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Abstract

We study distributed algorithms for solving global optimization problems in
which the objective function is the sum of local objective functions of agents and
the constraint set is given by the intersection of local constraint sets of agents.
We assume that each agent knows only his own local objective function and con-
straint set, and exchanges information with the other agents over a randomly
varying network topology to update his information state. We assume a state-
dependent communication model over this topology: communication is Markovian
with respect to the states of the agents and the probability with which the links
are available depends on the states of the agents.

In this paper, we study a projected multi-agent subgradient algorithm under
state-dependent communication. The algorithm involves each agent performing a
local averaging to combine his estimate with the other agents’ estimates, taking a
subgradient step along his local objective function, and projecting the estimates
on his local constraint set. The state-dependence of the communication introduces
significant challenges and couples the study of information exchange with the
analysis of subgradient steps and projection errors. We first show that the multi-
agent subgradient algorithm when used with a constant stepsize may result in
the agent estimates to diverge with probability one. Under some assumptions on
the stepsize sequence, we provide convergence rate bounds on a “disagreement
metric” between the agent estimates. Our bounds are time-nonhomogeneous in
the sense that they depend on the initial starting time. Despite this, we show that
agent estimates reach an almost sure consensus and converge to the same optimal
solution of the global optimization problem with probability one under different
assumptions on the local constraint sets and the stepsize sequence.
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1 Introduction

Due to computation, communication, and energy constraints, several control and sensing
tasks are currently performed collectively by a large network of autonomous agents. Ap-
plications are vast including a set of sensors collecting and processing information about
a time-varying spatial field (e.g., to monitor temperature levels or chemical concentra-
tions), a collection of mobile robots performing dynamic tasks spread over a region,
mobile relays providing wireless communication services, and a set of humans aggregat-
ing information and forming beliefs about social issues over a network. These problems
motivated a large literature focusing on design of optimization, control, and learning
methods that can operate using local information and are robust to dynamic changes
in the network topology. The standard approach in this literature involves considering
“consensus-based” schemes, in which agents exchange their local estimates (or states)
with their neighbors with the goal of aggregating information over an exogenous (fixed
or time-varying) network topology. In many of the applications, however, the relevant
network topology is configured endogenously as a function of the agent states, for ex-
ample, the communication network varies as the location of mobile robots changes in
response to the objective they are trying to achieve. A related set of problems arises
when the current information of decentralized agents influences their potential commu-
nication pattern, which is relevant in the context of sensing applications and in social
settings where disagreement between the agents would put constraints on the amount
of communication among them.

In this paper, we propose a general framework for design and analysis of distributed
multi-agent optimization algorithms with state dependent communication. Our model
involves a network of m agents, each endowed with a local objective function fi : Rn →
R and a local constraint Xi ⊆ Rn that are private information, i.e., each agent only
knows its own objective and constraint. The goal is to design distributed algorithms for
solving a global constrained optimization problem for optimizing an objective function,
which is the sum of the local agent objective functions, subject to a constraint set
given by the intersection of the local constraint sets of the agents. These algorithms
involve each agent maintaining an estimate (or state) about the optimal solution of the
global optimization problem and update this estimate based on local information and
processing, and information obtained from the other agents.

We assume that agents communicate over a network with randomly varying topology.
Our random network topology model has two novel features: First, we assume that the
communication at each time instant k, (represented by a communication matrix A(k)
with positive entries denoting the availability of the links between agents) is Markovian
on the states of the agents. This captures the time correlation of communication pat-
terns among the agents.1 The second, more significant feature of our model is that the
probability of communication between any two agents at any time is a function of the
agents’ states, i.e., the closer the states of the two agents, the more likely they are to

1Note that our model can easily be extended to model Markovian dependence on other stochastic
processes, such as channel states, to capture time correlation due to global network effects. We do not
do so here for notational simplicity.
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communicate. As outlined above, this feature is essential in problems where the state
represents the position of the agents in sensing and coordination applications or the
beliefs of agents in social settings.

For this problem, we study a projected multi-agent subgradient algorithm, which in-
volves each agent performing a local averaging to combine his estimate with the other
agents’ estimates he has access to, taking a subgradient step along his local objective
function, and projecting the estimates on his local constraint set. We represent these it-
erations as stochastic linear time-varying update rules that involve the agent estimates,
subgradients and projection errors explicitly. With this representation, the evolution
of the estimates can be written in terms of stochastic transition matrices Φ(k, s) for
k ≥ s ≥ 0, which are products of communication matrices A(t) over a window from time
s to time k. The transition matrices Φ(k, s) represent aggregation of information over
the network as a result of local exchanges among the agents, i.e., in the long run, it is
desirable for the transition matrices to converge to a uniform distribution, hence aligning
the estimates of the agents with uniform weights given to each (ensuring that informa-
tion of each agent affects the resulting estimate uniformly). As a result, the analysis
of our algorithm involves studying convergence properties of transition matrices, under-
standing the limiting behavior of projection errors, and finally studying the algorithm
as an “approximate subgradient algorithm” with bounds on errors due to averaging and
projections.

In view of the dependence of information exchange on the agent estimates, it is not
possible to decouple the effect of stepsizes and subgradients from the convergence of the
transition matrices. We illustrate this point by first presenting an example in which the
projected multi-agent subgradient algorithm is used with a constant stepsize α(k) = α
for all k ≥ 0. We show that in this case, agent estimates and the corresponding global
objective function values may diverge with probability one for any constant value of the
stepsize. This is in contrast to the analysis of multi-agent algorithms over exogenously
varying network topologies where it is possible to provide error bounds on the difference
between the limiting objective function values of agent estimates and the optimal value
as a function of the constant stepsize α (see [15]).

We next adopt an assumption on the stepsize sequence {α(k)} (see Assumption 5),
which ensures that α(k) decreases to zero sufficiently fast, while satisfying

∑∞
k=0 α(k) =

∞ and
∑∞

k=0 α
2(k) <∞ conditions. Under this assumption, we provide a bound on the

expected value of the disagreement metric, defined as the difference maxi,j |[Φ(k, s)]ij −
1
m
|. Our analysis is novel and involves constructing and bounding (uniformly) the prob-

ability of a hierarchy of events, the length of which is specifically tailored to grow faster
than the stepsize sequence, to ensure propagation of information across the network
before the states drift away too much from each other. In contrast to exogenous com-
munication models, our bound is time-nonhomogeneous, i.e., it depends on the initial
starting time s as well as the time difference (k − s). We also consider the case where
we have the assumption that the agent constraint sets Xi’s are compact, in which case
we can provide a bound on the disagreement metric without any assumptions on the
stepsize sequence.

Our next set of results study the convergence behavior of agent estimates under
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different conditions on the constraint sets and stepsize sequences. We first study the
case when the local constraint sets of agents are the same, i.e., for all i, Xi = X
for some nonempty closed convex set. In this case, using the time-nonhomogeneous
contraction provided on the disagreement metric, we show that agent estimates reach
almost sure consensus under the assumption that stepsize sequence {α(k)} converges
to 0 sufficiently fast (as stated in Assumption 5). Moreover, we show that under the
additional assumption

∑∞
k=0 α(k) = ∞, the estimates converge to the same optimal

point of the global optimization problem with probability one. We then consider the
case when the constraint sets of the agents Xi are different convex compact sets and
present convergence results both in terms of almost sure consensus of agent estimates
and almost sure convergence of the agent estimates to an optimal solution under weaker
assumptions on the stepsize sequence.

Our paper contributes to the growing literature on multi-agent optimization, control,
and learning in large-scale networked systems. Most work in this area builds on the
seminal work by Tsitsiklis [26] and Bertsekas and Tsitsiklis [3] (see also Tsitsiklis et
al. [27]), which developed a general framework for parallel and distributed computation
among different processors. Our work is related to different strands of literature in this
area.

One strand focuses on reaching consensus on a particular scalar value or computing
exact averages of the initial values of the agents, as natural models of cooperative be-
havior in networked-systems (for deterministic models, see [28], [14],[20], [9], [21], and
[22]; for randomized models, where the randomness may be due to the choice of the
randomized communication protocol or due to the unpredictability in the environment
that the information exchange takes place, see [8], [13], [29], [24], [25], and [10]) An-
other recent literature studies optimization of more general objective functions using
subgradient algorithms and consensus-type mechanisms (see [18], [17], [19], [15], [16],
[23], [30]). Of particular relevance to our work are the papers [15] and [19]. In [15], the
authors studied a multi-agent unconstrained optimization algorithm over a random net-
work topology which varies independently over time and established convergence results
for diminishing and constant stepsize rules. The paper [19] considered multi-agent opti-
mization algorithms under deterministic assumptions on the network topology and with
constraints on agent estimates. It provided a convergence analysis for the case when
the agent constraint sets are the same. A related, but somewhat distinct literature,
uses consensus-type schemes to model opinion dynamics over social networks (see [12],
[11], [1], [6], [5]). Among these papers, most related to our work are [6] and [5], which
studied dynamics with opinion-dependent communication, but without any optimization
objective.

The rest of the paper is organized as follows: in Section 2, we present the optimization
problem, the projected subgradient algorithm and the communication model. We also
show a counterexample that demonstrates that there are problem instances where this
algorithm, with a constant stepsize, does not solve the desired problem. In Section 3,
we introduce and bound the disagreement metric ρ, which determines the spread of
information in the network. In Section 4, we build on the earlier bounds to show the
convergence of the projected subgradient methods. Section 5 concludes.
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Notation and Basic Relations:

A vector is viewed as a column vector, unless clearly stated otherwise. We denote
by xi or [x]i the i-th component of a vector x. When xi ≥ 0 for all components i of a
vector x, we write x ≥ 0. For a matrix A, we write Aij or [A]ij to denote the matrix
entry in the i-th row and j-th column. We denote the nonnegative orthant by Rn

+, i.e.,
Rn

+ = {x ∈ Rn | x ≥ 0}. We write x′ to denote the transpose of a vector x. The scalar
product of two vectors x, y ∈ Rn is denoted by x′y. We use ‖x‖ to denote the standard
Euclidean norm, ‖x‖ =

√
x′x.

A vector a ∈ Rm is said to be a stochastic vector when its components ai, i = 1, . . . ,m,
are nonnegative and their sum is equal to 1, i.e.,

∑m
i=1 ai = 1. A square m×m matrix

A is said to be a stochastic matrix when each row of A is a stochastic vector. A square
m × m matrix A is said to be a doubly stochastic matrix when both A and A′ are
stochastic matrices.

For a function F : Rn → (−∞,∞], we denote the domain of F by dom(F ), where

dom(F ) = {x ∈ Rn | F (x) <∞}.

We use the notion of a subgradient of a convex function F (x) at a given vector x̄ ∈
dom(F ). We say that sF (x̄) ∈ Rn is a subgradient of the function F at x̄ ∈ dom(F )
when the following relation holds:

F (x̄) + sF (x̄)′(x− x̄) ≤ F (x) for all x ∈ dom(F ). (1)

The set of all subgradients of F at x̄ is denoted by ∂F (x̄) (see [2]).

In our development, the properties of the projection operation on a closed convex set
play an important role. We write dist(x̄, X) to denote the standard Euclidean distance
of a vector x̄ from a set X, i.e.,

dist(x̄, X) = inf
x∈X
‖x̄− x‖.

Let X be a nonempty closed convex set in Rn. We use PX [x̄] to denote the projection
of a vector x̄ on set X, i.e.,

PX [x̄] = arg min
x∈X
‖x̄− x‖.

We will use the standard non-expansiveness property of projection, i.e.,

‖PX [x]− PX [y]‖ ≤ ‖x− y‖ for any x and y. (2)

We will also use the following relation between the projection error vector and the feasible
directions of the convex set X: for any x ∈ Rn,

‖PX [x]− y‖2 ≤ ‖x− y‖2 − ‖PX [x]− x‖2 for all y ∈ X. (3)
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2 The Model

2.1 Optimization Model

We consider a network that consists of a set of nodes (or agents) M = {1, . . . ,m}.
We assume that each agent i is endowed with a local objective (cost) function fi and
a local constraint function Xi and this information is distributed among the agents,
i.e., each agent knows only his own cost and constraint component. Our objective is to
develop distributed algorithms that can be used by these agents to cooperatively solve
the following constrained optimization problem:

minimize
∑m

i=1 fi(x) (4)

subject to x ∈ ∩mi=1Xi,

where each fi : Rn → R is a convex (not necessarily differentiable) function, and each
Xi ⊆ Rn is a closed convex set. We denote the intersection set by X = ∩mi=1Xi and
assume that it is nonempty throughout the paper. Let f denote the global objective,
that is, f(x) =

∑m
i=1 fi(x), and f ∗ denote the optimal value of problem (4), which we

assume to be finite. We also use X∗ = {x ∈ X : f(x) = f ∗} to denote the set of optimal
solutions and assume throughout that it is nonempty.

We study a distributed multi-agent subgradient method, in which each agent i main-
tains an estimate of the optimal solution of problem (4) (which we also refer to as the
state of agent i), and updates it based on his local information and information ex-
change with other neighboring agents. Every agent i starts with some initial estimate
xi(0) ∈ Xi. At each time k, agent i updates its estimate according to the following:

xi(k + 1) = PXi

[
m∑
j=1

aij(k)xj(k)− α(k)di(k)

]
, (5)

where PXi denotes the projection on agent i constraint set Xi, the vector [aij(k)]j∈M
is a vector of weights for agent i, the scalar α(k) > 0 is the stepsize at time k, and
the vector di(k) is a subgradient of agent i objective function fi(x) at his estimate
vi(k) =

∑m
j=1 aij(k)xj(k). Hence, in order to generate a new estimate, each agent

combines the most recent information received from other agents with a step along
the subgradient of its own objective function, and projects the resulting vector on its
constraint set to maintain feasibility. We refer to this algorithm as the projected multi-
agent subgradient algorithm.2 Note that when the objective functions fi are identically
zero and the constraint sets Xi = Rn for all i ∈M, then the update rule (5) reduces to
the classical averaging algorithm for consensus or agreement problems, as studied in [7]
and [14].

In the analysis of this algorithm, it is convenient to separate the effects of different
operations used in generating the new estimate in the update rule (5). In particular, we

2See also [19] where this algorithm is studied under deterministic assumptions on the information
exchange model and the special case Xi = X for all i.
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rewrite the relation in Eq. (5) equivalently as follows:

vi(k) =
m∑
j=1

aij(k)xj(k), (6)

xi(k + 1) = vi(k)− α(k)di(k) + ei(k), (7)

ei(k) = PXi [vi(k)− α(k)di(k)]−
(
vi(k)− α(k)di(k)

)
. (8)

This decomposition allows us to generate the new estimate using a linear update rule in
terms of the other agents’ estimates, the subgradient step, and the projection error ei.
Hence, the nonlinear effects of the projection operation is represented by the projection
error vector ei, which can be viewed as a perturbation of the subgradient step of the
algorithm. In the sequel, we will show that under some assumptions on the agent weight
vectors and the subgradients, we can provide upper bounds on the projection errors as
a function of the stepsize sequence, which enables us to study the update rule (5) as an
approximate subgradient method.

We adopt the following standard assumption on the subgradients of the local objec-
tive functions fi.

Assumption 1: (Bounded Subgradients) The subgradients of each of the fi are uni-
formly bounded, i.e., there exists a scalar L > 0 such that for every i ∈ M and any
x ∈ Rn, we have

‖d‖ ≤ L for all d ∈ ∂fi(x).

2.2 Network Communication Model

We define the communication matrix for the network at time k as A(k) = [aij(k)]i,j∈M.
We assume a probabilistic communication model, in which the sequence of communica-
tion matrices A(k) is assumed to be Markovian on the state variable x(k) = [xi(k)]i∈M ∈
Rn×m. Formally, let {n(k)}k∈N be an independent sequence of random variables defined
in a probability space (Ω,F , P ) =

∏∞
k=0(Ω

′,F ′, P ′)k, where {(Ω′,F ′, P ′)k}k∈N consti-
tutes a sequence of identical probability spaces. We assume there exists a function
ψ : Rn×m × Ω′ → Rm×m such that

A(k) = ψ(x(k), n(k)).

This Markovian communication model enables us to capture settings where the agents’
ability to communicate with each other depends on their current estimates.

We assume there exists some underlying communication graph (M, E) that repre-
sents a ‘backbone’ of the network. That is, for each edge e ∈ E , the two agents linked
by e systematically attempt to communicate with each other [see Eq. (9) for the pre-
cise statement]. We do not make assumptions on the communication (or lack thereof)
between agents that are not adjacent in (M, E). We make the following connectivity
assumption on the graph (M, E).
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Assumption 2 (Connectivity): The graph (M, E) is strongly connected.

The central feature of the model introduced in this paper is that the probability of
communication between two agents is potentially small if their estimates are far apart.
We formalize this notion as follows: for all (j, i) ∈ E , all k ≥ 0 and all x ∈ Rm×n,

P (aij(k) ≥ γ|x(k) = x) ≥ min

{
δ,

K

‖xi − xj‖C

}
, (9)

where K and C are real positive constants, and δ ∈ (0, 1]. We included the parameter
δ in the model to upper bound the probability of communication when ‖xi − xj‖C is
small. This model states that, for any two nodes i and j with an edge between them,
if estimates xi(k) and xj(k) are close to each other, then there is a probability at least
δ that they communicate at time k. However, if the two agents are far apart, the
probability they communicate can only be bounded by the inverse of a polynomial of
the distance between their estimates ‖xi(k)− xj(k)‖. If the estimates were to represent
physical locations of wireless sensors, then this bound would capture fading effects in
the communication channel.

We make two more technical assumptions to guarantee, respectively, that the com-
munication between the agents preserves the average of the estimates, and the agents
do not discard their own information.

Assumption 3 (Doubly Stochastic Weights): The communication matrix A(k) is dou-
bly stochastic for all k ≥ 0, i.e., for all k ≥ 0, aij(k) ≥ 0 for all i, j ∈ M, and∑m

i=1 aij(k) = 1 for all j ∈M and
∑m

j=1 aij(k) = 1 for all i ∈M with probability one.

Assumption 4 (Self Confidence): There exists γ > 0 such that aii ≥ γ for all agents
i ∈M with probability one.

The doubly stochasticity assumption on the matrices A(k) is satisfied when agents
coordinate their weights when exchanging information, so that aij(k) = aji(k) for all
i, j ∈ M and k ≥ 0.3 The self-confidence assumption states that each agent gives a
significant weight to its own estimate.

2.3 A Counterexample

In this subsection, we construct an example to demonstrate that the algorithm defined
in Eqs. (6)-(8) does not necessarily solve the optimization problem given in Eq. (4).
The following proposition shows that there exist problem instances where Assumptions
1-4 hold and Xi = X for all i ∈ M, however the sequence of estimates xi(k) (and the
sequence of function values f(xi(k))) diverge for some agent i with probability one.

Proposition 1: Let Assumptions 1, 2, 3 and 4 hold and let Xi = X for all i ∈ M.
Let {xi(k)} be the sequences generated by the algorithm (6)-(8). Let C > 1 in Eq.

3This will be achieved when agents exchange information about their estimates and “planned”
weights simultaneously and set their actual weights as the minimum of the planned weights; see [18]
where such a coordination scheme is described in detail.
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(9) and let the stepsize be a constant value α. Then, there does not exist a bound
M(m,L, α) <∞ such that

lim inf
k→∞

|f(xi(k))− f ∗| ≤M(m,L, α)

with probability 1, for all agents i ∈M.

Proof. Consider a network consisting of two agents solving a one-dimensional mini-
mization problem. The first agent’s objective function is f1(x) = −x, while the sec-
ond agent’s objective function is f2(x) = 2x. Both agents’ feasible sets are equal to
X1 = X2 = [0,∞). Let x1(0) ≥ x2(0) ≥ 0. The elements of the communication matrix
are given by

a1,2(k) = a2,1(k) =

 γ, with probability min
{
δ, 1
|x1(k)−x2(k)|C

}
;

0, with probability 1−min
{
δ, 1
|x1(k)−x2(k)|C

}
,

for some γ ∈ (0, 1/2] and δ ∈ [1/2, 1).

The optimal solution set of this multi-agent optimization problem is the singleton
X∗ = {0} and the optimal solution is f ∗ = 0. We now prove that limk→∞ x1(k) = ∞
with probability 1 implying that limk→∞ |f(x1(k))− f ∗| =∞.

From the iteration in Eq. (5), we have that for any k,

x1(k + 1) = a1,1(k)x1(k) + a1,2(k)x2(k) + α (10)

x2(k + 1) = max{0, a2,1(k)x1(k) + a2,2(k)x2(k)− 2α}. (11)

We do not need to project x1(k+1) onto X1 = [0,∞) because x1(k+1) is non-negative if
x1(k) and x2(k) are both non-negative. Note that since γ ≤ 1/2, this iteration preserves
x1(k) ≥ x2(k) ≥ 0 for all k ∈ N.

We now show that for any k ∈ N and any x1(k) ≥ x2(k) ≥ 0, there is probability at
least ε > 0 that the two agents will never communicate again, i.e.,

P (a1,2(k
′) = a2,1(k

′) = 0 for all k′ ≥ k|x(k)) ≥ ε > 0. (12)

If the agents do not communicate on periods k, k + 1, ..., k + j − 1 for some j ≥ 1, then

x1(k + j)− x2(k + j) = (x1(k + j)− x1(k)) + (x1(k)− x2(k)) + (x2(k)− x2(k + j))

≥ αj + 0 + 0,

from Eqs. (10) and (11) and the fact that x1(k) ≥ x2(k). Therefore, the communication
probability at period k + j can be bounded by

P (a1,2(k + j) = 0|x(k), a1,2(k
′) = 0 for all k′ ∈ {k, ..., k + j − 1}) ≥ 1−min{δ, (αj)−C}.

Applying this bound recursively for all j ≥ k, we obtain

P (a1,2(k
′) = 0 for all k′ ≥ k|x(k))

=
∞∏
j=0

P (a1,2(k + j) = 0|x(k), a1,2(k
′) = 0 for all k′ ∈ {k, ..., k + j − 1})

≥
∞∏
j=0

(
1−min{δ, (αj)−C}

)
8



for all k and all x1(k) ≥ x2(k). We now show that
∏∞

j=0

(
1−min{δ, (αj)−C}

)
> 0 if

C > 1. Define the constant K =
⌈
2

1
C

α

⌉
. Since δ ≥ 1/2, we have that (αj)−C ≤ δ for

j ≥ K. Hence, we can separate the infinite product into two components:

∞∏
j=0

(
1−min{δ, (αj)−C}

)
≥

∏
j<K

(
1−min{δ, (αj)−C}

)∏
j≥K

(
1− (αj)−C

) .
Note that the term in the first brackets in the equation above is a product of a finite
number of strictly positive numbers and, therefore, is a strictly positive number. We,
thus, have to show only that

∏
j≥K

(
1− (αj)−C

)
> 0. We can bound this product by

∏
j≥K

(
1− (αj)−C

)
= exp

log

∏
j≥K

(
1− (αj)−C

)
= exp

∑
j≥K

log
(
1− (αj)−C

) ≥ exp

∑
j≥K

−(αj)−C log(4)

 ,

where the inequality follows from log(x) ≥ (x−1) log(4) for all x ∈ [1/2, 1]. Since C > 1,
the sum

∑
j≥K(αj)−C is finite and

∏∞
j=0

(
1−min{δ, (αj)−C}

)
> 0, yielding Eq. (12).

Let K∗ be the (random) set of periods when agents communicate, i.e., a1,2(k) =
a2,1(k) = γ if and only if k ∈ K∗. For any value k ∈ K∗ and any x1(k) ≥ x2(k), there is
probability at least ε that the agents do not communicate after k. Conditionally on the
state, this is an event independent of the history of the algorithm by the Markov property.
If K∗ has infinitely many elements, then by the Borel-Cantelli Lemma we obtain that,
with probability 1, for infinitely many k’s in K∗ there is no more communication between
the agents after period k. This contradicts the infinite cardinality of K∗. Hence, the two
agents only communicate finitely many times and limk→∞ x1(k) = ∞ with probability
1.

The proposition above shows the algorithm given by Eqs. (6)-(8) does not, in general,
solve the global optimization problem (4). However, there are two important caveats
when considering the implications of this negative result. The first one is that the
proposition only applies if C > 1. We leave it is an open question whether the same
proposition would hold if C ≤ 1. The second and more important caveat is that we
considered only a constant stepsize in Proposition 1. The stepsize is typically a design
choice and, thus, could be chosen to be diminishing in k rather than a constant. In
the subsequent sections, we prove that the algorithm given by Eqs. (6)-(8) does indeed
solve the optimization problem of Eq. (4), under appropriate assumptions on the stepsize
sequence.
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3 Analysis of Information Exchange

3.1 The Disagreement Metric

In this section, we consider how some information that a given agent i obtains at time
s affects a different agent j’s estimate xj(k) at a later time k ≥ s. In particular,
we introduce a disagreement metric ρ(k, s) that establishes how far some information
obtained by a given agent at time s is from being completely disseminated in the network
at time k. The two propositions at the end of this section provide bounds on ρ(k, s)
under two different set of assumptions.

In view of the the linear representation in Eqs. (6)-(8), we can express the evolution
of the estimates using products of matrices: for any s ≥ 0 and any k ≥ s, we define the
transition matrices as

Φ(k, s) = A(s)A(s+ 1) · · ·A(k − 1)A(k) for all s and k with k ≥ s.

Using the transition matrices, we can relate the estimates at time k to the estimates at
time s < k as follows: for all i, and all k and s with k > s,

xi(k + 1) =
m∑
j=1

[Φ(k, s)]ijxj(s) −
k∑

r=s+1

m∑
j=1

[Φ(k, r)]ijα(r − 1)dj(r − 1)− α(k)di(k)

+
k∑

r=s+1

m∑
j=1

[Φ(k, r)]ijej(r − 1) + ei(k). (13)

Observe from the iteration above that [Φ(k, s)]ij determines how the information
agent i obtains at period s−1 impacts agent j’s estimate at period k+1. If [Φ(k, s)]ij =
1/m for all agents j, then the information agent i obtained at period s − 1 is evenly
distributed in the network at time k + 1. We, therefore, introduce the disagreement
metric ρ,

ρ(k, s) = max
i,j∈M

∣∣∣∣[Φ(k, s)]ij −
1

m

∣∣∣∣ for all k ≥ s ≥ 0, (14)

which, when close to zero, establishes that all information obtained at time s− 1 by all
agents is close to being evenly distributed in the network by time k + 1.

3.2 Propagation of Information

The analysis in the rest of this section is intended to produce upper bounds on the
disagreement metric ρ(k, s). We start our analysis by establishing an upper bound on
the maximum distance between estimates of any two agents at any time k. In view
of our communication model [cf. Eq. (9)], this bound will be essential in constructing
positive probability events that ensure information gets propagated across the agents in
the network.

10



Lemma 1: Let Assumptions 1 and 3 hold. Let xi(k) be generated by the update rule
in (5). Then, we have the following upper bound on the norm of the difference between
the agent estimates: for all k ≥ 0,

max
i,h∈M

‖xi(k)− xh(k)‖ ≤ ∆ + 2mL
k−1∑
r=0

α(r) + 2
k−1∑
r=0

m∑
j=1

‖ej(r)‖,

where ∆ = 2mmaxj∈M ‖xj(0)‖, and ej(k) denotes the projection error.

Proof. Letting s = 0 in Eq. (13) yields,

xi(k) =
m∑
j=1

[Φ(k − 1, 0)]ijxj(0)

−
k−1∑
r=1

m∑
j=1

[Φ(k − 1, r)]ijα(r − 1)dj(r − 1)− α(k − 1)di(k − 1)

+
k−1∑
r=1

m∑
j=1

[Φ(k − 1, r)]ijej(r − 1) + ei(k − 1).

Since the matrices A(k) are doubly stochastic with probability one for all k (cf. As-
sumption 3), it follows that the transition matrices Φ(k, s) are doubly stochastic for all
k ≥ s ≥ 0, implying that every entry [Φ(k, s)]ij belongs to [0, 1] with probability one.
Thus, for all k we have,

‖xi(k)‖ ≤
m∑
j=1

‖xj(0)‖ +
k−1∑
r=1

m∑
j=1

α(r − 1)‖dj(r − 1)‖+ α(k − 1)‖di(k − 1)‖

+
k−1∑
r=1

m∑
j=1

‖ej(r − 1)‖+ ‖ei(k − 1)‖.

Using the bound L on the subgradients, this implies

‖xi(k)‖ ≤
m∑
j=1

‖xj(0)‖+
k−1∑
r=0

mLα(r) +
k−1∑
r=0

m∑
j=1

‖ej(r)‖.

Finally, the fact that ‖xi(k)−xh(k)‖ ≤ ‖xi(k)‖+‖xh(k)‖ for every i, h ∈M, establishes
the desired result.

The lemma above establishes a bound on the distance between the agents’ estimates
that depends on the projection errors ej, which are endogenously determined by the
algorithm. However, if there exists some M > 0 such that ‖ei(k)‖ ≤Mα(k) for all i ∈M
and all k ≥ 0, then lemma above implies that, with probability 1, maxi,h∈M ‖xi(k) −
xh(k)‖ ≤ ∆ + 2m(L+M)

∑k−1
r=0 α(r). Under the assumption that such an M exists, we

define the following set for each k ∈ N,

RM(k) =

{
x ∈ Rm×n | max

i,h∈M
‖xi(k)− xh(k)‖ ≤ ∆ + 2m(L+M)

k−1∑
r=0

α(r)

}
. (15)
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This set represents the set of agent states which can be reached when the agents use the
projected subgradient algorithm.

We next construct a sequence of events, denoted by G(·), whose individual occur-
rence implies that information has been propagated from one agent to all other agents,
therefore, implying a contraction of the disagreement metric ρ.

We say a link (j, i) is activated at time k when aij(k) ≥ γ, and we denote by E(k)
the set of such edges, i.e.,

E(k) = {(j, i) | aij(k) ≥ γ}.

Here we construct an event in which the edges of the graphs E(k) are activated sequen-
tially over time k, so that information propagates from every agent to every other agent
in the network.

To define this event, we fix a node w ∈ M and consider two directed spanning trees
rooted at w in the graph (M, E): an in-tree Tin,w and an out-tree Tout,w. In Tin,w there
exists a directed path from every node i 6= w to w; while in Tout,w, there exists a directed
path from w to every node i 6= w. The strongly connectivity assumption imposed on
(M, E) guarantees that these spanning trees exist and each contains m − 1 edges (see
[4]).

We order the edges of these spanning trees in a way such that on any directed path
from a node i 6= w to node w, edges are labeled in nondecreasing order. Let us represent
the edges of the two spanning trees with the order described above as

Tin,w = {e1, e2, . . . , en−1}, Tout,w = {f1, f2, . . . , fn−1}. (16)

For the in-tree Tin,w, we pick an arbitrary leaf node and label the adjacent edge as e1;
then we pick another leaf node and label the adjacent edge as e2; we repeat this until
all leaves are picked. We then delete the leaf nodes and the adjacent edges from the
spanning tree Tin,r, and repeat the same process for the new tree. For the out-tree
Tout,w, we proceed as follows: pick a directed path from node w to an arbitrary leaf
and sequentially label the edges on that path from the root node w to the leaf; we then
consider a directed path from node w to another leaf and label the unlabeled edges
sequentially in the same fashion; we continue until all directed paths to all the leaves
are exhausted.

For all l = 1, . . . ,m− 1, and any time k ≥ 0, consider the events

Bl(k) = {ω ∈ Ω | ael(k + l − 1) ≥ γ}, (17)

Dl(k) = {ω ∈ Ω | afl(k + (m− 1) + l − 1) ≥ γ}, (18)

and define,

G(k) =
m−1⋂
l=1

(
Bl(k) ∩Dl(k)

)
. (19)

For all l = 1, . . . ,m − 1, Bl(k) denotes the event that edge el ∈ Tin,w is activated at
time k + l − 1, while Dl(k) denotes the event that edge fl ∈ Tout,w is activated at time

12



k + (m− 1) + l − 1. Hence, G(k) denotes the event in which each edge in the spanning
trees Tin,w and Tout,w are activated sequentially following time k, in the order given in
Eq. (16).

The following result establishes a bound on the probability of occurrence of such a
G(·) event. It states that the probability of an event G(·) can be bounded as if the link
activations were independent and each link activation had probability of occurring at
least

min

{
δ,

K

(∆ + 2m(L+M)
∑k+2m−3

r=1 α(r))C

}
,

where the k+ 2m− 3 follows from the fact that event G(·) is an intersection of 2(m− 1)
events occurring consecutively starting at period k.

Lemma 2: Let Assumptions 1, 2 and 3 hold. Let ∆ denote the constant defined in
Lemma 1. Moreover, assume that there exists M > 0 such that ‖ei(k)‖ ≤Mα(k) for all
i and k ≥ 0. Then,

(a) For all s ∈ N, k ≥ s, and any state x ∈ RM(s),

P (G(k)|x(s) = x) ≥ min

{
δ,

K

(∆ + 2m(L+M)
∑k+2m−3

r=1 α(r))C

}2(m−1)

.

(b) For all k ≥ 0, u ≥ 1, and any state x ∈ RM(k),

P

(
u−1⋃
l=0

G(k + 2(m− 1)l)

∣∣∣∣∣x(k) = x

)

≥ 1−

1−min

{
δ,

K

(∆ + 2m(L+M)
∑k+2(m−1)u−1

r=1 α(r))C

}2(m−1)
u

.

Proof. (a) The proof is based on the fact that the communication matrices A(k) are
Markovian on the state x(k), for all time k ≥ 0. First, note that

P (G(k)|x(s) = x) = P

(
m−1⋂
l=1

(
Bl(k) ∩Dl(k)

)∣∣∣∣∣x(s) = x

)

= P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(s) = x

)
P

(
m−1⋂
l=1

Dl(k)

∣∣∣∣∣
m−1⋂
l=1

Bl(k), x(s) = x

)
.

(20)

To simplify notation, let W = 2m(L+M). We show that for all k ≥ s,

inf
x∈RM (s)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(s) = x

)
≥ min

{
δ,

K

(∆ +W
∑k+2m−3

r=1 α(r))C

}(m−1)

. (21)
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We skip the proof of the equivalent bound for the second term in Eq. (20) to avoid
repetition. By conditioning on x(k) we obtain for all k ≥ s,

inf
x∈RM (s)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(s) = x

)
=

inf
x∈RM (s)

∫
x′∈Rm×n

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(k) = x′, x(s) = x

)
dP (x(k) = x′|x(s) = x).

Using the Markov Property, we see that conditional on x(s) can be removed from the
right-hand side probability above, since x(k) already contains all relevant information
with respect to ∩m−1l=1 Bl(k). By the definition of RM(·) [see Eq. (15)], if x(s) ∈ RM(s),
then x(k) ∈ RM(k) for all k ≥ s with probability 1. Therefore,

inf
x∈RM (s)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(s) = x

)
≥ inf

x∈RM (k)
P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(k) = x′

)
. (22)

By the definition of B1(k),

inf
x∈RM (k)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(k) = x

)
= (23)

inf
x∈RM (k)

P (ae1(k) ≥ γ|x(s) = x)P

(
m−1⋂
l=2

Bl(k)

∣∣∣∣∣ae1(k) ≥ γ, x(k) = x

)
.

Define

Q(k) = min

δ, K(
∆ +W

∑k
r=1 α(r)

)C
 ,

and note that, in view of the assumption imposed on the norm of the projection errors
and based on Lemma 1, we get

max
i,h∈M

‖xi(k)− xh(k)‖ ≤ ∆ +W

k−1∑
r=0

α(r).

Hence, from Eq. (9) we have

P (aij(k) ≥ γ|x(k) = x) ≥ Q(k). (24)

Thus, combining Eqs. (23) and (24) we obtain,

inf
x∈RM (k)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(k) = x

)
≥ Q(k) inf

x∈RM (k)
P

(
m−1⋂
l=2

Bl(k)

∣∣∣∣∣ae1(k) ≥ γ, x(k) = x

)
.

(25)
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By conditioning on the state x(k+1), and repeating the use of the Markov property and
the definition of RM(k + 1), we can bound the right-hand side of the equation above,

inf
x∈RM (k)

P

(
m−1⋂
l=2

Bl(k)

∣∣∣∣∣ae1(k) ≥ γ, x(k) = x

)

= inf
x∈RM (k)

∫
x′
P

(
m−1⋂
l=2

Bl(k)

∣∣∣∣∣x(k + 1) = x′

)
dP (x(k + 1) = x′|ae1(k) ≥ γ, x(k) = x)

≥ inf
x′∈RM (k+1)

P

(
m−1⋂
l=2

Bl(k)

∣∣∣∣∣x(k + 1) = x′

)
. (26)

Combining Eqs. (23), (25) and (26), we obtain

inf
x∈RM (k)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(k) = x

)
≥ Q(k) inf

x∈RM (k+1)
P

(
m−1⋂
l=2

Bl(k)

∣∣∣∣∣x(k + 1) = x′

)
.

Repeating this process for all l = 1, ...,m− 1, this yields

inf
x∈RM (k)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(k) = x

)
≥

m−1∏
l=1

Q(k + l − 1).

Since Q is a decreasing function,
∏m−1

l=1 Q(k + l − 1) ≥ Q(k + 2m − 3)m−1. Combining
with Eq. (22), we have that for all k ≥ s

inf
x∈RM (s)

P

(
m−1⋂
l=1

Bl(k)

∣∣∣∣∣x(s) = x

)
≥ Q(k + 2m− 3)m−1,

producing the desired Eq. (21).

(b) Let Gc(k) represent the complement of G(k). Note that

P

(
u−1⋃
l=0

G(k + 2(m− 1)l)

∣∣∣∣∣x(k) = x

)
= 1− P

(
u−1⋂
l=0

Gc(k + 2(m− 1)l)

∣∣∣∣∣x(k) = x

)
.

By conditioning on Gc(k), we obtain

P

(
u−1⋂
l=0

Gc(k + 2(m− 1)l)

∣∣∣∣∣x(k) = x

)
=

P (Gc(k)|x(k) = x)P

(
u−1⋂
l=1

Gc(k + 2(m− 1)l)

∣∣∣∣∣Gc(k), x(k) = x

)
.

We bound the term P (Gc(k)|x(k) = x) using the result from part (a). We bound the
second term in the right-hand side of the equation above using the Markov property and
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the definition of RM(·), which is the same technique from part (a),

sup
x∈RM (k)

P

(
u−1⋂
l=1

Gc(k + 2(m− 1)l)

∣∣∣∣∣Gc(k), x(k) = x

)

= sup
x∈RM (k)

∫
x′
P

(
u−1⋂
l=1

Gc(k + 2(m− 1)l)

∣∣∣∣∣x(k + 2(m− 1)) = x′

)
×

dP (x(k + 2(m− 1)) = x′|Gc(k), x(k) = x)

≤ sup
x∈RM (k+2(m−1))

P

(
u−1⋂
l=1

Gc(k + 2(m− 1)l)

∣∣∣∣∣x(k + 2(m− 1)) = x′

)
.

The result follows by repeating the bound above u times.

The previous lemma bounded the probability of an event G(·) occurring. The fol-
lowing lemma shows the implication of the event G(·) for the disagreement metric.

Lemma 3: Let Assumptions 2, 3 and 4 hold. Let t be a positive integer, and let
there be scalars s < s1 < s2 < · · · < st < k, such that si+1 − si ≥ 2(m − 1) for all
i = 1, . . . , t− 1. For a fixed realization ω ∈ Ω, suppose that events G(si) occur for each
i = 1, . . . , t. Then,

ρ(k, s) ≤ 2

(
1 +

1

γ2(m−1)

)(
1− γ2(m−1)

)t
.

We skip the proof of this lemma since it would mirror the proof of Lemma 6 in [15].

3.3 Contraction Bounds

In this subsection, we obtain two propositions that establish contraction bounds on the
disagreement metric based on two different sets of assumptions. For our first contraction
bound, we need the following assumption on the sequence of stepsizes.

Assumption 5: (Limiting Stepsizes) The sequence of stepsizes {α(k)}k∈N satisfies

lim
k→∞

k logp(k)α(k) = 0 for all p < 1.

The following lemma highlights two properties of stepsizes that satisfy Assumption
5: they are always square summable and they are not necessarily summable. The con-
vergence results in Section 4 require stepsizes that are, at the same time, not summable
and square summable.

Lemma 4: Let {α(k)}k∈N be a stepsize sequence that satisfies Assumption 5. Then,
the stepsizes are square summable, i.e,

∑∞
k=0 α

2(k) < ∞. Moreover, there exists a
sequence of stepsizes {α(k)}k∈N that satisfies Assumption 5 and is not summable, i.e.,∑∞

k=0 α(k) =∞.
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Proof. From Assumption 5, with p = 0, we obtain that there exists some K ∈ N such
that α(k) ≤ 1/k for all k ≥ K. Therefore,

∞∑
k=0

α2(k) ≤
K−1∑
k=0

α2(k) +
∞∑
k=K

1

k2
≤ K max

k∈{0,...,K−1}
α2(k) +

π2

6
<∞.

Hence, {α(k)}k∈N is square summable. Now, let α(k) = 1
(k+2) log(k+2)

for all k ∈ N. This

sequence of stepsizes satisfies Assumption 5 and is not summable since for all K ′ ∈ N

K′∑
k=0

α(k) ≥ log(log(K ′ + 2))

and limK′→∞ log(log(K ′ + 2)) =∞.

The following proposition is one of the central results in our paper. It establishes,
first, that for any fixed s, the expected disagreement metric E[ρ(k, s)|x(s) = x] decays
at a rate of e

√
k−s as k goes to infinity. Importantly, it also establishes that, as s grows,

the contraction bound for a fixed distance k − s decays slowly in s. This slow decay is
quantified by a function β(s) that grows to infinity slower than the polynomial sq for
any q > 0.

Proposition 2: Let Assumptions 1, 2, 3, 4, and 5 hold. Assume also that there exists
some M > 0 such that ‖ei(k)‖ ≤ Mα(k) for all i ∈ M and k ∈ N. Then, there exists a
scalar µ > 0, an increasing function β(s) : N → R+ and a function S(q) : N → N such
that

β(s) ≤ sq for all q > 0 and all s ≥ S(q) (27)

and E[ρ(k, s)|x(s) = x] ≤ β(s)e−µ
√
k−s for all k ≥ s ≥ 0, x ∈ RM(s). (28)

Proof. Part 1. The first step of the proof is to define two functions, g(k) and w(k), that
respectively bound the sum of the stepsizes up to time k and the inverse of the probability
of communication at time k, and prove some limit properties of the functions g(k) and
w(k) [see Eqs. (29) and (31)]. Define g(k) : R+ → R+ to be the linear interpolation of∑bkc

r=0 α(k), i.e,

g(k) =

bkc∑
r=0

α(k) + (k − bkc)α(k − bkc+ 1).

Note that g is differentiable everywhere except at integer points and g′(k) = α(k−bkc+
1) = α(dke) at k /∈ N. We thus obtain from Assumption 5 that for all p < 1,

lim
k→∞,k /∈N

k logp(k)g′(k) = lim
k→∞
dke logp(dke)α(dke) = 0. (29)

Define w(k) according to

w(k) =
(∆ + 2m(L+M)g(k))2(m−1)C

K2(m−1) , (30)
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where ∆ = 2mmaxj∈M ‖xj(0)‖ and K and C are parameters of the communication
model [see Eq. (9)]. We now show that for any p < 1,

lim
k→∞,k /∈N

k logp(k)w′(k) = 0. (31)

If limk→∞w(k) <∞, then the equation above holds immediately from Eq. (29). There-
fore, assume limk→∞w(k) =∞. By L’Hospital’s Rule, for any q > 0,

lim
k→∞,k /∈N

w(k)

logq(k)
=

1

q
lim

k→∞,k /∈N

kw′(k)

logq−1(k)
. (32)

At the same time, if we take w(k) to the power 1
2(m−1)C before using L’Hospital’s Rule,

we obtain that for any q > 0,

lim
k→∞,k /∈N

(
w(k)

logq(k)

) 1
2(m−1)C

=
1

K1/C
lim

k→∞,k /∈N

∆ + 2m(L+M)g(k)

log
q

2(m−1)C (k)

=
4m(m− 1)(L+M)C

K1/Cq
lim

k→∞,k /∈N

kg′(k)

log
q

2(m−1)C
−1(k)

= 0,

where the last equality follows from Eq. (29). From the equation above, we obtain

lim
k→∞,k /∈N

w(k)

logq(k)
=

[
lim

k→∞,k /∈N

(
w(k)

logq(k)

) 1
2(m−1)C

]2(m−1)C
= 0, (33)

which combined with Eq. (32), yields the desired Eq. (31) for any p = 1− q < 1.

Part 2. The second step of the proof involves defining a family of events {Hi(s)}i,s
that occur with probability at least φ > 0. We will later prove that an occurrence of
Hi(s) implies a contraction of the distance between the estimates. Let hi(s) = i+dw(2s)e
for any i, s ∈ N, where w(·) is defined in Eq. (30). We say the event Hi(s) occurs if
one out of a sequence of G-events [see definition in Eq. (19)] starting after s occurs. In
particular, Hi(s) is the union of hi(s) G-events and is defined as follows,

Hi(s) =

hi(s)⋃
j=1

G

(
s+ 2(m− 1)

(
j − 1 +

i−1∑
r=1

hr(s)

))
for all i, s ∈ N,

where
∑0

r=1(·) = 0. See Figure 1 for a graphic representation of the Hi(s) events. We
now show P (Hi(s)|x(s) = x) for all i, s ∈ N and all x ∈ RM(s) [see definition of RM(s) in
Eq. (15)]. From Lemma 2(a) and the definition of w(·), we obtain that for all x ∈ RM(s),

P (G(s)|x(s) = x) ≥ min

{
δ2(m−1),

1

w(s+ 2m− 3)

}
.
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Figure 1: The figure illustrates the three levels of probabilistic events considered in the
proof: the events Bl(s) and Dl(s), which represent the occurrence of communication
over a link (edge of the in-tree and out-tree, respectively); the events G(s) as defined
in (19), with length 2(m − 1) and whose occurrence dictates the spread of information
from any agent to every other agent in the network; the events Hi(s) constructed as the
union of an increasing number of events G(s) so that their probability of occurrence is
guaranteed to be uniformly bounded away from zero. The occurrence of an event Hi(s)
also implies the spread of information from one agent to the entire network and, as a
result, leads to a contraction of the distance between the agents’ estimates.
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Then, for all s, i ∈ N and all x ∈ RM(s),

P (Hi(s)|x(s) = x) = P

hi(s)⋃
j=1

G

(
s+ 2(m− 1)

(
j − 1 +

i−1∑
r=1

hr(s)

))∣∣∣∣∣∣x(s) = x


≥ 1−

1−min

δ2(m−1), 1

w
(
s+ 2(m− 1)

∑i
r=1 hr(s)

)

hi(s)

,

where the inequality follows from Lemma 2(b) and the fact that w(·) is a non-decreasing
function. Note that hr(s) ≥ r for all r and s, so that s+ s+ 2(m− 1)

∑i
r=1 hr(s) ≥ i2.

Let Î be the smallest i such that w(i2) ≥ δ−2(m−1). We then have that for all i ≥ Î, all
s and all x ∈ RM(s),

P (Hi(s)|x(s) = x) ≥ 1−

1− 1

w
(
s+ 2(m− 1)

∑i
r=1 hr(s)

)
hi(s)

,

Let Ĩ be the maximum between Î and the smallest i such that w(i2) > 1. Using the
inequality (1− 1/x)x ≤ e−1 for all x ≥ 1, and multiplying and dividing the exponent in

the equation above by w
(
s+ 2(m− 1)

∑i
r=1 hr(s)

)
we obtain

P (Hi(s)|x(s) = x) ≥ 1− e
− hi(s)

w(s+2(m−1)
∑i
r=1 hr(s))

for all i ≥ Ĩ, all s and all x ∈ RM(s). By bounding hr(s) ≤ hi(s) and replacing
hi(s) = i+ dw(2s)e, we obtain

P (Hi(s)|x(s) = x) ≥ 1− e−
i+dw(2s)e

w(s+2(m−1)(i2+idw(2s)e)) ≥ 1− e−
i+w(2s)

w(s+2(m−1)(i2+iw(2s)+i)) .

We now show there exists some I such that

1− e−
i+w(2s)

w(s+2(m−1)(i2+iw(2s)+i)) is increasing in i for all i ≥ I, s ∈ N. (34)

The function above is increasing in i if i+w(2s)
w(s+2(m−1)(i2+iw(2s)+i)) is increasing in i. The

partial derivative of this function with respect to i is positive if

w
(
s+ 2(m− 1)(i2 + iw(2s) + i)

)
−

2(m− 1)(2i2 + i+ 3iw(2s) + w(2s) + w2(2s))w′
(
s+ 2(m− 1)(i2 + iw(2s) + i)

)
> 0

at all points where the derivative w′(·) exists, that is, at non-integer values. If i ≥ Ĩ,
then w (s+ 2(m− 1)(i2 + iw(2s) + i)) > 1 for all s and it is thus sufficient to show

2(m− 1)(2i2 + i+ 3iw(2s) + w(2s) + w2(2s))w′
(
s+ 2(m− 1)(i2 + iw(2s) + i)

)
≤ 1
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in order to prove that Eq. (34) hold. The equation above holds if

2(m− 1)(3i2 + 4iw(2s) + w2(2s))w′
(
2(m− 1)(i2 + iw(2s)) + s

)
≤ 1.

From Eq. (31) with p = 1/2, we have that there exists some N such that for all x ≥ N ,
w′(x) ≤ 1

4x
√

log(x)
. For i2 ≥ N and any s ∈ N,

2(m− 1)(3i2 + 4iw(2s) + w2(2s))w′
(
2(m− 1)(i2 + iw(2s)) + s

)
≤ 2(m− 1)(3i2 + 4iw(2s) + w2(2s))

(2(m− 1)(4i2 + 4iw(2s)) + 4s)
√

log(2(m− 1)(i2 + iw(2s) + s)

≤ 3i2 + 4iw(2s) + w2(2s)

4i2 + 4iw(2s) + 2
m−1s

√
log(i2)

.

The term above is less than or equal to 1 if we select i large enough such that 2
m−1s

√
log(i2) ≥

w2(2s) for all s ∈ N [see Eq. (33) with q < 1/2], thus proving there exists some I such
that Eq. (34) holds. Hence, we obtain that for all i, s ∈ N and all x ∈ RM(s),

P (Hi(s)|x(s) = x) ≥

min
j∈{1,...,I}

1−

1−min

δ2(m−1), 1

w
(
s+ 2(m− 1)

∑j
r=1 hr(s)

)

hj(s)

 .

Since P (Hi(s)|x(s) = x) > 0 for all i, s ∈ N and all x ∈ RM(s), to obtain the uniform
lower bound on P (Hi(s)|x(s) = x) ≥ φ > 0, it is sufficient to show that for all i ∈
{1, ..., I} and all x ∈ RM(s),

lim
s→∞

P (Hi(s)|x(s) = x) > 0.

Repeating the steps above, but constraining s to be large enough instead of i, we obtain
there exists some S̃ such that for all s ≥ S̃, all i ∈ N and x ∈ RM(s),

P (Hi(s)|x(s) = x) ≥ 1− e−
i+w(2s)

w(s+2(m−1)(i2+iw(2s)+i)) .

Since there exists some Ŝ such that w(2s) ≤ log(2s) for all s ≥ Ŝ [see Eq. (33) with
q = 1], we obtain

P (Hi(s)|x(s) = x) ≥ 1− e−
i+w(2s)

w(s+2(m−1)(i2+i log(2s)+i)) .

for s ≥ max{Ŝ, S̃} and all i ∈ N and x ∈ RM(s). Note that for every i, there exists
some S(i) such that for all s ≥ S(i) the numerator is greater than the denominator in
the exponent above. Therefore, for all i ∈ N and x ∈ RM(s),

lim
s→∞

P (Hi(s)|x(s) = x) ≥ 1− e−1.
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Hence, there indeed exists some φ > 0 such that P (Hi(s)|x(s) = x) ≥ φ for all i, s ∈ N
and x ∈ RM(s).

Part 3. In the previous step, we defined an event Hi(s) and proved it had probability
at least φ > 0 of occurrence for any i and s. We now determine a lower bound on the
number of possible H-events in an interval {s, ..., k}. The maximum number of possible
H events in the interval {s, ..., k} is given by

u(k, s) = max

{
t ∈ N | s+ 2(m− 1)

t∑
i=1

hi(s) ≤ k

}
.

Recall that hi(s) = i+ dw(2s)e ≤ i+ w(2s) + 1 to obtain

u(k, s) ≥ max

{
t ∈ N |

t∑
i=1

(i+ w(2s) + 1) ≤ k − s
2(m− 1)

}
.

By expanding the sum and adding
(
3
2

+ w(2s)
)2

to the left-hand side of the equation
inside the maximization above, we obtain the following bound

u(k, s) ≥ max

{
t ∈ N | t2 + 3t+ 2w(2s)t+

(
3

2
+ w(2s)

)2

≤ k − s
m− 1

}

= max

{
t ∈ N | t+

3

2
+ w(2s) ≤

√
k − s
m− 1

}
,

which yields the desired bound on u(k, s),

u(k, s) ≥
√
k − s
m− 1

− 5

2
− w(2s). (35)

Part 4. We now complete the proof of the proposition. The following argument shows
there is a high probability that several H-events occur in a given {s, ..., k} interval and,
therefore, we obtain the desired contraction.

Let Ii(s) be the indicator variable of the event Hi(s), that is Ii(s) = 1 if Hi(s) occurs
and Ii(s) = 0 otherwise. For any k ≥ s ≥ 0, any x ∈ RM(s) and any δ > 0, the
disagreement metric ρ satisfies

E[ρ(k, s)|x(s) = x] =

E

ρ(k, s)

∣∣∣∣∣∣x(s) = x,

u(k,s)∑
i=1

Ii(s) > δu(k, s)

P
u(k,s)∑

i=1

Ii(s) > δu(k, s)

∣∣∣∣∣∣x(s) = x

+

E

ρ(k, s)

∣∣∣∣∣∣x(s) = x,

u(k,s)∑
i=1

Ii(s) ≤ δu(k, s)

P
u(k,s)∑

i=1

Ii(s) ≤ δu(k, s)

∣∣∣∣∣∣x(s) = x

 .

22



Since all the terms on the right-hand side of the equation above are less than or equal
to 1, we obtain

E[ρ(k, s)|x(s) = x] ≤ (36)

E

ρ(k, s)

∣∣∣∣∣∣x(s) = x,

u(k,s)∑
i=1

Ii(s) > δu(k, s)

+ P

u(k,s)∑
i=1

Ii(s) ≤ δu(k, s)

∣∣∣∣∣∣x(s) = x

 .

We now bound the two terms in the right-hand side of Eq. (36). Consider initially
the first term. If Ii(s) > δu(k, s), then at least δu(k, s) H-events occur, which by the
definition of Hi(s) implies that at least δu(k, s) G-events occur. From Lemma 3, we
obtain

E

ρ(k, s)

∣∣∣∣∣∣x(s) = x,

u(k,s)∑
i=1

Ii(s) > δu(k, s)

 ≤ 2

(
1 +

1

γ2(m−1)

)(
1− γ2(m−1)

)δu(k,s)
(37)

for all δ > 0. We now consider the second term in the right-hand side of Eq. (36). The
events {Ii(s)}i=1,...,u(k,s) all have probability at least φ > 0 conditional on any x(s) ∈
RM(s), but they are not independent. However, given any x(s +

∑j−1
i=1 hj(r)) ∈ R(s +∑j−1

i=1 hj(r)), the event Ij(s) is independent from the set of events {Ii(s)}i=1,...,j−1 by the
Markov property. Therefore, we can define a sequence of independent indicator variables
{Ji(s)}i=1,...,u(k,s) such P (Ji(s) = 1) = φ and Ji(s) ≤ Ii(s) for all i ∈ {1, ..., u(k, s)}
conditional on x(s) ∈ RM(s). Hence,

P

u(k,s)∑
i=1

Ii(s) ≤ δu(k, s)

∣∣∣∣∣∣x(s) = x

 ≤ P

u(k,s)∑
i=1

Ji(s) ≤ δu(k, s)

 , (38)

for any δ > 0 and any x ∈ RM(s). By selecting δ = φ
2

and using Hoeffding’s Inequality,
we obtain

P

 1

u(k, s)

u(k,s)∑
i=1

Ji(s) ≤
φ

2

 ≤ e−2
φ2

22
u(k,s). (39)

Plugging Eqs. (37), (38) and (39), with δ = φ/2, into Eq. (36), we obtain

E[ρ(k, s)|x(s) = x] ≤ 2

(
1 +

1

γ2(m−1)

)(
1− γ2(m−1)

)φ
2
u(k,s)

+ e−
φ2

2
u(k,s),

for all k ≥ s ≥ 0 and all x ∈ RM(s). This implies there exists some µ0, µ1 > 0 such that
ρ(k, s) ≤ µ0e

−µ1u(k,s) and, combined with Eq. (35), we obtain there exist some K,µ > 0
such that

E[ρ(k, s)|x(s) = x] ≤ Keµ(w(2s)−
√
k−s) for all k ≥ s ≥ 0, x(s) ∈ RM(s).

Let β(s) = Keµw(2s). Note that β(·) is an increasing function since w(·) is an increasing
function. To complete the proof we need to show that β satisfies condition stipulated in
Eq. (27). From Eq. (33), with q = 1, we obtain that

lim
s→∞,s/∈N

w(s)

log(s)
= 0.
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Note that since w(·) is a continuous function, the limit above also applies over the

integers, i.e., lims→∞
w(s)
log(s)

= 0. Since lims→∞(s), for any q > 0, we have

0 = lim
s→∞

w(2s)

log(2s)
= lim

s→∞

log(K) + µw(2s)

q(− log(2) + log(2s))
= lim

s→∞

log(β(s))

log(sq)
.

Let S(q) be a scalar such that log(β(s))
log(sq)

≤ 1 for all s ≥ S(q). We thus obtain that β(s) ≤ sq

for all s ≥ S(q), completing the proof of the proposition.

The above proposition yields the desired contraction of the disagreement metric ρ,
but it assumes there exists someM > 0 such that ‖ei(k)‖ ≤Mα(k) for all i ∈M and k ∈
N. In settings where we do not have a guarantee that this assumption holds, we use the
proposition below. Proposition 3 instead requires that the sets Xi be compact for each
agent i. With compact feasible sets, the contraction bound on the disagreement metric
follows not from the prior analysis in this paper, but from the analysis of information
exchange as if the link activations were independent across time.

Proposition 3: Let Assumptions 2, 3 and 4 hold. Assume also that the sets Xi are
compact for all i ∈M. Then, there exist scalars κ, µ > 0 such that for all x ∈

∏
i∈MXi,

E[ρ(k, s)|x(s) = x] ≤ κe−µ(k−s) for all k ≥ s ≥ 0. (40)

Proof. From Assumption 2, we have that there exists a set of edges E of the strongly
connected graph (M, E) such that for all (j, i) ∈ E , all k ≥ 0 and all x ∈ Rm×n,

P (aij(k) ≥ γ|x(k) = x) ≥ min

{
δ,

K

‖xi − xj‖C

}
.

The function min
{
δ, K
‖xi−xj‖C

}
is continuous and, therefore, it attains its optimum when

minimized over the compact set
∏

i∈MXi, i.e.,

inf
x∈

∏
i∈MXi

min

{
δ,

K

‖xi − xj‖C

}
= min

x∈
∏
i∈MXi

min

{
δ,

K

‖xi − xj‖C

}
.

Since the function min
{
δ, K
‖xi−xj‖C

}
is strictly positive for any x ∈ Rm×n, we obtain

that there exists some positive ε such that

ε = inf
x∈

∏
i∈MXi

min

{
δ,

K

‖xi − xj‖C

}
> 0.

Hence, for all (j, i) ∈ E , all k ≥ 0 and all x ∈
∏

i∈MXi,

P (aij(k) ≥ γ|x(k) = x) ≥ ε. (41)

Since there is a uniform bound on the probability of communication for any given edge in
E that is independent of the state x(k), we can use an extended version of Lemma 7 from
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[15]. In particular, Lemma 7 as stated in [15] requires the communication probability
along edges to be independent of x(k) which does not apply here, however, it can be
extended with straightforward modifications to hold if the independence assumption
were to be replaced by the condition specified in Eq. (41), implying the desired result.

4 Analysis of the Distributed Subgradient Method

In this section, we study the convergence behavior of the agent estimates {xi(k)} gen-
erated by the projected multi-agent subgradient algorithm (5). We first focus on the
case when the constraint sets of agents are the same, i.e., for all i, Xi = X for some
closed convex nonempty set. In this case, we will prove almost sure consensus among
agent estimates and almost sure convergence of agent estimates to an optimal solution
when the stepsize sequence converges to 0 sufficiently fast (as stated in Assumption 5).
We then consider the case when the constraint sets of the agents Xi are different convex
compact sets and present convergence results both in terms of almost sure consensus
of agent estimates and almost sure convergence of the agent estimates to an optimal
solution under weaker assumptions on the stepsize sequence.

We first establish some key relations that hold under general stepsize rules that are
used in the analysis of both cases.

4.1 Preliminary Relations

The first relation measures the “distance” of the agent estimates to the intersection set
X = ∩mi=1Xi. It will be key in studying the convergence behavior of the projection errors
and the agent estimates. The properties of projection on a closed convex set, subgra-
dients, and doubly stochasticity of agent weights play an important role in establishing
this relation.

Lemma 5: Let Assumption 3 hold. Let {xi(k)} and {ei(k)} be the sequences generated
by the algorithm (6)-(8). For any z ∈ X = ∩mi=1Xi, the following hold:

(a) For all k ≥ 0, we have

m∑
i=1

‖xi(k + 1)− z‖2 ≤
m∑
i=1

‖xi(k)− z‖2 + α2(k)
m∑
i=1

‖di(k)‖2

−2α(k)
m∑
i=1

(di(k)′(vi(k)− z))−
m∑
i=1

‖ei(k)‖2.

(b) Let also Assumption 1 hold. For all k ≥ 0, we have

m∑
i=1

‖xi(k+ 1)− z‖2 ≤
m∑
i=1

‖xi(k)− z‖2 +α2(k)mL2− 2α(k)
m∑
i=1

(fi(vi(k))− fi(z)).

(42)
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Moreover, for all k ≥ 0, it also follows that

m∑
j=1

‖xj(k + 1)− z‖2 ≤
m∑
j=1

‖xj(k)− z‖2 + α2(k)mL2 + 2α(k)L
m∑
j=1

‖xj(k)− y(k)‖

−2α(k) (f(y(k))− f(z)) , (43)

Proof. (a) Since xi(k + 1) = PXi [vi(k) − α(k)di(k)], it follows from the property of the
projection error ei(k) in Eq. (3) that for any z ∈ X,

‖xi(k + 1)− z‖2 ≤ ‖vi(k)− α(k)di(k)− z‖2 − ‖ei(k)‖2.

By expanding the term ‖vi(k)− α(k)di(k)− z‖2, we obtain

‖vi(k)− α(k)di(k)− z‖2 = ‖vi(k)− z‖2 + α2(k)‖di(k)‖2 − 2α(k)di(k)′(vi(k)− z).

Since vi(k) =
∑m

j=1 aij(k)xj(k), using the convexity of the norm square function and the
stochasticity of the weights aij(k), j = 1, . . . ,m, it follows that

‖vi(k)− z‖2 ≤
m∑
j=1

aij(k)‖xj(k)− z‖2.

Combining the preceding relations, we obtain

‖xi(k + 1)− z‖2 ≤
m∑
j=1

aij(k)‖xj(k)− z‖2 + α2(k)‖di(k)‖2

−2α(k)di(k)′(vi(k)− z)− ‖ei(k)‖2.

By summing the preceding relation over i = 1, . . . ,m, and using the doubly stochasticity
of the weights, i.e.,

m∑
i=1

m∑
j=1

aij(k)‖xj(k)− z‖2 =
m∑
j=1

(
m∑
i=1

aij(k)

)
‖xj(k)− z‖2 =

m∑
j=1

‖xj(k)− z‖2,

we obtain the desired result.

(b) Since di(k) is a subgradient of fi(x) at x = vi(k), we have

di(k)′(vi(k)− z) ≥ fi(vi(k))− fi(z).

Combining this with the inequality in part (a), using subgradient boundedness and
dropping the nonpositive projection error term on the right handside, we obtain

m∑
i=1

‖xi(k + 1)− z‖2 ≤
m∑
i=1

‖xi(k)− z‖2 + α2(k)mL2 − 2α(k)
m∑
i=1

(fi(vi(k))− fi(z)),
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proving the first claim. This relation implies that

m∑
j=1

‖xj(k + 1)− z‖2 ≤
m∑
j=1

‖xj(k)− z‖2 + α2(k)mL2 − 2α(k)
m∑
i=1

(fi(vi(k))− fi(y(k)))

−2α(k) (f(y(k))− f(z)) . (44)

In view of the subgradient boundedness and the stochasticity of the weights, it follows

|fi(vi(k))− fi(y(k))| ≤ L‖vi(k)− y(k)‖ ≤ L

m∑
j=1

aij(k)‖xj(k)− y(k)‖,

implying, by the doubly stochasticity of the weights, that

m∑
i=1

|fi(vi(k))− fi(y(k))| ≤ L

m∑
j=1

(
m∑
i=1

aij(k)

)
‖xj(k)− y(k)‖ = L

m∑
j=1

‖xj(k)− y(k)‖.

By using this in relation (44), we see that for any z ∈ X, and all i and k,

m∑
j=1

‖xj(k + 1)− z‖2 ≤
m∑
j=1

‖xj(k)− z‖2 + α2(k)mL2 + 2α(k)L
m∑
j=1

‖xj(k)− y(k)‖

−2α(k) (f(y(k))− f(z)) .

Our goal is to show that the agent disagreements ‖xi(k)−xj(k)‖ converge to zero. To
measure the agent disagreements ‖xi(k)−xj(k)‖, we consider their average 1

m

∑m
j=1 xj(k),

and consider the disagreement of agent estimates with respect to this average. In par-
ticular, we define

y(k) =
1

m

m∑
j=1

xj(k) for all k. (45)

We have

y(k + 1) =
1

m

m∑
i=1

vi(k)− α(k)

m

m∑
i=1

di(k) +
1

m

m∑
i=1

ei(k).

When the weights are doubly stochastic, since vi(k) =
∑m

j=1 aij(k)xj(k), it follows that

y(k + 1) = y(k)− α(k)

m

m∑
i=1

di(k) +
1

m

m∑
i=1

ei(k). (46)

Under our assumptions, the next lemma provides an upper bound on the agent

disagreements, measured by
{
‖xi(k) − y(k)‖

}
for all i, in terms of the subgradient

bounds, projection errors and the disagreement metric ρ(k, s) defined in Eq. (14).
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Lemma 6: Let Assumptions 1 and 3 hold. Let {xi(k)} be the sequence generated by
the algorithm (6)-(8), and {y(k)} be defined in Eq. (46). Then, for all i and k ≥ 2, an
upper bound on ‖xi(k)− y(k)‖ is given by

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
m∑
j=1

‖xj(0)‖+mL

k−2∑
r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

+
k−2∑
r=0

ρ(k − 1, r + 1)
m∑
j=1

‖ej(r)‖+ ‖ei(k − 1)‖+
1

m

m∑
j=1

‖ej(k − 1)‖.

Proof. From Eq. (13), we have for all i and k ≥ s,

xi(k + 1) =
m∑
j=1

[Φ(k, s)]ijxj(s) −
k−1∑
r=s

m∑
j=1

[Φ(k, r + 1)]ijα(r)dj(r)− α(k)di(k)

+
k−1∑
r=s

m∑
j=1

[Φ(k, r + 1)]ijej(r) + ei(k).

Similarly, using relation (46), we can write for y(k + 1) and for all k and s with k ≥ s,

y(k + 1) = y(s)− 1

m

k−1∑
r=s

m∑
j=1

α(r)dj(r)−
α(k)

m

m∑
i=1

di(k) +
1

m

k−1∑
r=s

m∑
j=1

ej(r) +
1

m

m∑
j=1

ej(k).

Therefore, since y(s) = 1
m

∑m
j=1 xj(s), we have for s = 0,

‖xi(k)− y(k)‖ ≤
m∑
j=1

∣∣∣∣[Φ(k − 1, 0)]ij −
1

m

∣∣∣∣ ‖xj(0)‖

+
k−2∑
r=0

m∑
j=1

∣∣∣∣[Φ(k − 1, r + 1)]ij −
1

m

∣∣∣∣ α(r)‖dj(r)‖

+α(k − 1)‖di(k − 1)‖+
α(k − 1)

m

m∑
j=1

‖dj(k − 1)‖

+
k−2∑
r=0

m∑
j=1

∣∣∣∣[Φ(k − 1, r + 1)]ij −
1

m

∣∣∣∣ ‖ej(r)‖
+‖ei(k − 1)‖+

1

m

m∑
j=1

‖ej(k − 1)‖.

Using the metric ρ(k, s) = maxi,j∈M
∣∣[Φ(k, s)]ij − 1

m

∣∣ for k ≥ s ≥ 0 [cf. Eq. (14)], and
the subgradient boundedness, we obtain for all i and k ≥ 2,

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
m∑
j=1

‖xj(0)‖+mL

k−2∑
r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

28



+
k−2∑
r=0

ρ(k − 1, r + 1)
m∑
j=1

‖ej(r)‖+ ‖ei(k − 1)‖+
1

m

m∑
j=1

‖ej(k − 1)‖,

completing the proof.

In proving our convergence results, we will often use the following result on the
infinite summability of products of positive scalar sequences with certain properties.
This result was proven for geometric sequences in [19]. Here we extend it for general
summable sequences.

Lemma 7: Let {βl} and {γk} be positive scalar sequences, such that
∑∞

l=0 βl <∞ and
limk→∞ γk = 0. Then,

lim
k→∞

k∑
`=0

βk−`γ` = 0.

In addition, if
∑∞

k=0 γk <∞, then

∞∑
k=0

k∑
`=0

βk−`γ` <∞.

Proof. Let ε > 0 be arbitrary. Since γk → 0, there is an index K such that γk ≤ ε for
all k ≥ K. For all k ≥ K + 1, we have

k∑
`=0

βk−`γ` =
K∑
`=0

βk−`γ` +
k∑

`=K+1

βk−`γ` ≤ max
0≤t≤K

γt

K∑
`=0

βk−` + ε
k∑

`=K+1

βk−`.

Since
∑∞

l=0 βl <∞, there exists B > 0 such that
∑k

`=K+1 βk−` =
∑k−K−1

`=0 β` ≤ B for

all k ≥ K+1. Moreover, since
∑K

`=0 βk−` =
∑k

`=k−K β`, it follows that for all k ≥ K+1,

k∑
`=0

βk−`γ` ≤ max
0≤t≤K

γt

k∑
`=k−K

β` + εB.

Therefore, using
∑∞

l=0 βl <∞, we obtain

lim sup
k→∞

k∑
`=0

βk−`γ` ≤ εB.

Since ε is arbitrary, we conclude that lim supk→∞
∑k

`=0 βk−`γ` = 0, implying

lim
k→∞

k∑
`=0

βk−`γ` = 0.

Suppose now
∑

k γk <∞. Then, for any integer M ≥ 1, we have

M∑
k=0

(
k∑
`=0

βk−`γ`

)
=

M∑
`=0

γ`

M−`∑
t=0

βt ≤
M∑
`=0

γ`B,
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implying that
∞∑
k=0

(
k∑
`=0

βk−`γ`

)
≤ B

∞∑
`=0

γ` <∞.

4.2 Convergence Analysis when Xi = X for all i

In this section, we study the case when agent constraint sets Xi are the same. We study
the asymptotic behavior of the agent estimates generated by the algorithm (5) using
Assumption 5 on the stepsize sequence.

The next assumption formalizes our condition on the constraint sets.

Assumption 6: The constraint sets Xi are the same, i.e., Xi = X for a closed convex
set X.

We show first that under this assumption, we can provide an upper bound on the
norm of the projection error ‖ei(k)‖ as a function of the stepsize α(k) for all i and k ≥ 0.

Lemma 8: Let Assumptions 1 and 6 hold. Let {ei(k)} be the projection error defined
by (8). Then, for all i and k ≥ 0, the ei(k) satisfy

‖ei(k)‖ ≤ 2Lα(k).

Proof. Using the definition of projection error in Eq. (8), we have

ei(k) = xi(k + 1)− vi(k) + α(k)di(k).

Taking the norms of both sides and using subgradient boundedness, we obtain

‖ei(k)‖ ≤ ‖xi(k + 1)− vi(k)‖+ α(k)L.

Since vi(k) =
∑m

j=1 aij(k)xj(k), the weight vector ai(k) is stochastic, and xj(k) ∈ Xj =
X (cf. Assumption 6), it follows that vi(k) ∈ X for all i. Using the nonexpansive
property of projection operation [cf. Eq. (2)] in the preceding relation, we obtain

‖ei(k)‖ ≤ ‖vi(k)− α(k)di(k)− vi(k)‖+ α(k)L ≤ 2α(k)L,

completing the proof.

This lemma shows that the projection errors are bounded by the scaled stepsize
sequence under Assumption 6. Using this fact and an additional assumption on the
stepsize sequence, we next show that the expected value of the sequences {‖xi(k)−y(k)‖}
converge to zero for all i, thus establishing mean consensus among the agents in the limit.
The proof relies on the bound on the expected disagreement metric ρ(k, s) established
in Proposition 2. The mean consensus result also immediately implies that the agent
estimates reach almost sure consensus along a particular subsequence.
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Proposition 4: Let Assumptions 1, 2, 3, 4, and 6 hold. Assume also that the stepsize
sequence {α(k)} satisfies Assumption 5. Let {xi(k)} be the sequence generated by the
algorithm (6)-(8), and {y(k)} be defined in Eq. (46). Then, for all i, we have

lim
k→∞

E[‖xi(k)− y(k)‖] = 0, and

lim inf
k→∞

‖xi(k)− y(k)‖ = 0 with probability one.

Proof. From Lemma 6, we have the following for all i and k ≥ 2,

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
m∑
j=1

‖xj(0)‖+mL

k−2∑
r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

+
k−2∑
r=0

ρ(k − 1, r + 1)
m∑
j=1

‖ej(r)‖+ ‖ei(k − 1)‖+
1

m

m∑
j=1

‖ej(k − 1)‖.

Using the upper bound on the projection error from Lemma 8, ‖ei(k)‖ ≤ 2α(k)L for all
i and k, this can be rewritten as

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
m∑
j=1

‖xj(0)‖ + 3mL
k−2∑
r=0

ρ(k − 1, r + 1)α(r)

+ 6α(k − 1)L. (47)

Under Assumption 5 on the stepsize sequence, Proposition 2 implies the following bound
for the disagreement metric ρ(k, s): for all k ≥ s ≥ 0,

E[ρ(k, s)] ≤ β(s)e−µ
√
k−s,

where µ is a positive scalar and β(s) is an increasing sequence such that

β(s) ≤ sq for all q > 0 and all s ≥ S(q), (48)

for some integer S(q), i.e., for all q > 0, β(s) is bounded by a polynomial sq for sufficiently
large s (where the threshold on s, S(q), depends on q). Taking the expectation in Eq.
(47) and using the preceding estimate on ρ(k, s), we obtain

E[‖xi(k)− y(k)‖] ≤ mβ(0)e−µ
√
k−1

m∑
j=1

‖xj(0)‖ + 3mL
k−2∑
r=0

β(r + 1)e−µ
√
k−r−2α(r)

+ 6α(k − 1)L.

We can bound β(0) by β(0) ≤ S(1) by using Eq. (48) with q = 1 and the fact that β is
an increasing sequence. Therefore, by taking the limit superior in the preceding relation
and using α(k)→ 0 as k →∞, we have for all i,

lim sup
k→∞

E[‖xi(k)− y(k)‖] ≤ 3mL
k−2∑
r=0

β(r + 1)e−µ
√
k−r−2α(r).
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Finally, note that
lim
k→∞

β(k + 1)α(k) ≤ lim
k→∞

(k + 1)α(k) = 0,

where the inequality holds by using Eq. (48) with q = 1 and the equality holds by

Assumption 5 on the stepsize. Since we also have
∑∞

k=0 e
−µ
√
k < ∞, Lemma 7 applies

implying that

lim
k→∞

k−2∑
r=0

β(r + 1)e−µ
√
k−r−2α(r) = 0.

Combining the preceding relations, we have

lim
k→∞

E[‖xi(k)− y(k)‖] = 0.

Using Fatou’s Lemma (which applies since the random variables ‖y(k) − xi(k)‖ are
nonnegative for all i and k), we obtain

0 ≤ E
[

lim inf
k→∞

‖y(k)− xi(k)‖
]
≤ lim inf

k→∞
E[‖y(k)− xi(k)‖] ≤ 0.

Thus, the nonnegative random variable lim infk→∞ ‖y(k) − xi(k)‖ has expectation 0,
which implies that

lim inf
k→∞

‖y(k)− xi(k)‖ = 0 with probability one.

The preceding proposition shows that the agent estimates reach a consensus in the
expected sense. We next show that under Assumption 6, the agent estimates in fact
converge to an almost sure consensus in the limit. We rely on the following standard
convergence result for sequences of random variables, which is an immediate consequence
of the supermartingale convergence theorem (see Bertsekas and Tsitsiklis [3]).

Lemma 9: Consider a probability space (Ω, F, P ) and let {F (k)} be an increasing
sequence of σ-fields contained in F . Let {V (k)} and {Z(k)} be sequences of nonnegative
random variables (with finite expectation) adapted to {F (k)} that satisfy

E[V (k + 1) | F (k)] ≤ V (k) + Z(k),

∞∑
k=1

E[Z(k)] <∞.

Then, V (k) converges with probability one, as k →∞.

Proposition 5: Let Assumptions 1, 2, 3, 4, and 6 hold. Assume also that the stepsize
sequence {α(k)} satisfies Assumption 5. Let {xi(k)} be the sequence generated by the
algorithm (6)-(8), and {y(k)} be defined in Eq. (46). Then, for all i, we have:

(a)
∑∞

k=2 α(k)‖xi(k)− y(k)‖ <∞ with probability one.

32



(b) limk→∞ ‖xi(k)− y(k)‖ = 0 with probability one.

Proof. (a) Using the upper bound on the projection error from Lemma 8, ‖ei(k)‖ ≤
2α(k)L for all i and k, in Lemma 6, we have for all i and k ≥ 2,

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
m∑
j=1

‖xj(0)‖+ 3mL
k−2∑
r=0

ρ(k − 1, r + 1)α(r) + 6α(k − 1)L.

By multiplying this relation with α(k), we obtain

α(k)‖xi(k)− y(k)‖ ≤ mα(k)ρ(k − 1, 0)
m∑
j=1

‖xj(0)‖ + 3mL
k−2∑
r=0

ρ(k − 1, r + 1)α(k)α(r)

+ 6α(k)α(k − 1)L.

Taking the expectation and using the estimate from Proposition 2, i.e.,

E[ρ(k, s)] ≤ β(s)e−µ
√
k−s for all k ≥ s ≥ 0,

where µ is a positive scalar and β(s) is a increasing sequence such that

β(s) ≤ sq for all q > 0 and all s ≥ S(q), (49)

for some integer S(q), we have

E[α(k)‖xi(k)− y(k)‖] ≤ mα(k)β(0)e−µ
√
k−1

m∑
j=1

‖xj(0)‖

+3mL
k−2∑
r=0

β(r + 1)e−µ
√
k−r−2α(k)α(r) + 6α(k)α(k − 1)L.

Let ξ(r) = β(r + 1)α(r) for all r ≥ 0. Using the relations α(k)ξ(r) ≤ α2(k) + ξ2(r) and
2α(k)α(k − 1) ≤ α2(k) + α2(k − 1) for any k and r, the preceding implies that

E[α(k)‖xi(k)− y(k)‖] ≤ mα(k)β(0)e−µ
√
k−1

m∑
j=1

‖xj(0)‖+ 3mL
k−2∑
r=0

e−µ
√
k−r−2ξ2(r)

+3Lα2(k)
(
m

k−2∑
r=0

e−µ
√
k−r−2 + 1

)
+ 3α2(k − 1)L.

Summing over k ≥ 2, we obtain

∞∑
k=2

E[α(k)‖xi(k)− y(k)‖] ≤ m
m∑
j=1

‖xj(0)‖β(0)
∞∑
k=2

α(k)e−µ
√
k−1

+3L
∞∑
k=2

((
m

k−2∑
r=0

e−µ
√
k−r−2 + 1

)
α2(k) + α2(k − 1)

)

+3mL
∞∑
k=2

k−2∑
r=0

e−µ
√
k−r−2ξ2(r).
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We next show that the right handside of the above inequality is finite: Since limk→∞ α(k) =

0 (cf. Assumption 5), β(0) is bounded, and
∑

k e
−µ
√
k < ∞, Lemma 7 implies that the

first term is bounded. The second term is bounded since
∑

k α
2(k) <∞ by Assumption

5 and Lemma 4. Since ξ(r) = β(r + 1)α(r), we have for some small ε > 0 and all r
sufficiently large

ξ2(r) = β2(r + 1)α2(r) ≤ (r + 1)2/3α2(r) ≤ (r + 1)2/3
ε

r2
,

where the first inequality follows using the estimate in Eq. (49) with q = 1/3 and the
second inequality follows from Assumption 5. This implies that

∑
k ξ

2(k) < ∞, which
combined with Lemma 7 implies that the third term is also bounded. Hence, we have

∞∑
k=2

E[α(k)‖xi(k)− y(k)‖] <∞.

By the monotone convergence theorem, this implies that

E
[ ∞∑
k=2

α(k)‖y(k)− xi(k)‖
]
<∞,

and therefore
∞∑
k=2

α(k)‖y(k)− xi(k)‖ <∞ with probability 1,

concluding the proof of this part.

(b) Using the iterations (7) and (46), we obtain for all k ≥ 1 and i,

y(k + 1)− xi(k + 1) =
(
y(k)−

m∑
j=1

aij(k)xj(k)
)
− α(k)

( 1

m

m∑
j=1

dj(k)− di(k)
)

+
( 1

m

m∑
j=1

ej(k)− ei(k)
)
.

By the stochasticity of the weights aij(k) and the subgradient boundedness, this implies
that

‖y(k + 1)− xi(k + 1)‖ ≤
m∑
j=1

aij(k)‖y(k)− xj(k)‖+ 2Lα(k) +
2

m

m∑
j=1

‖ej(k)‖.

Using the bound on the projection error from Lemma 8, we can simplify this relation as

‖y(k + 1)− xi(k + 1)‖ ≤
m∑
j=1

aij(k)‖y(k)− xj(k)‖+ 6Lα(k).

Taking the square of both sides and using the convexity of the squared-norm function
‖ · ‖2, this yields

‖y(k+1)−xi(k+1)‖2 ≤
m∑
j=1

aij(k)‖y(k)−xj(k)‖2+12Lα(k)
n∑
j=1

aij(k)‖y(k)−xj(k)‖+36L2α(k)2.
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Summing over all i and using the doubly stochasticity of the weights aij(k), we have for
all k ≥ 1,

m∑
i=1

‖y(k+1)−xi(k+1)‖2 ≤
m∑
i=1

‖y(k)−xi(k)‖2+12Lα(k)
m∑
i=1

‖y(k)−xi(k)‖+36L2mα(k)2.

By part (a) of this lemma, we have
∑∞

k=1 α(k)‖y(k)− xi(k)‖ <∞ with probability one.
Since, we also have

∑
k α

2(k) < ∞ (cf. Lemma 4), Lemma 9 applies and implies that∑m
i=1 ‖y(k)− xi(k)‖2 converges with probability one, as k →∞.

By Proposition 4, we have

lim inf
k→∞

‖xi(k)− y(k)‖ = 0 with probability one.

Since
∑m

i=1 ‖y(k)− xi(k)‖2 converges with probability one, this implies that for all i,

lim
k→∞
‖xi(k)− y(k)‖ = 0 with probability one,

completing the proof.

We next present our main convergence result under Assumption 5 on the stepsize
and Assumption 6 on the constraint sets.

Theorem 1: Let Assumptions 1, 2, 3, 4 and 6 hold. Assume also that the stepsize se-
quence {α(k)} satisfies

∑∞
k=0 α(k) =∞ and Assumption 5. Let {xi(k)} be the sequence

generated by the algorithm (6)-(8). Then, there exists an optimal solution x∗ ∈ X∗ such
that for all i

lim
k→∞

xi(k) = x∗ with probability one.

Proof. From Lemma 5(b), we have for some z∗ ∈ X∗ (i.e., f(z∗) = f ∗),

m∑
j=1

‖xj(k + 1)− z∗‖2 ≤
m∑
j=1

‖xj(k)− z∗‖2 + α2(k)mL2 + 2α(k)L
m∑
j=1

‖xj(k)− y(k)‖

−2α(k) (f(y(k))− f ∗) , (50)

[see Eq. (43)]. Rearranging the terms and summing these relations over k = 0, . . . , K,
we obtain

2
K∑
k=0

α(k) (f(y(k))− f ∗) ≤
m∑
j=1

‖xj(0)− z∗‖2 −
m∑
j=1

‖xj(K + 1)− z∗‖2

+mL2

K∑
k=0

α2(k) + 2L
K∑
k=0

α(k)
m∑
j=1

‖xj(k)− y(k)‖.

By letting K → ∞ in this relation and using
∑∞

k=0 α
2(k) < ∞ (cf. Lemma 4) and∑∞

k=0 α(k)
∑m

j=1 ‖xj(k)− y(k)‖ <∞ with probability one, we obtain

K∑
k=0

α(k) (f(y(k))− f ∗) <∞ with probability one.
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Since xi(k) ∈ X for all i, we have y(k) ∈ X [cf. Eq. (45)] and therefore f(y(k)) ≥ f ∗ for
all k. Combined with the assumption

∑∞
k=0 α(k) =∞, the preceding relation implies

lim inf
k→∞

f(y(k)) = f ∗. (51)

By dropping the nonnegative term 2α(k) (f(y(k))− f ∗) in Eq. (50), we have

m∑
j=1

‖xj(k + 1)− z∗‖2 ≤
m∑
j=1

‖xj(k)− z∗‖2 + α2(k)mL2 + 2α(k)L
m∑
j=1

‖xj(k)− y(k)‖.(52)

Since
∑∞

k=0 α
2(k) < ∞ and

∑∞
k=0 α(k)

∑m
j=1 ‖xj(k) − y(k)‖ < ∞ with probability one,

Lemma 9 applies and implies that
∑m

j=1 ‖xj(k) − z∗‖2 is a convergent sequence with
probability one for all z∗ ∈ X∗. By Lemma 5(b), we have limk→∞ ‖xi(k)−y(k)‖ = 0 with
probability one, therefore it also follows that the sequence ‖y(k)−z∗‖ is also convergent.
Since y(k) is bounded, it must have a limit point. By Eq. (51) and the continuity of
f (due to convexity of f over Rn), this implies that one of the limit points of {y(k)}
must belong to X∗; denote this limit point by x∗. Since the sequence {‖y(k) − x∗‖} is
convergent, it follows that y(k) can have a unique limit point, i.e., limk→∞ y(k) = x∗

with probability one. This and limk→∞ ‖xi(k) − y(k)‖ = 0 with probability one imply
that each of the sequences {xi(k)} converges to the same x∗ ∈ X∗ with probability one.

4.3 Convergence Analysis for Different Constraint Sets

In this section, we provide our convergence analysis for the case when all the constraint
sets Xi are different. We show that even when the constraint sets of the agents are
different, the agent estimates converge almost surely to an optimal solution of problem
(4) under some conditions. In particular, we adopt the following assumption on the
constraint sets.

Assumption 7: For each i, the constraint set Xi is a convex and compact set.

An important implication of the preceding assumption is that for each i, the subgra-
dients of the function fi at all points x ∈ Xi are uniformly bounded, i.e., there exists
some scalar L > 0 such that for all i,

‖d‖ ≤ L for all d ∈ ∂fi(x) and all x ∈ Xi.

Our first lemma shows that with different constraint sets and a stepsize that goes to
zero, the projection error ei(k) converges to zero for all i along all sample paths.

Lemma 10: Let Assumptions 3 and 7 hold. Let {xi(k)} and {ei(k)} be the sequences
generated by the algorithm (6)-(8). Assume that the stepsize sequence satisfies α(k)→ 0
as k goes to infinity.

(a) For any z ∈ X, the scalar sequence
∑m

i=1 ‖xi(k)− z‖2 is convergent.
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(b) The projection errors ei(k) converge to zero as k →∞, i.e.,

lim
k→∞
‖ei(k)‖ = 0 for all i.

Proof. (a) Using subgradient boundedness and the relation |di(k)′(vi(k)−z)| ≤ ‖di(k)‖‖vi(k)−
z‖ in part (a) of Lemma 5, we obtain

m∑
i=1

‖xi(k+1)−z‖2 ≤
m∑
i=1

‖xi(k)−z‖2+α2(k)mL2+2α(k)L
m∑
i=1

‖vi(k)−z‖−
m∑
i=1

‖ei(k)‖2.

Since vi(k) =
∑m

j=1 aij(k)xj(k), using doubly stochasticity of the weights, we have∑m
i=1 ‖vi(k) − z‖ ≤

∑m
i=1 ‖xi(k) − z‖, which when combined with the preceding yields

for any z ∈ X and all k ≥ 0,

m∑
i=1

‖xi(k+1)−z‖2 ≤
m∑
i=1

‖xi(k)−z‖2+α2(k)mL2+2α(k)L
m∑
i=1

‖xi(k)−z‖−
m∑
i=1

‖ei(k)‖2.

(53)

Since xi(k) ∈ Xi for all i and Xi is compact (cf. Assumption 7), it follows that the
sequence {xi(k)} is bounded for all i, and therefore the sequence

∑m
i=1 ‖xi(k) − z‖ is

bounded. Since α(k) → 0 as k → ∞, by dropping the nonnegative term
∑m

i=1 ‖ei(k)‖2
in Eq. (53), it follows that

lim sup
k→∞

m∑
i=1

‖xi(k + 1)− z‖2 ≤ lim inf
k→∞

m∑
i=1

‖xi(k)− z‖2

+ lim
k→∞

(
α2(k)mL2 + 2α(k)L

m∑
i=1

‖xi(k)− z‖

)

= lim inf
k→∞

m∑
i=1

‖xi(k)− z‖2.

Since the sequence
∑m

i=1 ‖xi(k)−z‖2 is bounded, the preceding relation implies that the
scalar sequence

∑m
i=1 ‖xi(k)− z‖2 is convergent.

(b) From Eq. (53), for any z ∈ X, we have

m∑
i=1

‖ei(k)‖2 ≤
m∑
i=1

‖xi(k)−z‖2−
m∑
i=1

‖xi(k+1)−z‖2+α2(k)mL2+2α(k)L
m∑
i=1

‖xi(k)−z‖.

Taking the limit superior as k →∞, we obtain

lim sup
k→∞

m∑
i=1

‖ei(k)‖2 ≤ lim
k→∞

(
m∑
i=1

‖xi(k)− z‖2 −
m∑
i=1

‖xi(k + 1)− z‖2
)

+ lim
k→∞

(
α2(k)mL2 + 2α(k)L

m∑
i=1

‖xi(k)− z‖
)
,
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where the first term on the right handside is equal to zero by the convergence of the
sequence

∑m
i=1 ‖xi(k) − z‖2, and the second term is equal to zero by limk→∞ α(k) = 0

and the boundedness of the sequence
∑m

i=1 ‖xi(k)− z‖, completing the proof.

The preceding lemma shows the interesting result that the projection errors ‖ei(k)‖
converge to zero along all sample paths even when the agents have different constraint
sets under the compactness conditions of Assumption 7. Similar to the case with Xi = X
for all i, we next establish mean consensus among the agent estimates. The proof relies
on the convergence of projection errors to zero and the bound on the disagreement
metric ρ(k, s) from Proposition 3. Note that this result holds for all stepsizes α(k) with
α(k)→ 0 as k →∞.

Proposition 6: Let Assumptions 2, 3, 4 and 7 hold. Let {xi(k)} be the sequence
generated by the algorithm (6)-(8), and {y(k)} be defined in Eq. (46). Assume that the
stepsize sequence satisfies α(k)→ 0 as k goes to infinity. Then, for all i, we have

lim
k→∞

E[‖xi(k)− y(k)‖] = 0, and

lim inf
k→∞

‖xi(k)− y(k)‖ = 0 with probability one.

Proof. From Lemma 6, we have

‖xi(k)− y(k)‖ ≤ mρ(k − 1, 0)
m∑
j=1

‖xj(0)‖+mL
k−2∑
r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

+
k−2∑
r=0

ρ(k − 1, r + 1)
m∑
j=1

‖ej(r)‖+ ‖ei(k − 1)‖+
1

m

m∑
j=1

‖ej(k − 1)‖.

Taking the expectation of both sides and using the estimate for the disagreement metric
ρ(k, s) from Proposition 3, i.e., for all k ≥ s ≥ 0,

E[ρ(k, s)] ≤ κe−µ(k−s),

for some scalars κ, µ > 0, we obtain

E[‖xi(k)− y(k)‖] ≤ mκe−µ(k−1)
m∑
j=1

‖xj(0)‖+mLκ

k−2∑
r=0

e−µ(k−r−2)α(r) + 2α(k − 1)L

+κ
k−2∑
r=0

e−µ(k−r−2)
m∑
j=1

‖ej(r)‖+ ‖ei(k − 1)‖+
1

m

m∑
j=1

‖ej(k − 1)‖.

By taking the limit superior in the preceding relation and using the facts that α(k)→ 0,
and ‖ei(k)‖ → 0 for all i as k →∞ (cf. Lemma 10(b)), we have for all i,

lim sup
k→∞

E[‖xi(k)− y(k)‖] ≤ mLκ
k−2∑
r=0

e−µ(k−r−2)α(r) + κ

k−2∑
r=0

e−µ(k−r−2)
m∑
j=1

‖ej(r)‖.
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Finally, since
∑∞

k=0 e
−µk <∞ and both α(k)→ 0 and ‖ei(k)‖ → 0 for all i, by Lemma

7, we have

lim
k→∞

k−2∑
r=0

e−µ(k−r−2)α(r) = 0 and lim
k→∞

k−2∑
r=0

e−µ(k−r−2)
m∑
j=1

‖ej(r)‖ = 0.

Combining the preceding two relations, we have

lim
k→∞

E[‖xi(k)− y(k)‖] = 0.

The second part of proposition follows using Fatou’s Lemma and a similar argument
used in the proof of Proposition 4.

The next proposition uses the compactness of the constraint sets to strengthen this
result and establish almost sure consensus among the agent estimates.

Proposition 7: Let Assumptions 2, 3, 4 and 7 hold. Let {xi(k)} be the sequence
generated by the algorithm (6)-(8), and {y(k)} be defined in Eq. (46). Assume that the
stepsize sequence satisfies α(k)→ 0. Then, for all i, we have

lim
k→∞
‖xi(k)− y(k)‖ = 0 with probability one.

Proof. Using the iterations (7) and (46), we obtain for all k ≥ 1 and i,

y(k + 1)− xi(k + 1) =
(
y(k)−

m∑
j=1

aij(k)xj(k)
)
− α(k)

( 1

m

m∑
j=1

dj(k)− di(k)
)

+
( 1

m

m∑
j=1

ej(k)− ei(k)
)
.

Using the doubly stochasticity of the weights aij(k) and the subgradient boundedness
(which holds by Assumption 7), this implies that

m∑
i=1

‖y(k + 1)− xi(k + 1)‖ ≤
m∑
i=1

‖y(k)− xi(k)‖+ 2Lmα(k) + 2
m∑
i=1

‖ei(k)‖. (54)

Since α(k) → 0, it follows from Lemma 10(b) that ‖ei(k)‖ → 0 for all i. Eq. (54) then
yields

lim sup
k→∞

m∑
i=1

‖y(k + 1)− xi(k + 1)‖ ≤ lim inf
k→∞

m∑
i=1

‖y(k)− xi(k)‖

+ lim
k→∞

(
2Lmα(k) + 2

m∑
i=1

‖ei(k)‖
)

= lim inf
k→∞

m∑
i=1

‖y(k)− xi(k)‖.
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Using xi(k) ∈ Xi for all i and k, it follows from Assumption 7 that the sequence {xi(k)}
is bounded for all i. Therefore, the sequence {y(k)} [defined by y(k) = 1

m

∑m
i=1 xi(k),

see Eq. (45)], and also the sequences ‖y(k) − xi(k)‖ are bounded. Combined with the
preceding relation, this implies that the scalar sequence

∑m
i=1 ‖y(k) − xi(k)‖ is conver-

gent.

By Proposition 6, we have

lim inf
k→∞

‖xi(k)− y(k)‖ = 0 with probability one.

Since
∑m

i=1 ‖y(k)− xi(k)‖ converges, this implies that for all i,

lim
k→∞
‖xi(k)− y(k)‖ = 0 with probability one,

completing the proof.

The next theorem states our main convergence result for agent estimates when the
constraint sets are different under some assumptions on the stepsize rule.

Theorem 2: Let Assumptions 2, 3, 4 and 7 hold. Let {xi(k)} be the sequence generated
by the algorithm (6)-(8). Assume that the stepsize sequence satisfies

∑
k α(k) =∞ and∑

k α
2(k) <∞. Then, there exists an optimal solution x∗ ∈ X∗ such that for all i

lim
k→∞

xi(k) = x∗ with probability one.

Proof. From Lemma 5(b), we have for some z∗ ∈ X∗,
m∑
i=1

‖xi(k+1)−z∗‖2 ≤
m∑
i=1

‖xi(k)−z∗‖2+α2(k)
m∑
i=1

‖di(k)‖2−2α(k)
m∑
i=1

(fi(vi(k))−fi(z∗)).

(55)
We show that the preceding implies that

lim inf
k→∞

m∑
i=1

fi(vi(k)) ≤ f(z∗) = f ∗. (56)

Suppose to arrive at a contradiction that lim infk→∞
∑m

i=1 fi(vi(k)) > f ∗. This implies
that there exist some K and ε > 0 such that for all k ≥ K, we have

m∑
i=1

fi(vi(k)) > f ∗ + ε.

Summing the relation (55) over a window from K to N with N > K, we obtain

m∑
i=1

‖xi(N + 1)− z∗‖2 ≤
m∑
i=1

‖xi(K)− z∗‖2 +mL2

N∑
k=K

α2(k)− 2ε
N∑

k=K

α(k).

Letting N →∞, and using
∑

k α(k) =∞ and
∑

k α
2(k) <∞, this yields a contradiction

and establishes the relation in Eq. (56).
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By Proposition 7, we have

lim
k→∞
‖xi(k)− y(k)‖ = 0 with probability one. (57)

Since vi(k) =
∑m

j=1 aij(k)xj(k), using the stochasticity of the weight vectors ai(k), this
also implies

lim
k→∞
‖vi(k)− y(k)‖ ≤ lim

k→∞

m∑
j=1

aij(k)‖xj(k)− y(k)‖ = 0 with probability one. (58)

Combining Eqs. (56) and (58), we obtain

lim inf
k→∞

f(y(k)) ≤ f ∗ with probability one. (59)

From Lemma 10(a), the sequence {
∑m

i=1 ‖xi(k)− z∗‖} is convergent for all z∗ ∈ X∗.
Combined with Eq. (57), this implies that the sequence {‖y(k)−z∗‖} is convergent with
probability one. Therefore, y(k) is bounded and it must have a limit point. Moreover,
since xi(k) ∈ Xi for all k ≥ 0 and Xi is a closed set, all limit points of the sequence
{xi(k)} must lie in the set Xi for all i. In view of Eq. (57), this implies that all limit
points of the sequence {y(k)} belong to the set X. Hence, from Eq. (59), we have

lim inf
k→∞

f(y(k)) = f ∗ with probability one.

Using the continuity of f (due to convexity of f over Rn), this implies that one of the
limit points of {y(k)} must belong to X∗; denote this limit point by x∗. Since the
sequence {‖y(k)−x∗‖} is convergent, it follows that y(k) can have a unique limit point,
i.e., limk→∞ y(k) = x∗ with probability one. This and limk→∞ ‖xi(k) − y(k)‖ = 0 with
probability one imply that each of the sequences {xi(k)} converges to the same x∗ ∈ X∗
with probability one.

5 Conclusions

We studied distributed algorithms for multi-agent optimization problems over randomly-
varying network topologies. We adopted a state-dependent communication model, in
which the availability of links in the network is probabilistic with the probability depen-
dent on the agent states. This is a good model for a variety of applications in which the
state represents the position of the agents (in sensing and communication settings), or
the beliefs of the agents (in social settings) and the distance of the agent states affects
the communication and information exchange among the agents.

We studied a projected multi-agent subgradient algorithm for this problem and pre-
sented a convergence analysis for the agent estimates. The first step of our analysis es-
tablishes convergence rate bounds for a disagreement metric among the agent estimates.
This bound is time-nonhomogeneous in that it depends on the initial time. Despite this,
under the assumption that the stepsize sequence decreases sufficiently fast, we proved
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that agent estimates converge to an almost sure consensus and also to an optimal point
of the global optimization problem under some assumptions on the constraint sets.

The framework introduced in this paper suggests a number of interesting further re-
search directions. One future direction is to extend the constrained optimization problem
to include both local and global constraints. This can be done using primal algorithms
that involve projections, or using primal-dual algorithms where dual variables are used
to ensure feasibility with respect to global constraints. Another interesting direction
is to consider different probabilistic models for state-dependent communication. Our
current model assumes the probability of communication is a continuous function of the
l2 norm of agent states. Considering other norms and discontinuous functions of agent
states is an important extension which is relevant in a number of engineering and social
settings.
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[18] A. Nedić and A. Ozdaglar, Distributed subgradient methods for multi-agent opti-
mization, IEEE Transactions on Automatic Control 54 (2009), no. 1, 48–61.
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