
Submitted to Operations Research
manuscript (Please, provide the manuscript number!)

Computing the Stationary Distribution, Locally

Christina E. Lee, Asuman Ozdaglar, Devavrat Shah
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139,

celee@mit.edu, asuman@mit.edu, devavrat@mit.edu

Computing the stationary distribution of a large finite or countably infinite state space Markov Chain has

become central to many problems such as statistical inference and network analysis. Standard methods

involve large matrix multiplications as in power iteration, or simulations of long random walks, as in Markov

Chain Monte Carlo (MCMC). For both methods, the convergence rate is is difficult to determine for general

Markov chains. Power iteration is costly, as it is global and involves computation at every state. In this paper,

we provide a novel local algorithm that answers whether a chosen state in a Markov chain has stationary

probability larger than some ∆∈ (0,1), and outputs an estimate of the stationary probability for itself and

other nearby states. Our algorithm runs in constant time with respect to the Markov chain, using information

from a local neighborhood of the state on the graph induced by the Markov chain, which has constant size

relative to the state space. The multiplicative error of the estimate is upper bounded by a function of the

mixing properties of the Markov chain. Simulation results show Markov chains for which this method gives

tight estimates.

Key words : Markov chains, stationary distribution, local algorithms, network centralities

1. Introduction

Computing the stationary distribution of a Markov chain with a very large state space (finite, or

countably infinite) has become central to statistical inference. The ability to tractably simulate

Markov chains along with its generic applicability has made Markov Chain Monte Carlo (MCMC)

arguably one of the top algorithms of the twentieth century (Cipra 2000). However, MCMC and

its variations suffer from limitations in large state spaces, as they involve sampling states from

long random walks over the entire state space (Metropolis et al. 1953, Hastings 1970). It is difficult

to determine for general Markov chains when the algorithm has walked “long enough” to produce

reasonable approximations for the stationary distribution. This has motivated the development of

super-computation capabilities – be it nuclear physics (Semkow et al. 2006, Chapter 8), Google’s

computation of PageRank (Page et al. 1999), or stochastic simulation at-large (Assmussen and

Glynn 2010).

Stationary distributions of Markov chains are also central to network analysis. Networks have

become ubiquitous representations for capturing interactions and relationships between entities

across many disciplines, including social interactions between individuals, interdependence between

1

Lee, Ozdaglar, and Shah: Local Stationary Distribution
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

financial institutions, hyper-link structure between web-pages, or correlations between distinct

events. Many decision problems over networks rely on information about the importance of differ-

ent nodes as quantified by network centrality measures. Network centrality measures are functions

assigning “importance” values to each node in the network. The stationary distribution of specific

random walks on these underlying networks are used as network centrality measures in many set-

tings. A few examples include PageRank: which is commonly used in Internet search algorithms

(Page et al. 1999), the Bonacich centrality and eigencentrality measures: encountered in the analy-

sis of social networks (Newman 2010, Candogan et al. 2012, Chasparis and Shamma 2010), rumor

centrality: utilized for finding influential individuals in social media like Twitter (Shah and Zaman

2011), and rank centrality: used to find a ranking over items within a network of pairwise compar-

isons (Negahban et al. 2012).

1.1. Contributions

In this paper, we provide a novel algorithm that addresses these limitations1. Our algorithm answers

the following question: for a given node i of a countable state space Markov chain, is the stationary

probability of i larger than a given threshold ∆ ∈ (0,1), and can we approximate it? For chosen

parameters ∆, ε, and α, our algorithm guarantees that for nodes such that the estimate π̂i <

∆/(1 + ε), the true value πi is also less than ∆ with probability at least 1−α. In addition, if π̂i ≥

∆/(1 + ε), with probability at least 1−α, the estimate is within an ε times Zmax(i) multiplicative

factor away from the true πi, where Zmax(i) is effectively a “local mixing time” for i derived from

the fundamental matrix of the transition probability matrix P . The algorithm also gives estimates

for other nodes j within the vicinity of node i. The estimation error depends on the mixing and

connectivity properties of node i and node j.

The running time of the algorithm is upper bounded by Õ (ln(1/α)/ε3∆), which is constant

with respect to the Markov chain2. Our algorithm uses only a“local neighborhood” of the state i,

defined with respect to the Markov graph, which is constructed using the transition probabilities

betwen states. Stopping conditions are easy to verify and have provable performance guarantees.

Its construction relies on a basic property: the stationary probability of each node is inversely

proportional to the mean of its “return time.” Therefore, we sample return times to the node and

use the empirical average as an estimate. Since return times can be arbitrarily long, we truncate

sample return times at a chosen threshold. Hence, our algorithm is a truncated Monte Carlo method.

We also use these samples to obtain estimates to other nodes j by observing the frequency of visits

to node j within a return path to node i.

We utilize the exponential concentration of return times in Markov chains to establish theoretical

guarantees for the algorithm. For countably infinite state space Markov chains, we build upon a

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

result by Hajek (1982) on the concentration of certain types of hitting times to derive concentration

of return times to a given node. We use these concentration results to upper bound the estimation

error and the algorithm runtime as a function of the truncation threshold and the mixing prop-

erties of the graph. For graphs that mix quickly, the distribution over return times concentrates

more sharply around its mean, resulting in tighter performance guarantees. We illustrate the wide

applicability of our local algorithm for computing network centralities and stationary distributions

of queuing models.

1.2. Related Literature

We provide a brief overview of the standard methods used for computing stationary distributions.

1.2.1. Monte Carlo Markov Chain Monte Carlo Markov chain methods involve simulating

long random walks over a carefully designed Markov chain in order to obtain samples from a target

stationary distribution (Metropolis et al. 1953, Hastings 1970). After the length of this random

walk exceeds the mixing time, the distribution over the current state of the random walk will be a

close approximation to the stationary distribution. Thus, the observed current state of the random

walk is used as an approximate sample from π. This process is repeated many times to collect

independent samples from πi. Articles by Diaconis and Saloff-Coste (1998) and Diaconis (2009)

provide a summary of the major development from probability theory perspective.

The majority of work following the initial introduction of this method involves analyzing the

convergence rates and mixing times of the random walk over different Markov chains (Aldous and

Fill 1999, Levin et al. 2009). Techniques involve spectral analysis or coupling arguments. Graph

properties such as conductance provide ways to characterize the spectrum of the graph. Most results

are limited to reversible finite state space Markov chains, which are equivalent to random walks on

weighted undirected graphs. For general non-reversible countable state space Markov chains, little

is known about the mixing time, and thus many practical Markov chains lack precise convergence

rate bounds.

1.2.2. Power Iteration The power-iteration method (see Golub and Van Loan (1996), Stew-

art (1994), Koury et al. (1984)) is an equally old and well-established method for computing leading

eigenvectors of matrices. Given a matrix A and a seed vector x0, recursively compute iterates

xt+1 =Axt/‖Axt‖. If matrix A has a single eigenvalue that is strictly greater in magnitude than

all other eigenvalues, and if x0 is not orthogonal to the eigenvector associated with the dominant

eigenvalue, then a subsequence of xt converges to the eigenvector associated with the dominant

eigenvalue. Recursive multiplications involving large matrices can become expensive very fast as the

matrix grows. When the matrix is sparse, computation can be saved by implementing it through

Lee, Ozdaglar, and Shah: Local Stationary Distribution
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

‘message-passing’ techniques; however it still requires computation to take place at every node in

the state space. The convergence rate is governed by the spectral gap, or the difference between

the two largest eigenvalues. Techniques used for analyzing the spectral gap and mixing times as

discussed above are also used in analyzing the convergence of power iteration. For large Markov

chains, the mixing properties may scale poorly with the size, making it difficult to obtain good

estimates in a reasonable amount of time. As before, most results only pertain to reversible Markov

chains.

In the setting of computing PageRank, there have been efforts to modify the algorithm to execute

power iteration over local subsets of the graph and combine the results to obtain estimates for

the global PageRank. These methods rely upon key assumptions on the underlying graph, which

are difficult to verify. Kamvar et. al. observed that there may be obvious ways to partition the

web graph (i.e. by domain names) such that power iteration can be used to estimate the local

PageRank within these partitions (Kamvar et al. 2003). They use heuristics to estimate the relative

weights of these partitions, and combine the local PageRank within each partition according to

the weights to obtain an initial estimate for PageRank. This initial estimate is used to initialize

the power iteration method over the global Markov chain, with the hope that this initialization

may speed up convergence. Chen et. al. proposed a method for estimating the PageRank of a

subset of nodes given only the local neighborhood of this subset (Chen et al. 2004). Their method

uses heuristics such as weighted in-degree as estimates for the PageRank values of nodes on the

boundary of the given neighborhood. After fixing the boundary estimates, standard power iteration

is used to obtain estimates for nodes within the local neighborhood. The error in this method

depends on how close the true PageRank of nodes on the boundary correspond to the heuristic

guesses such as weighted in-degree. Unfortunately, we rarely have enough information to make

accurate heuristic guesses of these boundary nodes.

1.2.3. Computing PageRank Locally There has been much recent effort to develop local

algorithms for computing PageRank for the web graph. Given a directed graph of n nodes with

an n×n adjacency matrix A (i.e., Aij = 1 if (i, j)∈E and 0 otherwise), the PageRank vector π is

given by the stationary distribution of a Markov chain over n states, whose transition matrix P is

given by

P = (1−β)D−1A+β1 · rT . (1)

D denotes the diagonal matrix whose diagonal entries are the out-degrees of the nodes; β ∈ (0,1) is

a fixed scalar; and r is a fixed probability vector over the n nodes3. In each step the random walk

with probability (1− β) chooses one of the neighbors of the current node equally likely, and with

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

probability β chooses any of the nodes in the graph according to r. Thus, the PageRank vector π

satisfies

πT = πTP = (1−β)πTD−1A+βrT (2)

where πT · 1 = 1. This definition of PageRank is also known as personalized PageRank, because r

can be tailored to the personal preferences of a particular web surfer. When r= 1
n
·1, then π equals

the standard global PageRank vector. If r = ei, then π describes the personalized PageRank that

jumps back to node i with probability β in every step4.

Computationally, the design of local algorithms for computing the personalized PageRank has

been of interest since its discovery. Most of the algorithms and analyses crucially rely on the specific

structure of the random walk describing PageRank: P decomposes into a natural random walk

matrix D−1A, and a rank-1 matrix 1 · rT , with strictly positive weights (1−β) and β respectively,

cf. (1). Jeh and Widom (2003) and Haveliwala (2003) observed a key linearity relation – the global

PageRank vector is the average of the n personalized PageRank vectors corresponding to those

obtained by setting r = ei for 1≤ i≤ n. That is, these n personalized PageRank vectors centered

at each node form a basis for all personalized PageRank vectors, including the global PageRank.

Therefore, the problem boils down to computing the personalized PageRank for a given node.

Fogaras et al. (2005) used the fact that for the personalized PageRank centered at a given node

i (i.e., r = ei), the associated random walk has probability β at every step to jump back to node

i, “resetting” the random walk. The distribution over the last node visited before a “reset” is

equivalent to the personalized PageRank vector corresponding to node i. Therefore, they propose

an algorithm which samples from the personalized PageRank vector by simulating short geometric-

length random walks beginning from node i, and recording the last visited node of each sample

walk. The performance of the estimate can be established using standard concentration results.

Subsequent to the key observations mentioned above, Avrachenkov et al. (2007) surveyed variants

to Fogaras’ random walk algorithm, such as computing the frequency of visits to nodes across the

sample path rather than only the end node. Bahmani et al. (2010) addressed how to incrementally

update the PageRank vector for dynamically evolving graphs, or graphs where the edges arrive in

a streaming manner. Das Sarma et al. extended the algorithm to streaming graph models (Sarma

et al. 2011), and distributed computing models (Sarma et al. 2012), “stitching” together short

random walks to obtain longer samples, and thus reducing communication overhead. More recently,

building on the same sets of observation, Borgs et al. (2012) provided a sublinear time algorithm for

estimating global PageRank using multi-scale matrix sampling. They use geometric-length random

walk samples, but do not require samples for all n personalized PageRank vectors. The algorithm

Lee, Ozdaglar, and Shah: Local Stationary Distribution
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

returns a set of “important” nodes such that the set contains all nodes with PageRank greater than

a given threshold, ∆, and does not contain any node with PageRank less than ∆/c with probability

1− o(1), for a given c > 1. The algorithm runs in time Õ (n/∆).

Andersen et al. (2007) designed a backward variant of these algorithms. Previously, to compute

the global PageRank of a specific node j, we would average over all personalized PageRank vec-

tors. The algorithm proposed by Andersen et al. estimates the global PageRank of a node j by

approximating the “contribution vector”, i.e. estimating for the jth coordinates of the personalized

PageRank vectors that contribute the most to πj.

All of these algorithms rely on the crucial property that the random walk has renewal time

that is distributed geometrically with constant parameter β > 0 that does not scale with graph

size n. This is because the transition matrix P decomposes according to (1), with a fixed β. In

general, the transition matrix of any irreducible, positive-recurrent Markov chain will not have

such a decomposition property (and hence known renewal time), making the above algorithms

inapplicable in general.

2. Preliminaries: Markov Chains

Consider a discrete-time, irreducible, positive-recurrent Markov chain {Xt}t≥0 on a countable state

space Σ. Let P denote the transition probability matrix, and let P (n)
xy denote the value of entry

(x, y) in the matrix P n. If the state space is countably infinite, then P : Σ×Σ→ [0,1] is a function

such that for all x, y ∈Σ,

Pxy = P(Xt+1 = y|Xt = x).

Similarly, P (n)
xy is defined for all x, y ∈Σ to be

P (n)
xy , P(Xn = y|X0 = x).

The stationary distribution is a function π : Σ→ [0,1] such that
∑

i∈Σ πi = 1 and πi =
∑

j∈Σ πjPji

for all i∈Σ. The stationary distribution is the quantity that we are interested in estimating, with

a focus on identifying states with large stationary probabilities.

The Markov chain can be visualized as a random walk over a weighted directed graph G =

(Σ,E,P), where Σ is the set of nodes, E = {(i, j) ∈ Σ× Σ : Pij > 0} is the set of edges, and P

describes the weights of the edges. We refer to G as the Markov chain graph. The state space Σ

is assumed to be either finite or countably infinite. If it is finite, let n= |Σ| denote the number of

nodes in the graph5.

We assume throughout this paper that the Markov chain Xt is irreducible6 and positive recur-

rent7. This guarantees that there exists a unique stationary distribution.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

We define the local neighborhood of size r around node i ∈ Σ to be the subgraph G′ = (Σ′,E′)

induced by the set of nodes Σ′ = {j ∈Σ : dG(i, j)≤ r}, where dG(i, j) is the length of the shortest

directed path (in terms of number of edges) from i to j in G. In this work, we consider the setting

where the state space is large or even countably infinite. We will restrict our algorithm to accessing

information within a local neighborhood around a fixed node i.

In order to obtain estimates for the stationary probability, our algorithm will generate sample

sequences of the Markov chain by simulating a random walk on the graph. These sample sequences

allow us to observe return times Ti and visit frequencies Fj to different nodes, where Ti and Fj are

defined as:

Ti , inf{t≥ 1 : Xt = i}, (3)

and

Fj ,
∞∑
t=1

1{Xt = j}1{t≤ Ti}=

Ti∑
t=1

1{Xt = j}.

Throughout this paper, we denote Ei[·],E[·|X0 = i], and Pi(·), P(·|X0 = i). The following prop-

erty of Markov chains is crucial to our algorithm and analysis. It relates the stationary probabilities

to the expected values for Ti and Fj.

Lemma 1. (Meyn and Tweedie 1993) An irreducible positive recurrent Markov chain has a unique

stationary distribution π with the following form:

(a) For any fixed i∈Σ,

πj =
Ei[Fj]
Ei[Ti]

, j ∈Σ.

(b) An equivalent expression for this distribution is

πi =
1

Ei[Ti]
.

We will utilize this property to show that given samples of Ti and Fj, we can obtain good

estimates for the stationary probabilities. However, there are some Markov chains that are easier

to compute over than others. In the finite state space setting, the performance guarantees for our

algorithm will be given as a function of the maximal hitting time Hi, and the fundamental matrix

Z. This measures how well connected the graph is globally. The maximal hitting time to a node i

in a finite state space Markov chain is defined as

Hi ,max
j∈Σ

Ej[Ti]. (4)

Lee, Ozdaglar, and Shah: Local Stationary Distribution
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The fundamental matrix Z of a finite state space Markov chain is

Z ,
∞∑
t=0

(
P (t)−1πT

)
=
(
I −P + 1πT

)−1
,

i.e., the entries of the fundamental matrix Z are defined by

Zjk ,
∞∑
t=0

(
P

(t)
jk −πk

)
.

Since P
(t)
jk denotes the probability that a random walk beginning at node j is at node k after t

steps, Zjk represents how quickly the probability mass at node k from a random walk beginning

at node j converges to πk. We will use the following property, stated by Aldous and Fill (1999), to

relate entries in the fundamental matrix to expected return times.

Lemma 2. For j 6= k,

Ej[Tk] =
Zkk−Zjk

πk
.

We define Zmax(i),maxk∈Σ |Zki|. The relationship between Zmax(i) and Hi is described by

Zmax(i)≤ πiHi ≤ 2Zmax(i).

3. Problem Statement

Consider a discrete time, irreducible, positive recurrent Markov chain {Xt}t≥0 on a countable state

space Σ with transition probability matrix P : Σ× Σ→ [0,1]. Given node i and threshold ∆, is

πi > ∆? If so, what is πi? We provide a local approximation algorithm for πi, which uses only

edges within a local neighborhood around i of constant size with respect to the state space. We

also extend this local algorithm to give approximations for the stationary probabilities of a set of

nodes J ⊆Σ.

Definition 1. An algorithm is local if it only uses information within a local neighborhood of size

r around i, where r is constant with respect to the size of the state space.

We illustrate the limitations of using a local algorithm for answering this question. Consider

the Clique-Cycle Markov chain shown in Figure 1(a) with n nodes, composed of a size k clique

connected to a size (n− k + 1) cycle. For node j in the clique excluding i, with probability 1/2,

the random walk stays at node j, and with probability 1/2 the random walk chooses a random

neighbor uniformly. For node j in the cycle, with probability 1/2, the random walk stays at node

j, and with probability 1/2 the random walk travels counterclockwise to the subsequent node in

the cycle. For node i, with probability ε the random walk enters the cycle, with probability 1/2

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 9

i

(a) Clique-Cycle Markov chain

1 2 3 4 5

(b) MM1 Queue

1 2 3 4

(c) Magnet Markov chain

Figure 1 These figures depict examples of Markov chains which show the limitations of local algorithms.

the random walk chooses any neighbor in the clique; and with probability 1/2− ε the random walk

stays at node i. We can show that the expected return time to node i is

Ei[Ti] =

(
1

2
− ε
)

+ ε E[Ti|first step enters cycle] +
1

2
E[Ti|first step enters clique]

= 1 + ε(2(n− k)) +
1

2
(2(k− 1)) = (1− 2ε)k+ 2εn. (5)

Therefore, Ei[Ti] scales linearly in n and k. Suppose we observe only the local neighborhood of

constant size r around node i. All Clique-Cycle Markov chains with more than k+ 2r nodes have

identical local neighborhoods. Therefore, for any ∆∈ (0,1), there exists two Clique-Cycle Markov

chains which have the same ε and k, but two different values for n, such that even though their

local neighborhoods are identical, πi >∆ in the Markov chain with a smaller n, while πi <∆ in the

Markov chain with a larger n. Therefore, by restricting ourselves to a local neighborhood around i

of constant size, we will not be able to correctly determine whether πi >∆ for every node i in any

arbitrary Markov chain.

As a second example, consider the Markov chains shown in Figures 1(b) and 1(c). The state

space of the Markov chain in Figure 1(b) is the positive integers (therefore countably infinite). It

models the length of a MM1 queue, where q1 is the probability that an arrival occurs before a

departure. This is also equivalent to a biased random walk on Z+. In the Markov chain depicted

by Figure 1(c), when q1 and q2 are less than one half, nodes 1 to n1 − 1 are attracted to node 1,

and nodes n1 to n2 are attracted to state n2. Since there are two opposite attracting states (1 and

n2), we call this Markov chain a “Magnet”.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Consider the problem of determining if π1 is greater than ∆ or less than ∆. The local neighbor-

hoods of constant size r around node 1 for both the MM1 queue and the Magnet Markov chain are

identical when n1 > r. Therefore, there exists a Magnet Markov chain where n1 > r, and q2� q1

such that π1 < ∆ in the Magnet Markov chain, yet in the corresponding MM1 queue, πi > ∆.

Therefore, by restricting to information within a local neighborhood of node 1, it is impossible to

always correctly determine if π1 >∆ or π1 <∆.

This illustrates an unavoidable challenge for any local algorithm, including ours. For high impor-

tance nodes such that πi >∆, our algorithm will answer correctly with high probability. However,

for low importance nodes such that πi < ∆, our algorithm may still conclude that the node is

important if the node “looks important” within its local neighborhood. This is unavoidable since

we are trying to estimate a global property of the Markov chain using only local information8.

As alluded to in the preliminary section, we will use the hitting time Hi and the fundamental

matrix Z to characterize the worst case error as a function of the given Markov chain. In both the

Clique-Cycle and Magnet Markov chains, Hi and entries in Z are large.

4. Algorithm

Given a threshold ∆∈ (0,1) and a node i∈Σ, which we will call the “anchor node”, the algorithm

obtains an estimate π̂i of πi. The algorithm relies on the characterization of πi given in Lemma

1(b): πi = 1/Ei[Ti]. If π̂i < ∆/(1 + ε), it outputs 0 (indicating πi ≤∆), and otherwise it outputs

1 (indicating πi > ∆). By definition, Ei[Ti] = E[inf{t ≥ 1 : Xt = i}|X0 = i]. In words, it is the

expected time for a random walk that begins at node i to return to node i. Since the length of Ti is

possibly unbounded, the algorithm truncates each sample of Ti at some predetermined maximum

length, which we denote as θ. Therefore, the algorithm generates many independent samples of a

truncated random walk that begins at node i and stops either when the random walk returns to

node i, or when the length exceeds θ. Each sample is generated by simulating the random walk

using “crawl” operations over the Markov chain graph G. The expected length of each sample

random walk is Ei[min(Ti, θ)], which is close to Ei[Ti] when θ is large.

As the number of samples and θ go to infinity, the estimate will converge almost surely to πi,

due to the strong law of large numbers and positive recurrence of the Markov chain. The number

of samples must be large enough to guarantee that the sample mean concentrates around the true

mean of the random variable. We use Chernoff’s bound (see Appendix 11) to choose a sufficiently

large number of samples to guarantee that with probability 1−α, the average length of the sample

random walks will lie within (1± ε) of Ei[min(Ti, θ)].

We also need to choose a suitable value for θ that balances between accuracy and computation

cost. If θ is too small, then most of the samples may be truncated, and the sample mean will be

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

far from the true mean; however, choosing a large θ may cause computation to be unnecessarily

expensive, since we may need a larger number of samples to guarantee concentration.

The algorithm searches iteratively for an appropriate size for the local neighborhood by beginning

with a small size and increasing the size geometrically. The iterations are denoted by t ∈Z+. The

maximum sample path length, also equivalent to the local neighborhood size, is denoted with θ(t)

and chosen to be 2t. The number of samples N (t) for each iteration is determined as a function of

θ(t) according to the Chernoff’s bound. In our analysis, we will show that the total computation

summed over all iterations is only a constant factor more than the computation in the final iteration.

Input: Anchor node i∈Σ and parameters ∆ = threshold for importance,

ε= closeness of the estimate, and α= probability of failure.

Initialize: Set

t= 1, θ(1) = 2,N (1) =

⌈
6(1 + ε) ln(8/α)

ε2

⌉
.

Step 1 (Gather Samples) For each k in {1,2,3, . . . ,N (t)}, generate independent samples

sk ∼min(Ti, θ
(t)) by simulating sample paths of the Markov chain Xt beginning at node i,

and setting sk to be the length of the kth sample path. Let p̂(t) , the fraction of samples

truncated at θ(t), and let

T̂
(t)
i ,

1

N (t)

N(t)∑
k=1

sk, and π̂
(t)
i ,

1

T̂
(t)
i

.

Step 2 (Termination Conditions)

• If (a) π̂
(t)
i < ∆

(1+ε)
, then stop and return 0, and π̂

(t)
i .

• Else if (b) p̂(t) · π̂(t)
i < ε∆, then stop and return 1, and π̂

(t)
i .

• Else continue.

Step 3 (Update Rules) Set

θ(t+1)← 2 · θ(t),N (t+1)←

⌈
3(1 + ε)θ(t+1) ln(4θ(t+1)/α)

T̂
(t)
i ε2

⌉
, and t← t+ 1.

Return to Step 1.

Output: 0 or 1 indicating whether πi >∆, and estimate π̂
(t)
i .

This algorithm outputs an estimate π̂i for the node i, in addition to 0 or 1 indicating whether

πi > ∆. Since N (t) is chosen to guarantee that with high probability T̂
(t)
i ∈ (1 ± ε)Ei[T̂ (t)

i] for

all t, the estimate π̂
(t)
i is larger than πi/(1 + ε) in all iterations with high probability. Ei[T̂ (t)

i] =

Lee, Ozdaglar, and Shah: Local Stationary Distribution
12 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Ei[min(Ti, θ
(t))] increases with each iteration; thus the expected estimate decreases in each iteration,

converging to πi from above as N (t) and θ(t) increase.

When the algorithm terminates at stopping condition (a) and outputs 0, the estimate is smaller

than ∆/(1 + ε), which implies πi < ∆ with high probability. Therefore, for a node i such that

πi >∆, with high probability, the algorithm will terminate at condition (b) and ouput 1. When

the algorithm terminates at condition (b), the fraction of samples truncated is small, and we prove

that the percentage error of estimate π̂
(t)
i is upper bounded by O(εZmax(i)). When Zmax(i) is large,

such as for the Magnet Markov chain in Figure 1(c), there may be nodes which look important

within the local neighborhood yet are not important globally, in which case our algorithm may

still terminate at condition (b) and output 1, though πi may still be less than ∆.

We will refer to the total number of iterations used in the algorithm as the value for t at the time

of termination, which we denote by tmax. The total number of random walk steps taken within the

first t iterations is
∑t

k=1N
(t) · T̂ (t)

i . The algorithm always terminates within ln (1/ε∆) iterations.

This is proved by observing that T̂
(t)
i > p̂(t)θ(t). When θ(t) > 1/ε∆, then p̂(t)/T̂

(t)
i < ε∆, and thus

termination condition (b) is satisfied. Since θ(t) governs the radius of the local neighborhood that

the algorithm utilizes, this proves that our algorithm is local, since the maximum distance θ(t) is

strictly upper bounded by 1/ε∆, regardless of the specific Markov chain. We will also prove that

P(Ti > θ(t)) decays exponentially in θ(t), and thus the algorithm will terminate sooner depending

how quickly P(Ti > θ
(t)) decays.

4.1. Algorithm extension - multiple nodes

As alluded to previously, we can also simultaneously learn about other nodes in the Markov chain

through these random walks from i. We refer to node i as the anchor node. We will extend our

algorithm to obtain estimates for the stationary probability of nodes within a subset J ⊆Σ, which

is given as an input to the algorithm. We refer to J as the set of observer nodes. We estimate the

stationary probability of any node j ∈ J using Lemma 1(a), which states that πj is equivalent to

the fraction of expected visits to node j out of the total number of steps taken along a random

walk beginning at node i and returning to node i. The algorithm can be modified to keep track of

how many times each node in J is visited along the sample paths. The estimate π̃j is the fraction

of visits to node j along the sampled paths. We replace Step 1 of the algorithm with Step 1*, and

when the algorithm terminates, it also outputs the values for π̃j for all j ∈ J in addition to π̂i.

Step 1* (Gather Samples) For each k in {1,2,3, . . . ,N (t)}, generate an independent

sample path of the Markov chain {X0,X1,X2, . . .} beginning at X0 = i. Let

sk = min(Ti, θ
(t)), T̂

(t)
i =

1

N (t)

N(t)∑
k=1

sk, and π̂
(t)
i =

1

T̂
(t)
i

.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

Let p̂(t) = fraction of samples that were truncated at θ(t). For each j ∈ J , let

fk(j) =
θ(t)∑
r=1

1{Xr = j}1{r≤ Ti}, F̂
(t)
j =

1

N (t)

N(t)∑
k=1

fk(j), and π̃
(t)
j =

F̂
(t)
j

T̂
(t)
i

.

In our analysis we show that N (t) is large enough to guarantee that π̃
(t)
j is an additive approxi-

mation of Ei[F̂ (t)
j]/Ei[min(Ti, θ

(t))]. This algorithm may output two estimates for the anchor node

i: π̂i, which relies on Lemma 1(b), and π̃i, which relies on Lemma 1(a). If the random walks are

not truncated at θ(t), then these two estimates would be the same. However due to the truncation,

π̃i = (1− p̂(t))/T̂
(t)
i , since the average frequency of visits to node i along the sample path corre-

sponds to the fraction of samples that return to node i before exceeding the length θ(t). While π̂i

is an upper bound of πi with high probability due to its use of truncation, π̃i is neither guaranteed

to be an upper or lower bound of πi. Precise analyses of the approximation errors |π̃(t)
i − πi| and

|π̃(t)
j −πj| for j ∈ J are stated in Section 6.

4.2. Implementation

This algorithm is simple to implement and is easy to parallelize. It requires only O(|J |) space to

keep track of the visits to each node in J , and a constant amount of space to keep track of the

state of the random walk sample, and running totals such as p̂(t) and T̂
(t)
i . For each random walk

step, the computer only needs to fetch the local neighborhood of the current state, which is upper

bounded by the maximum degree. Thus, at any given instance in time, the algorithm only needs

to access a small neighborhood within the graph. Each sample is completely independent, thus the

task can be distributed among independent machines. In the process of sampling these random

paths, the sequence of states along the path does not need to be stored or processed upon.

Consider implementing this over a distributed network, where the graph consists of the pro-

cessors and the communication links between them. Each random walk over this network can be

implemented by a message passing protocol. The anchor node i initiates the random walk by send-

ing a message to one of its neighbors chosen uniformly at random. Any node which receives the

message forwards the message to one of its neighbors chosen uniformly at random. As the message

travels over each link, it increments its internal counter. If the message ever returns to the anchor

node i, then the message is no longer forwarded, and its counter provides a sample from min(Ti, θ).

When the counter exceeds θ, then the message stops at the current node. After waiting for θ time

steps, the anchor node i can compute the estimate of its stationary probability within this network,

taking into consideration the messages which have returned to node i. In addition, each observer

Lee, Ozdaglar, and Shah: Local Stationary Distribution
14 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

node j ∈ J can keep track of the number of times any of the messages are forwarded to node j. At

the end of the θ time steps, node i can broadcast the total number of steps to all nodes j ∈ J so

that they can properly normalize to obtain final estimates for πj.

5. Preliminary Results

In each iteration, the values of p̂(t), T̂
(t)
i , and F̂

(t)
j , are directly involved in the termination conditions

and estimates. The following Lemmas use concentration results for sums of independent identically

distributed random variables to show that these random variables will concentrate around their

mean with high probability. Recall that the number of samples N (t) depends on T̂
(t−1)
i , which

itself is a random variable. Therefore, even though completely new samples are generated in each

iteration, in order to prove any result about iteration t, we still must consider the distribution over

values of T̂
(t−1)
i from the previous iteration. Lemma 3 shows that with probability greater than

1−α, for all iterations t, T̂
(t)
i is a (1± ε) approximation for Ei

[
T̂

(t)
i

]
.

Lemma 3. For every t∈Z+,

Pi

(
t⋂

k=1

{
T̂

(k)
i ∈ (1± ε)Ei

[
T̂

(k)
i

]})
≥ 1−α.

Proof of Lemma 3. We will sketch the proof here and leave the details to the Appendix. Let

At denote the event
{
T̂

(t)
i ∈ (1± ε)Ei

[
T̂

(t)
i

]}
. As discussed earlier, N (t) is a random variable that

depends on T̂
(t−1)
i . However, conditioned on the event At−1, we can lower bound N (t) as a function

of Ei[T̂ (t−1)
i]. Then we apply Chernoff’s bound for independent identically distributed bounded

random variables and use the fact that Ei[T̂ (t)
i] is nondecreasing in t to show that

Pi (At|At−1)≥ 1− α

2t+1
for all t.

Since iteration t is only dependent on the outcome of previous iterations through the variable

T̂
(t−1)
i , we know that At is independent from Ak for k < t conditioned on At−1. Therefore,

Pi

(
t⋂

k=1

Ak

)
= Pi (A1)

t∏
k=2

Pi (At|At−1) .

We can combine these two insights to complete the proof. �

Lemma 4 shows that with probability greater than 1 − α, for all iterations t, p̂(t) lies within

an additive ε/3 interval around P(Ti > θ(t)). It uses similar proof techniques as Lemma 5. It is

used to prove that when the algorithm terminates at stopping condition (b), with high probability,

P(Ti > θ
(t))< ε (4/3 + ε), which is used to upper bound the estimation error.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

Lemma 4. For every t∈Z+,

Pi

(
t⋂

k=1

{
p̂(k) ∈ Pi(Ti > θ(k))± ε

3

} t⋂
k=1

{
T̂

(k)
i ∈ (1± ε)Ei

[
T̂

(k)
i

]})
≥ 1−α.

Lemma 5 shows that with probability greater than 1− α, for all iterations t such that P(Ti >

θ(t))< 1/2, both p̂(t) and T̂
(t)
i are within (1± ε) of the expected values. It is used in the analysis

of the estimate π̃
(t)
i . The proof is similar as above, except that we have two events per iteration

to consider. Conditioning on the event that (1− p̂(t−1)) and T̂
(t−1)
i are both within (1± ε) of their

means, we compute the probability that (1− p̂(t)) and T̂
(t)
i also concentrate around their means,

using Chernoff’s bound and union bound.

Lemma 5. Let t0 be such that P(Ti > θ
(t0))< 1/2. For every t≥ t0,

Pi

(
t⋂

k=t0

{
(1− p̂(k))∈ (1± ε)(1−P(Ti > θ

(k)))
} t⋂
k=1

{
T̂

(k)
i ∈ (1± ε)Ei

[
T̂

(k)
i

]})
≥ 1−α.

Similarly, Lemma 6 shows that with probability greater than 1−α, for all iterations t, F̂
(t)
j and

T̂
(t)
i are close to their expected values. It is used in the analysis of the estimate π̃

(t)
j for j 6= i.

Observe that F̂
(t)
j is only guaranteed to be within an additive value of εEi[T̂ (k)

i] around its mean.

This allows us to show that the ratio between F̂
(t)
j and T̂

(t)
i is within an additive ε error around the

ratio of their respective means. We are not able to obtain a small multiplicative error bound on F̂
(t)
j

because we do not use any information from node j to choose the number of samples N (t). Ei[F̂ (t)
j]

can be arbitrarily small compared to Ei[T̂ (t)
i], so we may not have enough samples to estimate

Ei[F̂ (t)
j] closely. The remaining parts of the proof use the same techniques as described above.

Lemma 6. For every t∈Z+,

Pi

(
t⋂

k=1

{
F̂

(k)
j ∈Ei

[
F̂

(k)
j

]
± εEi

[
T̂

(k)
i

]} t⋂
k=1

{
T̂

(k)
i ∈ (1± ε)Ei

[
T̂

(k)
i

]})
≥ 1−α.

Lemmas 3 to 6 show that N (t) is large enough such that we can treat the random variables as

a close approximation of their expected values. Lemmas 7 and 8 ensure that despite truncating

the random walk samples at length θ(t), Ei[T̂ (t)
i] is still reasonably close to Ei[Ti]. The truncation

produces a systematic bias such that π̂i is larger than πi with high probability. Lemma 8 shows that

this bias decreases exponentially as a function of θ(t), relying on the result from Lemma 7. Lemma 7

states that the tail of the distribution of return times to node i decays exponentially. This underlies

the analysis of both the estimation error and the computation cost, or the number of iterations

until one of the termination conditions are satisfied. Intuitively, it means that the distribution over

return times is concentrated around its mean, since it cannot have large probability at values far

away from the mean. For finite state space Markov chains, this result is easy to show using the

strong Markov property, as outlined by Aldous and Fill (1999).

Lee, Ozdaglar, and Shah: Local Stationary Distribution
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Lemma 7 (Aldous and Fill). Let Markov chain {Xt} be defined on finite state space Σ. For any

i∈Σ and k ∈Z+,

Pi(Ti >k)≤ 2 · 2−k/2Hi ,

where Hi = maxj∈Σ Ej[Ti].

Lemma 8 gives an expression for the systematic bias or difference between the true desired mean

Ei[Ti] and the truncated mean Ei[T̂ (t)
i]. It shows that since Pi(Ti > k) decays exponentially in k,

the bias likewise decays exponentially in θ(t).

Lemma 8.

Ei[Ti]−Ei[T̂ (t)
i] =

∞∑
k=θ(t)

Pi(Ti >k).

Proof of Lemma 8. Since Ti is a nonnegative random variable, and by the definition of T̂
(t)
i ,

Ei[Ti]−Ei[T̂ (t)
i] =Ei[Ti]−Ei[min(Ti, θ

(t))]

=
∞∑
k=0

Pi(Ti >k)−
θ(t)−1∑
k=0

Pi(Ti >k)

=
∞∑

k=θ(t)

Pi(Ti >k).

�

6. Results for Estimation Error

In this section, we combine the intuition and lemmas given above into formal theorem statements

about the correctness of the algorithm. The omitted proofs can be found in the Appendix. Theo-

rem 1 states that with high probability, for any irreducible, positive recurrent Markov chain, the

algorithm will correctly identify high importance nodes. Recall that the algorithm only outputs 0

if it terminates at condition (a), which is satisfied if π̂
(t)
i ≤∆/(1 + ε).

Theorem 1. For an irreducible, positive recurrent, countable state space Markov chain, and for

any i ∈ Σ, with probability greater than (1− α): If the algorithm terminates at condition (a) and

outputs 0, then indeed πi <∆. Equivalently, if πi ≥∆, the algorithm will terminate at condition

(b) and output 1.

Proof of Theorem 1. This result follows from the fact that π̂
(t)
i lies within 1/(1± ε)Ei[T̂ (t)

i] and

Ei[T̂ (t)
i]≤ Ei[Ti], thus π̂

(t)
i will be an upper bound on πi with high probability. By Lemma 3, with

probability (1−α), for all t,

π̂
(t)
i ≥

πi
1 + ε

.

Therefore, if π̂
(t)
i <∆/(1 + ε) for any t, then πi <∆ with high probability. �

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

Since the above theorem only relies on the property that π̂
(t)
i is with high probability larger than

πi, when the algorithm terminates at condition (b), the theorem does not give us any guarantee of

whether πi ≥∆ or πi <∆. The following results show a tighter characterization for the estimates

π̂
(t)
i , π̃

(t)
i , and π̃

(t)
j for j 6= i, as a function of the Markov chain properties. Recall that π̂

(t)
i concen-

trates around 1/Ei[T (t)
i], and πi = 1/Ei[Ti]. Lemma 9 represents the additive difference between

1/Ei[T (t)
i] and 1/Ei[Ti] as a function of Pi

(
Ti > θ

(t)
)
, Ei[T̂ (t)

i], and the fundamental matrix Z.

Lemma 9. For an irreducible, positive recurrent Markov chain {Xt} with countable state space Σ

and transition probability matrix P , and for any i∈Σ and t∈Z+,

1

Ei[T̂ (t)
i]
−πi =

Pi
(
Ti > θ

(t)
)

Γi

Ei[T̂ (t)
i]

, (6)

where

Γi ,

 ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

)
(Zii−Zqi)

 . (7)

Proof of Lemma 9. We divide the equation given in Lemma 8 by Ei[Ti] and Ei[T̂ (t)
i]. Then we

apply Bayes’ rule, the law of total probability, and the Markov property.

1

Ei[T̂ (t)
i]
− 1

Ei[Ti]
=

1

Ei[Ti]Ei[T̂ (t)
i]

∞∑
k=θ(t)

Pi(Ti >k) (8)

=
Pi
(
Ti > θ

(t)
)

Ei[Ti]Ei[T̂ (t)
i]

∞∑
k=θ(t)

Pi
(
Ti >k|Ti > θ(t)

)
=

Pi
(
Ti > θ

(t)
)

Ei[Ti]

∞∑
k=θ(t)

∑
q∈Σ\{i}

Pi
(
Ti >k|Xθ(t) = q,Ti > θ

(t)
)
Pi
(
Xθ(t) = q|Ti > θ(t)

)
=

Pi
(
Ti > θ

(t)
)

Ei[T̂ (t)
i]

∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

) Eq[Ti]
Ei[Ti]

. (9)

Finally, we use Lemma 2 to complete the proof. �

In order to understand the expression Γi, we observe that by the definition of Z,

Zii−Zqi =
∞∑
k=0

(
P

(k)
ii −P

(k)
qi

)
.

Since both P
(k)
ii and P

(k)
qi converge to πi as k goes to infinity, this is similar to the notion

of “mixing time”. However, Γi further weights each quantity (Zii − Zqi) with the distribution

Pi
(
Xθ(t) = q|Ti > θ(t)

)
. Because all of the random walks begin at node i, we expect for this distri-

bution to more heavily weight nodes which are closer to i. Thus, Γi can be interpreted as a “local

mixing time”, which measures the time it takes for a random walk beginning at some distribution

of nodes around i to reach stationarity at node i.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

In fact, this lemma gives us a key insight into the termination conditions of the algorithm.

Recall that termination condition (b) is satisfied when p̂(t) · π̂(t)
i < ε∆. Since p̂(t) · π̂(t)

i concentrates

around Pi
(
Ti > θ

(t)
)
/Ei[T̂ (t)

i], Lemma 9 indicates that when the algorithm stops at condition (b),

the additive error between π̂
(t)
i and πi is approximately ε∆ times a function of the fundamental

matrix Z. We can naively upper bound Γi by 2Zmax(i), where Zmax(i) = maxk |Zki| for Zki =∑∞
t=1(P

(t)
ki − πi). This gives us a complete picture of the performance of our algorithm. When

the algorithm terminates at condition (a), we are guaranteed that πi < ∆. When the algorithm

terminates at condition (b), the estimate π̂
(t)
i is within an ε∆ additive factor of πi, modulated by

Zmax(i), which is a function of the Markov chain and node i.

Theorem 2 states that with high probability, the percentage error between π̂
(t)
i and πi is upper

bounded by a function of ε, θ(t), Zmax(i), and Hi. This is proved by combining Lemmas 9, 3, 4,

and 7.

Theorem 2. For an irreducible Markov chain {Xt} with finite state space Σ and transition prob-

ability matrix P , for any i∈Σ, with probability greater than 1−α, for all iterations t,∣∣∣∣∣ π̂(t)
i −πi
π̂

(t)
i

∣∣∣∣∣≤ 2(1− ε)Pi(Ti > θ(t))Zmax(i) + ε,

≤ 4(1− ε)2−θ
(t)/2HiZmax(i) + ε.

Therefore, with probability greater than 1−α, if the algorithm terminates at condition (b), then∣∣∣∣∣ π̂(tmax)
i −πi
π̂

(tmax)
i

∣∣∣∣∣≤ ε (3Zmax(i) + 1) .

The error bound decays exponentially in θ(t), which doubles in each iteration. Thus, for every

subsequent iteration t, the estimate π̂
(t)
i approaches πi exponentially fast. This relies on the fact

that the distribution of the return time Ti has an exponentially decaying tail, ensuring that the

return time Ti concentrates around its mean Ei[Ti]. When the algorithm terminates at stopping

condition (b), P(Ti > θ)≤ ε(4/3 + ε) with high probability, thus the percentage error is bounded

by O(εZmax(i)).

Next we analyze π̃
(t)
i , which we recall is equal to (1− p̂(t))/T̂

(t)
i . Lemma 10 gives an expression for

the additive difference between (1−Pi(Ti > θ(t)))/Ei[T (t)
i] and 1/Ei[Ti] as a function of Pi

(
Ti > θ

(t)
)
,

Ei[T̂ (t)
i], and the fundamental matrix Z.

Lemma 10. For an irreducible, positive recurrent Markov chain {Xt} with countable state space Σ

and transition probability matrix P , and for any i∈Σ and t∈Z+,

(1−Pi(Ti > θ(t)))

Ei[T̂ (t)
i]

−πi =
P(Ti > θ

(t))

Ei[T̂ (t)
i]

(Γi− 1) . (10)

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

Proof of Lemma 10. This lemma follows directly from Lemma 9. �

In comparing Lemma 9 and 10, we see that the estimation errors are almost the same except

for a minus one in Lemma 10. Therefore, when Γi is small, we expect π̃i to be a better estimate

than π̂i; however, when Γi is large, then the two estimates will have approximately the same error.

Theorem 3 combines Lemma 10 with the concentration results from Lemma 5 to show that with

high probability, the percentage error between π̃
(t)
i and πi decays exponentially in θ(t). We require

Pi(Ti > θ(t)) < 1/2 in order to ensure that (1− p̂(t)) concentrates within a (1± ε) multiplicative

interval around (1−Pi(Ti > θ(t))). We will show simulations of computing PageRank, in which π̃i

is a closer estimate of πi than π̂i.

Theorem 3. For an irreducible Markov chain {Xt} with finite state space Σ and transition prob-

ability matrix P , for any i ∈ Σ, with probability greater than 1− α, for all iterations t such that

P(Ti > θ
(t))< 1/2,∣∣∣∣∣ π̃(t)

i −πi
π̃

(t)
i

∣∣∣∣∣≤
(

1 + ε

1− ε

)(
Pi(Ti > θ(t))

1−Pi(Ti > θ(t))

)
max(2Zmax(i)− 1,1) +

2ε

1− ε
,

≤ 4(1 + ε)

1− ε
2−θ

(t)/2Hi max(2Zmax(i)− 1,1) +
2ε

1− ε
.

Finally, we analyze π̃
(t)
j = F̂

(t)
j /T̂

(t)
i for j 6= i. Lemma 11 gives an expression for the additive

difference between Ei[F (t)
j]/Ei[T (t)

i] and Ei[Fj]/Ei[Ti] as a function of Pi
(
Ti > θ

(t)
)
, Ei[T̂ (t)

i], and

the fundamental matrix Z.

Lemma 11. For an irreducible, positive recurrent Markov chain {Xt} with countable state space Σ

and transition probability matrix P , and for any i, j ∈Σ, and t∈Z+,

Ei[F̂ (t)
j]

Ei[T̂ (t)
i]
−πj =

P
(
Ti > θ

(t)
)

Ei[T̂ (t)
i]

 ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

)
(Zij −Zqj)

 (11)

Compare Lemmas 9 and 11. Although they look similar, observe that if we naively bound (Zij−
Zqj) by 2Zmax(j), it becomes clear that Lemma 11 depends on the Markov chain mixing properties

with respect to both node i through Pi(Ti > θ(t)), and node j through Zmax(j). Theorem 4 bounds

the error for the estimates π̃
(t)
j for nodes j 6= i by combining the concentration results in Lemma 6

with Lemma 11. Due to the looser additive concentration guarantees for F̂
(t)
i , Theorem 4 provides

an additive error bound rather than a bound on the percentage error.

Theorem 4. For an irreducible Markov chain {Xt} with finite state space Σ and transition proba-

bility matrix P , for any i, j ∈Σ such that j 6= i, with probability greater than 1−α, for all iterations

t, ∣∣∣π̃(t)
j −πj

∣∣∣≤ 2(1 + ε)Pi(Ti > θ(t))Zmax(j)π̂
(t)
i + επ̃

(t)
j + ε,

≤ 4(1 + ε)2−θ
(t)/2HiZmax(j)π̂

(t)
i + επ̃

(t)
j + ε.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The first term in the expression decays exponentially in θ(t) and scales with π̂
(t)
i . Instead of a

dependence on Zmax(i), the expression depends on Zmax(j). In order for π̃j to be a good estimate of

πj, both the anchor node i and the observer node j must have reasonable mixing and connectivity

properties within the Markov chain.

Tightness of Analysis In this section, we discuss the tightness of our analysis. Lemmas 9, 10,

and 11 give exact expressions of the estimation error that arises from the truncation of the sample

random walks. For a specific Markov chain, Theorems 2, 3, and 4 could be loose due to two

approximations. First, 2Zmax(i) could be a loose upper bound upon Γi. Second, Lemma 7 could

be loose due to its use of the Markov inequality. Since π̂i is greater than πi with high probability,

Theorem 2 is only useful when the upper bound is less than 1. We will show that for a specific

family of graphs, namely clique graphs, our bound scales correctly as a function of θ(t), Hi, and

Zmax(i).

Consider a family of clique graphs Gn indexed by n ∈ Z+, such that Gn is the clique graph

over n vertices. We compute the hitting time Hi, the fundamental matrix Z, and the truncation

probability Pi(Ti > k) for Gn, and substitute these into Lemma 9 and Theorem 2 to compare the

expressions. Lemma 9 states that

1− Ei[T̂ (t)
i]

Ei[Ti]
= e−(θ(t)−1)/(n−1)

(
n− 1

n

)
.

Theorem 2 states that with probability at least 1−α,∣∣∣∣∣1− πi

π̂
(t)
i

∣∣∣∣∣≤ 4(1− ε)e−θ
(t) ln(2)/2n

(
n2−n+ 1

n2

)
+ ε.

While Theorem 2 gives that the percentage error is upper bounded by O(e−θ
(t) ln(2)/2HiZmax(i)),

by Lemma 9 the percentage error of our algorithm on the clique graph is no better than

Ω(e−θ
(t)/HiZmax(i)). Consider using these bounds to determine how large the threshold θ(t) needs

to be in order to guarantee that our approximation is within a small margin of error. The required

threshold computed by Theorem 2 would only be a constant factor of 2/ ln(2) larger than the

threshold computed using Lemma 9. Our algorithm leverages the property that there is some

concentration of measure, or “locality”, over the state space. It is the worst when there is no con-

centration of measure, and the random walks spread over the graph quickly and take a long time

to return, such as in the clique graph. In the example of graphs that have stronger concentration of

measure, such as biased random walk on the positive integers, the techniques presented in Section

8 using Lyapunov functions will obtain tighter bounds, as compared to using just the hitting time

Hi and Zmax(i), since these quantities are computed by taking max over all states, even if the

random walk may only stay within a local region around i.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

7. Results for Computation Time

In this section, we show that the algorithm always terminates. Using the exponential tail bound

in Lemma 7, we prove that if θ(t) is large enough, one of the two termination conditions will hold.

In order to analyze the total computation time of the algorithm given the maximum number of

iterations, we prove that the total number of random walk steps taken by the algorithm within the

first t iterations scales with 2t, which we recall is equivalent to θ(t) by design.

Lemma 12. With probability greater than (1−α), the total number of random walk steps taken by

the algorithm within the first t iterations is bounded by

Õ

(
ln(1

α
)2t

ε2

)
.

Proof of Lemma 12. The total number of random walk steps (i.e., neighbor queries of the graph)

used in the algorithm over all t iterations is equal to
∑t

k=1N
(k)T̂

(k)
i . We condition on the event

that T̂
(k)
i is within a (1± ε) multiplicative interval around its mean, which occurs with probability

greater than (1− α) by Lemma 3. Because θ(k) doubles in each iteration, Ei[T̂ (k)
i] ≤ 2Ei[T̂ (k−1)

i].

By combining these facts with the definition of N (k), we obtain an upper bound as a function of

θ(k), α, ε, and Ei[T̂ (k)
i]. We suppress the insignificant factors (1+ε) and (1−ε). Since N (k)T̂

(k)
i grows

super exponentially, the largest term of the summation dominates.

t∑
k=1

N (k)T̂
(k)
i =

t∑
k=1

O

(
2k ln(2k/α)

ε2

)
=O

(
2t ln(2t/α)

ε2

)
= Õ

(
2t ln(1

α
)

ε2

)
.

�

Theorem 5 asserts that with high probability, the algorithm terminates in finite time as a function

of the parameters of the algorithm, independent from the size of the Markov chain state space.

Therefore this implies that our algorithm is local. It is proved by showing that if θ(t) > 1/ε∆, then

termination condition (b) of the algorithm will always be satisfied.

Theorem 5. For an irreducible, positive recurrent, countable state space Markov chain, and for

any i∈Σ, with probability 1, the total number of iterations used by the algorithm with parameters

∆, ε, and α is bounded above by

tmax ≤ ln

(
1

ε∆

)
.

With probability greater than 1−α, the computation time, or the total number of steps (i.e. neighbor

queries) used by the algorithm is bounded above by

tmax∑
k=1

N (t) · T̂ (t)
i ≤ Õ

(
ln(1

α
)

ε3∆

)
.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Proof of Theorem 5. By definition, T̂
(t)
i ≥ p̂(t)θ(t), which implies that p̂(t)π̂

(t)
i ≤ 1/θ(t). Recall

that termination condition (b) is satisfied for p̂(t)π̂
(t)
i < ε∆. Therefore, when θ(t) ≥ 1/ε∆, termination

condition (b) will always be satisfed. This provides an upper bound for tmax, and we can substitute

it into Lemma 12 to complete the proof. �

As can be seen through the proof, Theorem 5 does not utilize any information or properties of the

Markov chain. On the other hand, Lemma 7 shows that depending on the properties of the Markov

chain, we expect the return time to concentrate more sharply around the mean. Termination

condition (a) is satisfied when π̂
(t)
i < ∆/(1 + ε). We prove part (a) of Theorem 6 is by showing

that for nodes i such that πi < (1− ε)∆/(1 + ε), since T̂
(t)
i − Ei[Ti] decreases exponentially with

θ(t), for large enough t, termination condition (a) is satisfied with high probability. Termination

condition (b) is satisfied when p̂(t) · π̂(t)
i < ε∆. We prove part (b) of Theorem 6 is by showing that

since Pi(Ti > θ(t)) decreases exponentially with θ(t), for large t, termination condition (b) will be

satisfied with high probability.

Theorem 6. For an irreducible Markov chain {Xt} with finite state space Σ and transition prob-

ability matrix P ,

(a) For any node i∈Σ such that πi < (1− ε)∆/(1+ ε), with probability greater than 1−α, the total

number of steps used by the algorithm is bounded above by

tmax∑
k=1

N (t) · T̂ (t)
i ≤ Õ

(
ln(1

α
)

ε2

(
Hi ln

((
1

1− 2−1/2Hi

)(
1

πi
− 1 + ε

(1− ε)∆

)−1
)))

.

(b) For all nodes i ∈Σ, with probability greater than 1−α, the total number of steps used by the

algorithm is bounded above by

tmax∑
k=1

N (t) · T̂ (t)
i ≤ Õ

(
ln(1

α
)

ε2

(
Hi

α
ln

(
πi

(
1

ε∆
+

1

1− 2−1/2Hi

))))
.

For nodes i in a Markov chain such that the maximal hitting time is small, the bounds given

in Theorem 6 will be smaller than the general bound given in Theorem 5. Given a node i such

that πi < (1− ε)∆/(1 + ε), our tightest bound is given by the minimum over the expressions from

Theorems 5, 6(a), and 6(b). For a node i such that πi > ∆, Theorem 6(a) does not apply since

the algorithm will never satisfy termination condition (a) with high probability, as discussed in

Theorem 1. Therefore, our tightest bound is given by the minimum between Theorem 5 and 6(b).

8. Results for Countable State Space Markov Chains

Theorems 2, 3, 4, and 6 only apply for finite state space Markov chains due to their dependence on

Lemma 7. It relies on the finite size of the state space in order to prove the exponential decaying

tail of the return time probabilities. These results can be extended to countably infinite state space

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

finite

negative drift

i

[Hajek 1982]

Figure 2 This illustrates the implication of Assumption 1, which uses a Lyapunov function to decompose the

state space into a finite region B and a region with negative drift.

Markov chains under some assumptions. We use Lyapunov analysis techniques to prove that the

tail of the distribution of Ti decays exponentially for any node i in any countable state space

Markov chain that satisfies Assumption 1.

Assumption 1. The Markov chain {Xt} is irreducible. There exists a Lyapunov function V : Σ→

R+ and constants νmax, γ > 0, and b≥ 0, that satisfy the following conditions:

1. The set B = {x∈Σ : V (x)≤ b} is finite,

2. For all x, y ∈Σ such that P
(
Xt+1 = j|Xt = i

)
> 0, |V (j)−V (i)| ≤ νmax,

3. For all x∈Σ such that V (x)> b, E
[
V (Xt+1)−V (Xt)|Xt = x

]
<−γ.

At first glance, this assumption may seem very restrictive. But in fact, this is quite reasonable:

by the Foster-Lyapunov criteria (cf. Theorem 12), a countable state space Markov chain is positive

recurrent if and only if there exists a Lyapunov function V : Σ→ R+ that satisfies condition (1)

and (3), as well as (2’): E[V (Xt+1)|Xt = x] <∞ for all x ∈ Σ. Assumption 1 has (2), which is a

restriction of the condition (2’). The implications of Assumption 1 are visualized in Figure 2. The

existence of the Lyapunov function allows us to decompose the state space into sets B and Bc such

that for all nodes x∈Bc, there is an expected decrease in the Lyapunov function in the next step

or transition. Therefore, for all nodes in Bc, there is a negative drift towards set B. In addition,

in any single step, the random walk cannot escape “too far”. The Lyapunov function helps to

impose a natural ordering over the state space that allows us to prove properties of the Markov

chain. There have been many results that use Lyapunov analysis to give bounds on the stationary

probabilities, return times, and distribution of return times as a function of the Lyapunov function

(Hajek 1982, Bertsimas et al. 1998). Building upon results by Hajek, we prove the following lemma

which establishes that return times have exponentially decaying tails even for countable-state space

Markov chains, as long as they satisfy Assumption 1.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Lemma 13. Let {Xt} be an irreducible Markov chain satisfying Assumption 1. For any i∈B and

for all k ∈Z+,

Pi (Ti >k)≤ 4 · 2−
k
Ri ,

where

Ri =O

(
HB
i e

2ηνmax

(1− ρ)(eηνmax − ρ)

)
,

and HB
i is the maximal hitting time over the Markov chain with its state space restricted to the

subset B. The scalars η and ρ are functions of γ and νmax (see (44) in Appendix F).

Lemma 13 pertains to nodes i ∈B such that V (i)≤ b. This is not actually restrictive, since for

any node k of interest such that V (k) = b′ > b, we can define a new Lyapunov function V ′(·) such

that V ′(k) = b, and V ′(j) = V (j) for all j 6= k. Then we define B′ = {j ∈ Σ : V ′(j)≤ b}=B ∪ {k}

and ν ′max = νmax + b′− b. By extension, Assumption 1 holds for V ′(·) with constants ν ′max, γ, and b′.

The quantity Ri in Lemma 13 for countable state space Markov chains plays the same role as Hi

in Lemma 7 for finite state space Markov chains. Thus, the equivalent theorems for the countable

state space setting are obtained by using Lemma 13 rather than Lemma 7. In the countable state

space setting, Hi and Zmax(i) no longer are well defined since the maximum over an infinite set may

not exist. However, we recall that Zmax(i) is on the same order as πiHi. Therefore, the following

theorems can be understood as a modification of the theorems for finite state space by replacing

Hi with Ri and replacing Zmax(i) with πiRi.

Theorems 7 to 9 are the countable state space versions of Theorems 2, 3, and 6. Theorem 4

does not directly extend because in a countably infinite state space Markov chain, node j can be

arbitrarily far away from node i such that random walks beginning at node i rarely hit node j

before returning to node i.

Theorem 7. For a Markov chain satisfying Assumption 1, for any i∈B, with probability greater

than 1−α, for all iterations t,∣∣∣∣∣ π̂(t)
i −πi
π̂

(t)
i

∣∣∣∣∣≤ 4(1− ε)

(
2−θ

(t)/Ri

1− 2−1/Ri

)
πi + ε.

Theorem 8. For a Markov chain satisfying Assumption 1, for any i∈B, with probability greater

than 1−α, for all iterations t such that P(Ti > θ
(t))< 1/2,∣∣∣∣∣ π̃(t)

i −πi
π̃

(t)
i

∣∣∣∣∣≤ 8(1 + ε)

1− ε
2−θ

(t)/Ri max

(
πi

1− 2−1/Ri
,1

)
+

2ε

1− ε
.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 25

Theorem 9. For a Markov chain satisfying Assumption 1,

(a) For any node i∈B such that πi < (1− ε)∆/(1+ ε), with probability greater than 1−α, the total

number of steps used by the algorithm is bounded above by

tmax∑
k=1

N (t) · T̂ (t)
i ≤ Õ

(
ln(1

α
)

ε2

(
Ri ln

((
1

1− 2−1/Ri

)(
1

πi
− 1 + ε

(1− ε)∆

)−1
)))

.

(b) For all nodes i ∈B, with probability greater than 1−α, the total number of steps used by the

algorithm is bounded above by

tmax∑
k=1

N (t) · T̂ (t)
i ≤ Õ

(
ln(1

α
)

ε2

(
Ri
α

ln

(
πi

(
1

ε∆
+

1

1− 2−1/Ri

))))
.

9. Examples and Simulations

We discuss a few applications of our algorithm to concrete examples of Markov chains. The examples

illustrate the wide applicability of our local algorithm for estimating stationary probabilities.

Example 1 (PageRank). In analyzing the web graph, PageRank is a frequently used measure

to compute the importance of webpages. We are given a scalar parameter β and an underlying

directed graph over n nodes, described by the adjacency matrix A (i.e., Aij = 1 if (i, j) ∈E and 0

otherwise). The transition probability matrix of the PageRank random walk is given by

P =
β

n
1 ·1T + (1−β)D−1A, (12)

where D denotes the diagonal matrix whose diagonal entries are the out-degrees of the nodes. It

follows that

Prs = P(Xt+1 = s|Xt = r) = β

(
1

n

)
+ (1−β)

(
1{Ars = 1}

out-degree(r)

)
.

Thus, in every step, there is a β probability of jumping uniformly randomly to any other node

in the graph. In our simulation, β = 0.15, and the underlying graph is generated according to the

configuration model with a power law degree distribution: P(d)∝ d−1.5.

Example 2 (Queueing System). In queuing theory, Markov chains are commonly used to model

the length of the queue of jobs waiting to be processed by a server, which evolves over time as

jobs arrive and are processed. For illustrative purposes, we chose the MM1 queue, equivalent to

a random walk on Z+. The state space Z+ is countably infinite. Assume we have a single server

where the jobs arrive according to a Poisson process with parameter λ, and the processing time

for a single job is distributed exponentially with parameter µ. The queue length can be modeled

with the random walk shown in Figure 1(b), where q1 is the probability that a new job arrives

before the current job is finished processing, given by λ/(λ+µ). For the purposes of our simulation,

we choose q1 = 0.3, and estimate the stationary probabilities for the queue to have length i for

i∈ {1,2,3, . . .50}.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Example 3 (Magnet Graph). This example illustrates a Markov chain with poor mixing prop-

erties. The Markov chain is depicted in Figure 1(c), and can be described as a random walk over

a finite section of the integers such that there are two attracting states, labeled in Figure 1(c) as

states 1 and n2. We assume that q1, q2 < 1/2, such that for all states left of state n1, the random

walk will drift towards state 1 with probablity 1− q1 in each step, and for all states right of state

n1, the random walk will drift towards state n2 with probability 1− q2 in each step. Due to this

bipolar attraction, a random walk that begins on the left will tend to stay on the left, and similarly,

a random walk that begins on the right will tend to stay on the right. For our simulations, we chose

q1 = q2 = 0.3, n1 = 25, and n2 = 50.

9.1. Algorithm Results for the Anchor Node

We show the results of applying our algorithm to estimate the stationary probabilities in these

three different Markov chains, using parameters ∆ = 0.02, ε= 0.15, and α= 0.2. Figure 3 plots the

final estimates along with the true stationary probabilities. The three Markov chains have different

mixing properties, chosen to illustrate the performance of our algorithm on Markov chains with

different values of Hi and Zmax(i).

Figures 3(a), 3(c), and 3(e) plot the estimates π̂
(tmax)
i and π̃

(tmax)
i for the anchor nodes. Thus,

the data points for different anchor nodes are results from running independent instances of the

algorithm with different nodes chosen as the anchor. In the PageRank Markov chain, we label the

nodes in decreasing order of their true stationary probability πi, since there is no natural ordering

over nodes. In the MM1 queue and the Magnet Markov chains, the nodes are labeled according to

Figures 1(b) and 1(c).

Figure 3(a) shows the result for PageRank. For nodes such that πi > ∆, π̂i is a close approx-

imation for πi. For nodes such that πi ≤ ∆, the algorithm successfully categorizes the node as

unimportant (i.e. π̂i ≤∆). In addition, we observe that π̃i is extremely close to πi for most nodes.

We verify that (Zii−Zqi) is close to 1 for most pairs of nodes (i, q) in the PageRank Markov chain.

Therefore Γi ≈ 1, and Lemmas 9 and 10 indicate that π̃i is expected to be a closer estimate than

π̂i, which is consistent with our results.

Figure 3(c) plots the result for the MM1 queue Markov chain. Both estimates π̂i and π̃i are close

to πi. Since the stationary probabilities decay exponentially, only the first few nodes are significant,

and the algorithm correctly captures that. Both the PageRank and the MM1 queue Markov chains

mix well, and as expected, our algorithm performs well.

Figure 3(e) shows the result for the Magnet Markov chain, which mixes very slowly. The algo-

rithm overestimates the stationary probabilities by almost two times the true value. This is due to

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Anchor Node ID

S
ta

ti
o
n
a
ry

 P
ro

b
a
b
ili

ty

∆ = 0.02

True value (π)

Estimate (π
hat

)

Estimate (π
tilde

)

(a) PageRank.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Observer Node ID

S
ta

ti
o
n
a
ry

 P
ro

b
a
b
ili

ty

True value (π)

Estimate (π
tilde

)

(b) PageRank.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Anchor Node ID

S
ta

ti
o

n
a

ry
 P

ro
b

a
b

ili
ty

True value (π)

Estimate (π
hat

)

Estimate (π
tilde

)

(c) MM1 Queue.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Observer Node ID

S
ta

ti
o

n
a

ry
 P

ro
b

a
b

ili
ty

True value (π)

Estimate (π
tilde

)

(d) MM1 Queue.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Anchor Node ID

S
ta

ti
o

n
a

ry
 P

ro
b

a
b

ili
ty

True value (π)

Estimate (π
hat

)

Estimate (π
tilde

)

(e) Magnet.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Observer Node ID

S
ta

ti
o

n
a

ry
 P

ro
b

a
b

ili
ty

True value (π)

Estimate (π
tilde

)

(f) Magnet.

Figure 3 These plots show the estimates that our algorithm obtains for three different Markov chains.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
28 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

0 50 100
0

0.2

0.4

0.6

0.8

1

Anchor Node ID

F
ra

ct
io

n
of

 s
am

pl
es

 tr
un

ca
te

d

(a) PageRank: p̂(tmax)

0 50 100
50

100

150

200

250

300

Anchor Node ID

T
ru

nc
at

io
n

th
re

sh
ol

d

(b) PageRank: θ(tmax)

0 50 100
0

2

4

6x 10
5

Anchor Node ID

T
ot

al
 n

um
be

r
of

 s
te

ps
 ta

ke
n

(c) PageRank: Total Steps

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

Anchor Node ID

F
ra

ct
io

n
of

 s
am

pl
es

 tr
un

ca
te

d

(d) MM1 Queue: p̂(tmax)

0 20 40 60
0

100

200

300

Anchor Node ID

T
ru

nc
at

io
n

th
re

sh
ol

d

(e) MM1 Queue: θ(tmax)

0 20 40 60
0

2

4

6

8x 10
5

Anchor Node ID

T
ot

al
 n

um
be

r
of

 s
te

ps
 ta

ke
n

(f) MM1 Queue: Total Steps

0 20 40 60
0

0.2

0.4

0.6

0.8

Anchor Node ID

F
ra

ct
io

n
of

 s
am

pl
es

 tr
un

ca
te

d

(g) Magnet: p̂(tmax)

0 20 40 60
0

100

200

300

Anchor Node ID

T
ru

nc
at

io
n

th
re

sh
ol

d

(h) Magnet: θ(tmax)

0 20 40 60
0

2

4

6

8x 10
5

Anchor Node ID

T
ot

al
 n

um
be

r
of

 s
te

ps
 ta

ke
n

(i) Magnet: Total Steps

Figure 4 This shows the value of three variables from the final iteration of the algorithm: fraction of samples

truncated = p̂(tmax); truncation threshold = θ(tmax); and total number of random walk steps taken =

N (tmax) · T̂ (tmax)
i .

the fact that the random samples have close to zero probability of sampling from the opposite half

of the graph. Therefore the estimates are computed without being able to observe the opposite

half of the graph. As the challenge is due to the poor mixing properties of the graph, both π̂i and

π̃i are poor estimates. In the figure, it is difficult to distinguish the two estimates because they are

nearly the same and thus superimposed upon each other. We compute the fundamental matrix Z

for this Markov chain, and find that for most pairs i, j ∈Σ, |Zij| is on the order of 109.

Standard methods such as power iteration or MCMC will also perform poorly on this graph, as

it would take an incredibly large amount of time for the random walk to fully mix across the middle

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 29

border. The final outputs of both methods are very sensitive to the starting vector, since with high

probability each random walk will stay on the half of the graph in which it was initialized. The

estimates are neither guaranteed to be upper or lower bounds upon the true stationary probability.

Figure 4 plots the quantities p̂(tmax), θ(tmax), and N (tmax) · T̂ (tmax)
i for the execution of our algorithm

on these three examples as a function of the chosen anchor node. We observe a correlation between

these quantities and the stationary probability of a node. Consider the results for the MM1 queue

Markov chain shown in Figures 4(d), 4(e), and 4(f). The fraction of samples truncated, the trunca-

tion threshold, and the total computation time increase as πi decreases, and then flattens out for

nodes i greater than 10. This illustrates the effect of the truncation and termination conditions.

For nodes with small πi, although Ei[Ti] is large, because of the termination condition involving

∆, the algorithm will terminate quickly, not wasting extra time to obtain unnecessary precision.

9.2. Algorithm Results for Observer Nodes

Figures 3(b), 3(d), and 3(f) plot results of a single execution of the algorithm when the anchor

node is fixed to be node 1. The estimates π̃
(tmax)
j for a set of observer nodes is plotted along side

the true value for πj. In the PageRank and Magnet Markov chains, J = Σ, and for the MM1 queue

Markov chain, J is the first 50 nodes.

Figures 3(b) and 3(d) both show that the estimates π̃j are indeed close to πj. As expected, Figure

3(f) shows that the algorithm overestimates the leftmost nodes by a factor of two, and completely

does not detect the nodes on the right. Again, this is due to the poor mixing of the Markov chain

such that the probability of visiting the opposite half of the graph is very small. The severity of

this effect will depend on the choice of q1 and q2. This is a graph on which any local algorithm

will perform poorly on, since the algorithm will not be aware of the second attracting node on the

opposite end.

9.3. Algorithm performance as a function of ∆

Figure 5 shows the results of our algorithm as a function of ∆. Recall that parameter ∆ only

affects the termination conditions of the algorithm. The plot shows results from three separate

executions of the algorithm with different anchor nodes, chosen to illustrate the behavior on nodes

with varying πi. Figures 5(a) and 5(c) plot the estimates for the stationary probability, and Figures

5(b) and 5(d) plot the total steps taken in the last iteration of the algorithm, which we recall is

of the same order as the total random walk steps over all iterations. The figures are shown on a

log-log scale. The results confirm that the computation time of the algorithm is upper bounded by

O(1/∆), which is linear when plotted on log-log scale. When ∆> πi, then π̂i is effectively lower

bounded at ∆, and the computation time behaves as 1/∆. When ∆ < πi, then π̂i concentrates

Lee, Ozdaglar, and Shah: Local Stationary Distribution
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

∆

E
st

im
at

e
π ha

t

Node 1
Node 2
Node 3

(a) PageRank —π̂i vs. ∆

10
−4

10
−3

10
−2

10
−1

10
0

10
4

10
5

10
6

10
7

∆

T
ot

al
 S

te
ps

 T
ak

en

Node 1
Node 2
Node 3

(b) PageRank —Total Steps vs. ∆

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

∆

E
st

im
at

e
π ha

t

Node 1
Node 2
Node 3

(c) MM1 Queue —π̂i vs. ∆

10
−4

10
−3

10
−2

10
−1

10
0

10
3

10
4

10
5

10
6

10
7

10
8

∆

T
ot

al
 S

te
ps

 T
ak

en

Node 1
Node 2
Node 3

(d) MM1 Queue —Total Steps vs. ∆

Figure 5 These figures show the dependence of our algorithm on the parameter ∆.

around πi and no longer decreases with ∆. The computation time levels off and grows slower than

O(1/∆).

10. Discussion: Understanding Properties of PageRank

Equation (12) shows that the PageRank random walk is effectively a convex combination between a

directed graph given by A, and a complete graph. We can thus analyze the tradeoff as a function of

β, a tuning parameter that controls whether the PageRank Markov chain is closer to the underlying

directed graph or to the complete graph. The existing algorithms and analysis for computing

PageRank locally (Jeh and Widom 2003, Fogaras et al. 2005, Avrachenkov et al. 2007, Bahmani

et al. 2010, Borgs et al. 2012) only utilize the property that with probability β, the transition

is chosen from the complete graph. When β is large, the Markov chain mixes quickly due to the

complete graph, and these algorithms also performs efficiently; however, when β is small, regardless

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

of the properties of the underlying graph, the algorithm scales with 1/β, even though the Markov

chain might still mix quickly depending on the underlying graph.

For the following simulations, we restrict ourselves to the personalized PageRank setting. For a

fixed node x and scalar β, we consider the Markov chain with transition probability matrix P̃ :

P̃ = β1 · eTx + (1−β)D−1A, (13)

where A is the adjacency matrix of the underlying graph, generated according to the configuration

model with a power law degree distribution, and D is a diagonal matrix of the out-degrees. In

every step, there is a probability β of returning to the node x, and probability 1− β of choosing

a neighbor at random (according to the configuration model generated graph). We choose four

different nodes in the graph to be node x, and several different values for β. For each combination

of x and β, we consider the number of random walk steps required to estimate πx in the Markov

chain corresponding to transition probability matrix P̃ . This allows us to compare our algorithm

with the existing PageRank algorithm presented by Fogaras et al. (2005) and Avrachenkov et al.

(2007).

Fogaras’ algorithm takes geometric length random walk samples on the underlying graph given

by matrix A, beginning at node x. Our proposed algorithm samples random walks over P̃ that

begin and end at node x. Sample paths in each of these algorithms can be considered as adjacent

contiguous sections of one long sample path over P̃ , which contains the full information that each

algorithm collects about the graph. We would like to minimize the total number of random walk

steps taken (across all sample paths of various lengths).

In the following simulation, we sample ten long random walks starting at node x having five

million steps each. After every ten thousand steps, we compute the current fraction of visits to node

x out of the total steps taken thus far. This quantity converges to πx as the length goes to infinity.

The percentage error between the estimate and the true πx is averaged over all ten samples. Then

we find the smallest number of steps such that the average error is less than 1%. This is shown in

Figure 6(a) as a function of β for four different chosen nodes x. The expected return time to node

x in each of these settings is shown in Figure 6(b). Both figures are shown on log-log scale.

When β is large, the β jump back to x dominates the random walk, causing the random walk to

behave similarly for different chosen nodes x. In this setting β can be used to determine the required

number of samples to achieve good accuracy. When β is small, the random walk approaches that

of the underlying graph, thus the choice of node x greatly affects the computation. The number of

steps to achieve 1% accuracy does not increase much as β decreases for nodes x that have large πx

in the underlying graph (such as node 1). However, for nodes such that πx is small in the underlying

Lee, Ozdaglar, and Shah: Local Stationary Distribution
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

10
−6

10
−4

10
−2

10
0

10
4

10
5

10
6

10
7

beta (β) parameter

N
um

be
r

of
 s

te
ps

 u
nt

il
<

 1
%

 a
ve

ra
ge

 e
rr

or

Node 1
Node 2
Node 3
Node 4

(a) PageRank —# steps needed vs. β

10
−6

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

beta (β) parameter

E
xp

ec
te

d
re

tu
rn

 ti
m

e
to

 a
nc

ho
r

no
de

 (
1/

π i)

Node 1
Node 2
Node 3
Node 4

(b) PageRank —Expected return time vs. β

Figure 6 These figures show the number of random walk steps needed to accurately estimate the stationary

probability of a node, as well as the expected return time to a node in a PageRank Markov chain, for

four different nodes, and as a function of the parameter β.

graph (such as node 4), the required number of steps increases significantly as β decreases. We

observe a relationship between Ex[Tx] and the total amount of computation steps needed for 1%

accuracy. This clearly highlights that in the setting when β is very small, it becomes critical to

consider information from the underlying graph in determining the number of steps to sample.

The existing algorithm only uses the parameter β to govern the number of steps taken for the

algorithm, where the length of a sample random walk scales with 1/β. However, for small β, this

is unnecessarily expensive, as some nodes (such as node 1) do not in fact require the number of

sample steps to increase with 1/β. Our proposed algorithm relies on the expected return time to

node x as the length of each sample path, which adjusts for nodes that have varying importances

in the underlying graph.

11. Conclusion

This paper presents a local algorithm for estimating the stationary probabilities of a subset of nodes

in a Markov chain. The algorithm is a truncated Monte Carlo method, sampling return paths to

the anchor node. The key insight it utilizes is that the stationary probability of a node is inversely

proportional to the expected return time to the node Ei[Ti]. In order to obtain estimates for the

observer nodes j 6= i, it uses the property that the stationary probability πj is equal to the fraction

of expected visits to node j along the return path to node i.

We provide theoretical guarantees for the tightness of approximation and computation time of our

algorithm. We guarantee that the estimate π̂
(tmax)
i , is an upper bound for πi with high probability.

For Markov chains that mix well, the estimate will be tight with high probability for nodes such

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

that πi >∆. The analyses and guarantees rely on the property that for many positive recurrent

countable state space Markov chains, the distribution over return times to a node concentrates

around the mean. We showed that this concentration rate is related to the mixing properties of the

Markov chain. The computation time of the algorithm is upper bounded by O (ln(1/α)/ε3∆) with

high probability. Since the computation time is constant with respect to the Markov chain, this

algorithm is suitable for Markov chains with large state spaces. The algorithm has many practical

benefits. It can be implemented easily in a distributed and parallelized fashion, and it only uses

a constant size neighborhood around the anchor node, upper bounded by 1/∆. The computation

only involves counting and taking an average, thus it is simple and memory efficient.

Appendix A: Proofs of Preliminary Results

The proofs of Lemmas 3 to 6 use the following fact:

Fact 1. If
∑t

k=1 xk ≤ 1, then
∏t

k=1(1−xk)≥ 1−
∑t

k=1 xk.

Proof of Lemma 3. Let At denote the event
{
T̂

(t)
i ∈ (1± ε)Ei

[
T̂

(t)
i

]}
. Since N (t) is a random

variable due to its dependence on T̂
(t−1)
i , the distribution of T̂

(t)
i depends on the value of T̂

(t−1)
i .

Conditioned on the event At−1,

N (t) =

⌈
3(1 + ε)θ(t) ln(4θ(t)/α)

T̂
(t−1)
i ε2

⌉

≥ 3(1 + ε)θ(t) ln(4θ(t)/α)

(1 + ε)Ei[T̂ (t−1)
i]ε2

=
3θ(t) ln(4θ(t)/α)

Ei[T̂ (t−1)
i]ε2

. (14)

Then we apply Chernoff’s bound for independent identically distributed bounded random variables

(cf. Theorem 11), substitute in for N (t), and use the facts that Ei[T̂ (t)
i]≥Ei[T̂ (t−1)

i] and θ(t) = 2t for

all t, to show that

Pi (¬At|At−1)≤ 2exp

(
−ε

2N (t)Ei[T̂ (t)
i]

3θ(t)

)

≤ 2exp

(
−Ei[T̂ (t)

i] ln(4θ(t)/α)

Ei[T̂ (t−1)
i]

)
≤ α

2θ(t)
≤ α

2t+1
. (15)

It can be verified that Pi(¬A1) is similarly upper bounded by α
4

using the definition of N (1).

Therefore, by Bayes rule and by the fact that T̂
(t)
i is independent from T̂

(k)
i conditioned on T̂

(t−1)
i

for all k < t, we show that

Pi

(
t⋂

k=1

Ak

)
= Pi (A1)

t∏
k=2

Pi (At|At−1)≥
t∏

k=1

(
1− α

2k+1

)
. (16)

Lee, Ozdaglar, and Shah: Local Stationary Distribution
34 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

By applying Fact 1, it follows that

Pi

(
t⋂

k=1

Ak

)
≥ 1−

t∑
k=1

α

2k+1
= 1− α

2
(1− 2−t)≥ 1−α. (17)

�

Proof of Lemma 4. Let At denote the event
{
T̂

(t)
i ∈ (1± ε)Ei

[
T̂

(t)
i

]}
. Let Bt denote the event{

p̂(t) ∈ Pi(Ti > θ(t))± ε
3

}
. T̂

(t)
i is independent from p̂

(t−1)
i conditioned on T̂

(t−1)
i . Therefore, it follows

from (15) that

Pi(¬At|At−1 ∩Bt−1)≤ α

2t+1
.

By applying Hoeffding’s Inequality for Bernoulli random variables to p̂(k) and substituting (14),

we show that

Pi (¬Bt|At−1 ∩Bt−1)≤ 2exp

(
−2

9
ε2N (t)

)
≤ 2exp

(
−2θ(t) ln(4θ(t)/α)

3Ei[T̂ (t−1)
i]

)
.

Since Ei[T̂ (t−1)
i]≤ θ(t−1) = θ(t)/2,

Pi (¬Bt|At−1 ∩Bt−1)≤ 2exp

(
−4

3
ln(4θ(t)/α)

)
≤ α

2θ(t)
≤ α

2t+1
.

By applying the union bound, it follows that

Pi (At ∩Bt|At−1 ∩Bt−1)≥ 1− α

2t
. (18)

We can easily verify using the same techniques that

Pi(A1 ∩B1)≥ 1− α
2
.

Therefore,

Pi

(
t⋂

k=1

(Bk ∩Ak)

)
≥

t∏
k=1

(
1− α

2k

)
.

We use Fact 1 to show that

Pi

(
t⋂

k=1

(Bk ∩Ak)

)
≥ 1−

t∑
k=1

α

2k
= 1−α(1− 2−t)≥ 1−α.

�

Proof of Lemma 5. Recall that t0 is defined such that Pi(Ti > θ(t0)) < 1
2
. Let At denote the

event{
T̂

(t)
i ∈ (1± ε)Ei

[
T̂

(t)
i

]}
. Let Bt denote the event

{
(1− p̂(t))∈ (1± ε)(1−P(Ti > θ

(t)))
}

.

Pi

(
t⋂

k=t0

Bk

t⋂
k=1

Ak

)
= Pi

(
t⋂

k=t0

(Bk ∩Ak)

∣∣∣∣∣
t0−1⋂
k=1

Ak

)
Pi

(
t0−1⋂
k=1

Ak

)
. (19)

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 35

T̂
(t)
i and p̂(t) are not independent from T̂

(t−1)
i and p̂(t−1) due to the dependence of N (t) as a random

variable upon T̂
(t−1)
i . However, T̂

(t)
i is independent from p̂

(t−1)
i conditioned on T̂

(t−1)
i . Therefore, it

follows from (15) that

Pi(¬At|At−1 ∩Bt−1)≤ α

2t+1
. (20)

By using Chernoff’s bound for Bernoulli random variables and substituting (14), we show that

Pi(¬Bt|At−1 ∩Bt−1)≤ 2exp

(
−ε

2N (t)(1−Pi(Ti > θ(t)))

3

)
≤ 2exp

(
−θ

(t) ln(4θ(t)/α)(1−Pi(Ti > θ(t)))

Ei[T̂ (t−1)
i]

)
. (21)

By definition, Ei[T̂ (t−1)
i]≤ θ(t−1) = θ(t)/2. Since we are given that Pi(Ti > θ(t))≤ 1

2
, then

θ(t)(1−Pi(Ti > θ(t)))

Ei[T̂ (t−1)
i]

≥ 1. (22)

By substituting (22) into (21), it follows that

Pi(¬Bt|At−1 ∩Bt−1)≤ 2α

4θ(t)
≤ α

2t+1
. (23)

We combine (20) and (23), and apply the union bound to show that

Pi (At ∩Bt|At−1 ∩Bt−1)≥ 1− α

2t
. (24)

We can easily verify using the same techniques that

Pi

(
At0 ∩Bt0

∣∣∣∣∣
t0−1⋂
k=1

Ak

)
≥ 1− α

2t0
.

We use Bayes’ rule and substitute (16) and (24) into (19) to show that

Pi

(
t⋂

k=t0

Bk

t⋂
k=1

Ak

)
≥

t∏
k=t0

(
1− α

2k

) t0−1∏
k=1

(
1− α

2k+1

)
.

We apply Fact 1 to show that

Pi

(
t⋂

k=t0

Bk

t⋂
k=1

Ak

)
≥ 1−

t∑
k=1

α

2k
+

t0∑
k=1

α

2k+1
= 1−α(1− 2−t) +

t0∑
k=1

α

2k+1
≥ 1−α.

�

Proof of Lemma 6. Let At denote the event
{
T̂

(t)
i ∈ (1± ε)Ei

[
T̂

(t)
i

]}
. Let Bt denote the event{

F̂
(k)
j ∈Ei

[
F̂

(k)
j

]
± εEi

[
T̂

(k)
i

]}
. T̂

(t)
i is independent from F̂

(t−1)
j conditioned on T̂

(t−1)
i . Therefore,

it follows from (15) that

Pi(¬At|At−1 ∩Bt−1)≤ α

2t+1
.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
36 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Recall from the definition of F̂
(t)
j that F̂

(t)
j ∈ [0, θ(t)]. Therefore, by applying Chernoff’s bound for

independent identically distributed bounded random variables, and substituting (14), we show that

Pi (¬Bt|At−1 ∩Bt−1)≤ 2exp

−(εEi[T̂ (t)
i]

Ei[F̂ (t)
j]

)2
N (t)Ei[F̂ (t)

j]

3θ(t)

≤ 2exp

(
−Ei[T̂ (t)

i]2 ln(4θ(t)/α)

Ei[F̂ (t)
j]Ei[T̂ (t−1)

i]

)
. (25)

Since Ei[T̂ (t)
i]≥Ei[T̂ (t−1)

i] and Ei[T̂ (t)
i]≥Ei[F̂ (t)

j], then

Ei[T̂ (t)
i]2

Ei[F̂ (t)
j]Ei[T̂ (t−1)

i]
≥ 1.

By substituting into (25), it follows that

Pi (¬Bt|At−1 ∩Bt−1)≤ 2
α

4θ(t)
≤ α

2t+1
.

By applying the union bound, we show that

Pi (At ∩Bt|At−1 ∩Bt−1)≥ 1− α

2t
. (26)

We can easily verify using the same techniques that

Pi(A1 ∩B1)≥ 1− α
2
.

Therefore,

Pi

(
t⋂

k=1

(Bk ∩Ak)

)
≥

t∏
k=1

(
1− α

2k

)
.

We use the Fact 1 to show that

Pi

(
t⋂

k=1

(Bk ∩Ak)

)
≥ 1−

t∑
k=1

α

2k
= 1−α(1− 2−t)≥ 1−α.

�

Proof of Lemma 7. This proof is adapted from a proof found in Aldous and Fill. It is included

here for completeness.

Pi(Ti >mα) =
m−1∏
s=0

Pi(Ti > (s+ 1)α | Ti > sα)

=
m−1∏
s=0

(∑
j∈Σ

Pi(Ti > (s+ 1)α | Xsα = j,Ti > sα) Pi(Xsα = j | Ti > sα)

)
.

By the Markov property,

Pi(Ti >mα) =
m−1∏
s=0

(∑
j∈Σ

Pj(Ti >α) Pi(Xsα = j | Ti > sα)

)
.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 37

By Markov’s inequality,

Pi(Ti >mα)≤
m−1∏
s=0

(∑
j∈Σ

(
Ej[Ti]
α

)
Pi(Xsα = j | Ti > sα)

)

≤
m−1∏
s=0

(
maxj∈Σ Ej[Ti]

α

)
=

(
Hi

α

)m
.

By choosing α= 2Hi and m= bk/2Hic, it follows that

Pi(Ti >k)≤ Pi
(
Ti >

⌊
k

2Hi

⌋
· 2Hi

)
≤ 2−bk/2Hic ≤ 2 · 2−k/2Hi .

�

Appendix B: Proofs for Estimation Error

Proof of Theorem 2. By Lemma 3, with probability greater than 1−α, T̂
(t)
i ∈ (1± ε)Ei[T̂ (t)

i] for

all t. Therefore it follows that with probability greater than 1−α,∣∣∣∣∣1− πi

π̂
(t)
i

∣∣∣∣∣≤max

(
1− (1− ε)Ei[T̂

(t)
i]

Ei[Ti]
, (1 + ε)

Ei[T̂ (t)
i]

Ei[Ti]
− 1

)

=
εEi[T̂ (t)

i]

Ei[Ti]
+ max

(
1− Ei[T̂ (t)

i]

Ei[Ti]
,
Ei[T̂ (t)

i]

Ei[Ti]
− 1

)
.

Since Ei[T̂ (t)
i]≤Ei[Ti],∣∣∣∣∣1− πi

π̂
(t)
i

∣∣∣∣∣≤ εEi[T̂ (t)
i]

Ei[Ti]
+ 1− Ei[T̂ (t)

i]

Ei[Ti]
= (1− ε)

(
1− Ei[T̂ (t)

i]

Ei[Ti]

)
+ ε (27)

By multiplying (6) by E[T̂
(t)
i], and by loosely upper bounding (Zii−Zqi) by Zmax(i) for all q, we

obtain

1− Ei[T̂ (t)
i]

Ei[Ti]
≤ 2Zmax(i)Pi

(
T

(t)
i > θ(t)

)
. (28)

Substitute (28) into (27), and apply Lemma 7 to complete the first statement of the proof. Next,

we need to show that when the algorithm terminates at condition (b), P(Ti > θ)≤ ε(4
3

+ε) with high

probability. When the algorithm terminates at condition (b), p̂(t)π̂
(t)
i < ε∆ and π̂

(t)
i ≥ ∆

1+ε
. Therefore,

p̂(t) < ε(1 + ε). By Lemma 4, with probability greater than 1−α, Pi(Ti > θ(t))≤ p̂(t) + ε
3
≤ ε(4

3
+ ε).

Therefore, it follows that∣∣∣∣∣ π̂(t)
i −πi
π̂

(t)
i

∣∣∣∣∣≤ 2ε(1− ε)
(

4

3
+ ε

)
Zmax(i) + ε≤ ε (3Zmax(i) + 1) .

�

Lee, Ozdaglar, and Shah: Local Stationary Distribution
38 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Proof of Theorem 3. By Lemma 5, with probability greater than 1−α, T̂
(t)
i ∈ (1± ε)Ei[T̂ (t)

i] for

all t, and (1− p̂(t)) ∈ (1± ε)(1− Pi(Ti > θ(t))) for all t such that Pi(Ti > θ(t))> 1
2
. Therefore, with

probability greater than 1−α, for every t such that Pi(Ti > θ(t))> 1
2
,∣∣∣∣∣1− T̂

(t)
i

(1− p̂(t))Ei[Ti]

∣∣∣∣∣
≤max

(
1− (1− ε)Ei[T̂ (t)

i]

(1 + ε)(1−Pi(Ti > θ(t)))Ei[Ti]
,

(1 + ε)Ei[T̂ (t)
i]

(1− ε)(1−Pi(Ti > θ(t)))Ei[Ti]
− 1

)

≤max

(
1− ε
1 + ε

(
1− Ei[T̂ (t)

i]

(1−Pi(Ti > θ(t)))Ei[Ti]

)
,
1 + ε

1− ε

(
Ei[T̂ (t)

i]

(1−Pi(Ti > θ(t)))Ei[Ti]
− 1

))
+

2ε

1− ε

≤ 1 + ε

1− ε

∣∣∣∣∣1− Ei[T̂ (t)
i]

(1−Pi(Ti > θ(t)))Ei[Ti]

∣∣∣∣∣+ 2ε

1− ε
. (29)

By rearranging (10), and upper bounding (Zii−Zqi) by Zmax(i) for all q, it follows that∣∣∣∣∣1− Ei[T̂ (t)
i]

(1−Pi(Ti > θ(t)))Ei[Ti]

∣∣∣∣∣≤max(2Zmax(i)− 1,1)

 Pi
(
T

(t)
i > θ(t)

)
1−Pi

(
T

(t)
i > θ(t)

)
 . (30)

Substitute (30) into (29), and apply Lemma 7 to complete the proof. �

In order to analyze the distribution over the number of visits to node j on a return path to node

i, we will use the following Lemma as stated by Aldous and Fill (1999).

Lemma 14 (Aldous, Fill). For distinct i, k ∈Σ, the expected number of visits to a node j begin-

ning from node k before visiting i is equal to

Ek

[
∞∑
t=1

1{Xt = j}1{t≤ Ti}

]
= πj(Ek[Ti] +Ei[Tj]−Ek[Tj]).

Proof of Lemma 11. By definition,

Ei[Fj]−Ei[F̂ (t)
j]

=Ei

[
∞∑
t=1

1{Xt = j}1{t≤ Ti}

]
−Ei

 θ(t)∑
t=1

1{Xt = j}1{t≤ Ti}

= P

(
Ti > θ

(t)
)
Ei

 ∞∑
t=θ(t)

1{Xt = j}1{t≤ Ti}

∣∣∣∣∣∣Ti > θ(t)

= P

(
Ti > θ

(t)
) ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

)
Ei

 ∞∑
t=θ(t)+1

1{Xt = j}1{t≤ Ti}

∣∣∣∣∣∣Xθ(t) = q,Ti > θ
(t)

= P

(
Ti > θ

(t)
) ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

)
Eq

[
∞∑
t=1

1{Xt = j}1{t≤ Ti}

]
.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 39

We divide by Ei[Fj] and use Lemma 14 and Lemma 1(a) to show that

1−
Ei[F̂ (t)

j]

Ei[Fj]

=
P
(
Ti > θ

(t)
)

Ei[Fj]
∑

q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

)
πj(Eq[Ti] +Ei[Tj]−Eq[Tj])

= P
(
Ti > θ

(t)
) ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

) (Eq[Ti] +Ei[Tj]−Eq[Tj])
Ei[Ti]

. (31)

By multiplying (9) by Ei[T̂ (t)
i], it follows that

1− Ei[T̂ (t)
i]

Ei[Ti]
= Pi

(
Ti > θ

(t)
) ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

) Eq[Ti]
Ei[Ti]

. (32)

We use (31) and (32))= to show that

Ei[F̂ (t)
j]

Ei[T̂ (t)
i]
−πj =

Ei[Fj]
Ei[T̂ (t)

i]

(
Ei[F̂ (t)

j]

Ei[Fj]
− Ei[T̂ (t)

i]

Ei[Ti]

)

=
Ei[Fj]
Ei[T̂ (t)

i]
P
(
Ti > θ

(t)
) ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

) (Eq[Tj]−Ei[Tj])
Ei[Ti]

=
P
(
Ti > θ

(t)
)

Ei[T̂ (t)
i]

∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

)
πj(Eq[Tj]−Ei[Tj]).

By Lemma 2,

Ei[F̂ (t)
j]

Ei[T̂i]
−πj =

P
(
Ti > θ

(t)
)

Ei[T̂ (t)
i]

 ∑
q∈Σ\{i}

Pi
(
Xθ(t) = q|Ti > θ(t)

)
(Zij −Zqj)

 .

�

Proof of Theorem 4. By Lemma 6, with probability greater than 1−α, F̂
(t)
j ∈Ei[F̂

(t)
j]±εEi[T̂ (t)

i]

and T̂
(t)
i ∈ (1± ε)Ei[T̂ (t)

i] for all t. Therefore with probability greater than 1−α,

(1− ε)F̂ (t)
j

T̂
(t)
i

≤
Ei[F̂ (t)

j] + εEi[T̂ (t)
i]

Ei[T̂ (t)
i]

.

Therefore,

π̂
(t)
j ≤

Ei[F̂ (t)
j]

Ei[T̂ (t)
i]

+ ε+ επ̂
(t)
j .

Similarly,

(1 + ε)F̂
(t)
j

T̂
(t)
i

≥
Ei[F̂ (t)

j]− εEi[T̂ (t)
i]

Ei[T̂ (t)
i]

π̂
(t)
j ≥

Ei[F̂ (t)
j]

Ei[T̂ (t)
i]
− ε− επ̂(t)

j .

Lee, Ozdaglar, and Shah: Local Stationary Distribution
40 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Therefore, with probability greater than 1−α,∣∣∣π̃(t)
j −πj

∣∣∣≤max

(
Ei[F̂ (t)

j]

Ei[T̂ (t)
i]

+ ε(1 + π̂
(t)
j)−πj, πj −

Ei[F̂ (t)
j]

Ei[T̂ (t)
i]

+ ε(1 + π̂
(t)
j)

)

=

∣∣∣∣∣Ei[F̂
(t)
j]

Ei[T̂ (t)
i]
−πj

∣∣∣∣∣+ ε(1 + π̃
(t)
j).

Use Lemma 11 to show that with probability greater than 1−α,∣∣∣π̃(t)
j −πj

∣∣∣≤
∣∣∣∣∣∣P
(
Ti > θ

(t)
)

Ei[T̂ (t)
i]

 ∑
k∈Σ\{i}

Pi
(
Xθ(t) = k|Ti > θ(t)

)
Zij −Zkj

∣∣∣∣∣∣+ ε(1 + π̃
(t)
j)

≤
P
(
Ti > θ

(t)
)

Ei[T̂ (t)
i]

2Zmax(j) + ε(1 + π̃
(t)
j).

Since T̂
(t)
i ∈ (1± ε)Ei[T̂ (t)

i], it follows that∣∣∣π̃(t)
j −πj

∣∣∣≤ (1 + ε)P
(
Ti > θ

(t)
)

2Zmax(j)π̂
(t)
i + ε(1 + π̃

(t)
j).

Apply Lemma 7 to complete the proof. �

Appendix C: Proofs for Computation Time

Proof of Theorem 6(a). Let t be large enough such that

θ(t) = 2t ≥ 2Hi

ln 2
ln

((
2

1− 2−1/2Hi

)(
1

πi
− (1 + ε)

(1− ε)∆

)−1
)
. (33)

Since we are given that πi <
(1−ε)∆
(1+ε)

, this expression is well defined.W e apply Lemma 7 to Lemma

8 to show

Ei[Ti]−Ei[T̂ (t)
i]≤

∞∑
k=θ(t)

2 · 2−k/2Hi =
2 · 2−θ(t)/2Hi
1− 2−1/2Hi

. (34)

By substituting (33) into (34), it follows that

Ei[T̂ (t)
i]≥Ei[Ti]−

(
1

πi
− (1 + ε)

(1− ε)∆

)
=

(1 + ε)

(1− ε)∆
. (35)

By combining Lemma 3 and (33), with probability greater than 1−α,

π̂
(t)
i =

1

T̂
(t)
i

≤ 1

(1− ε)Ei[T̂ (t)
i]

,

≤ ∆

(1 + ε)
,

satisfying termination condition (a). Therefore, with probability greater than 1−α, the number of

iterations in the algorithm is bounded above by

tmax ≤ ln

(
2Hi

ln 2
ln

((
2

1− 2−1/2Hi

)(
1

πi
− (1 + ε)

(1− ε)∆

)−1
))

.

Combine this with Lemma 12 to finish the proof. �

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 41

Proof of Theorem 6(b). Let t be large enough such that

θ(t) = 2t ≥ 2Hi

ln 2
ln

(
2πi

(
2

(1− ε)ε∆
+

1

1− 2−1/2Hi

))
. (36)

By substituting (36) into Lemma 7, it follows that

Pi
(
Ti > θ

(t)
)
≤Ei[Ti]

(
2

(1− ε)ε∆
+

1

1− 2−1/2Hi

)−1

. (37)

Substitute (36) into (34) to show that

Ei[T̂ (t)
i]≥Ei[Ti]−Ei[Ti]

(
2

(1− ε)ε∆
+

1

1− 2−1/2Hi

)−1 (
1− 2−1/Hi

)−1
. (38)

We combine (37) and (38) to show that

Pi
(
Ti > θ

(t)
)

Ei[T̂ (t)
i]

≤ 1(
2

(1−ε)ε∆ + 1

1−2−1/2Hi

)
− (1− 2−1/2Hi)

−1
=

(1− ε)ε∆
2

. (39)

By applying (17) to (39), it follows that with probability greater than 1− α
2
,

Pi
(
Ti > θ

(t)
)
π̂

(t)
i =

Pi
(
Ti > θ

(t)
)

T̂
(t)
i

≤
Pi
(
Ti > θ

(t)
)

(1− ε)Ei[T̂ (t)
i]
≤ ε∆

2
.

By Markov’s inequality, for each time t,

P
(
p̂(t) ≤ 2Pi(Ti > θ(t))

)
≥ 1

2
.

Therefore, with probability greater than 1
2
,

p̂(t)π̂
(t)
i ≤ 2Pi

(
Ti > θ

(t)
)
π̂

(t)
i ≤ ε∆,

and the algorithm will satisfy termination condition (b). If the algorithm does not terminate in

this iteration, then the algorithm will terminate in the next iteration with probability greater than

1
2
. Thus after another additional log2(2

α
) iterations, we can guarantee that with probability greater

than 1− α
2
, the algorithm will terminate. We apply the union bound to show that since θ(t) = 2t,

with probability greater than 1− α, the number of iterations needed in the algorithm is upper

bounded by

t≤ log2(2/α) + log2

(
2Hi

ln 2
ln

(
2πi

(
2

(1− ε)ε∆
+

1

1− 2−1/2Hi

)))
= log2

(
4Hi

α ln 2
ln

(
2πi

(
2

(1− ε)ε∆
+

1

1− 2−1/2Hi

)))
�

Lee, Ozdaglar, and Shah: Local Stationary Distribution
42 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Appendix D: Proofs for Countable State Space Markov Chains

To prove that the return times concentrate for countably infinite state space Markov chains, we

use Lyapunov function analysis introduced by Foster (1953). We establish that indeed return times

have exponentially decaying tail even for countable-state space Markov chain as long as they satisfy

Assumption 1.

Useful notation. We introduce formal notation for observing {Xt}t≥0 over the subset B. Let

{Yt}t≥0 be a Markov chain with state space B. {Yt} is a subsequence of {Xt} constructed in the

following way. Define the subsequence {Sk} of Z+ as:

S0 , 0, Sk ,min{t > Sk−1 :Xt ∈B},

and define Yt ,XSt such that

PY (x, y) = P (XS1 = y|X0 = x) for any x, y ∈B.

Let Qt , St+1−St, the length of the path between XSt and XSt+1
.

Let TBi , inf{t≥ 1 | Yt = i}, the return time to i for the chain {Yt}.
Let HB

i ,maxj∈B Ej [TBi], the maximal expected hitting time to node i for the chain {Yt}. We can

use these variables to express the return time to node i by

Ti = STBi
=

TBi −1∑
k=0

Qk. (40)

Lemma 15. Let {Xt} be a countable state space Markov chain satisfying Assumption 1. Let {Yt}
be defined above as the Markov chain restricted to B, and let Qk be the length between visits to B.

For any W ∈Z+, Z ≥W , and i∈B,

Pi

(
W−1∑
k=0

Qk >Z

)
≤ exp

(
0.8(1− ρ)

eηνmax

(
1.25We2ηνmax

(1− ρ)(eηνmax − ρ)
+W −Z

))
.

The constants γ and νmax are given by the Assumption 1, and the scalars η and ρ are functions of

γ and νmax, as defined in (44) in Appendix F.

Proof of Lemma 15. By the law of iterated expectation,

Ei

[
W−1∏
k=0

exp (λQk)

]
=Ei

[
exp (λQ0)Ei

[
W−1∏
k=1

exp (λQk)

∣∣∣∣∣Q0

]]
Conditioned on Y1 = j, Y0 and Q0 are independent of {Qk}k>0, because Y1 = XQ0

. Thus by the

strong Markov property,

Ei

[
W−1∏
k=1

exp (λQk)

∣∣∣∣∣Q0

]
≤max

j∈B
E

[
W−1∏
k=1

exp (λQk)

∣∣∣∣∣Y1 = j

]
,

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 43

so that

Ei

[
W−1∏
k=0

exp (λQk)

]
≤Ei[exp(λQ0)]max

j∈B
E

[
W−1∏
k=1

exp (λQk)

∣∣∣∣∣Y1 = j

]
.

We iteratively apply conditioning to show that

Ei

[
W−1∏
k=0

exp (λQk)

]
≤Ei[exp(λQ0)]

W−1∏
k=1

(
max
j∈B

E [exp (λQk)|Yk = j]

)
.

We can upper bound Qk by assuming that it always goes on an excursion from B, such that

Qk ≤ 1 + (length of an excursion into Bc).

We invoke Hajek’s result of Theorem 13, with V (x)< b+ νmax to bound the exponential moments

of the excursion. For any i∈B,

Ei

[
W−1∏
k=0

exp (λQk)

]
≤
(
eλ
(
eηνmax

(
eλ− 1

1− ρeλ

)
+ 1

))W
,

where η and ρ are functions of γ and νmax, as defined in (44) in Appendix F. They satisfy the

conditions given in Hajek (1982). For λ<min
(

0.43, 0.8(1−ρ)
ρ

)
,

eλ < 1 + 1.25λ and 1− ρeλ > 1− ρ− 1.25ρλ.

By substituting in these approximations and using 1 +x< ex, we obtain(
eλ
(
eηνmax

(
eλ− 1

1− ρeλ

)
+ 1

))W
<

(
eλ
(
eηνmax

(
1.25λ

1− ρ− 1.25ρλ

)
+ 1

))W
< exp (λW) exp

(
1.25λWeηνmax

1− ρ− 1.25ρλ

)
< exp

(
λW

(
1.25eηνmax

1− ρ− 1.25ρλ
+ 1

))
.

By Markov’s inequality,

Pi

(
W−1∑
k=0

Qk >Z

)
≤

Ei
[
exp

(
λ
∑W−1

k=0 Qk

)]
exp(λZ)

≤ exp

(
λW

(
1.25eηνmax

1− ρ− 1.25ρλ
+ 1

)
−λZ

)
.

Choose λ = 0.8(1−ρ)
eηνmax . We can verify that for our choice of η and ρ according to (44), λ <

max
(

0.43, 0.8(1−ρ)
ρ

)
always holds. Therefore, we complete the proof by substituting in for λ,

Pi

(
W−1∑
k=0

Qk >Z

)
≤ exp

(
0.8(1− ρ)

eηνmax

(
1.25We2ηνmax

(1− ρ)(eηνmax − ρ)
+W −Z

))
.

�

Lee, Ozdaglar, and Shah: Local Stationary Distribution
44 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Proof of Lemma 13. By (40), for any constants W,Z ∈Z+,

{TBi ≤W}
⋂{

W−1∑
k=0

Qk ≤Z

}
=⇒ {Ti ≤Z}.

We use the union bound on the contrapositive statement to obtain the inequalities

Pi(Ti >Z)≤ Pi

(
{TBi >W}∪

{
W−1∑
k=0

Qk >Z

})

≤ Pi(TBi >W) +Pi

(
W−1∑
k=0

Qk >Z

)
. (41)

Choose W = 2HB
i

(
2 + k

Ri

)
and

Z = 4HB
i

(
1.25e2ηνmax

(1− ρ)(eηνmax − ρ)
+ 1

)
+

ln(2)eηνmax

0.8(1− ρ)
+ k= 2Ri−

ln(2)eηνmax

0.8(1− ρ)
+ k.

The next inequality follows from substituting these expressions for W and Z into (41), and applying

Lemmas 7 and 15:

Pi
(
Ti > 2Ri−

ln(2)eηνmax

0.8(1− ρ)
+ k

)
≤ 2

− k
Ri ,

Pi (Ti > 2Ri + k)≤ Pi
(
Ti > 2Ri−

ln(2)eηνmax

0.8(1− ρ)
+ k

)
≤ 2

− k
Ri ,

Pi (Ti >k)≤ 2
− k−2Ri

Ri ≤ 4 · 2−
k
Ri .

�

Proof of Theorem 7. This proof follows a similar proof of Theorem 2. Substitute Lemma 13

into (8) to show that

1− Ei[T̂ (t)
i]

Ei[Ti]
=

1

Ei[Ti]

∞∑
k=θ(t)

Pi(Ti >k)≤ πi

(
4 · 2−θ(t)/Ri
1− 2−1/Ri

)
. (42)

Substitute (42) into (27) to complete the proof. �

Proof of Theorem 8. This proof follows a similar proof of Theorem 3. By dividing (8) by (1−

Pi(Ti > θ(t))), it follows that∣∣∣∣∣1− Ei[T̂ (t)
i]

(1−Pi(Ti > θ(t)))Ei[Ti]

∣∣∣∣∣=
∣∣∣∣∣∣ 1

(1−Pi(Ti > θ(t)))

πi ∞∑
k=θ(t)

Pi(Ti >k)−Pi(Ti > θ(t))

∣∣∣∣∣∣
≤ 1

(1−Pi(Ti > θ(t)))
max

πi ∞∑
k=θ(t)

Pi(Ti >k),Pi(Ti > θ(t))

 .

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 45

Then we apply Lemma 13 and use the fact that Pi(Ti > θ(t))< 1
2

to show that∣∣∣∣∣1− Ei[T̂ (t)
i]

(1−Pi(Ti > θ(t)))Ei[Ti]

∣∣∣∣∣≤ 2max

(
πi

(
4 · 2−θ(t)/Ri
1− 2−1/Ri

)
,4 · 2−θ

(t)/Ri

)

= 8 · 2−θ
(t)/Ri max

(
πi

1− 2−1/Ri
,1

)
. (43)

Substitute (43) into (29) to complete the proof. �

Proof of Theorem 9. The proof is exactly the same as the proof of Theorem 6, except that we

use Lemma 13 rather than Lemma 7. �

Appendix E: Chernoff Bounds

Theorem 10 (Chernoff’s Multiplicative Bound for Binomials).

Let {X1,X2,X3, . . .XN} be a sequence of independent identically distributed Bernoulli random vari-

ables, such that for all i, Xi = 1 with probability p and Xi = 0 otherwise. Then for any ε > 0,

P

(∣∣∣∣∣ 1

N

N∑
i=1

Xi−E[X]

∣∣∣∣∣≥ εE[X]

)
≤ 2e−

ε2Np
3 .

Theorem 11 (Chernoff’s Multiplicative Bound for Bounded Variables).

Let {X1,X2,X3, . . .XN} be a sequence of independent identically distributed strictly bounded non-

negative random variables, such that Xi ∼X for all i, and X ∈ [0, θ]. Then for any ε > 0,

P

(∣∣∣∣∣ 1

N

N∑
i=1

Xi−E[X]

∣∣∣∣∣≥ εE[X]

)
≤ 2e−

ε2NE[X]
3θ .

Appendix F: Lyapunov Function Analysis

Theorem 12 (Foster 1953). Let {Xt} be a discrete time, irreducible Markov chain on countable

state space Σ with transition probability matrix P . {Xt} is positive recurrent if and only if there

exists a Lyapunov function V : Σ→R+, γ > 0 and b≥ 0, such that

1. For all x∈Σ,

E [V (Xt+1)|Xt = x]≤∞,

2. For all x∈Σ such that V (x)> b,

E [V (Xt+1)−V (Xt)|Xt = x]≤−γ.

In words, given a positive recurrent Markov chain, there exists a Lyapunov function V : Σ→R+

and a decomposition of the state space into B = {x ∈ Σ : V (x) ≤ b} and Bc = {x ∈ Σ : V (x) > b}

such that there is a uniform negative drift in Bc towards B and |B| is finite.

For any irreducible, Markov chain, the following function is a valid Lyapunov function for γ = 1

and b= 0.5: Choose any node i∈Σ, and fix this as the “central node”. Define the function V : Σ→

Lee, Ozdaglar, and Shah: Local Stationary Distribution
46 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

R+ such that V (i) = 0 and for all j ∈Σ \ {i}, V (j) = Ej[Ti]. By definition, B = {i}. For all x ∈Σ,

by positive recurrence, E [V (Xt+1)|Xt = x]≤∞. Similarly, for all x such that V (x)> b,

V (x) =Ex[Ti] = 1 +
∑
y∈Σ

PxyEy[Ti] = 1 +E[V (Xt+1)|Xt = x].

Therefore, for all x∈Bc,

E [V (Xt+1)−V (Xt)|Xt = x] =−1≤−γ.

Theorem 13 (Hajek 1982). Let {Xt} be an irreducible, positive recurrent Markov chain on a

countable state space Σ with transition probability matrix P . Assume that there exists a Lyapunov

function V : Σ→ R+ and values νmax, γ > 0, and b ≥ 0 satisfying Assumption 1. Let the random

variable τB = inf{t :Xt ∈B}. Then for any x such that V (x)> b, and for any choice of constants

ω > 0, η, ρ, and λ satisfying

0< η≤min

(
ω,

γω2

eωνmax − (1 +ωνmax)

)
,

ρ= 1− γη+
(eωνmax − (1 +ωνmax))η2

ω2
,

and 0<λ< ln(
1

ρ
),

the following two inequalities hold:

P[τB >k|X0 = x]≤ eη(V (x)−b)ρk,

and E[eλτB |X0 = x]≤ eη(V (x)−b)
(
eλ− 1

1− ρeλ

)
+ 1.

A concrete set of constants that satisfy the conditions above are

ω=
1

νmax

, η=
γ

2(e− 2)ν2
max

, and ρ= 1− γ2

4(e− 2)ν2
max

. (44)

Endnotes

1. A short version of this paper will appear in the Neural Information Processing Systems Con-

ference Proceedings (NIPS, Dec 2013).

2. We denote Õ(f(a)g(b)) = Õ(f(a)polylogf(a))Õ(g(b)polylogg(b)).

3. 1 denotes the all ones vector.

4. ei denotes the standard basis vector having value one in coordinate i and zero for all other

coordinates.

5. Throughout the paper, Markov chain and random walk on a graph are used interchangeably;

similarly nodes and states are used interchangeably.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 47

6. A Markov chain is irreducible if and only if the corresponding Markov chain graph is strongly

connected, i.e. for all x, y ∈Σ, there exists a path from x to y.

7. A Markov chain is positive recurrent if the expected time for a random walk beginning at node

i to return to node i is finite. This means that the random walk cannot “drift to infinity”. This is

true for all irreducible finite state space Markov chains.

8. In this example, even if we did not limit the algorithm to using a local neighborhood of i, the

probability that a random walk beginning at node 1 reaches node n1 before returning to state 1 is

very small, decaying exponentially in n1. Therefore, we would need an exponential in n1 number

of samples in order for there to be a reasonable probability that one of the sample random walks

explored the region past node n1. This presents another fundamental limitation of computing

stationary distributions for Markov chains that are not well connected.

Acknowledgments

This work is supported in parts by ARO under MURI awards 58153-MA-MUR and W911NF-11-1-0036, and

grant 56549-NS, and by NSF under grant CIF 1217043 and a Graduate Fellowship.

References

Aldous, D., J. Fill. 1999. Reversible Markov chains and random walks on graphs: Chapter 2 (General Markov

chains). book in preparation. URL: http:// www.stat.berkeley.edu/ ∼aldous/ RWG/ Chap2.pdf 7, 19–20.

Andersen, R., C. Borgs, J. Chayes, J. Hopcraft, V.S. Mirrokni, S.H. Teng. 2007. Local computation of

PageRank contributions. Proceedings of the 5th international conference on Algorithms and models for

the web-graph. WAW’07, Springer-Verlag, Berlin, Heidelberg, 150–165.

Assmussen, S., P. Glynn. 2010. Stochastic Simulation: Algorithms and Analysis (Stochastic Modeling and

Applied Probability). Springer.

Avrachenkov, K., N. Litvak, D. Nemirovsky, N. Osipova. 2007. Monte Carlo methods in PageRank compu-

tation: When one iteration is sufficient. SIAM Journal on Numerical Analysis 45(2) 890–904.

Bahmani, B., A. Chowdhury, A. Goel. 2010. Fast incremental and personalized PageRank. Proc. VLDB

Endow. 4(3) 173–184.

Bertsimas, D., D. Gamarnik, J.N. Tsitsiklis. 1998. Geometric bounds for stationary distributions of infinite

Markov chains via Lyapunov functions. Tech. rep., MIT Sloan School of Management.

Borgs, C., M. Brautbar, J. Chayes, S.H. Teng. 2012. Sublinear time algorithm for PageRank computations

and related applications. CoRR abs/1202.2771.

Candogan, O., K. Bimpikis, A. Ozdaglar. 2012. Optimal pricing in networks with externalities. Operations

Research 60(4) 883–905.

Chasparis, G.C., J.S. Shamma. 2010. Control of preferences in social networks. CDC . 6651–6656.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
48 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Chen, Y.Y., Q. Gan, T. Suel. 2004. Local methods for estimating PageRank values. Proceedings of the

thirteenth ACM international conference on Information and knowledge management . ACM, 381–389.

Cipra, B. 2000. The best of the 20th century: Editors name top 10 algorithms. SIAM News 33(4) 1.

Diaconis, P. 2009. The Markov chain Monte Carlo revolution. Bulletin of the American Mathematical Society

46(2) 179–205.

Diaconis, P., L. Saloff-Coste. 1998. What do we know about the Metropolis algorithm? Journal of Computer

and System Sciences 57(1) 20–36.

Fogaras, D., B. Racz, K. Csalogany, T. Sarlos. 2005. Towards scaling fully personalized PageRank: Algo-

rithms, lower bounds, and experiments. Internet Mathematics 2(3) 333–358.

Golub, G.H., C.F. Van Loan. 1996. Matrix Computations. Johns Hopkins Studies in the Mathematical

Sciences, Johns Hopkins University Press.

Hajek, B. 1982. Hitting-time and occupation-time bounds implied by drift analysis with applications.

Advances in Applied probability 502–525.

Hastings, W.K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika

57(1) 97–109.

Haveliwala, T.H. 2003. Topic-sensitive PageRank: A context-sensitive ranking algorithm for web search.

Technical Report 2003-29, Stanford InfoLab. Extended version of the WWW 2002 paper on Topic-

Sensitive PageRank.

Jeh, G., J. Widom. 2003. Scaling personalized web search. Proceedings of the 12th international conference

on World Wide Web. New York, NY, USA, 271–279.

Kamvar, S., T. Haveliwala, C. Manning, G. Golub. 2003. Exploiting the block structure of the web for

computing PageRank. Stanford University Technical Report .

Koury, J.R., D.F. McAllister, W.J. Stewart. 1984. Iterative methods for computing stationary distributions

of nearly completely decomposable Markov chains. SIAM Journal on Algebraic Discrete Methods 5(2)

164–186.

Levin, D.A., Y. Peres, E.L. Wilmer. 2009. Markov chains and mixing times. Amer Mathematical Society.

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller. 1953. Equation of state calcula-

tions by fast computing machines. The Journal of Chemical Physics 21 1087.

Meyn, S.P., R.L. Tweedie. 1993. Markov chains and stochastic stability . Springer-Verlag.

Negahban, S., S. Oh, D. Shah. 2012. Iterative ranking from pair-wise comparisons. CoRR abs/1209.1688.

Newman, M. E. J. 2010. Networks: an introduction. Oxford University Press, Oxford; New York.

Page, L., S. Brin, R. Motwani, T. Winograd. 1999. The PageRank citation ranking: Bringing order to the

web. Technical Report 1999-66.

Lee, Ozdaglar, and Shah: Local Stationary Distribution
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 49

Sarma, A. Das, S. Gollapudi, R. Panigrahy. 2011. Estimating PageRank on graph streams. Journal of ACM

58(3) 13.

Sarma, A. Das, A.R. Molla, G. Pandurangan, E. Upfal. 2012. Fast distributed PageRank computation.

CoRR abs/1208.3071.

Semkow, T.M., S. Pomm, S. Jerome, D.J. Strom, eds. 2006. Applied Modeling and Computations in Nuclear

Science. American Chemical Society, Washington, DC.

Shah, D., T. Zaman. 2011. Rumors in a network: Who’s the culprit? IEEE Transactions on Information

Theory 57(8) 5163 –5181.

Stewart, W.J. 1994. Introduction to the numerical solution of Markov chains, vol. 41. Princeton University

Press Princeton.

