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Abstract

We establish two sufficient conditions for the stability of a P-matrix. First, we show that a P-matrix is
positive stable if its skew-symmetric component is sufficiently smaller (in matrix norm) than its symmetric
component. This result generalizes the fact that symmetric P-matrices are positive stable, and is analogous
to a result by Carlson which shows that sign symmetric P-matrices are positive stable. Second, we show
that a P-matrix is positive stable if it is strictly row (column) square diagonally dominant for every order
of minors. This result generalizes the fact that strictly row diagonally dominant P-matrices are stable. We
compare our sufficient conditions with the sign symmetric condition and demonstrate that these conditions
do not imply each other.
© 2007 Elsevier Inc. All rights reserved.
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0. Notations

Given an n × n matrix A, we denote by Aij its element in ith row and j th column. We denote
by ‖A‖2 the two-norm of A, that is maxi∈{1,2,..,n}

√
λi where {λ1, . . . , λn} is the set of eigenvalues

of ATA. For subsets α and β of {1, 2.., n}, we denote by A(α|β) the sub-matrix of A with elements
{Aij } where i ∈ α and j ∈ β. If |α| = |β|, then we call det(A(α|β)) the minor corresponding to
index sets α and β and denote it by A(α, β). If |α| = k, we call A(α, α) a principal minor of A

of order k. Let RN denote the N dimensional Euclidean space, and RN+ denote the nonnegative
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orthant. Given a complex number x ∈ C, we denote its polar representation by x = l(x)ei arg(x),
where l(x) ∈ R+ is the length of x and arg(x) ∈ (−π, π ] is its argument.

1. Introduction

A square matrix is called a P -matrix if all of its principal minors are real and positive.
Throughout this paper, we focus on real P -matrices. Since their introduction by Fiedler and Ptak
[6], P -matrices have found applications in a number of disciplines including physics, economics,
and communication networks. To note one example, in economics P -matrices are used to establish
sufficient conditions for the uniqueness of the general equilibrium (cf. [1]).1

A square matrix is positive stable if all of its eigenvalues lie in the open right half plane.
In this paper, we will refer to a positive stable matrix as a stable matrix. Positive stability and
related notions of stability are of fundamental importance in linear algebra and they are important
in applications too, e.g. in studying dynamical systems in various fields such as control theory,
economics, physics, chemical networks, and biology. Gantmacher [7] presents the classic stability
results and Hershkowitz [8] provides a recent survey of new results and applications.

P -matrices and stable matrices are closely related. Even though the P -matrix property or
stability property do not imply each other for general matrices, they do so for certain well known
matrix classes. For example, a symmetric matrix is stable if and only if it is a P -matrix. Moreover,
totally nonnegative matrices (i.e. square matrices with every minor positive), nonsingular M-
matrices (i.e. matrices with positive diagonal and non-positive off-diagonal entries), and positive
definite matrices have both the stability and the P -matrix properties. These observations led to a
number of studies which investigated additional conditions that guarantee stability of a P -matrix.

One such study is the earlier work by Carlson [4]. A matrix A is sign symmetric if

A(α, β)A(β, α) � 0 (1)

for all α, β ⊂ {1, 2, .., n} such that |α| = |β|. Carlson [4] proved the following:2

Theorem 1. A sign-symmetric P -matrix is stable.

In this paper, we provide two new sufficient conditions for the stability of a P -matrix along the
lines of Theorem 1. Our first result is motivated by the fact that symmetric P -matrices are stable.
Since eigenvalues are continuous functions of matrix entries, one may expect that a symmetric
P -matrix will remain stable if it is slightly perturbed into a non-symmetric matrix. We formalize
this idea by showing that an n × n P -matrix A is stable if the norm of the matrix (A+)−1A− is not
greater than sin(π/n), where A+ represents the symmetric component of A, and A− the skew-
symmetric component. The proof uses a recent result by Eisenstat and Ipsen [5] which bounds the
relative change in eigenvalues resulting from a perturbation. We show that the sufficient condition
we provide does not imply, nor is it implied by Carlson’s sign symmetry condition. Both conditions
put symmetry restrictions on a P -matrix to guarantee stability; however, they emphasize different

1 See also Parthasarthy [12] for other economic applications, Babenko and Petrov [3] for a physics application,
Tang et al. [14] for an application in communication networks, and Simsek et al. [13] for an application for mixed
and nonlinear complementarity problems.

2 Carlson [4] also conjectured a stronger theorem. A matrix is weakly sign symmetric if Eq. (1) holds for all α, β ⊂
{1, 2, .., n} such that |α| = |β| = |α ∩ β| + 1,that is, if the products of symmetrically located almost principal minors are
nonnegative. Then, Carlson conjectured that a weakly sign symmetric P -matrix is stable. This conjecture, among some
other conjectures, has been disproven by Holtz [10].
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aspects of symmetry. Finally, in terms of computational complexity, this sufficient condition is
much easier to check than the sign symmetry condition.

Our second result is motivated by the fact that strictly diagonally dominant P -matrices are
stable. An n × n matrix A is strictly row diagonally dominant if

|Aii | >
∑
j /=i

|Aij |, for i = 1, . . . , n, (2)

and A is strictly column diagonally dominant if AT is strictly row diagonally dominant. It follows
from the celebrated Gersgorin’s theorem [9] that a strictly row or column diagonally dominant
P -matrix is stable. We show that a potentially weaker diagonal dominance condition would be
sufficient to guarantee the stability of a P -matrix. We say that a matrix A is strictly row square
diagonally dominant for every order of minors if for any α ∈ {1, 2, .., n},

A(α, α)2 >
∑

|β|=|α|,β /=α,β∈{1,2,...,n}
A(α, β)2. (3)

We show that a P -matrix which also satisfies this condition is stable. Our proof of this theorem is
analogous to the proof of Theorem 1 in Carlson [4]. Moreover, this sufficient condition and Carl-
son’s sign symmetry condition both involve computing all minors of a matrix. Nevertheless, this
condition too does not imply, nor is it implied by Carlson’s sign symmetry condition. Intuitively,
this condition guarantees stability by restricting the size of off-diagonal entries of the matrix,
which is essentially different from our first condition and Carlson’s sign symmetry condition
which establish stability through symmetry restrictions.

The organization of this paper is as follows. In Section 2, we state and prove our first theorem
which establishes stability when the P -matrix is “almost” symmetric. In Section 3, we state and
prove our second theorem which establishes stability for P -matrices that are strictly row (column)
square diagonally dominant for every order of minors. In this section, we also provide a weaker
diagonal dominance condition which guarantees stability of a P -matrix in lower dimensions. In
Section 4, we compare our conditions with Carlson’s sign symmetry condition. In particular, we
provide examples which show that these conditions do not imply each other. We also present a
numerical exercise to calculate how likely each condition is to be encountered if matrices are
generated randomly according to certain probability measures.

2. Stability of almost symmetric P -matrices

In this section, we provide a sufficient condition for the stability of P -matrices that are close to
being symmetric. Our result in this section holds for the set of Q-matrices, which is a superset of
P -matrices. A square matrix is called a Q-matrix if for each k ∈ {1, 2, .., n}, its sum of principal
minors of order k is positive. Clearly any P -matrix is also a Q-matrix.

We need the following lemma to prove our results in both this and the next section. The result,
due to Kellogg [11], states that every eigenvalue of a Q-matrix lies in a particular open angular
wedge.

Lemma 1. Let A be an n × n Q-matrix, and let μ be one of its eigenvalues. Then,

|arg(μ)| < π − π/n.

Our main result in this section makes use of the symmetric and the skew-symmetric components
of a matrix. Given matrix A, we define its symmetric component as
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A+ = A + AT

2
,

and its skew-symmetric component as

A− = A − AT

2
.

If A+ is much larger than A− in an appropriate matrix norm, then A will be close to being
symmetric. Since eigenvalues change continuously in matrix entries, one might then expect A

to be stable in view of the result that symmetric P -matrices are stable. The following theorem,
which is our main result in this section, makes this idea precise.

Theorem 2. Let A be a Q-matrix, A+ be its symmetric part and A− be its skew-symmetric part.
If A+ is nonsingular and

‖(A+)−1A−‖2 � sin
(π

n

)
, (4)

then A is stable.

To prove this theorem, we need to characterize how eigenvalues change when the symmetric
matrix A+ is perturbed. The well known Bauer–Fike Theorem [2] in numerical error analysis
provides a bound for the absolute error of the change of eigenvalues in response to a perturbation.
Recently, the following lemma by Eistenstat and Ipsen [5] provides bounds for the relative error
for change in eigenvalues due to this kind of perturbation.3

Lemma 2. Let B be a non-singular and diagonalizable matrix with an eigendecomposition B =
X�X−1, where � = diag(λ1, λ2, . . ., λn) is the eigenvalue matrix and X is an eigenvector matrix.
Let E be a perturbation matrix of the same size as B and λ̂ be an eigenvalue of B + E. Then

min
i∈{1,2,..,n}

|λi − λ̂|
|λi | � κ(X)‖B−1E‖2, (5)

where κ(X) = ‖X‖2‖X−1‖2 is the condition number of the eigenvector matrix X.

Proof of Theorem 2. Since A+ is real and symmetric, it is diagonalizable. Furthermore, there
exists a unitary eigenvector matrix T , such that

A+ = T �T −1,

where � = diag(λ1, λ2, . . ., λn) is the eigenvalue matrix of A+. Since T is unitary, ‖T ‖2 = 1 and
‖T −1‖2 = 1 which implies κ(T ) = 1. Let μ be an eigenvalue of A. Then, since A = A+ + A−,
by Lemma 2, we have

min
i

|λi − μ|
|λi | � ‖(A+)−1A−‖2. (6)

Let λ(μ) be a minimizer of the problem (6), r(μ) be the positive scalar given by

r(μ) = ‖(A+)−1A−‖2|λ(μ)|, (7)

3 Results similar to Lemma 1 hold for norms other than the two-norm, e.g. Frobenius norm (see [5]). Consequently, it
is possible to prove results analogous to Theorem 2 using other norms. Here we state and prove results for the two-norm
case to simplify the exposition.
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Fig. 1. Locations of eigenvalues.

and B(μ) be a ball around λ(μ) with radius r(μ), i.e.

B(μ) = {x ∈ C||x − λ(μ)| � r(μ)}.
Then, Eq. (6) is equivalent to saying μ ∈ B(μ).

For 0 < φ < π/2, let the set C(φ) be given by

C(φ) = {x = rejθ |r∈R+,θ∈(−π,π ] ∈ C||θ | < φ or |θ | > π − φ}.
Note that C(φ) represents two cones that are symmetric with respect to the imaginary axis. By

Eqs. (4) and (7),

sin(φ(μ)) = r(μ)

|λ(μ)| � sin
(π

n

)
,

moreover, since A+ is symmetric, λ(μ) is real. Then

B(μ) ⊂ C
(π

n

)
,

(cf. Fig. 1) which implies

μ ∈ C
(π

n

)
.

On the other hand, by Lemma 1, | arg(μ)| < π − π/n, hence μ cannot be in the left cone of the
set C(φ). This implies

|arg(μ)| <
π

n
,

showing, in particular, that A is stable. �

3. Stability of almost diagonally dominant P -matrices

In this section, we provide a sufficient condition for the stability of P -matrices that are close
to being row or column diagonally dominant. To state our result, we introduce a new notion of



Author's personal copy

A.K. Tang et al. / Linear Algebra and its Applications 426 (2007) 22–32 27

diagonal dominance. A matrix A is strictly row square diagonally dominant for every order of
minors if Eq. (3) holds for any α ⊂ {1, 2, .., n}. A is strictly column square diagonally dominant
for every order of minors if AT is strictly row square diagonally dominant for every order of
minors. Condition (3) can be potentially weaker than the row diagonal dominance condition
given in (2); see, for example, the matrix in example 5. The following result asserts that Condition
(3) is enough to guarantee stability of P -matrices.

Theorem 3. Let A be a P -matrix. If A is strictly row (column) square diagonally dominant for
every order of minors, then A is stable.

Proof. We prove the theorem for the row dominant case. The proof for the column dominant case
is analogous. Since A is a P -matrix, there exists a D = diag(d1, d2, . . ., dn) with di > 0 for i =
1, 2, . . . , n such that AD is positive stable (cf. [9]). For t ∈ [0, 1], let the matrix D(t) be given by

D(t) = tD + (1 − t)I (8)

for 0 � t � 1 and the matrix S(t) by

S(t) = (AD(t))2. (9)

We claim that S(t) is a Q matrix. By the Cauchy–Binet formula, we have, for each α ⊂ {1, 2, .., n},
S(t)(α, α) =

∑
|β|=|α|;β⊂{1,2,..,n}

AD(t)(α, β)AD(t)(β, α)

=
∑

|β|=|α|;β⊂{1,2,..,n}

⎛
⎝∏

i∈β

D(t)ii

⎞
⎠(∏

i∈α

D(t)ii

)
A(α, β)A(β, α)

>
∑

|β|=|α|,β /=α;β⊂{1,2,..,n}

(∏
i∈α

D(t)ii

)2

A(α, β)2

+
(∏

i∈β

D(t)ii

)(∏
i∈α

D(t)ii

)
A(α, β)A(β, α), (10)

where we used Condition (3) to get the inequality. For k ∈ {1, 2, .., n}, adding Eq. (10) over all
principal minors of S(t) of order k, we have

∑
|α|=k

S(α, α) >
∑
|α|=k

⎛
⎝ ∑

|β|=|α|,β /=α

(∏
i∈α

D(t)ii

)2

A(α, β)2

+
(∏

i∈β

D(t)ii

)(∏
i∈α

D(t)ii

)
A(α, β)A(β, α)

⎞
⎠

=
∑

|α|=|β|=k,α /=β

⎛
⎝(∏

i∈α

D(t)ii

)
A(α, β) +

(∏
i∈β

D(t)ii

)
A(β, α)

⎞
⎠

2

> 0,

showing that S(t) is a Q-matrix for t ∈ [0, 1]. Then, by Lemma 1, S(t) cannot have non-positive
real eigenvalues. Since S(t) = (AD(t))2, eigenvalues of S(t) are the squares of eigenvalues of
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AD(t), hence AD(t) cannot have eigenvalues on the imaginary axis for any t ∈ [0, 1]. Since the
stable matrix AD(1) = AD have all eigenvalues on the right half space and since eigenvalues
change continuously in matrix entries, AD(t) has eigenvalues on the right half space for all
t ∈ [0, 1]. We conclude, in particular, that AD(0) = A is stable. �

In the remaining of this section, we provide a stronger result than Theorem 3 for low dimen-
sional matrices. We say that a matrix A is strictly diagonally dominant of its row entries

|Aii | > |Aij | for each i = 1, . . . , n and all j /= i. (11)

A is strictly diagonally dominant of its column entries if AT is strictly diagonally dominant of
its row entries. Condition (11) is weaker than both Condition (2) and Condition (3). Hence, the
following result generalizes Theorem 3 for low dimensional P -matrices.

Theorem 4. Let A be an n × n P -matrix where n ∈ {1, 2, 3}. If A is strictly diagonally dominant
of its row (or column) entries, then it is stable.

Proof. The result trivially holds for n ∈ {1, 2}. We prove it for n = 3. For i ∈ {1, .., n}, let

Ei =
∑

|α|=i;α⊂{1,..,n}
A(α, α)

denote the sum of all principal minors of A of order i. By the Routh stability criterion (cf. [7]), A
is stable if and only if

Ei > 0 for i ∈ {1, 2, 3}, (12)

and

E1E2 > E3. (13)

Eq. (12) holds since A is a P -matrix. We note that Eq. (13) also holds since

E3 = det(A) = A11(A22A33 − A23A32) − A12(A21A33 − A23A31) + A13(A21A32 − A22A31)

< A11A22A33 − A11A23A32 + A11A22A33 − A12A21A33 + A11A22A33 − A13A22A31

= A11(A22A33 − A23A32) + A22(A11A33 − A13A31) + A33(A11A22 − A12A21)

< (A11 + A22 + A33)((A11A22 − A12A21) + (A11A33 − A13A31) + (A22A33 − A23A32))

= E1E2,

where the first inequality follows since Aii = |Aii | > |Aij | for j /= i and the second one follows
since A({i, j}, {i, j}) = AiiAjj − AijAji > 0 for j /= i. �

Theorem 4 does not generalize to higher dimensions as the following counterexample demon-
strates.

Example 1. Let A be the matrix given by

A =

⎡
⎢⎢⎣

9.4554 −8.8510 4.5878 6.2469
−5.1538 8.8516 4.6208 −8.6458
−3.6440 5.0156 7.6989 6.7869
9.4550 5.2547 7.6980 9.4554

⎤
⎥⎥⎦ .
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It can be checked that A is a P -matrix and is diagonally dominant of its row and column en-
tries. However, the four eigenvalues of A are 18.2129 + 3.6058i, 18.2129 − 3.6058i, −0.4823 +
6.5399i and −0.4823 + 6.5399i, hence A is not stable.

4. Comparison with existing results

We have provided in Theorems 2 and 3 two new general sufficient conditions for the stability
of P -matrices. In this section, we compare our sufficient conditions with that of Carlson’s sign
symmetry condition.

We first demonstrate that these three sufficient conditions do not imply each other. The follow-
ing series of examples show that for any pair of conditions there exists a matrix which satisfies
the assumptions of one but not the other.

Example 2. The following is a stable P -matrix which satisfies the condition of Theorems 2 and
3 but is not sign symmetric:

A =
[

1 −0.5
0.5 1

]
.

A is a stable P -matrix with eigenvalues 1 + 0.5i and 1 − 0.5i. A is not sign-symmetric since
A({1}, {2})A({2}, {1}) = −0.25 < 0. However, A satisfies the condition of Theorem 2 since
‖(A+)−1A−‖2 = 0.5 < sin

(
π
2

)
. A also satisfies the condition of Theorem 3.

Example 3. The following is a stable P -matrix which is sign symmetric but does not satisfy the
condition of Theorem 2 or Theorem 3:

A =
[

1 9
0.1 1

]

A is a stable P -matrix with eigenvalues 1.9487 and 0.0513. A is sign-symmetric. However, A

doesn’t satisfy the condition of Theorem 2 since ‖(A+)−1A−‖2 = 1.2535 > sin
(

π
2

)
, nor does it

satisfy the condition of Theorem 3 since A({1}, {2}) = 9 > A({1}, {1}) = A({2}, {2}).

Example 4. The following is a stable P -matrix which satisfies the condition of Theorem 2 but
not the condition of Theorem 3:

A =
⎡
⎣ 1 0.8 0.9

0.7 1 0.7
0.8 0.9 1

⎤
⎦ .

A is a stable P -matrix with eigenvalues 2.5957, 0.1816 and 0.2227. A satisfies the condition
of Theorem 2 since ‖(A+)−1A−‖2 = 0.4821 < 0.866 = sin

(
π
3

)
. However, A does not satisfy

the condition of Theorem 3 since A2({1}, {1}) = 1 < 1.45 = A2({1}, {2}) + A2({1}, {3}) and
A2({1}, {1}) = 1 < 1.13 = A2({2}, {1}) + A2({3}, {1}).

Example 5. A stable P -matrix that satisfies the condition of Theorem 3 but not the condition of
Theorem 2:
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Table 1
Conditions to guarantee different properties for a matrix defined in (14)

Properties Conditions

A is a P -matrix xy < 1
A is a sign-symmetric matrix xy � 0
A is a matrix that satisfies Theorem 2’s |x + y + 2| � |x + y − 2| and |x − y| < |x + y − 2|

‖(A+)−1A−‖2 < sin
(
π
2

)
or |x + y + 2| � |x + y − 2| and |x − y| < |x + y + 2|

A is a matrix that satisfies Theorem 3’s |x| < 1
A2(α, α) >

∑
|β|=|α|,β /=α A2(α, β) and |y| < 1

A =
⎡
⎣ 1 0.6 0.7

−0.6 1 0.5
−0.5 −0.4 1

⎤
⎦ .

A is a stable P -matrix with eigenvalues 0.5524, 1.2238 + 0.8126i and 1.2238 − 0.8126i. It can
be checked that A is strictly row square diagonal dominant for every order of minors, hence A

satisfies the condition of Theorem 3. However, A does not satisfy the condition of Theorem 2
since ‖(A+)−1A−‖2 = 1.0658 > 0.866 = sin

(
π
3

)
.

We next highlight the similarities and the differences between the three conditions by stating
each condition in terms of matrix entries for a general 2 × 2 matrix. Let

A =
[

1 x

y 1

]
. (14)

Table 1 summarizes the conditions for A to satisfy the conditions of Theorem 2, Theorem 3,
and the sign symmetry condition.4 Fig. 2 provides an illustration. In general, a matrix is quite
symmetric if its diagonal entries are much larger than the off diagonal ones (hence ‖A+‖ is much
larger than ‖A−‖). Therefore, including the condition of Theorem 3, all three conditions impose
certain symmetry conditions. the main point here is to show that different conditions emphasize
different kinds of “symmetry”. For example, sign symmetry tends to emphasize some quadrants
and ignore others while Theorem 3 touches all quadrants but only covers cases when the off
diagonal terms are small. These intuitions generalize to higher dimensions.

We finally engage in a numerical exercise to get a sense of how likely each of these conditions
are to be encountered in applications. To this end, we generate 3 × 3 matrices drawing entries ac-
cording to a probability measure μ and we calculate the probability mass of P -matrices satisfying
each of the conditions along with the probability mass of all stable P -matrices. The simulation is
done by using Monte Carlo method. For each case, 106 stable P -matrices are generated. Let the
matrix sets S and Si |i∈{1,2,3,4} be given by

S: the set of 3 × 3 stable P -matrices.
S1: the set of matrices in S which satisfy the sign symmetry condition.
S2: the set of matrices in S which satisfy the condition of Theorem 2.
S3: the set of matrices in S which satisfy the conditions of Theorem 3.
S4: the set of matrices in S which satisfy the conditions of Theorem 4.

4 Note that for a 2 by 2 case, a P -matrix is always stable and hence all three sufficient conditions are not so critical for
2 by 2 cases. However, the main point here is to show that different conditions emphasize different kinds of “symmetry”.
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Fig. 2. Graphical illustration of conditions that guarantee certain properties of matrix A [cf. Eq. (14)].

Then Pr(Si |S) = μ(Si)/μ(S) represents the probability of the corresponding condition holding
given that the matrix is stable. These probabilities are summarized in Table 2. Even though
the probabilities depend on the distribution which generates the matrix, it is still clear that the
probability of any pair of conditions being satisfied is relatively low, emphasizing the fact that

Table 2
Percentage of 3 by 3 stable P -matrices that are covered by various different conditions

Distributions Uniform U(−1, 1) Gaussian N(0, 1) Gaussian N(1, 1) Exponential E(1)

Pr(S1|S) 1.3% 1.7% 6.3% 22.8%
Pr(S2|S) 2.1% 3.7% 8.7% 16.0%
Pr(S3|S) 3.3% 6.2% 11.3% 21.2%
Pr(S4|S) 13.5% 14.0% 28.6% 31.9%
Pr(S1 ∩ S2|S) 0.2% 0.3% 1.4% 5.8%
Pr(S1 ∩ S3|S) 0.2% 0.3% 1.3% 6.9%
Pr(S2 ∩ S3|S) 1.6% 3.2% 6.6% 12.6%
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the conditions guarantee stability by focusing on different aspects of matrix entries, namely: sign
symmetry, symmetry, and diagonal dominance. Moreover, not surprisingly, Pr(S4|S) is larger
than Pr(Si |S) for i ∈ {1, 2, 3} as Theorem 4 is set up by exploring finer structures and therefore
stronger.

5. Conclusions

We have obtained two new general conditions which ensure stability of P -matrices. The first
condition is stated in terms of the symmetric part and the skew-symmetric part of a matrix, which
is intuitive and easier to check. The second condition asserts that if a P -matrix is strictly row
(column) square diagonally dominant for every order of minors, then it is stable. It is further
shown that a P -matrix with no more than three dimensions is stable if it is diagonally dominant
of its row (column) entries. This implies further stronger theorems may be obtained if we can
make good use of stronger tools like the Routh criterion.
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