are very general and, in particular,
allow for the presence of a duality gap and the nonexistence of optimal solutions. In particular, for
the case where there is a duality gap, we establish enhanced Fritz John conditions involving the dual
optimal value and dual optimal solutions.
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1. Introduction. We consider the convex constrained optimization problem

(P)
minimize f(x)
subject to x ∈ X, g(x) = (g1(x), . . . , gr(x))′ ≤ 0,

where X is a nonempty convex subset of �n, and f : X → � and gj : X → � are
convex functions. Here and throughout the paper, we denote by � the real line, by
�n the space of n-dimensional real column vectors with the standard Euclidean norm,
‖ · ‖, and by ′ the transpose of a vector. We say that a function f : X → � is convex
(respectively, closed) if its epigraph epi(f) =

{
(x,w) | x ∈ X, f(x) ≤ w

}
is convex

(respectively, closed). For some of our results, we will assume that f, g1, . . . , gr are
also closed. We note that our analysis readily extends to the case where there are
affine equality constraints by replacing each affine equality constraint with two affine
inequality constraints.

We refer to problem (P) as the primal problem and we consider the dual problem

(D)
maximize q(μ)
subject to μ ≥ 0,

where q is the dual function:

q(μ) = inf
x∈X

{
f(x) + μ′g(x)

}
, μ ∈ �r.
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We denote by f∗ and q∗ the optimal values of (P) and (D), respectively:

f∗ = inf
x∈X, g(x)≤0

f(x), q∗ = sup
μ≥0

q(μ).

We write f∗ < ∞ or q∗ > −∞ to indicate that (P) or (D), respectively, has at least
one feasible solution. The weak duality theorem states that q∗ ≤ f∗. If q∗ = f∗, we
say that there is no duality gap.

An important result (see, e.g., [BNO03, Proposition 6.6.1]) is that there always
exist a scalar μ∗

0 and a vector μ∗ = (μ∗
1, . . . , μ

∗
r)

′ satisfying the following conditions:
(i) μ∗

0f
∗ = infx∈X

{
μ∗

0f(x) + μ∗′g(x)
}
.

(ii) μ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) μ∗
0, μ

∗
1, . . . , μ

∗
r are not all equal to 0.

This type of conditions traces its origin to Fritz John’s work [Joh48], although John’s
original conditions associate the multiplier pair (μ∗

0, μ
∗) with a specific optimal so-

lution of problem (P), and condition (i) instead involves the first derivatives at this
optimal solution being equal to zero (assuming X = �n). Since John’s work has
been primarily responsible for popularizing the idea of using the extra multiplier μ∗

0

without any constraint qualification, we call a pair (μ∗
0, μ

∗) satisfying (i)–(iii) an FJ-
multiplier.1

If the coefficient μ∗
0 of an FJ-multiplier is nonzero, by normalization one can

obtain an FJ-multiplier of the form (1, μ∗), and we have

μ∗ ≥ 0, f∗ = q(μ∗).

A vector μ∗ thus obtained is called a geometric multiplier. It is well known and readily
seen from the weak duality theorem that μ∗ is a geometric multiplier if and only if
there is no duality gap and μ∗ is an optimal solution of the dual problem. It is further
known that the set of geometric multipliers is closed and coincides with the negative
of the subdifferential of the perturbation function

p(u) = inf
x∈X, g(x)≤u

f(x)

at u = 0, provided that p is convex and proper and p(0) is finite [Roc70, Theorem
29.1], [BNO03, Proposition 6.5.8]. If in addition the origin is in the relative interior of
dom(p) (a constraint qualification that guarantees that the set of geometric multipliers
is nonempty) and μ∗ is the geometric multiplier of minimum norm, then either μ∗ = 0,
in which case 0 ∈ ∂p(0) and u = 0 is a global minimum of p, or μ∗ 	= 0, in which
case μ∗ is a direction of steepest descent for p at u = 0; i.e., the directional derivative
p′(0; d) of p at 0 in the direction d satisfies

inf
‖d‖=1

p′(0; d) = p′
(
0;μ∗/‖μ∗‖

)
=

1

‖μ∗‖ sup
v∈∂p(0)

μ∗′v = −‖μ∗‖ < 0.(1)

Thus, the minimum-norm geometric multiplier provides useful sensitivity informa-
tion; namely, relaxing the inequality constraints at rates equal to the components of
μ∗/‖μ∗‖ yields a decrease of the optimal value at the optimal rate, which is equal to
‖μ∗‖.

1Fritz John’s conditions were independently derived earlier by Karush [Kar39], as noted in Kuhn’s
historical note [Kuh91, section 6].



768 D. P. BERTSEKAS, A. E. OZDAGLAR, AND P. TSENG

On the other hand, if the origin is not a relative interior point of dom(p), there
may be no direction of steepest descent, because the directional derivative function
p′(0; ·) is discontinuous, and the infimum over ‖d‖ = 1 in (1) may not be attained.
This can happen even if there is no duality gap and there exists a geometric multiplier.
As an example, consider the following two-dimensional problem:

minimize −x2

subject to x ∈ X = {x | x2
2 ≤ x1}, g1(x) = x1 ≤ 0, g2(x) = x2 ≤ 0.

It can be verified that

dom(p) = {u | u2
2 ≤ u1} + {u | u ≥ 0},

and

p(u) =

⎧⎪⎨
⎪⎩
−u2 if u2

2 ≤ u1,

−√
u1 if u1 ≤ u2

2, u1 ≥ 0, u2 ≥ 0,

∞ otherwise,

while

q(μ) =

⎧⎪⎨
⎪⎩
− (μ2−1)2

4μ1
if μ1 > 0,

0 if μ1 = 0, μ2 = 1,

−∞ otherwise.

We have f∗ = q∗ = 0, and the set of geometric multipliers is

{μ ≥ 0 | μ2 = 1}.

However, the geometric multiplier of minimum norm, μ∗ = (0, 1), is not a direction
of steepest descent, since starting at u = 0 and going along the direction (0, 1), p(u)
is equal to 0, so

p′(0;μ∗) = 0.

In fact p has no direction of steepest descent at u = 0, because p′(0; ·) is not continuous.
To see this, note that directions of descent d = (d1, d2) are those for which d1 > 0
and d2 > 0, and that along any such direction, we have

p′(0; d) = −d2.

It follows that

inf
‖d‖=1

p′(0; d) = −1 = −‖μ∗‖,

but there is no direction of descent that attains the infimum above. On the other
hand, there are sequences {uk} ⊂ dom(p) and {xk} ⊂ X of infeasible points (in fact,
the sequences uk = xk = (1/k2, 1/k)) such that

lim
k→∞

p(0) − p(uk)

‖uk+‖
= lim

k→∞

f∗ − f(xk)

‖g+(xk)‖ = ‖μ∗‖ = 1,

where we denote

u+
j = max{0, uj}, u+ = (u+

1 , . . . , u
+
r )′, g+

j (x) = max
{
0, gj(x)

}
,

g+(x) = (g+
1 (x), . . . , g+

r (x))′.
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Thus, the minimum norm of geometric multipliers can still be interpreted as the
optimal rate of improvement of the cost per unit constraint violation. However, this
rate of improvement cannot be obtained by approaching 0 along a straight line but
only by approaching it along a curve.

In this paper, we derive more powerful versions of the Fritz John conditions,
which provide sensitivity information, like the one discussed above. In particular,
in addition to conditions (i)–(iii) above, we obtain an additional necessary condition
(e.g., condition (CV) of Proposition 2 in the next section) that narrows down the set
of candidates for optimality. Furthermore, our conditions also apply in the excep-
tional case where the set of geometric multipliers is empty. In this case, we will show
that a certain degenerate FJ-multiplier, i.e., one of the form (0, μ∗) with μ∗ 	= 0 and
0 = infx∈X μ∗′g(x), provides sensitivity information analogous to that provided by
the minimum-norm geometric multiplier. In particular, there exists an FJ-multiplier
(0, μ∗) such that, by relaxing the inequality constraints at rates proportional to the
components of μ∗/‖μ∗‖, we can strictly improve the primal optimal value. Further-
more, ‖μ∗‖ is the optimal rate of improvement per unit constraint violation. In the
case where there is a duality gap, we also prove dual versions of these results, involv-
ing the dual optimal value, and dual FJ-multipliers. To our knowledge, except for a
preliminary version of our work that appeared in the book [BNO03], these are the first
results that provide enhanced, sensitivity-related Fritz John conditions for convex pro-
gramming and also derive the optimal sensitivity rate under very general assumptions,
i.e., without any constraint qualification and even in the presence of a duality gap.

This paper is organized as follows. In section 2, we present enhanced Fritz John
conditions for convex problems that have optimal solutions. In section 3, we present
analogous results for convex problems that have dual optimal solutions. In particular,
we show that the dual optimal solution of minimum norm provides useful sensitivity
information, even in the presence of a duality gap. We also introduce the notion of
pseudonormality, and we discuss its connections to classical constraint qualifications.
In section 4, we present Fritz John conditions for problems that may not have optimal
solutions. In section 5, we prove dual versions of these conditions involving the dual
optimal value.

2. Enhanced Fritz John conditions. The existence of FJ-multipliers is often
used as the starting point for the analysis of the existence of geometric multipliers.
Unfortunately, these conditions in their classical form are not sufficient to deduce the
existence of geometric multipliers under some of the standard constraint qualifications,
such as when X = �n and the constraint functions gj are affine. Recently, the classical
Fritz John conditions have been enhanced through the addition of an extra necessary
condition, and their effectiveness has been significantly improved (see Hestenes [Hes75,
Theorem 10.5 on page 242] for the case X = �n, Bertsekas [Ber99, Proposition
3.3.11] for the case where X is a closed convex set, and Bertsekas and Ozdaglar
[BeO02] for the case where X is a closed set). All of these results assume that an
optimal solution exists and that the cost and the constraint functions are smooth
(but possibly nonconvex). In this section, we retain the assumption of existence of an
optimal solution, and instead of smoothness we assume the following.

Assumption 1 (closedness). The functions f and g1, . . . , gr are closed.
We note that f and g1, . . . , gr are closed if and only if they are lower semicontin-

uous on X, i.e., for each x̄ ∈ X, we have

f(x̄) ≤ lim inf
x∈X, x→x̄

f(x), gj(x̄) ≤ lim inf
x∈X, x→x̄

gj(x), j = 1, . . . , r
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(see, e.g., [BNO03, Proposition 1.2.2]). Under the preceding assumption, we prove
the following version of the enhanced Fritz John conditions. Because we assume that
f and g1, . . . , gr are convex over X rather than over �n, the lines of proof from the
preceding references (based on the use of gradients or subgradients) break down. We
use a different line of proof, which is based instead on minimax arguments. The proof
also uses the following lemma.

Lemma 1. Consider the convex problem (P) and assume that −∞ < q∗. If μ∗ is
a dual optimal solution, then

q∗ − f(x)

‖g+(x)‖ ≤ ‖μ∗‖ ∀ x ∈ X that are infeasible.

Proof. For any x ∈ X that is infeasible, we have from the definition of the dual
function that

q∗ = q(μ∗) ≤ f(x) + μ∗′
g(x) ≤ f(x) + μ∗′

g+(x) ≤ f(x) + ‖μ∗‖‖g+(x)‖.

Note that the preceding lemma shows that the minimum distance to the set
of dual optimal solutions is an upper bound for the cost improvement/constraint
violation ratio

(
q∗ − f(x)

)
/‖g+(x)‖. The next proposition shows that, under certain

assumptions including the absence of a duality gap, this upper bound is sharp and is
asymptotically attained by an appropriate sequence {xk} ⊂ X. The same fact will
also be shown in section 3, but under considerably more general assumptions (see
Proposition 7).

Proposition 2. Consider the convex problem (P) under Assumption 1 (closed-
ness), and assume that x∗ is an optimal solution. Then there exists an FJ-multiplier
(μ∗

0, μ
∗) satisfying the following condition (CV). Moreover, if μ∗

0 	= 0, then μ∗/μ∗
0

must be the geometric multiplier of minimum norm.
(CV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that

converges to x∗ and satisfies

f(xk) → f∗, g+(xk) → 0,(2)

f∗ − f(xk)

‖g+(xk)‖ →
{
‖μ∗‖/μ∗

0 if μ∗
0 	= 0,

∞ if μ∗
0 = 0,

(3)

g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ .(4)

Proof. For positive integers k and m, we consider the saddle function

Lk,m(x, ξ) = f(x) +
1

k3
‖x− x∗‖2 + ξ′g(x) − 1

2m
‖ξ‖2.

We note that, for fixed ξ ≥ 0, Lk,m(x, ξ), viewed as a function from X to �, is
closed and convex because of the closedness assumption. Furthermore, for a fixed x,
Lk,m(x, ξ) is negative definite quadratic in ξ. For each k, we consider the set

Xk = X ∩
{
x | ‖x− x∗‖ ≤ k

}
.

Since f and gj are closed and convex when restricted to X, they are closed, convex,
and coercive when restricted to Xk. Thus, we can use the saddle point theorem (e.g.,
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[BNO03, Proposition 2.6.9]) to assert that Lk,m has a saddle point over x ∈ Xk and
ξ ≥ 0. This saddle point is denoted by (xk,m, ξk,m).

The infimum of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
1

k3
‖xk,m − x∗‖2 + ξk,m

′
g(xk,m)

= inf
x∈Xk

{
f(x) +

1

k3
‖x− x∗‖2 + ξk,m

′
g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1

k3
‖x− x∗‖2 + ξk,m

′
g(x)

}
(5)

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1

k3
‖x− x∗‖2

}
= f(x∗).

Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
1

k3
‖xk,m − x∗‖2 + ξk,m

′
g(xk,m) − 1

2m
‖ξk,m‖2

≤ f(xk,m) +
1

k3
‖xk,m − x∗‖2 + ξk,m

′
g(xk,m)(6)

≤ f(x∗).

Since Lk,m(xk,m, ξ) is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is
attained at

ξk,m = mg+(xk,m).(7)

This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
1

k3
‖xk,m − x∗‖2 +

m

2
‖g+(xk,m)‖2

≥ f(xk,m) +
1

k3
‖xk,m − x∗‖2(8)

≥ f(xk,m).

From (6) and (8), we see that the sequence {xk,m}, with k fixed, belongs to the
set

{
x ∈ Xk | f(x) ≤ f(x∗)

}
, which is compact. Hence, {xk,m} has a cluster point

(as m → ∞), denoted by xk, which belongs to
{
x ∈ Xk | f(x) ≤ f(x∗)

}
. By passing

to a subsequence if necessary, we can assume without loss of generality that {xk,m}
converges to xk as m → ∞. For each k, the sequence

{
f(xk,m)

}
is bounded from

below by infx∈Xk f(x), which is finite by Weierstrass’s theorem since f is closed and
coercive when restricted to Xk. Also, for each k, Lk,m(xk,m, ξk,m) is bounded from
above by f(x∗) (cf. (6)), so the equality in (8) implies that

lim sup
m→∞

gj(x
k,m) ≤ 0 ∀ j = 1, . . . , r.

Therefore, by using the lower semicontinuity of gj , we obtain g(xk) ≤ 0, implying
that xk is a feasible solution of problem (P), so that f(xk) ≥ f(x∗). Using (6) and
(8) together with the lower semicontinuity of f , we also have

f(xk) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(x∗),



772 D. P. BERTSEKAS, A. E. OZDAGLAR, AND P. TSENG

thereby showing that for each k,

lim
m→∞

f(xk,m) = f(x∗).

Together with (6) and (8), this also implies that for each k,

lim
m→∞

xk,m = x∗.

Combining the preceding relations with (6) and (8), for each k, we obtain

lim
m→∞

(f(xk,m) − f(x∗) + ξk,m
′
g(xk,m)) = 0.(9)

Denote

δk,m =
√

1 + ‖ξk,m‖2, μk,m
0 =

1

δk,m
, μk,m =

ξk,m

δk,m
.(10)

Since δk,m is bounded from below by 1, by dividing (9) by δk,m, we obtain

lim
m→∞

(μk,m
0 f(xk,m) − μk,m

0 f(x∗) + μk,m′
g(xk,m)) = 0.

By the preceding relations, for each k we can find a sufficiently large integer mk

such that ∣∣μk,mk

0 f(xk,mk) − μk,mk

0 f(x∗) + μk,mk
′
g(xk,mk)

∣∣ ≤ 1

k
,(11)

and

‖xk,mk − x∗‖ ≤ 1

k
, |f(xk,mk) − f(x∗)| ≤ 1

k
, ‖g+(xk,mk)‖ ≤ 1

k
.(12)

Dividing both sides of the first relation in (5) by δk,mk , we obtain

μk,mk

0 f(xk,mk) +
1

k3δk,mk
‖xk,mk − x∗‖2 + μk,mk

′
g(xk,mk)

≤ μk,mk

0 f(x) + μk,mk
′
g(x) +

1

kδk,mk
∀ x ∈ Xk,

where we also use the fact that ‖x−x∗‖ ≤ k for all x ∈ Xk (see the definition of Xk).

Since the sequence {(μk,mk

0 , μk,mk)} is bounded, it has a cluster point, denoted by
(μ∗

0, μ
∗), which satisfies conditions (ii) and (iii) in the definition of an FJ-multiplier.

For any x ∈ X, we have x ∈ Xk for all k sufficiently large. Without loss of generality,
we will assume that the entire sequence {(μk,mk

0 , μk,mk)} converges to (μ∗
0, μ

∗). Taking
the limit as k → ∞, and using (11), we obtain

μ∗
0f(x∗) ≤ μ∗

0f(x) + μ∗′g(x) ∀ x ∈ X.

Since μ∗ ≥ 0, this implies that

μ∗
0f(x∗) ≤ inf

x∈X

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

μ∗
0f(x)

= μ∗
0f(x∗).
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Thus we have

μ∗
0f(x∗) = inf

x∈X

{
μ∗

0f(x) + μ∗′g(x)
}
,

so that (μ∗
0, μ

∗) also satisfies condition (i) in the definition of an FJ-multiplier.
If μ∗ = 0, then μ∗

0 	= 0, (CV) is automatically satisfied, and μ∗/μ∗
0 = 0 has

minimum norm. Moreover, condition (i) yields f∗ = infx∈X f(x), so that (CV) (in
particular, (3)) is satisfied by only μ∗ = 0.

Assume now that μ∗ 	= 0, so that the index set J = {j 	= 0 | μ∗
j > 0} is nonempty.

Then, for sufficiently large k, we have ξk,mk

j > 0 and hence gj(x
k,mk) > 0 for all

j ∈ J . Thus, for each k, we can choose the index mk to further satisfy xk,mk 	= x∗, in
addition to (11) and (12). Using (7), (10), and the fact that μk,mk → μ∗, we obtain

g+(xk,mk)

‖g+(xk,mk)‖ =
μk,mk

‖μk,mk‖ → μ∗

‖μ∗‖ .

Using also (6) and f(x∗) = f∗, we have that

f∗ − f(xk,mk)

‖g+(xk,mk)‖ ≥ ξk,mk
′
g(xk,mk)

‖g+(xk,mk)‖ = ‖ξk,mk‖ =
‖μk,mk‖
μk,mk

0

.(13)

If μ∗
0 = 0, then μk,mk

0 → 0, so (13) together with ‖μk,mk‖ → ‖μ∗‖ > 0 yields

f∗ − f(xk,mk)

‖g+(xk,mk)‖ → ∞.

If μ∗
0 	= 0, then (13) together with μk,mk

0 → μ∗
0 and ‖μk,mk‖ → ‖μ∗‖ yields

lim inf
k→∞

f∗ − f(xk,mk)

‖g+(xk,mk)‖ ≥ ‖μ∗‖
μ∗

0

.

Since μ∗/μ∗
0 is a geometric multiplier and f∗ = q∗, Lemma 1 implies that in fact

μ∗/μ∗
0 is of minimum norm and the inequality holds with equality. From (12),

we have f(xk,mk) → f(x∗), g+(xk,mk) → 0, and xk,mk → x∗. Hence, the se-
quence {xk,mk} also satisfies conditions (4)–(5) of the proposition, concluding the
proof.

Note that (4) implies that, for all k sufficiently large,

gj(x
k) > 0 ∀ j ∈ J g+

j (xk) = o

(
min
j∈J

g+
j (xk)

)
∀ j /∈ J,

where J = {j 	= 0 | μ∗
j > 0}. Thus, the (CV) condition (complementarity violation) in

Proposition 2 refines that used in [BNO03, section 5.7] by also estimating the rate of
cost improvement. As an illustration of Proposition 2, consider the two-dimensional
example of Duffin:

minimize x2

subject to x = (x1, x2)
′ ∈ �2, ‖x‖ − x1 ≤ 0.

Here f∗ = 0, and x∗ = (x∗
1, 0) is an optimal solution for any x∗

1 ≥ 0. Also, q(μ) = −∞
for all μ ≥ 0, so q∗ = −∞ and there is a duality gap. It can be seen that μ∗

0 = 0,
μ∗ = 1 form an FJ-multiplier and, together with xk = (x∗

1,−1/k)′, satisfy condition
(CV).



774 D. P. BERTSEKAS, A. E. OZDAGLAR, AND P. TSENG

Lk,m(xk,m, ξk,m)

0 u

pk(u)

uk,m = g(xk,m)

slope = - ξk,m

  - m/2 ||u+||2 + Lk,m(xk,m, ξk,m)

Fig. 1. Illustration of the saddle point of the function Lk,m(x, ξ) over x ∈ Xk and ξ ≥ 0 in

terms of the function pk(u), which is the optimal value of problem (14) as a function of u.

The proof of Proposition 2 can be explained in terms of the construction shown
in Figure 1. Consider the function Lk,m introduced in the proof,

Lk,m(x, ξ) = f(x) +
1

k3
‖x− x∗‖2 + ξ′g(x) − 1

2m
‖ξ‖2.

Note that the term (1/k3)‖x− x∗‖2 ensures that x∗ is a strict local minimum of the
function f(x) + (1/k3)‖x− x∗‖2. To simplify the following discussion, let us assume
that f is strictly convex, so that this term can be omitted from the definition of Lk,m.
This assumption is satisfied by the above example if its cost function is changed to
ex, for which f∗ = 1 and q∗ = 0.

For any nonnegative vector u ∈ �r, let pk(u) denote the optimal value of the
problem

minimize f(x)
subject to g(x) ≤ u,

x ∈ Xk = X ∩
{
x
∣∣ ‖x− x∗‖ ≤ k

}
.

(14)

For each k and m, the saddle point of the function Lk,m(x, ξ), denoted by (xk,m, ξk,m),
can be characterized in terms of pk(u) as follows.

The maximization of Lk,m(x, ξ) over ξ ≥ 0 for any fixed x ∈ Xk yields

ξ = mg+(x),(15)

so that we have

Lk,m(xk,m, ξk,m) = inf
x∈Xk

sup
ξ≥0

{
f(x) + ξ′g(x) − 1

2m
‖ξ‖2

}

= inf
x∈Xk

{
f(x) +

m

2
‖g+(x)‖2

}
.
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This minimization can also be written as

Lk,m(xk,m, ξk,m) = inf
x∈Xk

inf
u∈�r, g(x)≤u

{
f(x) +

m

2
‖u+‖2

}

= inf
u∈�r

inf
x∈Xk, g(x)≤u

{
f(x) +

m

2
‖u+‖2

}
(16)

= inf
u∈�r

{
pk(u) +

m

2
‖u+‖2

}
.

The vector uk,m = g(xk,m) attains the infimum in the preceding relation. This mini-
mization can be visualized geometrically as in Figure 1. The point of contact of the
graphs of the functions pk(u) and Lk,m(xk,m, ξk,m)− (m/2)‖u+‖2 corresponds to the
vector uk,m that attains the infimum in (16). A similar compactification-regularization
technique is used in [Roc93, section 9].

We can also interpret ξk,m in terms of the function pk. In particular, the infimum
of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) + ξk,m
′
g(xk,m) = inf

x∈Xk

{
f(x) + ξk,m

′
g(x)

}
= inf

u∈�r

{
pk(u) + ξk,m

′
u
}
.

Replacing g(xk,m) by uk,m in the preceding relation, and using the fact that xk,m is
feasible for problem (14) with u = uk,m, we obtain

pk(uk,m) ≤ f(xk,m) = inf
u∈�r

{
pk(u) + ξk,m

′
(u− uk,m)

}
.

Thus, we see that

pk(uk,m) ≤ pk(u) + ξk,m
′
(u− uk,m) ∀ u ∈ �r,

which, by the definition of the subgradient of a convex function, implies that

−ξk,m ∈ ∂pk(uk,m)

(cf. Figure 1). It can be seen from this interpretation that the limit of Lk,m(xk,m, ξk,m)
as m → ∞ is equal to pk(0), which is equal to f(x∗) for each k. The limit of the
normalized sequence {

(1, ξk,mk)√
1 + ‖ξk,mk‖2

}

as k → ∞ yields the FJ-multiplier (μ∗
0, μ

∗), and the sequence {xk,mk} is used to
construct the sequence that satisfies condition (CV) of the proposition.

3. Minimum-norm dual optimal solutions. In the preceding section we fo-
cused on the case where a primal optimal solution exists and we showed that the
geometric multiplier of minimum norm is informative. Notice that a geometric mul-
tiplier is automatically a dual optimal solution. When there is a duality gap, there
exists no geometric multiplier, even if there is a dual optimal solution. In this section
we focus on the case where a dual optimal solution exists and we will see that, anal-
ogously, the dual optimal solution of minimum norm is informative. In particular,
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it satisfies a condition analogous to condition (CV), with primal optimal value f∗

replaced by q∗. Consistent with our analysis in section 2, we call such a dual optimal
solution informative [BNO03, section 6.6.2] since it indicates the constraints to relax
and the rate of relaxation in order to obtain a primal cost reduction by an amount
that is strictly greater than the size of the duality gap f∗ − q∗.

We begin with the following proposition on the existence of an FJ-multiplier,
which requires no additional assumptions on (P). It will be used to prove Lemma 4.
This proposition is a direct extension of a well-known result [Lue79, page 217] and its
proof may be found in [BNO03, Proposition 6.6.1]. A similar result is given in [Hes75,
page 326], assuming (P) has an optimal solution.

Proposition 3 (Fritz John conditions). Consider the convex problem (P), and
assume that f∗ < ∞. Then there exists an FJ-multiplier (μ∗

0, μ
∗).

If the scalar μ∗
0 in the preceding proposition can be proved to be positive, then

μ∗/μ∗
0 is a geometric multiplier for problem (P). This can be used to show the existence

of a geometric multiplier in the case where the Slater condition [Sla50] holds; i.e., there
exists a vector x ∈ X such that g(x) < 0. Indeed, in this case the scalar μ∗

0 cannot
be 0, since if it were, then according to the proposition, we would have

0 = inf
x∈X

μ∗′g(x)

for some vector μ∗ ≥ 0 with μ∗ 	= 0, while for this vector, we would also have
μ∗′g(x) < 0, which is a contradiction.

Using Proposition 3, we have the following lemma which will be used to prove
the next proposition, as well as Proposition 12 in the next section.

Lemma 4. Consider the convex problem (P), and assume that f∗ < ∞. For each
δ > 0, let

fδ = inf
x∈X

gj(x)≤δ, j=1,... ,r,

f(x).(17)

Then the dual optimal value q∗ satisfies fδ ≤ q∗ for all δ > 0 and

q∗ = lim
δ↓0

fδ.

Proof. We first note that either limδ↓0 f
δ exists and is finite, or else limδ↓0 f

δ =
−∞, since fδ is monotonically nondecreasing as δ ↓ 0, and fδ ≤ f∗ for all δ > 0.
Since f∗ < ∞, there exists some x ∈ X such that g(x) ≤ 0. Thus, for each δ > 0 such
that fδ > −∞, the Slater condition is satisfied for problem (17), and by Proposition
3 and the subsequent discussion, there exists a μδ ≥ 0 satisfying

fδ = inf
x∈X

{
f(x) + μδ′g(x) − δ

r∑
j=1

μδ
j

}

≤ inf
x∈X

{
f(x) + μδ′g(x)

}
= q(μδ)

≤ q∗.

For each δ > 0 such that fδ = −∞, we also have fδ ≤ q∗, so that

fδ ≤ q∗ ∀ δ > 0.
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By taking the limit as δ ↓ 0, we obtain

lim
δ↓0

fδ ≤ q∗.

To show the reverse inequality, we consider two cases: (1) fδ > −∞ for all δ > 0
that are sufficiently small, and (2) fδ = −∞ for all δ > 0. In case (1), for each δ > 0
with fδ > −∞, choose xδ ∈ X such that gj(x

δ) ≤ δ for all j and f(xδ) ≤ fδ + δ.
Then, for any μ ≥ 0,

q(μ) = inf
x∈X

{
f(x) + μ′g(x)

}
≤ f(xδ) + μ′g(xδ) ≤ fδ + δ + δ

r∑
j=1

μj .

Taking the limit as δ ↓ 0, we obtain

q(μ) ≤ lim
δ↓0

fδ,

so that q∗ ≤ limδ↓0 f
δ. In case (2), choose xδ ∈ X such that gj(x

δ) ≤ δ for all j and
f(xδ) ≤ −1/δ. Then, similarly, for any μ ≥ 0, we have

q(μ) ≤ f(xδ) + μ′g(xδ) ≤ −1

δ
+ δ

r∑
j=1

μj ,

so by taking δ ↓ 0, we obtain q(μ) = −∞ for all μ ≥ 0, and hence also q∗ = −∞ =
lim↓0 f

δ.
Using Lemmas 1 and 4, we prove below the main result of this section, which

shows under very general assumptions that the minimum-norm dual optimal solution
is informative.

Proposition 5 (existence of informative dual optimal solution). Consider the
convex problem (P) under Assumption 1 (closedness), and assume that f∗ < ∞ and
−∞ < q∗. If there exists a dual optimal solution, then the dual optimal solution μ∗ of
minimum norm satisfies the following condition (dCV). Moreover, it is the only dual
optimal solution that satisfies this condition.
(dCV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that

satisfies

f(xk) → q∗, g+(xk) → 0,(18)

q∗ − f(xk)

‖g+(xk)‖ → ‖μ∗‖,(19)

g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ .(20)

Proof. Let μ∗ be the dual optimal solution of minimum norm. Assume that
μ∗ 	= 0. For k = 1, 2, . . . , consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 1

k4
, k = 1, . . . , r.
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By Lemma 4, for each k, the optimal value of this problem is less than or equal to q∗.
Since q∗ is finite (in view of the assumptions −∞ < q∗ and f∗ < ∞, and the weak
duality relation q∗ ≤ f∗), we may select for each k a vector x̃k ∈ X that satisfies

f(x̃k) ≤ q∗ +
1

k2
, gj(x̃

k) ≤ 1

k4
, j = 1, . . . , r.

Consider also the problem

minimize f(x)

subject to gj(x) ≤ 1

k4
, j = 1, . . . , r,

x ∈ X̃k = X ∩
{
x
∣∣∣ ‖x‖ ≤ k

(
max1≤i≤k ‖x̃i‖ + 1

)}
.

By the closedness assumption, f and gj are closed and convex when restricted to X,

so they are closed, convex, and coercive when restricted to X̃k. Thus, the problem
has an optimal solution, which we denote by xk. Note that, since x̃k belongs to the
feasible solution set of this problem, we have

f(xk) ≤ f(x̃k) ≤ q∗ +
1

k2
.(21)

For each k, we consider the saddle function

Lk(x, μ) = f(x) + μ′g(x) − ‖μ‖2

2k

and the set

Xk = X̃k ∩
{
x | gj(x) ≤ k, j = 1, . . . , r

}
.

We note that Lk(x, μ), for fixed μ ≥ 0, is closed, convex, and coercive in x, when
restricted to Xk, and negative definite quadratic in μ for fixed x. Hence, using the
saddle point theorem (e.g., [BNO03, Proposition 2.6.9]), we can assert that Lk has a
saddle point over x ∈ Xk and μ ≥ 0, denoted by (xk, μk).

Since Lk is quadratic in μ, the supremum of Lk(x
k, μ) over μ ≥ 0 is attained at

μk = kg+(xk).(22)

Similarly, the infimum in infx∈Xk Lk(x, μ
k) is attained at xk, implying that

f(xk) + μk′
g(xk) = inf

x∈Xk

{
f(x) + μk′

g(x)
}

= inf
x∈Xk

{
f(x) + kg+(xk)′g(x)

}
≤ inf

x∈Xk, gj(x)≤ 1
k4 , j=1,... ,r,

{
f(x) + k

r∑
j=1

g+
j (xk)′gj(x)

}

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,... ,r,

{
f(x) +

r

k2

}
= f(xk) +

r

k2

≤ q∗ +
r + 1

k2
,

(23)
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where the second inequality holds in view of the fact that xk ∈ Xk, implying that
g+
j (xk) ≤ k, j = 1, . . . , r, and the third inequality follows from (21).

We also have

Lk(x
k, μk) = sup

μ≥0
inf

x∈Xk
Lk(x, μ)

≥ sup
μ≥0

inf
x∈X

Lk(x, μ)

= sup
μ≥0

{
inf
x∈X

{
f(x) + μ′g(x)

}
− ‖μ‖2

2k

}

= sup
μ≥0

{
q(μ) − ‖μ‖2

2k

}

≥ q(μ∗) − ‖μ∗‖2

2k

= q∗ − ‖μ∗‖2

2k
,

(24)

where we recall that μ∗ is the dual optimal solution with minimum norm.
Combining (24) and (23), we obtain

q∗ − 1

2k
‖μ∗‖2 ≤ Lk(x

k, μk)

= f(xk) + μk′
g(xk) − 1

2k
‖μk‖2(25)

≤ q∗ +
r + 1

k2
− 1

2k
‖μk‖2.

This relation shows that ‖μk‖2 ≤ ‖μ∗‖2+2(r+1)/k, so the sequence {μk} is bounded.
Let μ be a cluster point of {μk}. Without loss of generality, we assume that the entire
sequence {μk} converges to μ. We also have from (25) that

lim
k→∞

{
f(xk) + μk′

g(xk)
}

= q∗.

Hence, taking the limit as k → ∞ in (23) yields

q∗ ≤ inf
x∈X

{
f(x) + μ′g(x)

}
= q(μ) ≤ q∗.

Hence μ is a dual optimal solution, and since ‖μ‖ ≤ ‖μ∗‖ (which follows by taking
the limit in (25)), by using the minimum norm property of μ∗, we conclude that any
cluster point μ of μk must be equal to μ∗. Thus μk → μ∗, and using (25), we obtain

lim
k→∞

k
(
Lk(x

k, μk) − q∗
)

= −1

2
‖μ∗‖2.(26)

Using (22), it follows that

Lk(x
k, μk) = sup

μ≥0
Lk(x

k, μ) = f(xk) +
1

2k
‖μk‖2,

which combined with (26) yields

lim
k→∞

k
(
f(xk) − q∗

)
= −‖μ∗‖2,
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implying that f(xk) < q∗ for all sufficiently large k, since μ∗ 	= 0. Since μk → μ∗,
(22) also implies that

lim
k→∞

kg+(xk) = μ∗.

It follows that the sequence {xk} satisfies (18), (19), and (20). Moreover, Lemma 1
shows that {xk} satisfies (19) only when μ∗ is the dual optimal solution of minimum
norm. This completes the proof.

Our next result of this section shows that Assumption 1 in Proposition 5 can in
fact be relaxed. We denote by f the closure of f , i.e., the function whose epigraph
is the closure of f . Similarly, for each j, we denote by gj the closure of gj . A key
fact we use is that replacing f and gj by their closures does not affect the closure of
the primal function, and hence also the dual function. This is based on the following
lemma on the closedness of functions generated by partial minimization.

Lemma 6. Consider a function F : �n+r �→ (−∞,∞] and the function p : �n �→
[−∞,∞] defined by

p(u) = inf
x∈�n

F (x, u).

Then the following hold:
(a)

P (epi(F )) ⊂ epi(p) ⊂ cl(P (epi(F ))),(27)

P (cl(epi(F ))) ⊂ cl(epi(p)),(28)

where P (·) denotes projection on the space of (u,w), i.e., P (x, u, w) = (u,w).
(b) If F is the closure of F and p is defined by

p(u) = inf
x∈�n

F (x, u),

then the closures of p and p coincide.
Proof. (a) The left-hand side of (27) follows from the definition

epi(p) =

{
(u,w)

∣∣∣ inf
x∈�n

F (x, u) ≤ w

}
.

To show the right-hand side of (27), note that for any (u,w) ∈ epi(p) and every integer
k ≥ 1, there exists an xk such that (xk, u, w + 1/k) ∈ epi(F ), so that (u,w + 1/k) ∈
P (epi(F )) and (u,w) ∈ cl(P (epi(F ))).

To show (28), let (u,w) belong to P (cl(epi(F ))). Then there exists x such
that (x, u, w) ∈ cl

(
epi(F )

)
, and hence there is a sequence (xk, uk, wk) ∈ epi(F )

such that xk → x, uk → u, and wk → w. Thus we have p(uk) ≤ F (xk, uk) ≤ wk,
implying that (uk, wk) ∈ epi(p) for all k. It follows that (u,w) ∈ cl

(
epi(p)

)
.

(b) By taking closure in (27), we see that

cl(epi(p)) = cl(P (epi(F ))),(29)

and by replacing F with F , we also have

cl(epi(p)) = cl(P (epi(F ))).(30)
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On the other hand, by taking closure in (28), we have

cl(P (epi(F ))) ⊂ cl(P (epi(F ))),

which implies that

cl(P (epi(F ))) = cl(P (epi(F ))).(31)

By combining (29)–(31), we see that

cl
(
epi(p)

)
= cl

(
epi(p)

)
.

Using Lemmas 1 and 6, we now prove the next main result of this section.
Proposition 7 (relaxing closedness assumption in Proposition 5). Consider the

convex problem (P), and assume that f∗ < ∞, −∞ < q∗, and dom(f) = dom(gj),
j = 1, . . . , r. If μ∗ is the dual optimal solution of minimum norm, then it satisfies
condition (dCV) of Proposition 5. Moreover, it is the only dual optimal solution that
satisfies this condition.

Proof. We apply Lemma 6 to the primal function p(u), which is defined by partial
minimization over x ∈ �n of the extended real-valued function

F (x, u) =

{
f(x) if x ∈ X, g(x) ≤ u,

∞ otherwise.

Note that the closure of F is

F (x, u) =

{
f(x) if x ∈ X, g(x) ≤ u,

∞ otherwise,

where g = (g1, . . . , gr)
′ and X = dom(f) = dom(gj), j = 1, . . . , r.2 Thus, by Lemma

6, replacing X, f , and g with X, f , and g does not change the closure of the primal
function, and therefore does not change the dual function.

Assume μ∗ 	= 0. By Proposition 5, there exists a sequence {xk} ⊂ X of infeasible
points that satisfies

q∗ − f(xk)

‖g+(xk)‖ → ‖μ∗‖, g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ , ‖g+(xk)‖ → 0.

We will now perturb the sequence {xk} so that it lies in ri(X), while it still satisfies
the preceding relations. Indeed, fix any x ∈ ri(X). For each k, we can choose a
sufficiently small ε ∈ (0, 1) such that f(εx + (1 − ε)xk) and ‖g+(εx + (1 − ε)xk)‖
are arbitrarily close to f(xk) and ‖g+(xk)‖, respectively. This is possible because f ,

2Why? By definition of the closure of F , F (x, u) = lim inf(xk,uk)→(x,u) F (xk, uk). Suppose

F (x, u) < ∞. Then there exist xk ∈ X and uk such that (xk, uk) → (x, u), f(xk) → F (x, u), and
g(xk) ≤ uk for all k = 1, 2, . . . . Passing to the limit yields f(x) ≤ F (x, u) and g(x) ≤ u. Conversely,
suppose f(x) < ∞ and g(x) ≤ u. Fix any x ∈ ri(X), and let xε = (1 − ε)x + εx, uε = (1 − ε)u + εu,
where u = g(x). Then xε ∈ ri(X) = ri(X) and g(xε) ≤ uε for ε ∈ (0, 1). Since f coincides with f on
ri(X) and f is continuous along any line segment in X, this implies

lim
ε→0

f(xε) = lim
ε→0

f(xε) = f(x).

Thus limε→0 F (xε, uε) = f(x), implying F (x, u) ≤ f(x).
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g1, . . . , gr are closed and hence continuous along the line segment that connects xk

and x. Thus, for each k, we can choose εk ∈ (0, 1) so that the corresponding vector
xk = εkx + (1 − εk)x

k satisfies∣∣∣∣∣q
∗ − f(xk)

‖g+(xk)‖ − q∗ − f(xk)

‖g+(xk)‖

∣∣∣∣∣ ≤ 1

k
,

∣∣∣∣∣ g+(xk)

‖g+(xk)‖ −
g+(xk)

‖g+(xk)‖

∣∣∣∣∣ ≤ 1

k
, ‖g+(xk)‖ → 0.

Since x lies in ri(X) = ri(X), every point in the open line segment that connects xk

and x, including xk, lies in ri(X), so that f(xk) = f(xk) and g(xk) = g(xk). We thus
obtain a sequence {xk} in the relative interior of X satisfying

q∗ − f(xk)

‖g+(xk)‖
→ ‖μ∗‖, g+(xk)

‖g+(xk)‖
→ μ∗

‖μ∗‖ , ‖g+(xk)‖ → 0.

The first and the third relations imply f(xk) → q∗. Thus μ∗ satisfies condition (dCV)
of Proposition 5. By Lemma 1, μ∗ is the only dual optimal solution that satisfies this
condition.

3.1. Fritz John conditions and constraint qualifications. We close this
section by discussing the connection of the Fritz John conditions with classical con-
straint qualifications that guarantee the existence of a geometric multiplier (and hence
also the existence of a dual optimal solution, which makes the analysis of the present
section applicable). As mentioned earlier in this section, the classical Fritz John con-
ditions of Proposition 3 can be used to assert the existence of a geometric multiplier
when the Slater condition holds. However, Proposition 3 is insufficient to show that a
geometric multiplier exists in the case of affine constraints. The following proposition
strengthens the Fritz John conditions for this case, so that they suffice for the proof
of the corresponding existence result. In contrast to the Kuhn–Tucker theory [Hes75],
[Roc70], this does not assume (P) has an optimal solution.

Proposition 8 (Fritz John conditions for affine constraints). Consider the con-
vex problem (P), and assume that the functions g1, . . . , gr are affine, and f∗ < ∞.
Then there exists an FJ-multiplier (μ∗

0, μ
∗) satisfying the following condition:

(CV′) If μ∗ 	= 0, then there exists a vector x̃ ∈ X satisfying

f(x̃) < f∗, μ∗′
g(x̃) > 0.

Proof. If infx∈X f(x) = f∗, then μ∗
0 = 1 and μ∗ = 0 form an FJ-multiplier, and

condition (CV′) is automatically satisfied. We will thus assume that infx∈X f(x) < f∗,
which also implies that f∗ is finite.

Let the affine constraint function be represented as

g(x) = Ax− b

for some real matrix A and vector b. Consider the nonempty convex sets

C1 =
{
(x,w) | there is a vector x ∈ X such that f(x) < w

}
,

C2 =
{
(x, f∗) | Ax− b ≤ 0

}
.

Note that C1 and C2 are disjoint. The reason is that if (x, f∗) ∈ C1 ∩ C2, then we
must have x ∈ X, Ax − b ≤ 0, and f(x) < f∗, contradicting the fact that f∗ is the
optimal value of the problem.
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Since C2 is polyhedral, by the polyhedral proper separation theorem (see [Roc70,
Theorem 20.2] or [BNO03, Proposition 3.5.1]), there exists a hyperplane that separates
C1 and C2 and does not contain C1, i.e., there exists a vector (ξ, μ∗

0) such that

μ∗
0f

∗ + ξ′z ≤ μ∗
0w + ξ′x ∀ x ∈ X,w, z with f(x) < w, Az − b ≤ 0,(32)

inf
(x,w)∈C1

{μ∗
0w + ξ′x} < sup

(x,w)∈C1

{μ∗
0w + ξ′x}.

These relations imply that

μ∗
0f

∗ + sup
Az−b≤0

ξ′z ≤ inf
(x,w)∈C1

{μ∗
0w + ξ′x} < sup

(x,w)∈C1

{μ∗
0w + ξ′x},(33)

and that μ∗
0 ≥ 0 (since w can be taken arbitrarily large in (32)).

Consider the linear program in (33):

maximize ξ′z
subject to Az − b ≤ 0.

By (33), this program is bounded and therefore it has an optimal solution, which we
denote by z∗. The dual of this program is

minimize b′μ
subject to ξ = A′μ, μ ≥ 0.

By linear programming duality, it follows that this problem has a dual optimal solution
μ∗ ≥ 0 satisfying

sup
Az−b≤0

ξ′z = ξ′z∗ = μ∗′
b, ξ = A′μ∗.(34)

Note that μ∗
0 and μ∗ satisfy the nonnegativity condition (ii). Furthermore, we cannot

have both μ∗
0 = 0 and μ∗ = 0, since then by (34) we would also have ξ = 0, and (33)

would be violated. Thus, μ∗
0 and μ∗ also satisfy condition (iii) in the definition of an

FJ-multiplier.
From (33), we have

μ∗
0f

∗ + sup
Az−b≤0

ξ′z ≤ μ∗
0w + ξ′x ∀ x ∈ X with f(x) < w,

which together with (34) implies that

μ∗
0f

∗ + μ∗′
b ≤ μ∗

0w + μ∗′
Ax ∀ x ∈ X with f(x) < w,

or

μ∗
0f

∗ ≤ inf
x∈X, f(x)<w

{
μ∗

0w + μ∗′
(Ax− b)

}
.(35)

Similarly, from (33) and (34), we have

μ∗
0f

∗ < sup
x∈X, f(x)<w

{
μ∗

0w + μ∗′
(Ax− b)

}
.(36)
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Using (35), we obtain

μ∗
0f

∗ ≤ inf
x∈X

{μ∗
0f(x) + μ∗′

(Ax− b)}

≤ inf
x∈X,Ax−b≤0

{μ∗
0f(x) + μ∗′

(Ax− b)}

≤ inf
x∈X,Ax−b≤0

μ∗
0f(x)

= μ∗
0f

∗.

Hence, equality holds throughout above, which proves condition (i) in the definition
of an FJ-multiplier.

We will now show that the vector μ∗ also satisfies condition (CV′). To this end,
we consider separately the cases where μ∗

0 > 0 and μ∗
0 = 0.

If μ∗
0 > 0, let x̃ ∈ X be such that f(x̃) < f∗ (based on our earlier assumption

that infx∈X f(x) < f∗). Then condition (i) yields

μ∗
0f

∗ ≤ μ∗
0f(x̃) + μ∗′(Ax̃− b),

implying that 0 < μ∗
0(f

∗ − f(x̃)) ≤ μ∗′(Ax̃− b), and showing condition (CV′).
If μ∗

0 = 0, condition (i) together with (36) yields

0 = inf
x∈X

μ∗′(Ax− b) < sup
x∈X

μ∗′(Ax− b).(37)

The above relation implies the existence of a vector x̂ ∈ X such that μ∗′
(Ax̂− b) > 0.

Let x ∈ X be such that f(x) < f∗, and consider a vector of the form

x̃ = αx̂ + (1 − α)x,

where α ∈ (0, 1). Note that x̃ ∈ X for all α ∈ (0, 1), since X is convex. From (37),
we have μ∗′(Ax− b) ≥ 0 which combined with the inequality μ∗′

(Ax̂− b) > 0 implies
that

μ∗′(Ax̃− b) = αμ∗′(Ax̂− b) + (1 − α)μ∗′(Ax− b) > 0 ∀ α ∈ (0, 1).(38)

Furthermore, since f is convex, we have

f(x̃) ≤ αf(x̂) + (1 − α)f(x) = f∗ +
(
f(x) − f∗) + α

(
f(x̂) − f(x)

)
∀ α ∈ (0, 1).

Thus, for α small enough so that α
(
f(x̂) − f(x)

)
< f∗ − f(x), we have f(x̃) < f∗ as

well as μ∗′(Ax̃− b) > 0 (cf. (38)).
We now introduce the following constraint qualification, which is analogous to

one introduced for nonconvex problems by Bertsekas and Ozdaglar [BeO02].
Definition 9. The constraint set of the convex problem (P) is said to be pseudo-

normal if there does not exist a vector μ ≥ 0 and a vector x̃ ∈ X satisfying the
following conditions:

(i) 0 = infx∈X μ′g(x).
(ii) μ′g(x̃) > 0.
To provide a geometric interpretation of pseudonormality, let us introduce the set

G =
{
g(x) | x ∈ X

}
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G = {g(x) | x ∈ X}

0

μ

 Not Pseudonormal

Pseudonormal (Slater Condition)

G = {g(x) | x ∈ X}

H

μ

0

  Pseudonormal (Linear Constraints)

G = {g(x) | x ∈ X}

μ

0

X = Rn

(b) (c)

(a)

H

H

Fig. 2. Geometric multiplier interpretation of pseudonormality. Consider the set
G =

{
g(x) | x ∈ X

}
and the hyperplanes that support this set. For feasibility, G should intersect the nonpositive orthant
{z | z ≤ 0}. The first condition [0 = infx∈X μ′g(x)] in the definition of pseudonormality means that
there is a hyperplane H with normal μ ≥ 0, which passes through 0, supports G, and contains G in
its positive halfspace (note that, as illustrated in figure (b), this cannot happen if G intersects the
interior of the nonpositive orthant; cf. the Slater criterion). The second condition means that H
does not fully contain G (cf. figures (a) and (c)). If the Slater criterion holds, the first condition
cannot be satisfied. If the linearity criterion holds, the set G is an affine set and the second condition
cannot be satisfied (this depends critically on X being an affine set rather than X being a general
polyhedron).

and consider hyperplanes that support this set and pass through 0. As Figure 2
illustrates, pseudonormality means that there is no hyperplane with a normal μ ≥ 0
that properly separates the sets {0} and G, and contains G in its positive halfspace.

It is evident (see also Figure 2) that pseudonormality holds under the Slater
condition, i.e., if there exists an x̄ ∈ X such that g(x̄) < 0. Proposition 8 also shows
that if f∗ < ∞, the constraint functions g1, . . . , gr are affine, and the constraint
set is pseudonormal, then there exists a geometric multiplier satisfying the special
condition (CV’) of Proposition 8. As illustrated also in Figure 2, the constraint set
is pseudonormal if X is an affine set and gj , j = 1, . . . , r, are affine functions. In
conclusion, if f∗ < ∞, and either the Slater condition holds, or X and g1, . . . , gr
are affine, then the constraint set is pseudonormal, and a geometric multiplier is
guaranteed to exist . Since in this case there is no duality gap, Proposition 7 guarantees
the existence of a geometric multiplier (the one of minimum norm) that satisfies the
corresponding (CV) condition and sensitivity properties.
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Finally, consider the question of pseudonormality and existence of geometric mul-
tipliers in the case where X is the intersection of a polyhedral set and a convex set C,
and there exists a feasible solution that belongs to the relative interior of C. Then,
the constraint set need not be pseudonormal, as Figure 2(a) illustrates. However,
it is pseudonormal in the extended representation (i.e., when the affine inequalities
that represent the polyhedral part are lumped with the remaining affine inequality
constraints), and it follows that there exists a geometric multiplier in the extended
representation. From this, it follows that there exists a geometric multiplier in the
original representation as well (see Exercise 6.2 of [BNO03]).

4. Fritz John conditions when there is no optimal solution. In the pre-
ceding sections, we studied sensitivity properties of the geometric multiplier or dual
optimal solution of minimum norm in the case where there exists a primal optimal
solution or a dual optimal solution. In this section and the next section, we allow the
problem to have neither a primal nor a dual optimal solution, and we develop several
analogous results.

The Fritz John conditions of Propositions 3 and 8 are weaker than Proposition
2 in that they do not include conditions analogous to condition (CV). Unfortunately,
such a condition does not hold in the absence of additional assumptions, as can be
seen from the following example.

Example 1. Consider the one-dimensional problem

minimize f(x)
subject to g(x) = x ≤ 0, x ∈ X = {x | x ≥ 0},

where

f(x) =

⎧⎪⎨
⎪⎩
−1 if x > 0,

0 if x = 0,

1 if x < 0.

Then f is convex over X, and the assumptions of Propositions 3 and 8 are satisfied.
Indeed, each FJ-multiplier must have the form μ∗

0 = 0 and μ∗ > 0 (cf. Figure 3).
However, here we have f∗ = 0, and for all x with g(x) > 0, we have x > 0 and
f(x) = −1. Thus, there is no sequence {xk} ⊂ X satisfying (2)–(4).

The following proposition imposes the stronger closedness assumption in order to
derive an enhanced set of Fritz John conditions analogous to those in Proposition 2.
The proof uses ideas that are similar to the ones of the proof of Proposition 2, but
is more complicated because an optimal solution of (P) may not exist. In particular,
we approximate X by a sequence of expanding bounded convex subsets and we work
with an optimal solution of the corresponding problem.

Proposition 10 (enhanced Fritz John conditions). Consider the convex problem
(P) under Assumption 1 (closedness), and assume that f∗ < ∞. Then there exists an
FJ-multiplier (μ∗

0, μ
∗) satisfying the following condition (CV). Moreover, if μ∗

0 	= 0,
then μ∗/μ∗

0 must be the geometric multiplier of minimum norm.

(CV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that
satisfies (2), (3), and (4).

Proof. If f(x) ≥ f∗ for all x ∈ X, then μ∗
0 = 1 and μ∗ = 0 form an FJ-multiplier,

and condition (CV) is satisfied. Moreover, (CV) (in particular, (3)) is satisfied by
only μ∗ = 0. We will thus assume that there exists some x ∈ X such that f(x) < f∗.
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S={(g(x),f(x)) | x  ∈ X}

f*

u

w

(μ∗,μ0∗)

Fig. 3. Illustration of the set S =
{(

g(x), f(x)
)
| x ∈ X

}
in Example 1. Even though μ∗ > 0,

there is no sequence {xk} ⊂ X such that g(xk) > 0 for all k, and f(xk) → f∗.

In this case, f∗ is finite. Consider the problem

minimize f(x)
subject to x ∈ Xk, g(x) ≤ 0,

(39)

where

Xk = X ∩ {x | ‖x‖ ≤ βk}, k = 1, 2, . . . ,

and β is a scalar that is large enough so that for all k, the constraint set
{
x ∈ Xk |

g(x) ≤ 0
}

is nonempty. Since f and gj are closed and convex when restricted to X,
they are closed, convex, and coercive when restricted to Xk. Hence, problem (39) has
an optimal solution, which we denote by xk. Since this is a more constrained problem
than the original, we have f∗ ≤ f(xk) and f(xk) ↓ f∗ as k → ∞. Let

γk = f(xk) − f∗.

Note that if γk = 0 for some k, then xk is an optimal solution for problem (P), and
the result follows from Proposition 2 on enhanced Fritz John conditions for convex
problems with an optimal solution. Therefore, we assume that γk > 0 for all k.

For positive integers k and positive scalars m, we consider the saddle function

Lk,m(x, ξ) = f(x) +
(γk)2

4k2
‖x− xk‖2 + ξ′g(x) − ‖ξ‖2

2m
.

We note that Lk,m(x, ξ), viewed as a function from Xk to �, for fixed ξ ≥ 0, is closed,
convex, and coercive, in view of the closedness assumption. Furthermore, Lk,m(x, ξ)
is negative definite quadratic in ξ for fixed x. Hence, we can use the saddle point
theorem (e.g., [BNO03, Proposition 2.6.9]) to assert that Lk,m has a saddle point
over x ∈ Xk and ξ ≥ 0, which we denote by (xk,m, ξk,m).

We now derive several properties of the saddle points (xk,m, ξk,m), which set the
stage for the main argument. The first of these properties is

f(xk,m) ≤ Lk,m(xk,m, ξk,m) ≤ f(xk),

which is shown in the next paragraph.
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The infimum of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m

′
g(xk,m)

= inf
x∈Xk

{
f(x) +

(γk)2

4k2
‖x− xk‖2 + ξk,m

′
g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x− xk‖2 + ξk,m

′
g(x)

}
(40)

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x− xk‖2

}
= f(xk).

Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m

′
g(xk,m) − 1

2m
‖ξk,m‖2

≤ f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m

′
g(xk,m)(41)

≤ f(xk).

Since Lk,m is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is attained at

ξk,m = mg+(xk,m).(42)

This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 +

m

2
‖g+(xk,m)‖2

≥ f(xk,m).

(43)

We next show another property of the saddle points (xk,m, ξk,m), namely, that
for each k, we have

lim
m→∞

f(xk,m) = f(xk) = f∗ + γk.(44)

For a fixed k and any sequence of integers m that tends to ∞, consider the corre-
sponding sequence {xk,m}. From (41) and (43), we see that {xk,m} belongs to the set{
x ∈ Xk | f(x) ≤ f(xk)

}
, which is compact, since f is closed. Hence, {xk,m} has a

cluster point, denoted by x̂k, which belongs to
{
x ∈ Xk | f(x) ≤ f(xk)

}
. By passing

to a subsequence if necessary, we can assume without loss of generality that {xk,m}
converges to x̂k. We claim that x̂k is feasible for problem (39), i.e., x̂k ∈ Xk and
g(x̂k) ≤ 0. Indeed, the sequence

{
f(xk,m)

}
is bounded from below by infx∈Xk f(x),

which is finite by Weierstrass’s theorem since f is closed and coercive when restricted
to Xk. Also, for each k, Lk,m(xk,m, ξk,m) is bounded from above by f(xk) (cf. (41)),
so (43) implies that

lim sup
m→∞

gj(x
k,m) ≤ 0 ∀ j = 1, . . . , r.

Therefore, by using the closedness of gj , we obtain g(x̂k) ≤ 0, implying that x̂k is a
feasible solution of problem (39). Thus, f(x̂k) ≥ f(xk). Using (41) and (43) together
with the closedness of f , we also have

f(x̂k) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(xk),
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thereby showing (44).
The next step in the proof is given in the following lemma.
Lemma 11. For all sufficiently large k, and for all scalars m ≤ 1/

√
γk, we have

f(xk,m) ≤ f∗ − γk

2
.(45)

Furthermore, there exists a scalar mk ≥ 1/
√
γk such that

f(xk,mk) = f∗ − γk

2
.(46)

Proof. Let γ = f∗ − f(x), where x was defined earlier as the vector in X such
that f(x) < f∗. For sufficiently large k, we have x ∈ Xk and γk < γ. Consider the
vector

zk =

(
1 − 2γk

γk + γ

)
xk +

2γk

γk + γ
x,

which belongs to Xk for sufficiently large k (by the convexity of Xk and the fact that
2γk/(γk + γ) < 1). By the convexity of f , we have

f(zk) ≤
(

1 − 2γk

γk + γ

)
f(xk) +

2γk

γk + γ
f(x)

=

(
1 − 2γk

γk + γ

)
(f∗ + γk) +

2γk

γk + γ
(f∗ − γ)(47)

= f∗ − γk.

Similarly, by the convexity of gj , we have

gj(z
k) ≤

(
1 − 2γk

γk + γ

)
gj(x

k) +
2γk

γk + γ
gj(x) ≤ 2γk

γk + γ
gj(x).(48)

Using (43), we obtain

f(xk,m) ≤ Lk,m(xk,m, ξk,m)

= inf
x∈Xk

sup
ξ≥0

Lk,m(x, ξ)

= inf
x∈Xk

{
f(x) +

(γk)2

4k2
‖x− x̄k‖2 +

m

2
‖g+(x)‖2

}

≤ f(x) + (βγk)2 +
m

2
‖g+(x)‖2 ∀ x ∈ Xk,

where in the last inequality we also use the definition of Xk so that ‖x− x̄k‖ ≤ 2βk
for all x ∈ Xk. Substituting x = zk in the preceding relation, and using (47) and
(48), we see that for large k,

f(xk,m) ≤ f∗ − γk + (βγk)2 +
2m(γk)2

(γk + γ)2
‖g+(x)‖2.

Since γk → 0, this implies that for sufficiently large k and for all scalars m ≤ 1/
√

γk,
we have

f(xk,m) ≤ f∗ − γk

2
,
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i.e., (45) holds.

We next show that there exists a scalar mk ≥ 1/
√
γk such that (46) holds. In

the process, we show that, for fixed k, Lk,m(xk,m, ξk,m) changes continuously with
m, i.e., for all m > 0, we have Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m → m. (By
this we mean that, for every sequence {mt} that converges to m, the corresponding

sequence Lk,mt(xk,mt

, ξk,m
t

) converges to Lk,m(xk,m, ξk,m).) Denote

fk(x) = f(x) +
(γk)2

4k2
‖x− xk‖2.

From (43), we have

Lk,m(xk,m, ξk,m) = f̄(xk,m) +
m

2
‖g+(xk,m)‖2 = inf

x∈Xk

{
f̄(x) +

m

2
‖g+(x)‖2

}
,

so that for all m ≥ m, we obtain

Lk,m(xk,m, ξk,m) = fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2.

It follows that Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m ↓ m. Similarly, we have for
all m ≤ m

fk(xk,m) +
m

2
‖g+(xk,m)‖2 ≤ fk(xk,m) +

m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

= fk(xk,m) +
m

2
‖g+(xk,m)‖2 +

m−m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2 +

m−m

2
‖g+(xk,m)‖2.

For each k, f(xk,m) is bounded from below by infx∈Xk f(x), which is finite by Weier-
strass’s theorem since f is closed and coercive when restricted to Xk. Since, by (41)
and (43),

f(xk,m) +
m

2
‖g+(xk,m)‖2 ≤ f(xk),

we see that m‖g+(xk,m)‖2 is bounded from above as m ↑ m > 0, so that (m −
m)‖g+(xk,m)‖2 → 0. Therefore, we have from the preceding relation that Lk,m(xk,m,
ξk,m) → Lk,m(xk,m, ξk,m) as m ↑ m, which shows that Lk,m(xk,m, ξk,m) changes
continuously with m.

Next, we show that, for fixed k, xk,m → xk,m as m → m. Since, for each k,
xk,m belongs to the compact set

{
x ∈ Xk | f(x) ≤ f(xk)

}
, it has a cluster point as

m → m. Let x̂ be a cluster point of xk,m. Using the continuity of Lk,m(xk,m, ξk,m)
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in m, and the closedness of fk and gj , we obtain

Lk,m(xk,m, ξk,m) = lim
m→m̄

Lk,m(xk,m, ξk,m)

= lim
m→m

{
fk(xk,m) +

m

2
‖g+(xk,m)‖2

}

≥ fk(x̂) +
m

2
‖g+(x̂)‖2

≥ inf
x∈Xk

{
fk(x) +

m

2
‖g+(x)‖2

}
= Lk,m(xk,m, ξk,m).

This shows that x̂ attains the infimum of fk(x)+ m
2 ‖g+(x)‖2 over x ∈ Xk. Since this

function is strictly convex, it has a unique optimal solution, showing that x̂ = xk,m.
Finally, we show that f(xk,m) → f(xk,m) as m → m. Since f is lower semicontin-

uous at xk,m, we have f(xk,m) ≤ lim infm→m f(xk,m). Thus it suffices to show that
f(xk,m) ≥ lim supm→m f(xk,m). Assume that f(xk,m) < lim supm→m f(xk,m). Using
the continuity of Lk,m(xk,m, ξk,m) in m and the fact that xk,m → xk,m as m → m,
we have

fk(xk,m) + lim inf
m→m

‖g+(xk,m)‖2 < lim sup
m→m

Lk,m(xk,m, ξk,m)

= Lk,m(xk,m, ξk,m)

= fk(xk,m) + ‖g+(xk,m)‖2.

This contradicts the lower semicontinuity of gj , so that f(xk,m) ≥ lim supm→m f(xk,m).
Thus f(xk,m) is continuous in m.

From (44), (45), and the continuity of f(xk,m) in m, we see that there exists some

scalar mk ≥ 1/
√
γk such that (46) holds.

We are now ready to construct FJ-multipliers with the desired properties. By
combining (46), (41), and (43) (for m = mk), together with the facts that f(xk) → f∗

and γk → 0 as k → ∞, we obtain

lim
k→∞

(
f(xk,mk) − f∗ +

(γk)2

4k2
‖xk,mk − xk‖2 + ξk,m

′
kg(xk,mk)

)
= 0.(49)

Denote

δk =
√

1 + ‖ξk,mk‖2, μk
0 =

1

δk
, μk =

ξk,mk

δk
.(50)

Since δk is bounded from below by 1, (49) yields

lim
k→∞

(
μk

0f(xk,mk) − μk
0f

∗ +
(γk)2

4k2δk
‖xk,mk − xk‖2 + μk′

g(xk,mk)

)
= 0.(51)

Substituting m=mk in the first relation of (40) and dividing by δk, we obtain

μk
0f(xk,mk) +

(γk)2

4k2δk
‖xk,mk − xk‖2 + μk′

g(xk,mk)

≤ μk
0f(x) + μk′

g(x) +
(βγk)2

δk
∀ x ∈ Xk,
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where we also use the fact that ‖x−x̄k‖ ≤ 2βk for all x ∈ Xk (cf. the definition of Xk).
Since the sequence

{
(μk

0 , μ
k)
}

is bounded, it has a cluster point, denoted by (μ∗
0, μ

∗),
which satisfies conditions (ii) and (iii) in the definition of an FJ-multiplier. Without
loss of generality, we will assume that the entire sequence

{
(μk

0 , μ
k)
}

converges to
(μ∗

0, μ
∗). For any x ∈ X, we have x ∈ Xk for all k sufficiently large. Taking the limit

as k → ∞ in the preceding relation and using (51) and γk → 0 yield

μ∗
0f

∗ ≤ μ∗
0f(x) + μ∗′g(x) ∀ x ∈ X,

which implies that

μ∗
0f

∗ ≤ inf
x∈X

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

μ∗
0f(x)

= μ∗
0f

∗.

Thus we have

μ∗
0f

∗ = inf
x∈X

{
μ∗

0f(x) + μ∗′g(x)
}
,

so that μ∗
0, μ

∗ satisfy condition (i) in the definition of an FJ-multiplier. Note that
the existence of x ∈ X such that f(x) < f∗, together with condition (i), implies that
μ∗ 	= 0.

Finally, we establish condition (CV). Using (42) and (50) and the fact that μk →
μ∗, we obtain

g+(xk,mk)

‖g+(xk,mk)‖ =
μk,mk

‖μk,mk‖ → μ∗

‖μ∗‖ .

We have from (46) and γk → 0 that f(xk,mk) → f∗. We also have from (41), (43)
with m = mk, and (46) that

mk

2
‖g+(xk,mk)‖2 ≤ f(x̄k) − f(xk,mk) =

3

2
γk,

where the equality uses (42) and (50). Since γk → 0 and mk ≥ 1/
√

γk → ∞, this
yields g+(xk,mk) → 0. Moreover, combining the above inequality with (46) yields

f∗ − f(xk,mk)

‖g+(xk,mk)‖ =
γk

2‖g+(xk,mk)‖ ≥ mk‖g+(xk,mk)‖
6

=
‖μk,mk‖
6μk,mk

0

.(52)

If μ∗
0 = 0, then μk,mk

0 → 0, and so (52) together with ‖μk,mk‖ → ‖μ∗‖ > 0 yields

f∗ − f(xk,mk)

‖g+(xk,mk)‖ → ∞.

It follows that the sequence {xk,mk} satisfies condition (CV) of the proposition. If
μ∗

0 	= 0, then μ∗/μ∗
0 is a geometric multiplier and f∗ = q∗, so that μ∗/μ∗

0 is also a dual
optimal solution. Thus the set of dual optimal solutions is nonempty and coincides
with the set of geometric multipliers. Then, the vector (1, μ̄), where μ̄ is the dual
optimal solution of minimum norm, is an FJ-multiplier and, by Proposition 5 and the
fact that f∗ = q∗, it satisfies condition (CV) and is the only dual optimal solution
that satisfies this condition. This completes the proof.
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5. Dual Fritz John conditions when there is no optimal solution. The
FJ-multipliers of Propositions 3, 8, and 10 define a hyperplane with normal (μ∗, μ∗

0)
that supports the set of constraint-cost pairs

M =
{
(u,w) | there exists x ∈ X such that g(x) ≤ u, f(x) ≤ w

}
at (0, f∗). On the other hand, it is possible to construct a hyperplane that supports
the set M at the point (0, q∗), where q∗ is the dual optimal value, while asserting
the existence of a sequence that satisfies a condition analogous to condition (CV) of
Proposition 10. This is the subject of the next proposition. Its proof uses Lemmas 1
and 4.

In analogy with an FJ-multiplier, we consider a scalar μ∗
0 and a vector μ∗ =

(μ∗
1, . . . , μ

∗
r)

′, satisfying the following conditions:
(i) μ∗

0q
∗ = infx∈X

{
μ∗

0f(x) + μ∗′g(x)
}
.

(ii) μ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) μ∗
0, μ

∗
1, . . . , μ

∗
r are not all equal to 0.

We call such a pair (μ∗
0, μ

∗) a dual FJ-multiplier. If μ∗
0 	= 0, then μ∗/μ∗

0 is a dual
optimal solution; otherwise μ∗

0 = 0 and μ∗ 	= 0.
Proposition 12 (enhanced dual Fritz John conditions). Consider the convex

problem (P) under Assumption 1 (closedness), and assume that f∗ < ∞ and −∞ <
q∗. Then there exists a dual FJ-multiplier (μ∗

0, μ
∗) satisfying the following condition

(dCV). Moreover, if μ∗
0 	= 0, then μ∗/μ∗

0 must be the dual optimal solution of minimum
norm.
(dCV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that

satisfies

f(xk) → q∗, g+(xk) → 0,(53)

q∗ − f(xk)

‖g+(xk)‖ →
{
‖μ∗‖/μ∗

0 if μ∗
0 	= 0,

∞ if μ∗
0 = 0,

(54)

g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ .(55)

Proof. Since by assumption we have −∞ < q∗ and f∗ < ∞, it follows from
the weak duality relation q∗ ≤ f∗ that both q∗ and f∗ are finite. For k = 1, 2, . . . ,
consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 1

k4
, j = 1, . . . , r.

By Lemma 4, for each k, the optimal value of this problem is less than or equal to q∗.
Then, for each k, there exists a vector x̃k ∈ X that satisfies

f(x̃k) ≤ q∗ +
1

k2
, gj(x̃

k) ≤ 1

k4
, j = 1, . . . , r.

Consider also the problem

minimize f(x)

subject to gj(x) ≤ 1

k2
, j = 1, . . . , r,

x ∈ X̃k = X ∩ {x | ‖x‖ ≤ k
(
max1≤i≤k ‖x̃i‖ + 1

)
}.

(56)
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Since f and gj are closed and convex when restricted to X, they are closed, convex,

and coercive when restricted to X̃k. Hence, problem (56) has an optimal solution,
which we denote by xk. Note that since x̃k belongs to the feasible solution set of this
problem, we have

f(xk) ≤ f(x̃k) ≤ q∗ +
1

k2
.(57)

For each k, we consider the saddle function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k

and the set

Xk = X̃k ∩
{
x | gj(x) ≤ k, j = 1, . . . , r

}
.(58)

We note that Lk(x, ξ), for fixed ξ ≥ 0, is closed, convex, and coercive in x, when
restricted to Xk, and negative definite quadratic in ξ for fixed x. Hence, using the
saddle point theorem (e.g., [BNO03, Proposition 2.6.9]), we can assert that Lk has a
saddle point over x ∈ Xk and ξ ≥ 0, denoted by (xk, ξk).

Since Lk is quadratic in ξ, the supremum of Lk(x
k, ξ) over ξ ≥ 0 is attained at

ξk = kg+(xk).(59)

Similarly, the infimum of Lk(x, ξ
k) over x ∈ Xk is attained at xk, implying that

f(xk) + ξk
′
g(xk) = inf

x∈Xk

{
f(x) + ξk

′
g(x)

}
= inf

x∈Xk

{
f(x) + kg+(xk)′g(x)

}
≤ inf

x∈Xk, gj(x)≤ 1
k4 , j=1,... ,r,

{
f(x) + k

r∑
j=1

g+
j (xk)′gj(x)

}

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,... ,r,

{
f(x) +

r

k2

}

= f(xk) +
r

k2

≤ q∗ +
r + 1

k2
,

(60)

where the second inequality follows using the fact g+
j (xk) ≤ k, j = 1, . . . , r (cf. (58)),

and the third inequality follows from (57).

Since q∗ is finite, we may select a nonnegative sequence {ζk} such that

q(ζk) → q∗,
‖ζk‖2

2k
→ 0.(61)

(For example, we can take ζk to be any maximizer of q(ζ) subject to ζ ≥ 0 and
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‖ζ‖ ≤ k1/3.) Then, we have for all k

Lk(x
k, ξk) = sup

ξ≥0
inf

x∈Xk
Lk(x, ξ)

≥ sup
ξ≥0

inf
x∈X

Lk(x, ξ)

= sup
ξ≥0

{
inf
x∈X

{
f(x) + ξ′g(x)

}
− ‖ξ‖2

2k

}

= sup
ξ≥0

{
q(ξ) − ‖ξ‖2

2k

}

≥ q(ζk) − ‖ζk‖2

2k
.

(62)

Combining (62) and (60), we obtain

q(ζk) − ‖ζk‖2

2k
≤ Lk(x

k, ξk)

= f(xk) + ξk
′
g(xk) − ‖ξk‖2

2k

≤ f(xk) + ξk
′
g(xk)

≤ q∗ +
r + 1

k2
.

(63)

Taking the limit in the preceding relation and using (61), we obtain

lim
k→∞

{
f(xk) − q∗ + ξk

′
g(xk)

}
= 0.(64)

Denote

δk =
√

1 + ‖ξk‖2, μk
0 =

1

δk
, μk =

ξk

δk
.(65)

Since δk is bounded from below by 1, (64) yields

lim
k→∞

{μk
0

(
f(xk) − q∗

)
+ μk′

g(xk)} = 0.(66)

Dividing both sides of the first relation in (60) by δk, we get

μk
0f(xk) + μk′

g(xk) ≤ μk
0f(x) + μk′

g(x) ∀ x ∈ Xk.

Since the sequence
{
(μk

0 , μ
k)
}

is bounded, it has a cluster point (μ∗
0, μ

∗). This cluster
point satisfies conditions (ii) and (iii) of the proposition. Without loss of generality,
we assume that the entire sequence converges. For any x ∈ X, we have x ∈ Xk for
all k sufficiently large. Taking the limit as k → ∞ in the preceding relation and using
(66) yield

μ∗
0q

∗ ≤ μ∗
0f(x) + μ∗′

gj(x) ∀ x ∈ X.

We consider separately the two cases, μ∗
0 > 0 and μ∗

0 = 0, in the above relation to
show that (μ∗

0, μ
∗) satisfy condition (i) of the proposition. Indeed, if μ∗

0 > 0, by
dividing with μ∗

0, we have

q∗ ≤ inf
x∈X

{
f(x) +

μ∗′

μ∗
0

g(x)

}
= q

(
μ∗

μ∗
0

)
≤ q∗.
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Similarly, if μ∗
0 = 0, it can be seen that

0 = inf
x∈X

μ∗′
g(x)

(since f∗ < ∞, so that there exists an x ∈ X such that g(x) ≤ 0 and μ∗′g(x) ≤ 0).
Hence, in both cases, we have

μ∗
0q

∗ = inf
x∈X

{μ∗
0f(x) + μ∗′

g(x)},

thus showing condition (i) in the definition of a dual FJ-multiplier.
If μ∗ = 0, then μ∗

0 	= 0, (dCV) is automatically satisfied, and μ∗/μ∗
0 = 0 has

minimum norm. Assume now that μ∗ 	= 0. Using (59), (65), and the fact that
μk → μ∗, we obtain

g+(xk)

‖g+(xk)‖ =
μk

‖μk‖ → μ∗

‖μ∗‖ .

This proves (55). Also, we have from (63) that

k
(
f(xk) − q∗

)
+ ξk

′
kg(xk) ≤ r + 1

k
∀ k = 1, 2, . . . .

Using (59), this yields

k
(
f(xk) − q∗

)
+ ‖ξk‖2 ≤ r + 1

k
.

Dividing both sides by ‖ξk‖ = k‖g+(xk)‖ and using (65) yield

q∗ − f(xk)

‖g+(xk)‖ ≥ ‖ξk‖ − r + 1

k‖ξk‖ =
‖μk‖
μk

0

− r + 1

k‖μk‖/μk
0

.(67)

If μ∗
0 = 0, then μk

0 → 0, and so (67) together with ‖μk‖ → ‖μ∗‖ > 0 yields

q∗ − f(xk)

‖g+(xk)‖ → ∞.

If μ∗
0 	= 0, then (67) together with μk

0 → μ∗
0 and ‖μk‖ → ‖μ∗‖ yields

lim inf
k→∞

q∗ − f(xk)

‖g+(xk)‖ ≥ ‖μ∗‖
μ∗

0

.

Since μ∗/μ∗
0 is a dual optimal solution, Lemma 1 shows that in fact μ∗/μ∗

0 is of
minimum norm and the inequality holds with equality.

We finally show that f(xk) → q∗ and g+(xk) → 0. By (63) and (61), we have

lim
k→∞

‖ξk‖2

2k
= 0.(68)

By (59), we have

ξk
′
g(xk) =

1

k
‖ξk‖2,
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and so using also (63) and (61), we obtain

lim
k→∞

f(xk) +
‖ξk‖2

2k
= q∗,

which together with (68) shows that f(xk) → q∗. Moreover, (68) and (59) imply that

lim
k→∞

k‖g+(xk)‖2 = 0,

showing that g+(xk) → 0. Therefore, the sequence {xk} satisfies condition (dCV) of
the proposition, completing the proof.

Note that the proof of Proposition 12 is similar to the proof of Proposition 2. The
idea is to generate saddle points of the function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k

over x ∈ Xk (cf. (58)) and ξ ≥ 0. It can be shown that

Lk(x
k, ξk) = inf

u∈�r

{
pk(u) +

k

2
‖u+‖2

}
,

where pk(u) is the optimal value of the problem

minimize f(x)
subject to g(x) ≤ u, x ∈ Xk

(see the discussion following the proof of Proposition 2). For each k, the value
Lk(x

k, ξk) can be visualized geometrically as in Figure 1. However, here the rate
at which Xk approaches X is chosen high enough so that Lk(x

k, ξk) converges to q∗

as k → ∞ (cf. (63)), and not to f∗, as in the proof of Propositions 2 or 10.
As a final remark, it appears that the closedness assumption in Proposition 12

can be relaxed analogously as in Proposition 7 by using Lemmas 1 and 6.
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