## ENHANCED FRITZ JOHN CONDITIONS FOR CONVEX PROGRAMMING\*

DIMITRI P. BERTSEKAS<sup>†</sup>, ASUMAN E. OZDAGLAR<sup>†</sup>, AND PAUL TSENG<sup>‡</sup>

**Abstract.** We consider convex constrained optimization problems, and we enhance the classical Fritz John optimality conditions to assert the existence of multipliers with special sensitivity properties. In particular, we prove the existence of Fritz John multipliers that are informative in the sense that they identify constraints whose relaxation, at rates proportional to the multipliers, strictly improves the primal optimal value. Moreover, we show that if the set of geometric multipliers is nonempty, then the minimum-norm vector of this set is informative and defines the optimal rate of cost improvement per unit constraint violation. Our assumptions are very general and, in particular, allow for the presence of a duality gap, we establish enhanced Fritz John conditions involving the dual optimal value and dual optimal solutions.

Key words. convex program, Fritz John multiplier, geometric multiplier, duality, sensitivity analysis

AMS subject classifications. 90C25, 90C31, 90C46

DOI. 10.1137/040613068

1. Introduction. We consider the convex constrained optimization problem

(P) minimize 
$$f(x)$$
  
subject to  $x \in X$ ,  $g(x) = (g_1(x), \dots, g_r(x))' \le 0$ ,

where X is a nonempty convex subset of  $\Re^n$ , and  $f: X \to \Re$  and  $g_j: X \to \Re$  are convex functions. Here and throughout the paper, we denote by  $\Re$  the real line, by  $\Re^n$  the space of n-dimensional real column vectors with the standard Euclidean norm,  $\|\cdot\|$ , and by ' the transpose of a vector. We say that a function  $f: X \to \Re$  is convex (respectively, closed) if its epigraph  $\operatorname{epi}(f) = \{(x, w) \mid x \in X, f(x) \leq w\}$  is convex (respectively, closed). For some of our results, we will assume that  $f, g_1, \ldots, g_r$  are also closed. We note that our analysis readily extends to the case where there are affine equality constraints by replacing each affine equality constraint with two affine inequality constraints.

We refer to problem (P) as the *primal problem* and we consider the *dual problem* 

(D) 
$$\begin{array}{rl} \text{maximize} & q(\mu) \\ \text{subject to} & \mu > 0. \end{array}$$

where q is the *dual function*:

$$q(\mu) = \inf_{x \in X} \{ f(x) + \mu' g(x) \}, \qquad \mu \in \Re^r.$$

<sup>\*</sup>Received by the editors August 8, 2004; accepted for publication (in revised form) May 3, 2005; published electronically January 12, 2006. This research was supported by National Science Foundation grant ECS-0218328.

http://www.siam.org/journals/siopt/16-3/61306.html

<sup>&</sup>lt;sup>†</sup>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (dimitrib@mit.edu).

 $<sup>^{\</sup>ddagger} \text{Department}$  of Mathematics, University of Washington, Seattle, WA 98195 (tseng@math.washington.edu).

We denote by  $f^*$  and  $q^*$  the optimal values of (P) and (D), respectively:

$$f^* = \inf_{x \in X, \ g(x) \le 0} f(x), \qquad q^* = \sup_{\mu \ge 0} q(\mu).$$

We write  $f^* < \infty$  or  $q^* > -\infty$  to indicate that (P) or (D), respectively, has at least one feasible solution. The weak duality theorem states that  $q^* \leq f^*$ . If  $q^* = f^*$ , we say that there is no duality gap.

An important result (see, e.g., [BNO03, Proposition 6.6.1]) is that there always exist a scalar  $\mu_0^*$  and a vector  $\mu^* = (\mu_1^*, \ldots, \mu_r^*)'$  satisfying the following conditions:

- (i)  $\mu_0^* f^* = \inf_{x \in X} \{ \mu_0^* f(x) + {\mu^*}' g(x) \}.$
- (ii)  $\mu_j^* \ge 0$  for all j = 0, 1, ..., r.
- (iii)  $\mu_0^*, \mu_1^*, \dots, \mu_r^*$  are not all equal to 0.

This type of conditions traces its origin to Fritz John's work [Joh48], although John's original conditions associate the multiplier pair  $(\mu_0^*, \mu^*)$  with a specific optimal solution of problem (P), and condition (i) instead involves the first derivatives at this optimal solution being equal to zero (assuming  $X = \Re^n$ ). Since John's work has been primarily responsible for popularizing the idea of using the extra multiplier  $\mu_0^*$  without any constraint qualification, we call a pair  $(\mu_0^*, \mu^*)$  satisfying (i)–(iii) an *FJ*-multiplier.<sup>1</sup>

If the coefficient  $\mu_0^*$  of an FJ-multiplier is nonzero, by normalization one can obtain an FJ-multiplier of the form  $(1, \mu^*)$ , and we have

$$\mu^* \ge 0, \qquad f^* = q(\mu^*).$$

A vector  $\mu^*$  thus obtained is called a *geometric multiplier*. It is well known and readily seen from the weak duality theorem that  $\mu^*$  is a geometric multiplier if and only if there is no duality gap and  $\mu^*$  is an optimal solution of the dual problem. It is further known that the set of geometric multipliers is closed and coincides with the negative of the subdifferential of the *perturbation function* 

$$p(u) = \inf_{x \in X, \ g(x) \le u} f(x)$$

at u = 0, provided that p is convex and proper and p(0) is finite [Roc70, Theorem 29.1], [BN003, Proposition 6.5.8]. If in addition the origin is in the relative interior of dom(p) (a constraint qualification that guarantees that the set of geometric multipliers is nonempty) and  $\mu^*$  is the geometric multiplier of minimum norm, then either  $\mu^* = 0$ , in which case  $0 \in \partial p(0)$  and u = 0 is a global minimum of p, or  $\mu^* \neq 0$ , in which case  $\mu^*$  is a direction of steepest descent for p at u = 0; i.e., the directional derivative p'(0; d) of p at 0 in the direction d satisfies

(1) 
$$\inf_{\|d\|=1} p'(0;d) = p'(0;\mu^*/\|\mu^*\|) = \frac{1}{\|\mu^*\|} \sup_{v \in \partial p(0)} {\mu^*}'v = -\|\mu^*\| < 0.$$

Thus, the minimum-norm geometric multiplier provides useful sensitivity information; namely, relaxing the inequality constraints at rates equal to the components of  $\mu^*/||\mu^*||$  yields a decrease of the optimal value at the optimal rate, which is equal to  $||\mu^*||$ .

<sup>&</sup>lt;sup>1</sup>Fritz John's conditions were independently derived earlier by Karush [Kar39], as noted in Kuhn's historical note [Kuh91, section 6].

On the other hand, if the origin is not a relative interior point of dom(p), there may be no direction of steepest descent, because the directional derivative function  $p'(0; \cdot)$  is discontinuous, and the infimum over ||d|| = 1 in (1) may not be attained. This can happen even if there is no duality gap and there exists a geometric multiplier. As an example, consider the following two-dimensional problem:

minimize 
$$-x_2$$
  
subject to  $x \in X = \{x \mid x_2^2 \le x_1\}, \quad g_1(x) = x_1 \le 0, \quad g_2(x) = x_2 \le 0$ 

It can be verified that

$$dom(p) = \{u \mid u_2^2 \le u_1\} + \{u \mid u \ge 0\}$$

and

$$p(u) = \begin{cases} -u_2 & \text{if } u_2^2 \le u_1, \\ -\sqrt{u_1} & \text{if } u_1 \le u_2^2, \, u_1 \ge 0, \, u_2 \ge 0, \\ \infty & \text{otherwise,} \end{cases}$$

while

$$q(\mu) = \begin{cases} -\frac{(\mu_2 - 1)^2}{4\mu_1} & \text{if } \mu_1 > 0, \\ 0 & \text{if } \mu_1 = 0, \, \mu_2 = 1, \\ -\infty & \text{otherwise.} \end{cases}$$

We have  $f^* = q^* = 0$ , and the set of geometric multipliers is

$$\{\mu \ge 0 \mid \mu_2 = 1\}.$$

However, the geometric multiplier of minimum norm,  $\mu^* = (0, 1)$ , is not a direction of steepest descent, since starting at u = 0 and going along the direction (0, 1), p(u) is equal to 0, so

$$p'(0;\mu^*) = 0.$$

In fact p has no direction of steepest descent at u = 0, because  $p'(0; \cdot)$  is not continuous. To see this, note that directions of descent  $d = (d_1, d_2)$  are those for which  $d_1 > 0$ and  $d_2 > 0$ , and that along any such direction, we have

$$p'(0;d) = -d_2.$$

It follows that

$$\inf_{\|d\|=1} p'(0;d) = -1 = -\|\mu^*\|,$$

but there is no direction of descent that attains the infimum above. On the other hand, there are sequences  $\{u^k\} \subset \operatorname{dom}(p)$  and  $\{x^k\} \subset X$  of infeasible points (in fact, the sequences  $u^k = x^k = (1/k^2, 1/k)$ ) such that

$$\lim_{k \to \infty} \frac{p(0) - p(u^k)}{\|u^k^+\|} = \lim_{k \to \infty} \frac{f^* - f(x^k)}{\|g^+(x^k)\|} = \|\mu^*\| = 1,$$

where we denote

$$u_j^+ = \max\{0, u_j\}, \quad u^+ = (u_1^+, \dots, u_r^+)', g_j^+(x) = \max\{0, g_j(x)\}, g^+(x) = (g_1^+(x), \dots, g_r^+(x))'.$$

Thus, the minimum norm of geometric multipliers can still be interpreted as the optimal rate of improvement of the cost per unit constraint violation. However, this rate of improvement cannot be obtained by approaching 0 along a straight line but only by approaching it along a curve.

In this paper, we derive more powerful versions of the Fritz John conditions, which provide sensitivity information, like the one discussed above. In particular, in addition to conditions (i)-(iii) above, we obtain an additional necessary condition (e.g., condition (CV) of Proposition 2 in the next section) that narrows down the set of candidates for optimality. Furthermore, our conditions also apply in the exceptional case where the set of geometric multipliers is empty. In this case, we will show that a certain degenerate FJ-multiplier, i.e., one of the form  $(0, \mu^*)$  with  $\mu^* \neq 0$  and  $0 = \inf_{x \in X} \mu^{*'} g(x)$ , provides sensitivity information analogous to that provided by the minimum-norm geometric multiplier. In particular, there exists an FJ-multiplier  $(0, \mu^*)$  such that, by relaxing the inequality constraints at rates proportional to the components of  $\mu^*/||\mu^*||$ , we can strictly improve the primal optimal value. Furthermore,  $\|\mu^*\|$  is the optimal rate of improvement per unit constraint violation. In the case where there is a duality gap, we also prove dual versions of these results, involving the dual optimal value, and dual FJ-multipliers. To our knowledge, except for a preliminary version of our work that appeared in the book [BNO03], these are the first results that provide enhanced, sensitivity-related Fritz John conditions for convex programming and also derive the optimal sensitivity rate under very general assumptions, i.e., without any constraint qualification and even in the presence of a duality gap.

This paper is organized as follows. In section 2, we present enhanced Fritz John conditions for convex problems that have optimal solutions. In section 3, we present analogous results for convex problems that have dual optimal solutions. In particular, we show that the dual optimal solution of minimum norm provides useful sensitivity information, even in the presence of a duality gap. We also introduce the notion of pseudonormality, and we discuss its connections to classical constraint qualifications. In section 4, we present Fritz John conditions for problems that may not have optimal solutions. In section 5, we prove dual versions of these conditions involving the dual optimal value.

2. Enhanced Fritz John conditions. The existence of FJ-multipliers is often used as the starting point for the analysis of the existence of geometric multipliers. Unfortunately, these conditions in their classical form are not sufficient to deduce the existence of geometric multipliers under some of the standard constraint qualifications, such as when  $X = \Re^n$  and the constraint functions  $g_j$  are affine. Recently, the classical Fritz John conditions have been enhanced through the addition of an extra necessary condition, and their effectiveness has been significantly improved (see Hestenes [Hes75, Theorem 10.5 on page 242] for the case  $X = \Re^n$ , Bertsekas [Ber99, Proposition 3.3.11] for the case where X is a closed convex set, and Bertsekas and Ozdaglar [BeO02] for the case where X is a closed set). All of these results assume that an optimal solution exists and that the cost and the constraint functions are smooth (but possibly nonconvex). In this section, we retain the assumption of existence of an optimal solution, and instead of smoothness we assume the following.

Assumption 1 (closedness). The functions f and  $g_1, \ldots, g_r$  are closed.

We note that f and  $g_1, \ldots, g_r$  are closed if and only if they are lower semicontinuous on X, i.e., for each  $\bar{x} \in X$ , we have

$$f(\bar{x}) \leq \liminf_{x \in X, \ x \to \bar{x}} f(x), \qquad g_j(\bar{x}) \leq \liminf_{x \in X, \ x \to \bar{x}} g_j(x), \quad j = 1, \dots, r$$

(see, e.g., [BNO03, Proposition 1.2.2]). Under the preceding assumption, we prove the following version of the enhanced Fritz John conditions. Because we assume that f and  $g_1, \ldots, g_r$  are convex over X rather than over  $\Re^n$ , the lines of proof from the preceding references (based on the use of gradients or subgradients) break down. We use a different line of proof, which is based instead on minimax arguments. The proof also uses the following lemma.

LEMMA 1. Consider the convex problem (P) and assume that  $-\infty < q^*$ . If  $\mu^*$  is a dual optimal solution, then

$$\frac{q^* - f(x)}{\|g^+(x)\|} \le \|\mu^*\| \qquad \forall \ x \in X \ that \ are \ infeasible.$$

*Proof.* For any  $x \in X$  that is infeasible, we have from the definition of the dual function that

$$q^* = q(\mu^*) \le f(x) + {\mu^*}'g(x) \le f(x) + {\mu^*}'g^+(x) \le f(x) + \|\mu^*\|\|g^+(x)\|. \quad \Box$$

Note that the preceding lemma shows that the minimum distance to the set of dual optimal solutions is an upper bound for the cost improvement/constraint violation ratio  $(q^* - f(x))/||g^+(x)||$ . The next proposition shows that, under certain assumptions including the absence of a duality gap, this upper bound is sharp and is asymptotically attained by an appropriate sequence  $\{x^k\} \subset X$ . The same fact will also be shown in section 3, but under considerably more general assumptions (see Proposition 7).

PROPOSITION 2. Consider the convex problem (P) under Assumption 1 (closedness), and assume that  $x^*$  is an optimal solution. Then there exists an FJ-multiplier  $(\mu_0^*, \mu^*)$  satisfying the following condition (CV). Moreover, if  $\mu_0^* \neq 0$ , then  $\mu^*/\mu_0^*$ must be the geometric multiplier of minimum norm.

(CV) If  $\mu^* \neq 0$ , then there exists a sequence  $\{x^k\} \subset X$  of infeasible points that converges to  $x^*$  and satisfies

(2) 
$$f(x^k) \to f^*, \qquad g^+(x^k) \to 0,$$

(3) 
$$\frac{f^* - f(x^k)}{\|g^+(x^k)\|} \to \begin{cases} \|\mu^*\|/\mu_0^* & \text{if } \mu_0^* \neq 0\\ \infty & \text{if } \mu_0^* = 0 \end{cases}$$

(4) 
$$\frac{g^+(x^k)}{\|g^+(x^k)\|} \to \frac{\mu^*}{\|\mu^*\|}.$$

*Proof.* For positive integers k and m, we consider the saddle function

$$L_{k,m}(x,\xi) = f(x) + \frac{1}{k^3} \|x - x^*\|^2 + \xi' g(x) - \frac{1}{2m} \|\xi\|^2.$$

We note that, for fixed  $\xi \geq 0$ ,  $L_{k,m}(x,\xi)$ , viewed as a function from X to  $\Re$ , is closed and convex because of the closedness assumption. Furthermore, for a fixed x,  $L_{k,m}(x,\xi)$  is negative definite quadratic in  $\xi$ . For each k, we consider the set

$$X^{k} = X \cap \{ x \mid ||x - x^{*}|| \le k \}.$$

Since f and  $g_j$  are closed and convex when restricted to X, they are closed, convex, and coercive when restricted to  $X^k$ . Thus, we can use the saddle point theorem (e.g.,

[BNO03, Proposition 2.6.9]) to assert that  $L_{k,m}$  has a saddle point over  $x \in X^k$  and  $\xi \ge 0$ . This saddle point is denoted by  $(x^{k,m}, \xi^{k,m})$ .

The infimum of  $L_{k,m}(x,\xi^{k,m})$  over  $x \in X^k$  is attained at  $x^{k,m}$ , implying that

(5)  
$$f(x^{k,m}) + \frac{1}{k^3} \|x^{k,m} - x^*\|^2 + \xi^{k,m'} g(x^{k,m})$$
$$= \inf_{x \in X^k} \left\{ f(x) + \frac{1}{k^3} \|x - x^*\|^2 + \xi^{k,m'} g(x) \right\}$$
$$\leq \inf_{x \in X^k, g(x) \le 0} \left\{ f(x) + \frac{1}{k^3} \|x - x^*\|^2 + \xi^{k,m'} g(x) \right\}$$
$$\leq \inf_{x \in X^k, g(x) \le 0} \left\{ f(x) + \frac{1}{k^3} \|x - x^*\|^2 \right\}$$
$$= f(x^*).$$

Hence, we have

(6)  

$$L_{k,m}(x^{k,m},\xi^{k,m}) = f(x^{k,m}) + \frac{1}{k^3} \|x^{k,m} - x^*\|^2 + \xi^{k,m'} g(x^{k,m}) - \frac{1}{2m} \|\xi^{k,m}\|^2$$

$$\leq f(x^{k,m}) + \frac{1}{k^3} \|x^{k,m} - x^*\|^2 + \xi^{k,m'} g(x^{k,m})$$

$$\leq f(x^*).$$

Since  $L_{k,m}(x^{k,m},\xi)$  is quadratic in  $\xi$ , the supremum of  $L_{k,m}(x^{k,m},\xi)$  over  $\xi \ge 0$  is attained at

(7) 
$$\xi^{k,m} = mg^+(x^{k,m}).$$

This implies that

(8)  

$$L_{k,m}(x^{k,m},\xi^{k,m}) = f(x^{k,m}) + \frac{1}{k^3} \|x^{k,m} - x^*\|^2 + \frac{m}{2} \|g^+(x^{k,m})\|^2$$

$$\geq f(x^{k,m}) + \frac{1}{k^3} \|x^{k,m} - x^*\|^2$$

$$\geq f(x^{k,m}).$$

From (6) and (8), we see that the sequence  $\{x^{k,m}\}$ , with k fixed, belongs to the set  $\{x \in X^k \mid f(x) \leq f(x^*)\}$ , which is compact. Hence,  $\{x^{k,m}\}$  has a cluster point (as  $m \to \infty$ ), denoted by  $\overline{x}^k$ , which belongs to  $\{x \in X^k \mid f(x) \leq f(x^*)\}$ . By passing to a subsequence if necessary, we can assume without loss of generality that  $\{x^{k,m}\}$  converges to  $\overline{x}^k$  as  $m \to \infty$ . For each k, the sequence  $\{f(x^{k,m})\}$  is bounded from below by  $\inf_{x \in X^k} f(x)$ , which is finite by Weierstrass's theorem since f is closed and coercive when restricted to  $X^k$ . Also, for each k,  $L_{k,m}(x^{k,m}, \xi^{k,m})$  is bounded from above by  $f(x^*)$  (cf. (6)), so the equality in (8) implies that

$$\limsup_{m \to \infty} g_j(x^{k,m}) \le 0 \qquad \forall \ j = 1, \dots, r.$$

Therefore, by using the lower semicontinuity of  $g_j$ , we obtain  $g(\overline{x}^k) \leq 0$ , implying that  $\overline{x}^k$  is a feasible solution of problem (P), so that  $f(\overline{x}^k) \geq f(x^*)$ . Using (6) and (8) together with the lower semicontinuity of f, we also have

$$f(\overline{x}^k) \le \liminf_{m \to \infty} f(x^{k,m}) \le \limsup_{m \to \infty} f(x^{k,m}) \le f(x^*),$$

thereby showing that for each k,

$$\lim_{m \to \infty} f(x^{k,m}) = f(x^*).$$

Together with (6) and (8), this also implies that for each k,

$$\lim_{m \to \infty} x^{k,m} = x^*.$$

Combining the preceding relations with (6) and (8), for each k, we obtain

(9) 
$$\lim_{m \to \infty} (f(x^{k,m}) - f(x^*) + \xi^{k,m'}g(x^{k,m})) = 0$$

Denote

(10) 
$$\delta^{k,m} = \sqrt{1 + \|\xi^{k,m}\|^2}, \qquad \mu_0^{k,m} = \frac{1}{\delta^{k,m}}, \qquad \mu^{k,m} = \frac{\xi^{k,m}}{\delta^{k,m}}.$$

Since  $\delta^{k,m}$  is bounded from below by 1, by dividing (9) by  $\delta^{k,m}$ , we obtain

$$\lim_{m \to \infty} (\mu_0^{k,m} f(x^{k,m}) - \mu_0^{k,m} f(x^*) + \mu^{k,m'} g(x^{k,m})) = 0.$$

By the preceding relations, for each k we can find a sufficiently large integer  $m_k$  such that

(11) 
$$\left| \mu_0^{k,m_k} f(x^{k,m_k}) - \mu_0^{k,m_k} f(x^*) + \mu^{k,m_k'} g(x^{k,m_k}) \right| \le \frac{1}{k},$$

and

(12) 
$$||x^{k,m_k} - x^*|| \le \frac{1}{k}, \quad |f(x^{k,m_k}) - f(x^*)| \le \frac{1}{k}, \quad ||g^+(x^{k,m_k})|| \le \frac{1}{k}.$$

Dividing both sides of the first relation in (5) by  $\delta^{k,m_k}$ , we obtain

$$\begin{aligned} \mu_0^{k,m_k} f(x^{k,m_k}) &+ \frac{1}{k^3 \delta^{k,m_k}} \|x^{k,m_k} - x^*\|^2 + \mu^{k,m_k'} g(x^{k,m_k}) \\ &\leq \mu_0^{k,m_k} f(x) + \mu^{k,m_k'} g(x) + \frac{1}{k \delta^{k,m_k}} \qquad \forall \ x \in X^k, \end{aligned}$$

where we also use the fact that  $||x - x^*|| \leq k$  for all  $x \in X^k$  (see the definition of  $X^k$ ). Since the sequence  $\{(\mu_0^{k,m_k}, \mu^{k,m_k})\}$  is bounded, it has a cluster point, denoted by  $(\mu_0^*, \mu^*)$ , which satisfies conditions (ii) and (iii) in the definition of an FJ-multiplier. For any  $x \in X$ , we have  $x \in X^k$  for all k sufficiently large. Without loss of generality, we will assume that the entire sequence  $\{(\mu_0^{k,m_k}, \mu^{k,m_k})\}$  converges to  $(\mu_0^*, \mu^*)$ . Taking the limit as  $k \to \infty$ , and using (11), we obtain

$$\mu_0^* f(x^*) \le \mu_0^* f(x) + {\mu^*}' g(x) \qquad \forall \ x \in X.$$

Since  $\mu^* \geq 0$ , this implies that

$$\mu_0^* f(x^*) \le \inf_{x \in X} \left\{ \mu_0^* f(x) + {\mu^*}' g(x) \right\}$$
  
$$\le \inf_{x \in X, \ g(x) \le 0} \left\{ \mu_0^* f(x) + {\mu^*}' g(x) \right\}$$
  
$$\le \inf_{x \in X, \ g(x) \le 0} \mu_0^* f(x)$$
  
$$= \mu_0^* f(x^*).$$

Thus we have

$$\mu_0^* f(x^*) = \inf_{x \in Y} \{ \mu_0^* f(x) + {\mu^*}' g(x) \},\$$

so that  $(\mu_0^*, \mu^*)$  also satisfies condition (i) in the definition of an FJ-multiplier.

If  $\mu^* = 0$ , then  $\mu_0^* \neq 0$ , (CV) is automatically satisfied, and  $\mu^*/\mu_0^* = 0$  has minimum norm. Moreover, condition (i) yields  $f^* = \inf_{x \in X} f(x)$ , so that (CV) (in particular, (3)) is satisfied by only  $\mu^* = 0$ .

Assume now that  $\mu^* \neq 0$ , so that the index set  $J = \{j \neq 0 \mid \mu_j^* > 0\}$  is nonempty. Then, for sufficiently large k, we have  $\xi_j^{k,m_k} > 0$  and hence  $g_j(x^{k,m_k}) > 0$  for all  $j \in J$ . Thus, for each k, we can choose the index  $m_k$  to further satisfy  $x^{k,m_k} \neq x^*$ , in addition to (11) and (12). Using (7), (10), and the fact that  $\mu^{k,m_k} \to \mu^*$ , we obtain

$$\frac{g^+(x^{k,m_k})}{\|g^+(x^{k,m_k})\|} = \frac{\mu^{k,m_k}}{\|\mu^{k,m_k}\|} \to \frac{\mu^*}{\|\mu^*\|}.$$

Using also (6) and  $f(x^*) = f^*$ , we have that

(13) 
$$\frac{f^* - f(x^{k,m_k})}{\|g^+(x^{k,m_k})\|} \ge \frac{\xi^{k,m_k}'g(x^{k,m_k})}{\|g^+(x^{k,m_k})\|} = \|\xi^{k,m_k}\| = \frac{\|\mu^{k,m_k}\|}{\mu_0^{k,m_k}}.$$

If  $\mu_0^* = 0$ , then  $\mu_0^{k,m_k} \to 0$ , so (13) together with  $\|\mu^{k,m_k}\| \to \|\mu^*\| > 0$  yields

$$\frac{f^* - f(x^{k,m_k})}{\|g^+(x^{k,m_k})\|} \to \infty.$$

If  $\mu_0^* \neq 0$ , then (13) together with  $\mu_0^{k,m_k} \to \mu_0^*$  and  $\|\mu^{k,m_k}\| \to \|\mu^*\|$  yields

$$\liminf_{k \to \infty} \frac{f^* - f(x^{k, m_k})}{\|g^+(x^{k, m_k})\|} \ge \frac{\|\mu^*\|}{\mu_0^*}$$

Since  $\mu^*/\mu_0^*$  is a geometric multiplier and  $f^* = q^*$ , Lemma 1 implies that in fact  $\mu^*/\mu_0^*$  is of minimum norm and the inequality holds with equality. From (12), we have  $f(x^{k,m_k}) \to f(x^*)$ ,  $g^+(x^{k,m_k}) \to 0$ , and  $x^{k,m_k} \to x^*$ . Hence, the sequence  $\{x^{k,m_k}\}$  also satisfies conditions (4)–(5) of the proposition, concluding the proof.  $\Box$ 

Note that (4) implies that, for all k sufficiently large,

$$g_j(x^k) > 0 \quad \forall \ j \in J \qquad g_j^+(x^k) = o\left(\min_{j \in J} g_j^+(x^k)\right) \quad \forall \ j \notin J,$$

where  $J = \{j \neq 0 \mid \mu_j^* > 0\}$ . Thus, the (CV) condition (complementarity violation) in Proposition 2 refines that used in [BNO03, section 5.7] by also estimating the rate of cost improvement. As an illustration of Proposition 2, consider the two-dimensional example of Duffin:

minimize 
$$x_2$$
  
subject to  $x = (x_1, x_2)' \in \Re^2$ ,  $||x|| - x_1 \le 0$ .

Here  $f^* = 0$ , and  $x^* = (x_1^*, 0)$  is an optimal solution for any  $x_1^* \ge 0$ . Also,  $q(\mu) = -\infty$  for all  $\mu \ge 0$ , so  $q^* = -\infty$  and there is a duality gap. It can be seen that  $\mu_0^* = 0$ ,  $\mu^* = 1$  form an FJ-multiplier and, together with  $x^k = (x_1^*, -1/k)'$ , satisfy condition (CV).



FIG. 1. Illustration of the saddle point of the function  $L_{k,m}(x,\xi)$  over  $x \in X^k$  and  $\xi \ge 0$  in terms of the function  $p^k(u)$ , which is the optimal value of problem (14) as a function of u.

The proof of Proposition 2 can be explained in terms of the construction shown in Figure 1. Consider the function  $L_{k,m}$  introduced in the proof,

$$L_{k,m}(x,\xi) = f(x) + \frac{1}{k^3} \|x - x^*\|^2 + \xi' g(x) - \frac{1}{2m} \|\xi\|^2.$$

Note that the term  $(1/k^3)||x - x^*||^2$  ensures that  $x^*$  is a strict local minimum of the function  $f(x) + (1/k^3)||x - x^*||^2$ . To simplify the following discussion, let us assume that f is strictly convex, so that this term can be omitted from the definition of  $L_{k,m}$ . This assumption is satisfied by the above example if its cost function is changed to  $e^x$ , for which  $f^* = 1$  and  $q^* = 0$ .

For any nonnegative vector  $u \in \Re^r$ , let  $p^k(u)$  denote the optimal value of the problem

(14) 
$$\begin{array}{l} \text{minimize} \quad f(x) \\ \text{subject to} \quad g(x) \leq u, \\ x \in X^k = X \cap \left\{ x \mid \|x - x^*\| \leq k \right\}. \end{array}$$

For each k and m, the saddle point of the function  $L_{k,m}(x,\xi)$ , denoted by  $(x^{k,m},\xi^{k,m})$ , can be characterized in terms of  $p^k(u)$  as follows.

The maximization of  $L_{k,m}(x,\xi)$  over  $\xi \ge 0$  for any fixed  $x \in X^k$  yields

(15) 
$$\xi = mg^+(x)$$

so that we have

$$L_{k,m}(x^{k,m},\xi^{k,m}) = \inf_{x \in X^k} \sup_{\xi \ge 0} \left\{ f(x) + \xi' g(x) - \frac{1}{2m} \|\xi\|^2 \right\}$$
$$= \inf_{x \in X^k} \left\{ f(x) + \frac{m}{2} \|g^+(x)\|^2 \right\}.$$

This minimization can also be written as

(16)  
$$L_{k,m}(x^{k,m},\xi^{k,m}) = \inf_{x \in X^{k}} \inf_{u \in \Re^{r}, g(x) \leq u} \left\{ f(x) + \frac{m}{2} \|u^{+}\|^{2} \right\}$$
$$= \inf_{u \in \Re^{r}} \inf_{x \in X^{k}, g(x) \leq u} \left\{ f(x) + \frac{m}{2} \|u^{+}\|^{2} \right\}$$
$$= \inf_{u \in \Re^{r}} \left\{ p^{k}(u) + \frac{m}{2} \|u^{+}\|^{2} \right\}.$$

The vector  $u^{k,m} = g(x^{k,m})$  attains the infimum in the preceding relation. This minimization can be visualized geometrically as in Figure 1. The point of contact of the graphs of the functions  $p^k(u)$  and  $L_{k,m}(x^{k,m},\xi^{k,m}) - (m/2)||u^+||^2$  corresponds to the vector  $u^{k,m}$  that attains the infimum in (16). A similar compactification-regularization technique is used in [Roc93, section 9].

We can also interpret  $\xi^{k,m}$  in terms of the function  $p^k$ . In particular, the infimum of  $L_{k,m}(x,\xi^{k,m})$  over  $x \in X^k$  is attained at  $x^{k,m}$ , implying that

$$\begin{split} f(x^{k,m}) + \xi^{k,m'} g(x^{k,m}) &= \inf_{x \in X^k} \left\{ f(x) + \xi^{k,m'} g(x) \right\} \\ &= \inf_{u \in \Re^r} \left\{ p^k(u) + \xi^{k,m'} u \right\}. \end{split}$$

Replacing  $g(x^{k,m})$  by  $u^{k,m}$  in the preceding relation, and using the fact that  $x^{k,m}$  is feasible for problem (14) with  $u = u^{k,m}$ , we obtain

$$p^{k}(u^{k,m}) \leq f(x^{k,m}) = \inf_{u \in \Re^{r}} \{ p^{k}(u) + \xi^{k,m'}(u - u^{k,m}) \}.$$

Thus, we see that

$$p^{k}(u^{k,m}) \leq p^{k}(u) + \xi^{k,m'}(u - u^{k,m}) \qquad \forall \ u \in \Re^{r}$$

which, by the definition of the subgradient of a convex function, implies that

$$-\xi^{k,m} \in \partial p^k(u^{k,m})$$

(cf. Figure 1). It can be seen from this interpretation that the limit of  $L_{k,m}(x^{k,m},\xi^{k,m})$  as  $m \to \infty$  is equal to  $p^k(0)$ , which is equal to  $f(x^*)$  for each k. The limit of the normalized sequence

$$\left\{\frac{(1,\xi^{k,m_k})}{\sqrt{1+\|\xi^{k,m_k}\|^2}}\right\}$$

as  $k \to \infty$  yields the FJ-multiplier  $(\mu_0^*, \mu^*)$ , and the sequence  $\{x^{k,m_k}\}$  is used to construct the sequence that satisfies condition (CV) of the proposition.

**3.** Minimum-norm dual optimal solutions. In the preceding section we focused on the case where a primal optimal solution exists and we showed that the geometric multiplier of minimum norm is informative. Notice that a geometric multiplier is automatically a dual optimal solution. When there is a duality gap, there exists no geometric multiplier, even if there is a dual optimal solution. In this section we focus on the case where a dual optimal solution exists and we will see that, analogously, the dual optimal solution of minimum norm is informative. In particular, it satisfies a condition analogous to condition (CV), with primal optimal value  $f^*$  replaced by  $q^*$ . Consistent with our analysis in section 2, we call such a dual optimal solution *informative* [BNO03, section 6.6.2] since it indicates the constraints to relax and the rate of relaxation in order to obtain a primal cost reduction by an amount that is strictly greater than the size of the duality gap  $f^* - q^*$ .

We begin with the following proposition on the existence of an FJ-multiplier, which requires no additional assumptions on (P). It will be used to prove Lemma 4. This proposition is a direct extension of a well-known result [Lue79, page 217] and its proof may be found in [BNO03, Proposition 6.6.1]. A similar result is given in [Hes75, page 326], assuming (P) has an optimal solution.

PROPOSITION 3 (Fritz John conditions). Consider the convex problem (P), and assume that  $f^* < \infty$ . Then there exists an FJ-multiplier  $(\mu_0^*, \mu^*)$ .

If the scalar  $\mu_0^*$  in the preceding proposition can be proved to be positive, then  $\mu^*/\mu_0^*$  is a geometric multiplier for problem (P). This can be used to show the existence of a geometric multiplier in the case where the Slater condition [Sla50] holds; i.e., there exists a vector  $\overline{x} \in X$  such that  $g(\overline{x}) < 0$ . Indeed, in this case the scalar  $\mu_0^*$  cannot be 0, since if it were, then according to the proposition, we would have

$$0 = \inf_{x \in X} \mu^{*'} g(x)$$

for some vector  $\mu^* \ge 0$  with  $\mu^* \ne 0$ , while for this vector, we would also have  $\mu^{*'}g(\overline{x}) < 0$ , which is a contradiction.

Using Proposition 3, we have the following lemma which will be used to prove the next proposition, as well as Proposition 12 in the next section.

LEMMA 4. Consider the convex problem (P), and assume that  $f^* < \infty$ . For each  $\delta > 0$ , let

(17) 
$$f^{\delta} = \inf_{\substack{x \in X \\ g_j(x) \le \delta, \ j=1,\dots,r,}} f(x).$$

Then the dual optimal value  $q^*$  satisfies  $f^{\delta} \leq q^*$  for all  $\delta > 0$  and

$$q^* = \lim_{\delta \downarrow 0} f^\delta.$$

*Proof.* We first note that either  $\lim_{\delta \downarrow 0} f^{\delta}$  exists and is finite, or else  $\lim_{\delta \downarrow 0} f^{\delta} = -\infty$ , since  $f^{\delta}$  is monotonically nondecreasing as  $\delta \downarrow 0$ , and  $f^{\delta} \leq f^*$  for all  $\delta > 0$ . Since  $f^* < \infty$ , there exists some  $\overline{x} \in X$  such that  $g(\overline{x}) \leq 0$ . Thus, for each  $\delta > 0$  such that  $f^{\delta} > -\infty$ , the Slater condition is satisfied for problem (17), and by Proposition 3 and the subsequent discussion, there exists a  $\mu^{\delta} \geq 0$  satisfying

$$f^{\delta} = \inf_{x \in X} \left\{ f(x) + \mu^{\delta'} g(x) - \delta \sum_{j=1}^{r} \mu_j^{\delta} \right\}$$
$$\leq \inf_{x \in X} \left\{ f(x) + \mu^{\delta'} g(x) \right\}$$
$$= q(\mu^{\delta})$$
$$\leq q^*.$$

For each  $\delta > 0$  such that  $f^{\delta} = -\infty$ , we also have  $f^{\delta} \leq q^*$ , so that

$$f^{\delta} \le q^* \qquad \forall \ \delta > 0.$$

By taking the limit as  $\delta \downarrow 0$ , we obtain

$$\lim_{\delta \downarrow 0} f^{\delta} \le q^*.$$

To show the reverse inequality, we consider two cases: (1)  $f^{\delta} > -\infty$  for all  $\delta > 0$ that are sufficiently small, and (2)  $f^{\delta} = -\infty$  for all  $\delta > 0$ . In case (1), for each  $\delta > 0$ with  $f^{\delta} > -\infty$ , choose  $x^{\delta} \in X$  such that  $g_j(x^{\delta}) \leq \delta$  for all j and  $f(x^{\delta}) \leq f^{\delta} + \delta$ . Then, for any  $\mu \geq 0$ ,

$$q(\mu) = \inf_{x \in X} \{ f(x) + \mu' g(x) \} \le f(x^{\delta}) + \mu' g(x^{\delta}) \le f^{\delta} + \delta + \delta \sum_{j=1}^{r} \mu_j.$$

Taking the limit as  $\delta \downarrow 0$ , we obtain

$$q(\mu) \le \lim_{\delta \downarrow 0} f^{\delta},$$

so that  $q^* \leq \lim_{\delta \downarrow 0} f^{\delta}$ . In case (2), choose  $x^{\delta} \in X$  such that  $g_j(x^{\delta}) \leq \delta$  for all j and  $f(x^{\delta}) \leq -1/\delta$ . Then, similarly, for any  $\mu \geq 0$ , we have

$$q(\mu) \le f(x^{\delta}) + \mu' g(x^{\delta}) \le -\frac{1}{\delta} + \delta \sum_{j=1}^{r} \mu_j,$$

so by taking  $\delta \downarrow 0$ , we obtain  $q(\mu) = -\infty$  for all  $\mu \ge 0$ , and hence also  $q^* = -\infty = \lim_{k \to 0} f^{\delta}$ .  $\Box$ 

Using Lemmas 1 and 4, we prove below the main result of this section, which shows under very general assumptions that the minimum-norm dual optimal solution is informative.

PROPOSITION 5 (existence of informative dual optimal solution). Consider the convex problem (P) under Assumption 1 (closedness), and assume that  $f^* < \infty$  and  $-\infty < q^*$ . If there exists a dual optimal solution, then the dual optimal solution  $\mu^*$  of minimum norm satisfies the following condition (dCV). Moreover, it is the only dual optimal solution that satisfies this condition.

(dCV) If  $\mu^* \neq 0$ , then there exists a sequence  $\{x^k\} \subset X$  of infeasible points that satisfies

(18) 
$$f(x^k) \to q^*, \qquad g^+(x^k) \to 0,$$

(19) 
$$\frac{q^* - f(x^k)}{\|g^+(x^k)\|} \to \|\mu^*\|,$$

(20) 
$$\frac{g^+(x^k)}{\|g^+(x^k)\|} \to \frac{\mu^*}{\|\mu^*\|}.$$

*Proof.* Let  $\mu^*$  be the dual optimal solution of minimum norm. Assume that  $\mu^* \neq 0$ . For k = 1, 2, ..., consider the problem

minimize 
$$f(x)$$
  
subject to  $x \in X$ ,  $g_j(x) \le \frac{1}{k^4}$ ,  $k = 1, \dots, r$ .

By Lemma 4, for each k, the optimal value of this problem is less than or equal to  $q^*$ . Since  $q^*$  is finite (in view of the assumptions  $-\infty < q^*$  and  $f^* < \infty$ , and the weak duality relation  $q^* \le f^*$ ), we may select for each k a vector  $\tilde{x}^k \in X$  that satisfies

$$f(\tilde{x}^k) \le q^* + \frac{1}{k^2}, \qquad g_j(\tilde{x}^k) \le \frac{1}{k^4}, \ j = 1, \dots, r.$$

Consider also the problem

minimize 
$$f(x)$$
  
subject to  $g_j(x) \le \frac{1}{k^4}, \ j = 1, \dots, r,$   
 $x \in \tilde{X}^k = X \cap \left\{ x \mid \|x\| \le k \left( \max_{1 \le i \le k} \|\tilde{x}^i\| + 1 \right) \right\}.$ 

By the closedness assumption, f and  $g_j$  are closed and convex when restricted to X, so they are closed, convex, and coercive when restricted to  $\tilde{X}^k$ . Thus, the problem has an optimal solution, which we denote by  $\overline{x}^k$ . Note that, since  $\tilde{x}^k$  belongs to the feasible solution set of this problem, we have

(21) 
$$f(\overline{x}^k) \le f(\tilde{x}^k) \le q^* + \frac{1}{k^2}.$$

For each k, we consider the saddle function

$$L_k(x,\mu) = f(x) + \mu' g(x) - \frac{\|\mu\|^2}{2k}$$

and the set

(23)

$$X^k = \tilde{X}^k \cap \left\{ x \mid g_j(x) \le k, \ j = 1, \dots, r \right\}$$

We note that  $L_k(x,\mu)$ , for fixed  $\mu \ge 0$ , is closed, convex, and coercive in x, when restricted to  $X^k$ , and negative definite quadratic in  $\mu$  for fixed x. Hence, using the saddle point theorem (e.g., [BNO03, Proposition 2.6.9]), we can assert that  $L_k$  has a saddle point over  $x \in X^k$  and  $\mu \ge 0$ , denoted by  $(x^k, \mu^k)$ .

Since  $L_k$  is quadratic in  $\mu$ , the supremum of  $L_k(x^k, \mu)$  over  $\mu \ge 0$  is attained at

(22) 
$$\mu^k = kg^+(x^k).$$

Similarly, the infimum in  $\inf_{x \in X^k} L_k(x, \mu^k)$  is attained at  $x^k$ , implying that

$$\begin{aligned} f(x^k) + \mu^{k'}g(x^k) &= \inf_{x \in X^k} \left\{ f(x) + \mu^{k'}g(x) \right\} \\ &= \inf_{x \in X^k} \left\{ f(x) + kg^+ (x^k)'g(x) \right\} \\ &\leq \inf_{x \in X^k, \ g_j(x) \leq \frac{1}{k^4}, \ j=1,\dots,r,} \left\{ f(x) + k\sum_{j=1}^r g_j^+ (x^k)'g_j(x) \right\} \\ &\leq \inf_{x \in X^k, \ g_j(x) \leq \frac{1}{k^4}, \ j=1,\dots,r,} \left\{ f(x) + \frac{r}{k^2} \right\} \\ &= f(\overline{x}^k) + \frac{r}{k^2} \\ &\leq q^* + \frac{r+1}{k^2}, \end{aligned}$$

where the second inequality holds in view of the fact that  $x^k \in X^k$ , implying that  $g_j^+(x^k) \leq k, j = 1, \ldots, r$ , and the third inequality follows from (21). We also have

(24)  

$$L_{k}(x^{k}, \mu^{k}) = \sup_{\substack{\mu \ge 0 \ x \in X^{k}}} \inf_{L_{k}(x, \mu)} L_{k}(x, \mu)$$

$$= \sup_{\mu \ge 0} \left\{ \inf_{x \in X} \left\{ f(x) + \mu'g(x) \right\} - \frac{\|\mu\|^{2}}{2k} \right\}$$

$$= \sup_{\mu \ge 0} \left\{ q(\mu) - \frac{\|\mu\|^{2}}{2k} \right\}$$

$$\ge q(\mu^{*}) - \frac{\|\mu^{*}\|^{2}}{2k}$$

$$= q^{*} - \frac{\|\mu^{*}\|^{2}}{2k},$$

where we recall that  $\mu^*$  is the dual optimal solution with minimum norm.

Combining (24) and (23), we obtain

(25)  
$$q^* - \frac{1}{2k} \|\mu^*\|^2 \le L_k(x^k, \mu^k)$$
$$= f(x^k) + \mu^{k'} g(x^k) - \frac{1}{2k} \|\mu^k\|^2$$
$$\le q^* + \frac{r+1}{k^2} - \frac{1}{2k} \|\mu^k\|^2.$$

This relation shows that  $\|\mu^k\|^2 \leq \|\mu^*\|^2 + 2(r+1)/k$ , so the sequence  $\{\mu^k\}$  is bounded. Let  $\overline{\mu}$  be a cluster point of  $\{\mu^k\}$ . Without loss of generality, we assume that the entire sequence  $\{\mu^k\}$  converges to  $\overline{\mu}$ . We also have from (25) that

$$\lim_{k \to \infty} \{ f(x^k) + \mu^{k'} g(x^k) \} = q^*.$$

Hence, taking the limit as  $k \to \infty$  in (23) yields

$$q^* \le \inf_{x \in X} \left\{ f(x) + \overline{\mu}' g(x) \right\} = q(\overline{\mu}) \le q^*.$$

Hence  $\overline{\mu}$  is a dual optimal solution, and since  $\|\overline{\mu}\| \leq \|\mu^*\|$  (which follows by taking the limit in (25)), by using the minimum norm property of  $\mu^*$ , we conclude that any cluster point  $\overline{\mu}$  of  $\mu^k$  must be equal to  $\mu^*$ . Thus  $\mu^k \to \mu^*$ , and using (25), we obtain

(26) 
$$\lim_{k \to \infty} k \left( L_k(x^k, \mu^k) - q^* \right) = -\frac{1}{2} \|\mu^*\|^2.$$

Using (22), it follows that

$$L_k(x^k, \mu^k) = \sup_{\mu \ge 0} L_k(x^k, \mu) = f(x^k) + \frac{1}{2k} \|\mu^k\|^2,$$

which combined with (26) yields

$$\lim_{k \to \infty} k (f(x^k) - q^*) = - \|\mu^*\|^2,$$

implying that  $f(x^k) < q^*$  for all sufficiently large k, since  $\mu^* \neq 0$ . Since  $\mu^k \to \mu^*$ , (22) also implies that

$$\lim_{k \to \infty} kg^+(x^k) = \mu^*.$$

It follows that the sequence  $\{x^k\}$  satisfies (18), (19), and (20). Moreover, Lemma 1 shows that  $\{x^k\}$  satisfies (19) only when  $\mu^*$  is the dual optimal solution of minimum norm. This completes the proof.  $\Box$ 

Our next result of this section shows that Assumption 1 in Proposition 5 can in fact be relaxed. We denote by  $\overline{f}$  the closure of f, i.e., the function whose epigraph is the closure of f. Similarly, for each j, we denote by  $\overline{g}_j$  the closure of  $g_j$ . A key fact we use is that replacing f and  $g_j$  by their closures does not affect the closure of the primal function, and hence also the dual function. This is based on the following lemma on the closedness of functions generated by partial minimization.

LEMMA 6. Consider a function  $F : \Re^{n+r} \mapsto (-\infty, \infty]$  and the function  $p : \Re^n \mapsto [-\infty, \infty]$  defined by

$$p(u) = \inf_{x \in \Re^n} F(x, u).$$

Then the following hold:

(a)

(27) 
$$P(\operatorname{epi}(F)) \subset \operatorname{epi}(p) \subset \operatorname{cl}(P(\operatorname{epi}(F))),$$

(28) 
$$P(\operatorname{cl}(\operatorname{epi}(F))) \subset \operatorname{cl}(\operatorname{epi}(p))$$

where  $P(\cdot)$  denotes projection on the space of (u, w), i.e., P(x, u, w) = (u, w). (b) If  $\overline{F}$  is the closure of F and  $\overline{p}$  is defined by

$$\overline{p}(u) = \inf_{x \in \Re^n} \overline{F}(x, u),$$

then the closures of p and  $\overline{p}$  coincide.

*Proof.* (a) The left-hand side of (27) follows from the definition

$$\operatorname{epi}(p) = \left\{ (u, w) \mid \inf_{x \in \Re^n} F(x, u) \le w \right\}.$$

To show the right-hand side of (27), note that for any  $(u, w) \in \operatorname{epi}(p)$  and every integer  $k \geq 1$ , there exists an  $x^k$  such that  $(x^k, u, w + 1/k) \in \operatorname{epi}(F)$ , so that  $(u, w + 1/k) \in P(\operatorname{epi}(F))$  and  $(u, w) \in \operatorname{cl}(P(\operatorname{epi}(F)))$ .

To show (28), let  $(\overline{u}, \overline{w})$  belong to  $P(\operatorname{cl}(\operatorname{epi}(F)))$ . Then there exists  $\overline{x}$  such that  $(\overline{x}, \overline{u}, \overline{w}) \in \operatorname{cl}(\operatorname{epi}(F))$ , and hence there is a sequence  $(x^k, u^k, w^k) \in \operatorname{epi}(F)$  such that  $x^k \to \overline{x}, u^k \to \overline{u}$ , and  $w^k \to \overline{w}$ . Thus we have  $p(u^k) \leq F(x^k, u^k) \leq w^k$ , implying that  $(u^k, w^k) \in \operatorname{epi}(p)$  for all k. It follows that  $(\overline{u}, \overline{w}) \in \operatorname{cl}(\operatorname{epi}(p))$ .

(b) By taking closure in (27), we see that

(29) 
$$\operatorname{cl}(\operatorname{epi}(p)) = \operatorname{cl}(P(\operatorname{epi}(F))),$$

and by replacing F with  $\overline{F}$ , we also have

(30) 
$$\operatorname{cl}(\operatorname{epi}(\overline{p})) = \operatorname{cl}(P(\operatorname{epi}(\overline{F}))).$$

On the other hand, by taking closure in (28), we have

$$\operatorname{cl}(P(\operatorname{epi}(\overline{F}))) \subset \operatorname{cl}(P(\operatorname{epi}(F))),$$

which implies that

(31) 
$$\operatorname{cl}(P(\operatorname{epi}(\overline{F}))) = \operatorname{cl}(P(\operatorname{epi}(F))).$$

By combining (29)–(31), we see that

$$\operatorname{cl}(\operatorname{epi}(p)) = \operatorname{cl}(\operatorname{epi}(\overline{p})).$$

Using Lemmas 1 and 6, we now prove the next main result of this section.

PROPOSITION 7 (relaxing closedness assumption in Proposition 5). Consider the convex problem (P), and assume that  $f^* < \infty$ ,  $-\infty < q^*$ , and  $\operatorname{dom}(\overline{f}) = \operatorname{dom}(\overline{g}_j)$ ,  $j = 1, \ldots, r$ . If  $\mu^*$  is the dual optimal solution of minimum norm, then it satisfies condition (dCV) of Proposition 5. Moreover, it is the only dual optimal solution that satisfies this condition.

*Proof.* We apply Lemma 6 to the primal function p(u), which is defined by partial minimization over  $x \in \Re^n$  of the extended real-valued function

$$F(x,u) = \begin{cases} f(x) & \text{if } x \in X, \ g(x) \le u, \\ \infty & \text{otherwise.} \end{cases}$$

Note that the closure of F is

$$\overline{F}(x,u) = \begin{cases} \overline{f}(x) & \text{if } x \in \overline{X}, \ \overline{g}(x) \le u, \\ \infty & \text{otherwise,} \end{cases}$$

where  $\overline{g} = (\overline{g}_1, \ldots, \overline{g}_r)'$  and  $\overline{X} = \operatorname{dom}(\overline{f}) = \operatorname{dom}(\overline{g}_j), j = 1, \ldots, r^2$  Thus, by Lemma 6, replacing X, f, and g with  $\overline{X}, \overline{f}$ , and  $\overline{g}$  does not change the closure of the primal function, and therefore does not change the dual function.

Assume  $\mu^* \neq 0$ . By Proposition 5, there exists a sequence  $\{x^k\} \subset \overline{X}$  of infeasible points that satisfies

$$\frac{q^* - \overline{f}(x^k)}{\|\overline{g}^+(x^k)\|} \to \|\mu^*\|, \qquad \frac{\overline{g}^+(x^k)}{\|\overline{g}^+(x^k)\|} \to \frac{\mu^*}{\|\mu^*\|}, \qquad \|\overline{g}^+(x^k)\| \to 0.$$

We will now perturb the sequence  $\{x^k\}$  so that it lies in  $\operatorname{ri}(X)$ , while it still satisfies the preceding relations. Indeed, fix any  $\overline{x} \in \operatorname{ri}(X)$ . For each k, we can choose a sufficiently small  $\epsilon \in (0, 1)$  such that  $\overline{f}(\epsilon \overline{x} + (1 - \epsilon)x^k)$  and  $\|\overline{g}^+(\epsilon \overline{x} + (1 - \epsilon)x^k)\|$ are arbitrarily close to  $\overline{f}(x^k)$  and  $\|\overline{g}^+(x^k)\|$ , respectively. This is possible because  $\overline{f}$ ,

$$\lim_{\epsilon \to 0} f(x^{\epsilon}) = \lim_{\epsilon \to 0} \overline{f}(x^{\epsilon}) = \overline{f}(x)$$

Thus  $\lim_{\epsilon \to 0} F(x^{\epsilon}, u^{\epsilon}) = \overline{f}(x)$ , implying  $\overline{F}(x, u) \leq \overline{f}(x)$ .

<sup>&</sup>lt;sup>2</sup>Why? By definition of the closure of F,  $\overline{F}(x, u) = \liminf_{(x^k, u^k) \to (x, u)} F(x^k, u^k)$ . Suppose  $\overline{F}(x, u) < \infty$ . Then there exist  $x^k \in X$  and  $u^k$  such that  $(x^k, u^k) \to (x, u)$ ,  $f(x^k) \to \overline{F}(x, u)$ , and  $g(x^k) \leq u^k$  for all  $k = 1, 2, \ldots$ . Passing to the limit yields  $\overline{f}(x) \leq \overline{F}(x, u)$  and  $\overline{g}(x) \leq u$ . Conversely, suppose  $\overline{f}(x) < \infty$  and  $\overline{g}(x) \leq u$ . Fix any  $\overline{x} \in \operatorname{ri}(X)$ , and let  $x^\epsilon = (1 - \epsilon)x + \epsilon \overline{x}$ ,  $u^\epsilon = (1 - \epsilon)u + \epsilon \overline{u}$ , where  $\overline{u} = g(\overline{x})$ . Then  $x^\epsilon \in \operatorname{ri}(X) = \operatorname{ri}(\overline{X})$  and  $g(x^\epsilon) \leq u^\epsilon$  for  $\epsilon \in (0, 1)$ . Since  $\overline{f}$  coincides with f on  $\operatorname{ri}(\overline{X})$  and  $\overline{f}$  is continuous along any line segment in  $\overline{X}$ , this implies

 $\overline{g}_1, \ldots, \overline{g}_r$  are closed and hence continuous along the line segment that connects  $x^k$  and  $\overline{x}$ . Thus, for each k, we can choose  $\epsilon_k \in (0, 1)$  so that the corresponding vector  $\overline{x}^k = \epsilon_k \overline{x} + (1 - \epsilon_k) x^k$  satisfies

$$\left|\frac{q^* - \overline{f}(x^k)}{\|\overline{g}^+(x^k)\|} - \frac{q^* - \overline{f}(\overline{x}^k)}{\|\overline{g}^+(\overline{x}^k)\|}\right| \le \frac{1}{k}, \qquad \left|\frac{\overline{g}^+(x^k)}{\|\overline{g}^+(x^k)\|} - \frac{\overline{g}^+(\overline{x}^k)}{\|\overline{g}^+(\overline{x}^k)\|}\right| \le \frac{1}{k}, \qquad \|\overline{g}^+(\overline{x}^k)\| \to 0.$$

Since  $\overline{x}$  lies in  $\operatorname{ri}(X) = \operatorname{ri}(\overline{X})$ , every point in the open line segment that connects  $x^k$  and  $\overline{x}$ , including  $\overline{x}^k$ , lies in  $\operatorname{ri}(X)$ , so that  $\overline{f}(\overline{x}^k) = f(\overline{x}^k)$  and  $\overline{g}(\overline{x}^k) = g(\overline{x}^k)$ . We thus obtain a sequence  $\{\overline{x}^k\}$  in the relative interior of X satisfying

$$\frac{q^* - f(\overline{x}^k)}{\|g^+(\overline{x}^k)\|} \to \|\mu^*\|, \qquad \frac{g^+(\overline{x}^k)}{\|g^+(\overline{x}^k)\|} \to \frac{\mu^*}{\|\mu^*\|}, \qquad \|g^+(\overline{x}^k)\| \to 0$$

The first and the third relations imply  $f(\overline{x}^k) \to q^*$ . Thus  $\mu^*$  satisfies condition (dCV) of Proposition 5. By Lemma 1,  $\mu^*$  is the only dual optimal solution that satisfies this condition.  $\Box$ 

**3.1. Fritz John conditions and constraint qualifications.** We close this section by discussing the connection of the Fritz John conditions with classical constraint qualifications that guarantee the existence of a geometric multiplier (and hence also the existence of a dual optimal solution, which makes the analysis of the present section applicable). As mentioned earlier in this section, the classical Fritz John conditions of Proposition 3 can be used to assert the existence of a geometric multiplier when the Slater condition holds. However, Proposition 3 is insufficient to show that a geometric multiplier exists in the case of affine constraints. The following proposition strengthens the Fritz John conditions for this case, so that they suffice for the proof of the corresponding existence result. In contrast to the Kuhn–Tucker theory [Hes75], [Roc70], this does not assume (P) has an optimal solution.

PROPOSITION 8 (Fritz John conditions for affine constraints). Consider the convex problem (P), and assume that the functions  $g_1, \ldots, g_r$  are affine, and  $f^* < \infty$ . Then there exists an FJ-multiplier  $(\mu_0^*, \mu^*)$  satisfying the following condition:

(CV') If  $\mu^* \neq 0$ , then there exists a vector  $\tilde{x} \in X$  satisfying

$$f(\tilde{x}) < f^*, \qquad \mu^{*'}g(\tilde{x}) > 0.$$

*Proof.* If  $\inf_{x \in X} f(x) = f^*$ , then  $\mu_0^* = 1$  and  $\mu^* = 0$  form an FJ-multiplier, and condition (CV') is automatically satisfied. We will thus assume that  $\inf_{x \in X} f(x) < f^*$ , which also implies that  $f^*$  is finite.

Let the affine constraint function be represented as

$$g(x) = Ax - b$$

for some real matrix A and vector b. Consider the nonempty convex sets

$$C_1 = \{(x, w) \mid \text{there is a vector } x \in X \text{ such that } f(x) < w\}.$$
$$C_2 = \{(x, f^*) \mid Ax - b \le 0\}.$$

Note that  $C_1$  and  $C_2$  are disjoint. The reason is that if  $(x, f^*) \in C_1 \cap C_2$ , then we must have  $x \in X$ ,  $Ax - b \leq 0$ , and  $f(x) < f^*$ , contradicting the fact that  $f^*$  is the optimal value of the problem.

Since  $C_2$  is polyhedral, by the polyhedral proper separation theorem (see [Roc70, Theorem 20.2] or [BNO03, Proposition 3.5.1]), there exists a hyperplane that separates  $C_1$  and  $C_2$  and does not contain  $C_1$ , i.e., there exists a vector  $(\xi, \mu_0^*)$  such that

(32) 
$$\mu_0^* f^* + \xi' z \le \mu_0^* w + \xi' x \quad \forall \ x \in X, w, z \text{ with } f(x) < w, \ Az - b \le 0,$$
$$\inf_{(x,w) \in C_1} \{\mu_0^* w + \xi' x\} < \sup_{(x,w) \in C_1} \{\mu_0^* w + \xi' x\}.$$

These relations imply that

(33) 
$$\mu_0^* f^* + \sup_{Az-b \le 0} \xi' z \le \inf_{(x,w) \in C_1} \{ \mu_0^* w + \xi' x \} < \sup_{(x,w) \in C_1} \{ \mu_0^* w + \xi' x \},$$

and that  $\mu_0^* \ge 0$  (since w can be taken arbitrarily large in (32)).

Consider the linear program in (33):

$$\begin{array}{ll} \text{maximize} & \xi'z\\ \text{subject to} & Az - b \leq 0. \end{array}$$

By (33), this program is bounded and therefore it has an optimal solution, which we denote by  $z^*$ . The dual of this program is

minimize 
$$b'\mu$$
  
subject to  $\xi = A'\mu$ ,  $\mu \ge 0$ .

By linear programming duality, it follows that this problem has a dual optimal solution  $\mu^* \geq 0$  satisfying

(34) 
$$\sup_{Az-b\leq 0} \xi' z = \xi' z^* = \mu^{*'} b, \qquad \xi = A' \mu^*.$$

Note that  $\mu_0^*$  and  $\mu^*$  satisfy the nonnegativity condition (ii). Furthermore, we cannot have both  $\mu_0^* = 0$  and  $\mu^* = 0$ , since then by (34) we would also have  $\xi = 0$ , and (33) would be violated. Thus,  $\mu_0^*$  and  $\mu^*$  also satisfy condition (iii) in the definition of an FJ-multiplier.

From (33), we have

$$\mu_0^* f^* + \sup_{Az - b \le 0} \xi' z \le \mu_0^* w + \xi' x \qquad \forall \ x \in X \text{ with } f(x) < w,$$

which together with (34) implies that

$$\mu_0^* f^* + {\mu^*}' b \le \mu_0^* w + {\mu^*}' A x \qquad \forall \ x \in X \text{ with } f(x) < w_2$$

or

(35) 
$$\mu_0^* f^* \le \inf_{x \in X, \ f(x) < w} \{ \mu_0^* w + \mu^{*'} (Ax - b) \}.$$

Similarly, from (33) and (34), we have

(36) 
$$\mu_0^* f^* < \sup_{x \in X, \ f(x) < w} \left\{ \mu_0^* w + {\mu^*}' (Ax - b) \right\}.$$

Using (35), we obtain

$$\mu_0^* f^* \leq \inf_{x \in X} \{ \mu_0^* f(x) + \mu^{*'} (Ax - b) \}$$
  
$$\leq \inf_{x \in X, Ax - b \leq 0} \{ \mu_0^* f(x) + \mu^{*'} (Ax - b) \}$$
  
$$\leq \inf_{x \in X, Ax - b \leq 0} \mu_0^* f(x)$$
  
$$= \mu_0^* f^*.$$

Hence, equality holds throughout above, which proves condition (i) in the definition of an FJ-multiplier.

We will now show that the vector  $\mu^*$  also satisfies condition (CV'). To this end, we consider separately the cases where  $\mu_0^* > 0$  and  $\mu_0^* = 0$ .

If  $\mu_0^* > 0$ , let  $\tilde{x} \in X$  be such that  $f(\tilde{x}) < f^*$  (based on our earlier assumption that  $\inf_{x \in X} f(x) < f^*$ ). Then condition (i) yields

$$\mu_0^* f^* \le \mu_0^* f(\tilde{x}) + {\mu^*}' (A\tilde{x} - b),$$

implying that  $0 < \mu_0^*(f^* - f(\tilde{x})) \le {\mu^*}'(A\tilde{x} - b)$ , and showing condition (CV'). If  $\mu_0^* = 0$ , condition (i) together with (36) yields

(37) 
$$0 = \inf_{x \in X} \mu^{*'}(Ax - b) < \sup_{x \in X} \mu^{*'}(Ax - b).$$

The above relation implies the existence of a vector  $\hat{x} \in X$  such that  $\mu^{*'}(A\hat{x}-b) > 0$ . Let  $\overline{x} \in X$  be such that  $f(\overline{x}) < f^*$ , and consider a vector of the form

$$\tilde{x} = \alpha \hat{x} + (1 - \alpha)\overline{x},$$

where  $\alpha \in (0, 1)$ . Note that  $\tilde{x} \in X$  for all  $\alpha \in (0, 1)$ , since X is convex. From (37), we have  $\mu^{*'}(A\bar{x}-b) \ge 0$  which combined with the inequality  $\mu^{*'}(A\hat{x}-b) > 0$  implies that

(38) 
$$\mu^{*'}(A\bar{x}-b) = \alpha \mu^{*'}(A\bar{x}-b) + (1-\alpha)\mu^{*'}(A\bar{x}-b) > 0 \qquad \forall \ \alpha \in (0,1).$$

Furthermore, since f is convex, we have

$$f(\tilde{x}) \le \alpha f(\hat{x}) + (1 - \alpha)f(\overline{x}) = f^* + \left(f(\overline{x}) - f^*\right) + \alpha \left(f(\hat{x}) - f(\overline{x})\right) \qquad \forall \ \alpha \in (0, 1).$$

Thus, for  $\alpha$  small enough so that  $\alpha(f(\hat{x}) - f(\overline{x})) < f^* - f(\overline{x})$ , we have  $f(\tilde{x}) < f^*$  as well as  $\mu^{*'}(A\tilde{x} - b) > 0$  (cf. (38)).  $\Box$ 

We now introduce the following constraint qualification, which is analogous to one introduced for nonconvex problems by Bertsekas and Ozdaglar [BeO02].

DEFINITION 9. The constraint set of the convex problem (P) is said to be pseudonormal if there does not exist a vector  $\mu \ge 0$  and a vector  $\tilde{x} \in X$  satisfying the following conditions:

(i)  $0 = \inf_{x \in X} \mu' g(x).$ 

(ii)  $\mu' g(\tilde{x}) > 0.$ 

To provide a geometric interpretation of pseudonormality, let us introduce the set

$$G = \left\{ g(x) \mid x \in X \right\}$$





FIG. 2. Geometric multiplier interpretation of pseudonormality. Consider the set  $G = \{g(x) \mid x \in X\}$ 

and the hyperplanes that support this set. For feasibility, G should intersect the nonpositive orthant  $\{z \mid z \leq 0\}$ . The first condition  $[0 = \inf_{x \in X} \mu'g(x)]$  in the definition of pseudonormality means that there is a hyperplane H with normal  $\mu \geq 0$ , which passes through 0, supports G, and contains G in its positive halfspace (note that, as illustrated in figure (b), this cannot happen if G intersects the interior of the nonpositive orthant; cf. the Slater criterion). The second condition means that H does not fully contain G (cf. figures (a) and (c)). If the Slater criterion holds, the first condition cannot be satisfied. If the linearity criterion holds, the set G is an affine set and the second condition cannot be satisfied (this depends critically on X being an affine set rather than X being a general polyhedron).

and consider hyperplanes that support this set and pass through 0. As Figure 2 illustrates, pseudonormality means that there is no hyperplane with a normal  $\mu \geq 0$  that properly separates the sets  $\{0\}$  and G, and contains G in its positive halfspace.

It is evident (see also Figure 2) that pseudonormality holds under the Slater condition, i.e., if there exists an  $\bar{x} \in X$  such that  $g(\bar{x}) < 0$ . Proposition 8 also shows that if  $f^* < \infty$ , the constraint functions  $g_1, \ldots, g_r$  are affine, and the constraint set is pseudonormal, then there exists a geometric multiplier satisfying the special condition (CV') of Proposition 8. As illustrated also in Figure 2, the constraint set is pseudonormal if X is an affine set and  $g_j$ ,  $j = 1, \ldots, r$ , are affine functions. In conclusion, if  $f^* < \infty$ , and either the Slater condition holds, or X and  $g_1, \ldots, g_r$ are affine, then the constraint set is pseudonormal, and a geometric multiplier is guaranteed to exist. Since in this case there is no duality gap, Proposition 7 guarantees the existence of a geometric multiplier (the one of minimum norm) that satisfies the corresponding (CV) condition and sensitivity properties. Finally, consider the question of pseudonormality and existence of geometric multipliers in the case where X is the intersection of a polyhedral set and a convex set C, and there exists a feasible solution that belongs to the relative interior of C. Then, the constraint set need not be pseudonormal, as Figure 2(a) illustrates. However, it is pseudonormal in the extended representation (i.e., when the affine inequalities that represent the polyhedral part are lumped with the remaining affine inequality constraints), and it follows that there exists a geometric multiplier in the extended representation. From this, it follows that there exists a geometric multiplier in the original representation as well (see Exercise 6.2 of [BNO03]).

4. Fritz John conditions when there is no optimal solution. In the preceding sections, we studied sensitivity properties of the geometric multiplier or dual optimal solution of minimum norm in the case where there exists a primal optimal solution or a dual optimal solution. In this section and the next section, we allow the problem to have neither a primal nor a dual optimal solution, and we develop several analogous results.

The Fritz John conditions of Propositions 3 and 8 are weaker than Proposition 2 in that they do not include conditions analogous to condition (CV). Unfortunately, such a condition does not hold in the absence of additional assumptions, as can be seen from the following example.

Example 1. Consider the one-dimensional problem

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g(x) = x \leq 0, \ x \in X = \{x \mid x \geq 0\}, \end{array}$$

where

$$f(x) = \begin{cases} -1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x < 0. \end{cases}$$

Then f is convex over X, and the assumptions of Propositions 3 and 8 are satisfied. Indeed, each FJ-multiplier must have the form  $\mu_0^* = 0$  and  $\mu^* > 0$  (cf. Figure 3). However, here we have  $f^* = 0$ , and for all x with g(x) > 0, we have x > 0 and f(x) = -1. Thus, there is no sequence  $\{x^k\} \subset X$  satisfying (2)–(4).

The following proposition imposes the stronger closedness assumption in order to derive an enhanced set of Fritz John conditions analogous to those in Proposition 2. The proof uses ideas that are similar to the ones of the proof of Proposition 2, but is more complicated because an optimal solution of (P) may not exist. In particular, we approximate X by a sequence of expanding bounded convex subsets and we work with an optimal solution of the corresponding problem.

PROPOSITION 10 (enhanced Fritz John conditions). Consider the convex problem (P) under Assumption 1 (closedness), and assume that  $f^* < \infty$ . Then there exists an FJ-multiplier  $(\mu_0^*, \mu^*)$  satisfying the following condition (CV). Moreover, if  $\mu_0^* \neq 0$ , then  $\mu^*/\mu_0^*$  must be the geometric multiplier of minimum norm.

(CV) If  $\mu^* \neq 0$ , then there exists a sequence  $\{x^k\} \subset X$  of infeasible points that satisfies (2), (3), and (4).

*Proof.* If  $f(x) \ge f^*$  for all  $x \in X$ , then  $\mu_0^* = 1$  and  $\mu^* = 0$  form an FJ-multiplier, and condition (CV) is satisfied. Moreover, (CV) (in particular, (3)) is satisfied by only  $\mu^* = 0$ . We will thus assume that there exists some  $\overline{x} \in X$  such that  $f(\overline{x}) < f^*$ .



FIG. 3. Illustration of the set  $S = \{(g(x), f(x)) \mid x \in X\}$  in Example 1. Even though  $\mu^* > 0$ , there is no sequence  $\{x^k\} \subset X$  such that  $g(x^k) > 0$  for all k, and  $f(x^k) \to f^*$ .

In this case,  $f^*$  is finite. Consider the problem

(39) 
$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in X^k, \qquad g(x) \le 0, \end{array}$$

where

$$X^{k} = X \cap \{x \mid ||x|| \le \beta k\}, \qquad k = 1, 2, \dots,$$

and  $\beta$  is a scalar that is large enough so that for all k, the constraint set  $\{x \in X^k \mid g(x) \leq 0\}$  is nonempty. Since f and  $g_j$  are closed and convex when restricted to X, they are closed, convex, and coercive when restricted to  $X^k$ . Hence, problem (39) has an optimal solution, which we denote by  $\overline{x}^k$ . Since this is a more constrained problem than the original, we have  $f^* \leq f(\overline{x}^k)$  and  $f(\overline{x}^k) \downarrow f^*$  as  $k \to \infty$ . Let

$$\gamma^k = f(\overline{x}^k) - f^*.$$

Note that if  $\gamma^k = 0$  for some k, then  $\overline{x}^k$  is an optimal solution for problem (P), and the result follows from Proposition 2 on enhanced Fritz John conditions for convex problems with an optimal solution. Therefore, we assume that  $\gamma^k > 0$  for all k.

For positive integers k and positive scalars m, we consider the saddle function

$$L_{k,m}(x,\xi) = f(x) + \frac{(\gamma^k)^2}{4k^2} \|x - \overline{x}^k\|^2 + \xi' g(x) - \frac{\|\xi\|^2}{2m}$$

We note that  $L_{k,m}(x,\xi)$ , viewed as a function from  $X^k$  to  $\Re$ , for fixed  $\xi \ge 0$ , is closed, convex, and coercive, in view of the closedness assumption. Furthermore,  $L_{k,m}(x,\xi)$ is negative definite quadratic in  $\xi$  for fixed x. Hence, we can use the saddle point theorem (e.g., [BNO03, Proposition 2.6.9]) to assert that  $L_{k,m}$  has a saddle point over  $x \in X^k$  and  $\xi \ge 0$ , which we denote by  $(x^{k,m}, \xi^{k,m})$ .

We now derive several properties of the saddle points  $(x^{k,m}, \xi^{k,m})$ , which set the stage for the main argument. The first of these properties is

$$f(x^{k,m}) \le L_{k,m}(x^{k,m},\xi^{k,m}) \le f(\overline{x}^k),$$

which is shown in the next paragraph.

The infimum of  $L_{k,m}(x,\xi^{k,m})$  over  $x \in X^k$  is attained at  $x^{k,m}$ , implying that

$$f(x^{k,m}) + \frac{(\gamma^{k})^{2}}{4k^{2}} \|x^{k,m} - \overline{x}^{k}\|^{2} + \xi^{k,m'}g(x^{k,m})$$

$$= \inf_{x \in X^{k}} \left\{ f(x) + \frac{(\gamma^{k})^{2}}{4k^{2}} \|x - \overline{x}^{k}\|^{2} + \xi^{k,m'}g(x) \right\}$$

$$\leq \inf_{x \in X^{k}, g(x) \leq 0} \left\{ f(x) + \frac{(\gamma^{k})^{2}}{4k^{2}} \|x - \overline{x}^{k}\|^{2} + \xi^{k,m'}g(x) \right\}$$

$$\leq \inf_{x \in X^{k}, g(x) \leq 0} \left\{ f(x) + \frac{(\gamma^{k})^{2}}{4k^{2}} \|x - \overline{x}^{k}\|^{2} \right\}$$

$$= f(\overline{x}^{k}).$$

Hence, we have

$$L_{k,m}(x^{k,m},\xi^{k,m}) = f(x^{k,m}) + \frac{(\gamma^k)^2}{4k^2} \|x^{k,m} - \overline{x}^k\|^2 + \xi^{k,m'}g(x^{k,m}) - \frac{1}{2m}\|\xi^{k,m}\|^2$$

$$(41) \leq f(x^{k,m}) + \frac{(\gamma^k)^2}{4k^2} \|x^{k,m} - \overline{x}^k\|^2 + \xi^{k,m'}g(x^{k,m})$$

$$\leq f(\overline{x}^k).$$

Since  $L_{k,m}$  is quadratic in  $\xi$ , the supremum of  $L_{k,m}(x^{k,m},\xi)$  over  $\xi \ge 0$  is attained at (42)  $\xi^{k,m} = mg^+(x^{k,m}).$ 

This implies that

(43) 
$$L_{k,m}(x^{k,m},\xi^{k,m}) = f(x^{k,m}) + \frac{(\gamma^k)^2}{4k^2} \|x^{k,m} - \overline{x}^k\|^2 + \frac{m}{2} \|g^+(x^{k,m})\|^2 \ge f(x^{k,m}).$$

We next show another property of the saddle points  $(x^{k,m},\xi^{k,m})$ , namely, that for each k, we have

(44) 
$$\lim_{m \to \infty} f(x^{k,m}) = f(\overline{x}^k) = f^* + \gamma^k.$$

For a fixed k and any sequence of integers m that tends to  $\infty$ , consider the corresponding sequence  $\{x^{k,m}\}$ . From (41) and (43), we see that  $\{x^{k,m}\}$  belongs to the set  $\{x \in X^k \mid f(x) \leq f(\overline{x}^k)\}$ , which is compact, since f is closed. Hence,  $\{x^{k,m}\}$  has a cluster point, denoted by  $\hat{x}^k$ , which belongs to  $\{x \in X^k \mid f(x) \leq f(\overline{x}^k)\}$ . By passing to a subsequence if necessary, we can assume without loss of generality that  $\{x^{k,m}\}$  converges to  $\hat{x}^k$ . We claim that  $\hat{x}^k$  is feasible for problem (39), i.e.,  $\hat{x}^k \in X^k$  and  $g(\hat{x}^k) \leq 0$ . Indeed, the sequence  $\{f(x^{k,m})\}$  is bounded from below by  $\inf_{x \in X^k} f(x)$ , which is finite by Weierstrass's theorem since f is closed and coercive when restricted to  $X^k$ . Also, for each k,  $L_{k,m}(x^{k,m}, \xi^{k,m})$  is bounded from above by  $f(\overline{x}^k)$  (cf. (41)), so (43) implies that

$$\limsup_{m \to \infty} g_j(x^{k,m}) \le 0 \qquad \forall \ j = 1, \dots, r.$$

Therefore, by using the closedness of  $g_j$ , we obtain  $g(\hat{x}^k) \leq 0$ , implying that  $\hat{x}^k$  is a feasible solution of problem (39). Thus,  $f(\hat{x}^k) \geq f(\overline{x}^k)$ . Using (41) and (43) together with the closedness of f, we also have

$$f(\hat{x}^k) \le \liminf_{m \to \infty} f(x^{k,m}) \le \limsup_{m \to \infty} f(x^{k,m}) \le f(\overline{x}^k),$$

thereby showing (44).

The next step in the proof is given in the following lemma.

LEMMA 11. For all sufficiently large k, and for all scalars  $m \leq 1/\sqrt{\gamma^k}$ , we have

(45) 
$$f(x^{k,m}) \le f^* - \frac{\gamma^k}{2}$$

Furthermore, there exists a scalar  $m_k \geq 1/\sqrt{\gamma^k}$  such that

(46) 
$$f(x^{k,m_k}) = f^* - \frac{\gamma^k}{2}.$$

*Proof.* Let  $\gamma = f^* - f(\overline{x})$ , where  $\overline{x}$  was defined earlier as the vector in X such that  $f(\overline{x}) < f^*$ . For sufficiently large k, we have  $\overline{x} \in X^k$  and  $\gamma^k < \gamma$ . Consider the vector

$$z^{k} = \left(1 - \frac{2\gamma^{k}}{\gamma^{k} + \gamma}\right)\overline{x}^{k} + \frac{2\gamma^{k}}{\gamma^{k} + \gamma}\overline{x},$$

which belongs to  $X^k$  for sufficiently large k (by the convexity of  $X^k$  and the fact that  $2\gamma^k/(\gamma^k + \gamma) < 1$ ). By the convexity of f, we have

(47)  
$$f(z^{k}) \leq \left(1 - \frac{2\gamma^{k}}{\gamma^{k} + \gamma}\right) f(\overline{x}^{k}) + \frac{2\gamma^{k}}{\gamma^{k} + \gamma} f(\overline{x})$$
$$= \left(1 - \frac{2\gamma^{k}}{\gamma^{k} + \gamma}\right) (f^{*} + \gamma^{k}) + \frac{2\gamma^{k}}{\gamma^{k} + \gamma} (f^{*} - \gamma)$$
$$= f^{*} - \gamma^{k}.$$

Similarly, by the convexity of  $g_j$ , we have

(48) 
$$g_j(z^k) \le \left(1 - \frac{2\gamma^k}{\gamma^k + \gamma}\right) g_j(\overline{x}^k) + \frac{2\gamma^k}{\gamma^k + \gamma} g_j(\overline{x}) \le \frac{2\gamma^k}{\gamma^k + \gamma} g_j(\overline{x}).$$

Using (43), we obtain

$$f(x^{k,m}) \leq L_{k,m}(x^{k,m},\xi^{k,m})$$
  
=  $\inf_{x \in X^k} \sup_{\xi \geq 0} L_{k,m}(x,\xi)$   
=  $\inf_{x \in X^k} \left\{ f(x) + \frac{(\gamma^k)^2}{4k^2} \|x - \bar{x}^k\|^2 + \frac{m}{2} \|g^+(x)\|^2 \right\}$   
 $\leq f(x) + (\beta\gamma^k)^2 + \frac{m}{2} \|g^+(x)\|^2 \quad \forall x \in X^k,$ 

where in the last inequality we also use the definition of  $X^k$  so that  $||x - \bar{x}^k|| \le 2\beta k$ for all  $x \in X^k$ . Substituting  $x = z^k$  in the preceding relation, and using (47) and (48), we see that for large k,

$$f(x^{k,m}) \le f^* - \gamma^k + (\beta \gamma^k)^2 + \frac{2m(\gamma^k)^2}{(\gamma^k + \gamma)^2} \|g^+(\overline{x})\|^2.$$

Since  $\gamma^k \to 0$ , this implies that for sufficiently large k and for all scalars  $m \le 1/\sqrt{\gamma^k}$ , we have

$$f(x^{k,m}) \le f^* - \frac{\gamma^k}{2}$$

i.e., (45) holds.

We next show that there exists a scalar  $m_k \geq 1/\sqrt{\gamma^k}$  such that (46) holds. In the process, we show that, for fixed k,  $L_{k,m}(x^{k,m},\xi^{k,m})$  changes continuously with m, i.e., for all  $\overline{m} > 0$ , we have  $L_{k,m}(x^{k,m},\xi^{k,m}) \to L_{k,\overline{m}}(x^{k,\overline{m}},\xi^{k,\overline{m}})$  as  $m \to \overline{m}$ . (By this we mean that, for every sequence  $\{m^t\}$  that converges to  $\overline{m}$ , the corresponding sequence  $L_{k,m^t}(x^{k,m^t},\xi^{k,m^t})$  converges to  $L_{k,\overline{m}}(x^{k,\overline{m}},\xi^{k,\overline{m}})$ .) Denote

$$f^{k}(x) = f(x) + \frac{(\gamma^{k})^{2}}{4k^{2}} ||x - \overline{x}^{k}||^{2}.$$

From (43), we have

$$L_{k,m}(x^{k,m},\xi^{k,m}) = \bar{f}(x^{k,m}) + \frac{m}{2} \|g^+(x^{k,m})\|^2 = \inf_{x \in X^k} \left\{ \bar{f}(x) + \frac{m}{2} \|g^+(x)\|^2 \right\}$$

so that for all  $m \geq \overline{m}$ , we obtain

$$L_{k,\overline{m}}(x^{k,\overline{m}},\xi^{k,\overline{m}}) = f^k(x^{k,\overline{m}}) + \frac{\overline{m}}{2} \|g^+(x^{k,\overline{m}})\|^2$$
  
$$\leq f^k(x^{k,m}) + \frac{\overline{m}}{2} \|g^+(x^{k,m})\|^2$$
  
$$\leq f^k(x^{k,m}) + \frac{m}{2} \|g^+(x^{k,m})\|^2$$
  
$$\leq f^k(x^{k,\overline{m}}) + \frac{m}{2} \|g^+(x^{k,\overline{m}})\|^2.$$

It follows that  $L_{k,m}(x^{k,m},\xi^{k,m}) \to L_{k,\overline{m}}(x^{k,\overline{m}},\xi^{k,\overline{m}})$  as  $m \downarrow \overline{m}$ . Similarly, we have for all  $m \leq \overline{m}$ 

$$\begin{split} f^{k}(x^{k,\overline{m}}) &+ \frac{m}{2} \|g^{+}(x^{k,\overline{m}})\|^{2} \leq f^{k}(x^{k,\overline{m}}) + \frac{\overline{m}}{2} \|g^{+}(x^{k,\overline{m}})\|^{2} \\ &\leq f^{k}(x^{k,m}) + \frac{\overline{m}}{2} \|g^{+}(x^{k,m})\|^{2} \\ &= f^{k}(x^{k,m}) + \frac{m}{2} \|g^{+}(x^{k,m})\|^{2} + \frac{\overline{m} - m}{2} \|g^{+}(x^{k,m})\|^{2} \\ &\leq f^{k}(x^{k,\overline{m}}) + \frac{m}{2} \|g^{+}(x^{k,\overline{m}})\|^{2} + \frac{\overline{m} - m}{2} \|g^{+}(x^{k,m})\|^{2}. \end{split}$$

For each k,  $f(x^{k,m})$  is bounded from below by  $\inf_{x \in X^k} f(x)$ , which is finite by Weierstrass's theorem since f is closed and coercive when restricted to  $X^k$ . Since, by (41) and (43),

$$f(x^{k,m}) + \frac{m}{2} \|g^+(x^{k,m})\|^2 \le f(\overline{x}^k),$$

we see that  $m \|g^+(x^{k,m})\|^2$  is bounded from above as  $m \uparrow \overline{m} > 0$ , so that  $(\overline{m} - m)\|g^+(x^{k,m})\|^2 \to 0$ . Therefore, we have from the preceding relation that  $L_{k,m}(x^{k,m}, \xi^{k,m}) \to L_{k,\overline{m}}(x^{k,\overline{m}}, \xi^{k,\overline{m}})$  as  $m \uparrow \overline{m}$ , which shows that  $L_{k,m}(x^{k,m}, \xi^{k,m})$  changes continuously with m.

Next, we show that, for fixed  $k, x^{k,m} \to x^{k,\overline{m}}$  as  $m \to \overline{m}$ . Since, for each  $k, x^{k,m}$  belongs to the compact set  $\{x \in X^k \mid f(x) \leq f(\overline{x}^k)\}$ , it has a cluster point as  $m \to \overline{m}$ . Let  $\hat{x}$  be a cluster point of  $x^{k,m}$ . Using the continuity of  $L_{k,m}(x^{k,m},\xi^{k,m})$ 

in m, and the closedness of  $f^k$  and  $g_j$ , we obtain

$$L_{k,\overline{m}}(x^{k,\overline{m}},\xi^{k,\overline{m}}) = \lim_{m \to \overline{m}} L_{k,m}(x^{k,m},\xi^{k,m})$$
  
=  $\lim_{m \to \overline{m}} \left\{ f^{k}(x^{k,m}) + \frac{m}{2} \|g^{+}(x^{k,m})\|^{2} \right\}$   
 $\geq f^{k}(\hat{x}) + \frac{\overline{m}}{2} \|g^{+}(\hat{x})\|^{2}$   
 $\geq \inf_{x \in X^{k}} \left\{ f^{k}(x) + \frac{\overline{m}}{2} \|g^{+}(x)\|^{2} \right\}$   
=  $L_{k,\overline{m}}(x^{k,\overline{m}},\xi^{k,\overline{m}}).$ 

This shows that  $\hat{x}$  attains the infimum of  $f^k(x) + \frac{\overline{m}}{2} ||g^+(x)||^2$  over  $x \in X^k$ . Since this function is strictly convex, it has a unique optimal solution, showing that  $\hat{x} = x^{k,\overline{m}}$ .

Finally, we show that  $f(x^{k,m}) \to f(x^{k,\overline{m}})$  as  $m \to \overline{m}$ . Since f is lower semicontinuous at  $x^{k,\overline{m}}$ , we have  $f(x^{k,\overline{m}}) \leq \liminf_{m \to \overline{m}} f(x^{k,m})$ . Thus it suffices to show that  $f(x^{k,\overline{m}}) \geq \limsup_{m \to \overline{m}} f(x^{k,m})$ . Assume that  $f(x^{k,\overline{m}}) < \limsup_{m \to \overline{m}} f(x^{k,m})$ . Using the continuity of  $L_{k,m}(x^{k,m},\xi^{k,m})$  in m and the fact that  $x^{k,m} \to x^{k,\overline{m}}$  as  $m \to \overline{m}$ , we have

$$f^{k}(x^{k,\overline{m}}) + \liminf_{m \to \overline{m}} \|g^{+}(x^{k,m})\|^{2} < \limsup_{m \to \overline{m}} L_{k,m}(x^{k,m},\xi^{k,m})$$
$$= L_{k,\overline{m}}(x^{k,\overline{m}},\xi^{k,\overline{m}})$$
$$= f^{k}(x^{k,\overline{m}}) + \|g^{+}(x^{k,\overline{m}})\|^{2}.$$

This contradicts the lower semicontinuity of  $g_j$ , so that  $f(x^{k,\overline{m}}) \ge \limsup_{m \to \overline{m}} f(x^{k,m})$ . Thus  $f(x^{k,m})$  is continuous in m.

From (44), (45), and the continuity of  $f(x^{k,m})$  in m, we see that there exists some scalar  $m_k \geq 1/\sqrt{\gamma^k}$  such that (46) holds.  $\Box$ 

We are now ready to construct FJ-multipliers with the desired properties. By combining (46), (41), and (43) (for  $m = m_k$ ), together with the facts that  $f(\overline{x}^k) \to f^*$  and  $\gamma^k \to 0$  as  $k \to \infty$ , we obtain

(49) 
$$\lim_{k \to \infty} \left( f(x^{k,m_k}) - f^* + \frac{(\gamma^k)^2}{4k^2} \|x^{k,m_k} - \overline{x}^k\|^2 + \xi^{k,m'_k} g(x^{k,m_k}) \right) = 0.$$

Denote

(50) 
$$\delta^{k} = \sqrt{1 + \|\xi^{k, m_{k}}\|^{2}}, \qquad \mu_{0}^{k} = \frac{1}{\delta^{k}}, \qquad \mu^{k} = \frac{\xi^{k, m_{k}}}{\delta^{k}}.$$

Since  $\delta^k$  is bounded from below by 1, (49) yields

(51) 
$$\lim_{k \to \infty} \left( \mu_0^k f(x^{k,m_k}) - \mu_0^k f^* + \frac{(\gamma^k)^2}{4k^2 \delta^k} \|x^{k,m_k} - \overline{x}^k\|^2 + \mu^{k'} g(x^{k,m_k}) \right) = 0.$$

Substituting  $m = m_k$  in the first relation of (40) and dividing by  $\delta^k$ , we obtain

$$\mu_0^k f(x^{k,m_k}) + \frac{(\gamma^k)^2}{4k^2 \delta^k} \|x^{k,m_k} - \overline{x}^k\|^2 + \mu^{k'} g(x^{k,m_k}) \\ \leq \mu_0^k f(x) + \mu^{k'} g(x) + \frac{(\beta \gamma^k)^2}{\delta^k} \quad \forall \ x \in X^k,$$

where we also use the fact that  $||x - \bar{x}^k|| \le 2\beta k$  for all  $x \in X^k$  (cf. the definition of  $X^k$ ). Since the sequence  $\{(\mu_0^k, \mu^k)\}$  is bounded, it has a cluster point, denoted by  $(\mu_0^*, \mu^*)$ , which satisfies conditions (ii) and (iii) in the definition of an FJ-multiplier. Without loss of generality, we will assume that the entire sequence  $\{(\mu_0^k, \mu^k)\}$  converges to  $(\mu_0^*, \mu^*)$ . For any  $x \in X$ , we have  $x \in X^k$  for all k sufficiently large. Taking the limit as  $k \to \infty$  in the preceding relation and using (51) and  $\gamma^k \to 0$  yield

$$\mu_0^* f^* \le \mu_0^* f(x) + {\mu^*}' g(x) \qquad \forall \ x \in X,$$

which implies that

$$\begin{split} \mu_0^* f^* &\leq \inf_{x \in X} \left\{ \mu_0^* f(x) + {\mu^*}' g(x) \right\} \\ &\leq \inf_{x \in X, \ g(x) \leq 0} \left\{ \mu_0^* f(x) + {\mu^*}' g(x) \right\} \\ &\leq \inf_{x \in X, \ g(x) \leq 0} \mu_0^* f(x) \\ &= \mu_0^* f^*. \end{split}$$

Thus we have

$$\mu_0^* f^* = \inf_{x \in X} \{ \mu_0^* f(x) + {\mu^*}' g(x) \},\$$

so that  $\mu_0^*, \mu^*$  satisfy condition (i) in the definition of an FJ-multiplier. Note that the existence of  $\overline{x} \in X$  such that  $f(\overline{x}) < f^*$ , together with condition (i), implies that  $\mu^* \neq 0$ .

Finally, we establish condition (CV). Using (42) and (50) and the fact that  $\mu^k \to \mu^*$ , we obtain

$$\frac{g^+(x^{k,m_k})}{\|g^+(x^{k,m_k})\|} = \frac{\mu^{k,m_k}}{\|\mu^{k,m_k}\|} \to \frac{\mu^*}{\|\mu^*\|}.$$

We have from (46) and  $\gamma^k \to 0$  that  $f(x^{k,m_k}) \to f^*$ . We also have from (41), (43) with  $m = m_k$ , and (46) that

$$\frac{m_k}{2} \|g^+(x^{k,m_k})\|^2 \le f(\bar{x}^k) - f(x^{k,m_k}) = \frac{3}{2}\gamma^k,$$

where the equality uses (42) and (50). Since  $\gamma^k \to 0$  and  $m_k \ge 1/\sqrt{\gamma^k} \to \infty$ , this yields  $g^+(x^{k,m_k}) \to 0$ . Moreover, combining the above inequality with (46) yields

(52) 
$$\frac{f^* - f(x^{k,m_k})}{\|g^+(x^{k,m_k})\|} = \frac{\gamma^k}{2\|g^+(x^{k,m_k})\|} \ge \frac{m_k \|g^+(x^{k,m_k})\|}{6} = \frac{\|\mu^{k,m_k}\|}{6\mu_0^{k,m_k}}.$$

If  $\mu_0^* = 0$ , then  $\mu_0^{k,m_k} \to 0$ , and so (52) together with  $\|\mu^{k,m_k}\| \to \|\mu^*\| > 0$  yields

$$\frac{f^* - f(x^{k,m_k})}{\|g^+(x^{k,m_k})\|} \to \infty.$$

It follows that the sequence  $\{x^{k,m_k}\}$  satisfies condition (CV) of the proposition. If  $\mu_0^* \neq 0$ , then  $\mu^*/\mu_0^*$  is a geometric multiplier and  $f^* = q^*$ , so that  $\mu^*/\mu_0^*$  is also a dual optimal solution. Thus the set of dual optimal solutions is nonempty and coincides with the set of geometric multipliers. Then, the vector  $(1,\bar{\mu})$ , where  $\bar{\mu}$  is the dual optimal solution of minimum norm, is an FJ-multiplier and, by Proposition 5 and the fact that  $f^* = q^*$ , it satisfies condition (CV) and is the only dual optimal solution that satisfies this condition. This completes the proof.  $\Box$ 

5. Dual Fritz John conditions when there is no optimal solution. The FJ-multipliers of Propositions 3, 8, and 10 define a hyperplane with normal  $(\mu^*, \mu_0^*)$  that supports the set of constraint-cost pairs

$$M = \{(u, w) \mid \text{ there exists } x \in X \text{ such that } g(x) \le u, f(x) \le w\}$$

at  $(0, f^*)$ . On the other hand, it is possible to construct a hyperplane that supports the set M at the point  $(0, q^*)$ , where  $q^*$  is the dual optimal value, while asserting the existence of a sequence that satisfies a condition analogous to condition (CV) of Proposition 10. This is the subject of the next proposition. Its proof uses Lemmas 1 and 4.

In analogy with an FJ-multiplier, we consider a scalar  $\mu_0^*$  and a vector  $\mu^* = (\mu_1^*, \ldots, \mu_r^*)'$ , satisfying the following conditions:

- (i)  $\mu_0^* q^* = \inf_{x \in X} \{ \mu_0^* f(x) + {\mu^*}' g(x) \}.$
- (ii)  $\mu_j^* \ge 0$  for all j = 0, 1, ..., r.
- (iii)  $\mu_0^*, \mu_1^*, \dots, \mu_r^*$  are not all equal to 0.

We call such a pair  $(\mu_0^*, \mu^*)$  a dual FJ-multiplier. If  $\mu_0^* \neq 0$ , then  $\mu^*/\mu_0^*$  is a dual optimal solution; otherwise  $\mu_0^* = 0$  and  $\mu^* \neq 0$ .

PROPOSITION 12 (enhanced dual Fritz John conditions). Consider the convex problem (P) under Assumption 1 (closedness), and assume that  $f^* < \infty$  and  $-\infty < q^*$ . Then there exists a dual FJ-multiplier  $(\mu_0^*, \mu^*)$  satisfying the following condition (dCV). Moreover, if  $\mu_0^* \neq 0$ , then  $\mu^*/\mu_0^*$  must be the dual optimal solution of minimum norm.

(dCV) If  $\mu^* \neq 0$ , then there exists a sequence  $\{x^k\} \subset X$  of infeasible points that satisfies

(53) 
$$f(x^k) \to q^*, \qquad g^+(x^k) \to 0,$$

(54) 
$$\frac{q^* - f(x^k)}{\|g^+(x^k)\|} \to \begin{cases} \|\mu^*\|/\mu_0^* & \text{if } \mu_0^* \neq 0, \\ \infty & \text{if } \mu_0^* = 0, \end{cases}$$

(55) 
$$\frac{g^+(x^k)}{\|g^+(x^k)\|} \to \frac{\mu^*}{\|\mu^*\|}.$$

*Proof.* Since by assumption we have  $-\infty < q^*$  and  $f^* < \infty$ , it follows from the weak duality relation  $q^* \leq f^*$  that both  $q^*$  and  $f^*$  are finite. For  $k = 1, 2, \ldots$ , consider the problem

minimize 
$$f(x)$$
  
subject to  $x \in X$ ,  $g_j(x) \le \frac{1}{k^4}$ ,  $j = 1, \dots, r$ .

By Lemma 4, for each k, the optimal value of this problem is less than or equal to  $q^*$ . Then, for each k, there exists a vector  $\tilde{x}^k \in X$  that satisfies

$$f(\tilde{x}^k) \le q^* + \frac{1}{k^2}, \qquad g_j(\tilde{x}^k) \le \frac{1}{k^4}, \quad j = 1, \dots, r.$$

Consider also the problem

(56) minimize 
$$f(x)$$
  
subject to  $g_j(x) \leq \frac{1}{k^2}, \quad j = 1, \dots, r,$   
 $x \in \tilde{X}^k = X \cap \{x \mid ||x|| \leq k \left(\max_{1 \leq i \leq k} \|\tilde{x}^i\| + 1\right)\}.$ 

Since f and  $g_j$  are closed and convex when restricted to X, they are closed, convex, and coercive when restricted to  $\tilde{X}^k$ . Hence, problem (56) has an optimal solution, which we denote by  $\overline{x}^k$ . Note that since  $\tilde{x}^k$  belongs to the feasible solution set of this problem, we have

(57) 
$$f(\overline{x}^k) \le f(\tilde{x}^k) \le q^* + \frac{1}{k^2}.$$

For each k, we consider the saddle function

$$L_k(x,\xi) = f(x) + \xi' g(x) - \frac{\|\xi\|^2}{2k}$$

and the set

(60)

(58) 
$$X^{k} = \tilde{X}^{k} \cap \{x \mid g_{j}(x) \le k, j = 1, \dots, r\}.$$

We note that  $L_k(x,\xi)$ , for fixed  $\xi \geq 0$ , is closed, convex, and coercive in x, when restricted to  $X^k$ , and negative definite quadratic in  $\xi$  for fixed x. Hence, using the saddle point theorem (e.g., [BNO03, Proposition 2.6.9]), we can assert that  $L_k$  has a saddle point over  $x \in X^k$  and  $\xi \geq 0$ , denoted by  $(x^k, \xi^k)$ .

Since  $L_k$  is quadratic in  $\xi$ , the supremum of  $L_k(x^k, \xi)$  over  $\xi \ge 0$  is attained at

(59) 
$$\xi^k = kg^+(x^k).$$

Similarly, the infimum of  $L_k(x,\xi^k)$  over  $x \in X^k$  is attained at  $x^k$ , implying that

$$\begin{split} f(x^k) + \xi^{k'} g(x^k) &= \inf_{x \in X^k} \left\{ f(x) + \xi^{k'} g(x) \right\} \\ &= \inf_{x \in X^k} \left\{ f(x) + kg^+ (x^k)'g(x) \right\} \\ &\leq \inf_{x \in X^k, \ g_j(x) \leq \frac{1}{k^4}, \ j = 1, \dots, r,} \left\{ f(x) + k \sum_{j=1}^r g_j^+ (x^k)'g_j(x) \right\} \\ &\leq \inf_{x \in X^k, \ g_j(x) \leq \frac{1}{k^4}, \ j = 1, \dots, r,} \left\{ f(x) + \frac{r}{k^2} \right\} \\ &= f(\overline{x}^k) + \frac{r}{k^2} \\ &\leq q^* + \frac{r+1}{k^2}, \end{split}$$

where the second inequality follows using the fact  $g_j^+(x^k) \leq k, j = 1, \ldots, r$  (cf. (58)), and the third inequality follows from (57).

Since  $q^*$  is finite, we may select a nonnegative sequence  $\{\zeta^k\}$  such that

(61) 
$$q(\zeta^k) \to q^*, \qquad \frac{\|\zeta^k\|^2}{2k} \to 0.$$

(For example, we can take  $\zeta^k$  to be any maximizer of  $q(\zeta)$  subject to  $\zeta \geq 0$  and

 $\|\zeta\| \le k^{1/3}$ .) Then, we have for all k

(62)  

$$L_{k}(x^{k},\xi^{k}) = \sup_{\xi \ge 0} \inf_{x \in X^{k}} L_{k}(x,\xi)$$

$$\geq \sup_{\xi \ge 0} \inf_{x \in X} L_{k}(x,\xi)$$

$$= \sup_{\xi \ge 0} \left\{ \inf_{x \in X} \left\{ f(x) + \xi' g(x) \right\} - \frac{\|\xi\|^{2}}{2k} \right\}$$

$$= \sup_{\xi \ge 0} \left\{ q(\xi) - \frac{\|\xi\|^{2}}{2k} \right\}$$

$$\geq q(\zeta^{k}) - \frac{\|\zeta^{k}\|^{2}}{2k}.$$

Combining (62) and (60), we obtain

(63)  

$$q(\zeta^{k}) - \frac{\|\zeta^{k}\|^{2}}{2k} \leq L_{k}(x^{k}, \xi^{k})$$

$$= f(x^{k}) + \xi^{k'}g(x^{k}) - \frac{\|\xi^{k}\|^{2}}{2k}$$

$$\leq f(x^{k}) + \xi^{k'}g(x^{k})$$

$$\leq q^{*} + \frac{r+1}{k^{2}}.$$

Taking the limit in the preceding relation and using (61), we obtain

(64) 
$$\lim_{k \to \infty} \left\{ f(x^k) - q^* + \xi^{k'} g(x^k) \right\} = 0.$$

Denote

(65) 
$$\delta^{k} = \sqrt{1 + \|\xi^{k}\|^{2}}, \qquad \mu_{0}^{k} = \frac{1}{\delta^{k}}, \qquad \mu^{k} = \frac{\xi^{k}}{\delta^{k}}.$$

Since  $\delta^k$  is bounded from below by 1, (64) yields

(66) 
$$\lim_{k \to \infty} \{\mu_0^k (f(x^k) - q^*) + \mu^{k'} g(x^k)\} = 0.$$

Dividing both sides of the first relation in (60) by  $\delta^k$ , we get

$$\mu_0^k f(x^k) + \mu^{k'} g(x^k) \leq \mu_0^k f(x) + \mu^{k'} g(x) \qquad \forall \ x \in X^k.$$

Since the sequence  $\{(\mu_0^k, \mu^k)\}$  is bounded, it has a cluster point  $(\mu_0^*, \mu^*)$ . This cluster point satisfies conditions (ii) and (iii) of the proposition. Without loss of generality, we assume that the entire sequence converges. For any  $x \in X$ , we have  $x \in X^k$  for all k sufficiently large. Taking the limit as  $k \to \infty$  in the preceding relation and using (66) yield

$$\mu_0^* q^* \le \mu_0^* f(x) + {\mu^*}' g_j(x) \qquad \forall \ x \in X.$$

We consider separately the two cases,  $\mu_0^* > 0$  and  $\mu_0^* = 0$ , in the above relation to show that  $(\mu_0^*, \mu^*)$  satisfy condition (i) of the proposition. Indeed, if  $\mu_0^* > 0$ , by dividing with  $\mu_0^*$ , we have

$$q^* \le \inf_{x \in X} \left\{ f(x) + \frac{\mu^{*'}}{\mu_0^*} g(x) \right\} = q\left(\frac{\mu^*}{\mu_0^*}\right) \le q^*.$$

Similarly, if  $\mu_0^* = 0$ , it can be seen that

$$0 = \inf_{x \in X} \mu^{*'} g(x)$$

(since  $f^* < \infty$ , so that there exists an  $x \in X$  such that  $g(x) \leq 0$  and  $\mu^{*'}g(x) \leq 0$ ). Hence, in both cases, we have

$$\mu_0^* q^* = \inf_{x \in X} \{ \mu_0^* f(x) + {\mu^*}' g(x) \},\$$

thus showing condition (i) in the definition of a dual FJ-multiplier.

If  $\mu^* = 0$ , then  $\mu_0^* \neq 0$ , (dCV) is automatically satisfied, and  $\mu^*/\mu_0^* = 0$  has minimum norm. Assume now that  $\mu^* \neq 0$ . Using (59), (65), and the fact that  $\mu^k \to \mu^*$ , we obtain

$$\frac{g^+(x^k)}{\|g^+(x^k)\|} = \frac{\mu^k}{\|\mu^k\|} \to \frac{\mu^*}{\|\mu^*\|}.$$

This proves (55). Also, we have from (63) that

$$k(f(x^k) - q^*) + \xi^{k'} k g(x^k) \le \frac{r+1}{k} \quad \forall \ k = 1, 2, \dots$$

Using (59), this yields

$$k(f(x^k) - q^*) + ||\xi^k||^2 \le \frac{r+1}{k}.$$

Dividing both sides by  $\|\xi^k\| = k\|g^+(x^k)\|$  and using (65) yield

(67) 
$$\frac{q^* - f(x^k)}{\|g^+(x^k)\|} \ge \|\xi^k\| - \frac{r+1}{k\|\xi^k\|} = \frac{\|\mu^k\|}{\mu_0^k} - \frac{r+1}{k\|\mu^k\|/\mu_0^k}.$$

If  $\mu_0^* = 0$ , then  $\mu_0^k \to 0$ , and so (67) together with  $\|\mu^k\| \to \|\mu^*\| > 0$  yields

$$\frac{q^* - f(x^k)}{\|g^+(x^k)\|} \to \infty.$$

If  $\mu_0^* \neq 0$ , then (67) together with  $\mu_0^k \to \mu_0^*$  and  $\|\mu^k\| \to \|\mu^*\|$  yields

$$\liminf_{k \to \infty} \frac{q^* - f(x^k)}{\|g^+(x^k)\|} \ge \frac{\|\mu^*\|}{\mu_0^*}.$$

Since  $\mu^*/\mu_0^*$  is a dual optimal solution, Lemma 1 shows that in fact  $\mu^*/\mu_0^*$  is of minimum norm and the inequality holds with equality.

We finally show that  $f(x^k) \to q^*$  and  $g^+(x^k) \to 0$ . By (63) and (61), we have

(68) 
$$\lim_{k \to \infty} \frac{\|\xi^k\|^2}{2k} = 0.$$

By (59), we have

$${\xi^k}'g(x^k) = \frac{1}{k} \|\xi^k\|^2$$

and so using also (63) and (61), we obtain

$$\lim_{k \to \infty} f(x^k) + \frac{\|\xi^k\|^2}{2k} = q^*,$$

which together with (68) shows that  $f(x^k) \to q^*$ . Moreover, (68) and (59) imply that

$$\lim_{k \to \infty} k \|g^+(x^k)\|^2 = 0,$$

showing that  $g^+(x^k) \to 0$ . Therefore, the sequence  $\{x^k\}$  satisfies condition (dCV) of the proposition, completing the proof.  $\Box$ 

Note that the proof of Proposition 12 is similar to the proof of Proposition 2. The idea is to generate saddle points of the function

$$L_k(x,\xi) = f(x) + \xi' g(x) - \frac{\|\xi\|^2}{2k}$$

over  $x \in X^k$  (cf. (58)) and  $\xi \ge 0$ . It can be shown that

$$L_k(x^k, \xi^k) = \inf_{u \in \Re^r} \left\{ p^k(u) + \frac{k}{2} \|u^+\|^2 \right\},\$$

where  $p^k(u)$  is the optimal value of the problem

minimize 
$$f(x)$$
  
subject to  $g(x) \le u, x \in X^k$ 

(see the discussion following the proof of Proposition 2). For each k, the value  $L_k(x^k,\xi^k)$  can be visualized geometrically as in Figure 1. However, here the rate at which  $X^k$  approaches X is chosen high enough so that  $L_k(x^k,\xi^k)$  converges to  $q^*$  as  $k \to \infty$  (cf. (63)), and not to  $f^*$ , as in the proof of Propositions 2 or 10.

As a final remark, it appears that the closedness assumption in Proposition 12 can be relaxed analogously as in Proposition 7 by using Lemmas 1 and 6.

## REFERENCES

- [BNO03] D. P. BERTSEKAS, A. NEDIĆ, AND A. E. OZDAGLAR, Convex Analysis and Optimization, Athena Scientific, Belmont, MA, 2003.
- [BeO02] D. P. BERTSEKAS AND A. E. OZDAGLAR, Pseudonormality and a Lagrange multiplier theory for constrained optimization, J. Optim. Theory Appl., 114 (2002), pp. 287– 343.
- [Ber99] D. P. BERTSEKAS, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
- [Hes75] M. R. HESTENES, Optimization Theory: The Finite Dimensional Case, Wiley, New York, 1975.
- [Joh48] F. JOHN, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays: Courant Anniversary Volume, K. O. Friedrichs, O. E. Neugebauer, and J. J. Stoker, eds., Wiley-Interscience, New York, 1948, pp. 187–204.
- [Kar39] W. KARUSH, Minima of functions of several variables with inequalities, M.Sc. Thesis, Department of Mathematics, University of Chicago, Chicago, IL, 1939.
- [Kuh91] H. W. KUHN, Nonlinear programming: A historical note, in History of Mathematical Programming, J. K. Lenstra, A. H. G. Rinnooy Kan, and A. Schrijver, eds., North– Holland, Amsterdam, 1991, pp. 77–96.
- [Lue79] D. G. LUENBERGER, Optimization by Vector Space Methods, Wiley, New York, 1979.
- [Roc70] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
- [Roc93] R. T. ROCKAFELLAR, Lagrange multipliers and optimality, SIAM Rev., 35 (1993), pp. 183–238.
- [Sla50] M. SLATER, Lagrange Multipliers Revisited: A Contribution to Nonlinear Programming, Cowles Commission Discussion Paper, Math. 403, November, 1950.