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CHAPTER 1

INTRODUCTION

Optimization theory arises in a vast variety of problems. Engineers, managers, operation
researchers are constantly faced with problems that need optimal decision making. In the
past, a wide range of solutions was considered acceptable. However, the rapid increase in
human needs and objectives is forcing us to make more efficient use of our scarce resources.

This is making optimization techniques critically important in a wide range of areas.

Mathematical models for these optimization problems can be constructed by specifying
a constraint set C', which consists of the available decisions x, and a cost or objective function
f(x) that maps each = € C into a scalar and represents a measure of undesirability of

choosing decision x. This problem can then be written as

minimize f(z)
(0.1)
subject to x € C.

In this thesis, we focus on the case where each decision z is an n-dimensional vector, i.e.,
x is an n-tuple of real numbers (z1,...,x,). Hence, the constraint set C' is a subset of R,
the n-dimensional Euclidean space. We assume throughout the thesis (with the exception
of the last chapter where we use some convexity assumptions instead) that the function
f:R* — R is a smooth (continuously differentiable) function. A vector x that belongs to
set C is referred to as a feasible solution of problem (0.1). We want to find a feasible vector
x* that satisfies

flz*) < f(x), for all z € C.

We call such a vector a global optimal solution (or global minimum) of problem (0.1), and

the corresponding cost value f(x*) the optimal value (or optimal cost) of problem (0.1). A
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vector x* is called a local optimum solution (or local minimum) if it is no worse than its

neighbors, i.e., if there exists some scalar € > 0 such that

f(z*) < f(z),  forallz € C with ||l — || <e.

The global or local minimum x* is said to be strict if the corresponding inequalities above

are strict for all x € C' with x # z*.

The optimization problem stated in (0.1) is very broad and arises in a large variety of
practical applications. This problem contains as special cases several important classes of
problems. In nonlinear programming problems either the cost function f is nonlinear or the
constraint set C' is specified by nonlinear equations and inequalities. In linear programming
problems, the cost function f is linear and the constraint set C' is a polyhedron. Both classes
of problems have a vast range of applications, such as communication, manufacturing,

production planning, scheduling, logistics, and pattern classification.

Another major class of problems is network flow problems. Network flow problems are
one of the most important and most frequently encountered class of optimization problems.
They arise naturally in the analysis and design of large systems, such as communication,
transportation, and manufacturing networks. They can also be used to model important
classes of combinatorial problems, such as assignment, shortest path and travelling salesman
problems. Loosely speaking, network flow problems consist of supply and demand points,
together with several routes that connect these points and are used to transfer the supply
to the demand. Often the supply, demand, and intermediate points can be modelled by the
nodes of a graph, and the routes may be modelled by the paths of the graph. Furthermore,
there may be multiple types of supply/demand (or commodities) sharing the routes. For
example, in communication networks, the commodities are the streams of different classes

of traffic (telephone, data, video, etc.) that involve different origin-destination pairs. In
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such problems, roughly speaking, we try to select routes that minimize the cost of transfer

of the supply to the demand.

A fundamental issue that arises in attempting to solve problem (0.1) is the character-
ization of optimal solutions via necessary and sufficient optimality conditions. Optimality
conditions often provide the basis for the development and the analysis of algorithms. In
general, algorithms iteratively improve the current solution, converging to a solution that
approximately satisfy various optimality conditions. Hence, having optimality conditions
that are rich in supplying information about the nature of potential solutions is important

for suggesting variety of algorithmic approaches.

Necessary optimality conditions for problem (0.1) can be expressed generically in
terms of the relevant conical approximations of the constraint set C'. On the other hand,
the constraint set of an optimization problem is usually specified in terms of equality and
inequality constraints. In this work, we adopt a more general approach and assume that
the constraint set C consists of equality and inequality constraints as well as an additional

abstract set constraint z € X:
C=Xn{z|hi(z)=0,....,hm(z) =0} N{z | g1(x) <0,...,g-(x) <0}. (0.2)

In this thesis, the constraint functions h; and g; are assumed to be smooth functions from
R to RN (except in the last chapter where we have various convexity assumptions instead).
An abstract set constraint in this model represents constraints in the optimization problem
that cannot be represented by equalities and inequalities. It is also convenient in repre-
senting simple conditions for which explicit introduction of constraint functions would be
cumbersome, for instance, sign restrictions or bounds on the components of the decision

vector x.

If we take into account the special structure of the constraint set, we can obtain more
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1.1.

refined optimality conditions, involving some auxiliary variables called Lagrange multipli-
ers. These multipliers facilitate the characterization of optimal solutions and often play an
important role in computational methods. They provide valuable sensitivity information,
quantifying up to first order the variation of the optimal cost caused by variations in prob-
lem data. They also play a significant role in duality theory, a central theme in nonlinear

optimization.

ROLE OF LAGRANGE MULTIPLIERS

Lagrange multipliers have long been used in optimality conditions for problems with con-
straints, but recently, their role has come to be understood from many different angles. The
theory of Lagrange multipliers has been one of the major research areas in nonlinear opti-
mization and there has been a variety of different approaches. Lagrange multipliers were
originally introduced for problems with equality constraints. Inequality-constrained prob-
lems were addressed considerably later. Let us first highlight the traditional rationale for
illustrating the importance of Lagrange multipliers by considering a problem with equality
constraints of the form

minimize f(x)

(1.1)

subject to hi(z) =0, i=1,...,m.

We assume that f : R* — Rand h; : 7 — R, 7 =1,...,m, are smooth functions. The basic

Lagrange multiplier theorem for this problem states that, under appropriate assumptions,

at a given local minimum x*, there exist scalars Aj,..., A}, called Lagrange multipliers,
such that
V@) +> A Vhi(z*) = 0. (1.2)
i=1

This implies that at a local optimal solution z*, the cost gradient V f(z*) is orthogonal to

the subspace of first order feasible variations

V(z*) = {Az | Vhi(z*)Az =0, i =1,...,m}. (1.3)
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This is the subspace of variations Ax from the optimal solution z*, for which the resulting
vector satisfies the constraints hi(z) = 0 up to first order. Hence, condition (1.2) implies
that, at the local minimum xz*, the first order cost variation V f(z*)'Ax is zero for all
variations Az in the subspace V (x*). This is analogous to the“zero cost gradient” condition

of unconstrained optimization problems. This interpretation is illustrated in Figure 1.1.1.

h2 (x)=0

VI (x*)

h1 (x)=0

Y

Figure 1.1.1. Illustration of the Lagrange multiplier condition (1.2) for an
equality-constrained problem. The cost gradient Vf(z*) belongs to the sub-
space spanned by the constraint gradients at z*, or equivalently, the cost gra-
dient V f(z*) is orthogonal to the subspace of first order feasible variations at z*,

V(z*).

Lagrange multiplier conditions, given in Eq. (1.2), are n equations which together

with the m constraints h;(x*) = 0, constitute a system of n 4+ m equations with n +
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m unknowns, the vector x* and the multipliers A7. Thus, through the use of Lagrange
multipliers, a constrained optimization problem can be “transformed” into a problem of
solving a system of nonlinear equations. While this is the role in which Lagrange multipliers
were seen traditionally, this viewpoint is certainly naive since solving a system of nonlinear
equations numerically is not easier than solving an optimization problem by numerical
means. In fact, nonlinear equations are often solved by converting them into nonlinear least
squares problems and using optimization techniques. Still, most computational methods in

nonlinear programming almost invariably depends on some use of Lagrange multipliers.

Lagrange multipliers also have interesting interpretations in different contexts.

1.1.1. Price Interpretation of Lagrange Multipliers

Lagrange multipliers can be viewed as the “equilibrium prices” of an optimization prob-
lem. This interpretation forms an important link between mathematics and theoretical

economics. 1
To illustrate this interpretation, we consider an inequality-constrained problem,

minimize f(x)
(1.4)
subject to g;(z) <0, j=1,...,7
and assume that the functions f, g; are smooth and convex over 7, and that the optimal
value of this problem is finite. The Lagrange multiplier condition for this problem is that,

under appropriate assumptions, at a given global minimum z*, there exist nonnegative

multipliers p, ..., uy such that

Vi) + ) uiVgi(ar) =0, (1.5)

j=1

where the 15 satisfy the complementary slackness condition:

wigj(z*) =0, Vi=1,...,n

1 According to David Gale [Gal67], Lagrange multipliers provide the “single most im-
portant tool in modern economic analysis both from the theoretical and computational

point of view.”
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i.e., the only constraint gradients associated with nonzero multipliers in condition (1.5)
correspond to constraints for which g;(z*) = 0.2 [We call constraints for which g;(z*) = 0,

the active constraints at x*.]

Under the given convexity assumptions, it follows that the Lagrange multiplier con-
dition (1.5) is a sufficient condition for z* to be a global minimum of the function f(z) +

Z;Zl ;g (z). Together with complementary slackness condition, this implies that

flew) = inf § f(x)+ Zlu§gj(x) : (1.6)
‘7:
We next consider a perturbed version of problem (1.1) for some u = (u1,...,u,) in

Rr:
minimize f(z)
(1.7)
subject to g;(z) < uj, j=1,...,r
We denote the optimal value of the perturbed problem by p(u). Clearly, p(0) is the optimal
value of the original problem (1.1). Considering vector u = (u1,...,u,) as perturbations of

the constraint functions, we call the function p as the perturbation function or the primal

function.

We interpret the value f(x) as the “cost” of choosing the decision vector z. Thus, in the
original problem (1.4), our objective is to minimize the cost subject to certain constraints.
We also consider another scenario in which we are allowed to relax the constraints to our
advantage by buying perturbations u. In particular, assume that we are allowed to change
problem (1.4) to a perturbed problem (1.7) for any u that we want, with the condition that
we have to pay for the change, the price being j1; per unit of perturbation variable. Then,
for any perturbation u, the minimum cost we can achieve in the perturbed problem (1.7),

plus the perturbation cost, is given by

pu) + 3 pjuj,
j=1

2 The name complementary slackness comes from the analogy that for each j, whenever
the constraint g;(z*) is slack [meaning that g;(2*) < 0], the constraint % > 0 must not be

slack [meaning that p} > 0], and vice versa.
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and we have

uien§£r p(u) + Z,ujug' < p(0) = f(z*),
j=1

i.e., the minimum cost that can be achieved by a perturbation is at most as high as the
optimal cost of the original unperturbed problem. A perturbation is worth buying if we

have strict inequality in the preceding relation.

We claim that the Lagrange multipliers p} are the prices for which no perturbation
would be worth buying, i.e., we are in an equilibrium situation such that we are content

with the constraints as given. To see this, we use Eq. (1.6) to write

zeERN

p(0) = f(a)= inf §f(2)+ > p;0()

= inf Fla)+) whgs()
j=1

{Ohxﬂu€%T7xE%”,gj@ﬂ§Uj,j:1w”r}

= inf Fla)+) i
j=1

{(uax)luemT7 $€§Rna gj($)§u37 j:17'-~77'}

= inf {p(u) + Z,u;‘u]}

ueR"
< p(0).

Hence, equality holds throughout in the above, proving our claim that the Lagrange multi-

pliers are the equilitbrium prices.

1.1.2. Game Theoretic Interpretation and Duality

Under suitable convexity assumptions, Lagrange multipliers take on a game-theoretic role,
which was motivated by the creative insights of von Neumann in applying mathematics to

models of social and economic conflict [Neu28|, [NeM44].

To put things into perspective, let us consider the following general scenario. Let X
and Z be subsets of R and R, respectively, and let ¢ : X x Z — R be a function. Consider

a zero sum game, defined in terms of ¢, X, and Z as follows: There are two players. X is
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the “strategy set” for the first player , Z is the “strategy set” for the second player, and ¢

is the “payoff function”. The game proceeds as follows:
(1) First player selects an element € X, and second player selects an element z € Z.
(2) The choices are revealed simultaneously,

(3) At the end, first player pays an amount of ¢(x, z) to the second player. 1

The following definition provides a concept that defines an equilibrium situation in

this game.

Definition 1.1.1: A pair of vectors z* € X and z* € Z is called a saddle point of
the function ¢ if

o(x*, 2) < p(x*, 2*) < ¢z, 2*), VeeX, VzeZ, (1.8)

or equivalently,

sup ¢(a*, 2) = B+, 2*) = inf (x, 2*).

1= reX

Given a saddle point (z*,z*) of the function ¢, by choosing z*, the first player is
guaranteed that no matter what player two chooses, the payment cannot exceed the amount
¢(x*, z*) [cf. Eq. (1.8)]. Similarly, by choosing z*, the second player is guaranteed to receive
at least the same amount regardless of the choice of the first player. Hence, the saddle point
concept is associated with an approach to the game in which each player tries to optimize

his choice against the worst possible selection of the other player.

This idea motivates the following equivalent characterization of a saddle point in terms

of two optimization problems (for the proof see [BNO02]).

1 Although this model is very simple, a wide variety of games can be modelled this way
(chess, poker etc.). The amount ¢(x, z) can be negative, which corresponds to the case that
the first player wins the game. The name of the game “zero sum” derives from the fact that

the amount won by either player is the amount lost by the other player.
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Proposition 1.1.1: A pair (z*,2*) is a saddle point of ¢ if and only if z* is an
optimal solution of the problem
minimize sup ¢(z, 2)
z€Z (1_9)
subject to z € X,
while z* is an optimal solution of the problem
maximize inf ¢(x,z)
reX (1.10)
subject to z € Z,

and the optimal value of the two problems are equal, i.e.,

sup inf ¢(x,z) = inf sup ¢(x, z).
zeg zeX oz, 2) reX ZGIZ) 9(,2)

In the worst case scenario adopted above, problem (1.9) can be regarded as the opti-
mization problem of the first player used to determine the strategy to be selected. Similarly,
problem (1.10) is the optimization problem of the second player to determine its strategy.

Equipped with this general scenario, let us consider the inequality-constrained problem

minimize f(z)
(1.11)
subject to g;(z) <0, j=1,...,7

and introduce the, so called, Lagrangian function
L(z,p) = f(z) + > pigi(x),
j=1

for this problem. It can be seen that

{f(:c) if gj(z) <Oforall j=1,...,r,

00 otherwise.

sup L(z, pu) =
n=0

Hence, the original problem (1.11) can be written in terms of the Lagrangian function as

minimize sup L(z, u)
#z0 (1.12)
subject to = € R
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In the game-theoretic setting constructed above, this problem can be regarded as the strat-
egy problem corresponding to the first player. The strategy problem corresponding to the

second player is

maximize inf L(x,p)
weR™ (1.13)
subject to p > 0.

Let (z*,u*) be a saddle point of the Lagrangian function L(z,u). By Proposition
1.1.1, it follows that x* is the optimal solution of problem (1.12), and p* is the optimal
solution of problem (1.13), and using the equivalence of problem (1.12) with the original
problem (1.11), we have

fat) = inf Lot = inf $ fa) + Y (@)

zeER™ zeERT

Using the necessary optimality condition for unconstrained optimization, this implies that
flz*) + Zu Vgj(xz*) =0, (1.14)

and

wigj(z*) =0, Vi=1,...,m

showing that u* = (u3, ..., ur) is a Lagrange multiplier for problem (1.11). Hence, assuming
that the Lagrangian function has a saddle point (z*, u*), a game-theoretic approach provides
an alternative interpretation for Lagrange multipliers, as the optimal solution of a related
optimization problem, which is called the dual problem [cf. Eq. (1.13)]. Conditions under
which the Lagrangian function has a saddle point, or under which the optimal values of the
problems (1.12) and (1.13) are equal form the core of duality theory. A detailed analysis of
this topic can be found in [BNOO02].

1.1.3. Sensitivity Analysis

Within the mathematical model of Egs. (0.1)-(0.2), Lagrange multipliers can be viewed as

rates of change of the optimal cost as the level of constraint changes [cf. Figure 1.1.2].

25



To motivate the idea, let us consider a problem with a single linear equality constraint,
minimize f(x)
subject to a’x = b,

where a # 0. Here, z* is a local minimum and A* is a corresponding Lagrange multiplier.
If the level of constraint b is changed to b 4+ Ab, the minimum x* will change to x* + Ax.
Since b+ Ab = o/ (z* + Azx) = a’z* + o’ Ax = b+ a/ Az, we see that the variations Az and
Ab are related by

a’' Az = Ab.

Using the Lagrange multiplier condition V f(x*) = —A*a, the corresponding cost change

can be written as
Acost = f(x* + Az) — f(z*) = Vf(z*) Az + o || Az|)) = —A*a’Ax + o(||Az|)).

By combining the above two relations, we obtain Acost = —A*Ab -+ o(||Az||), so up to first

order we have
Acost

A=A

Thus, the Lagrange multiplier \* gives the rate of optimal cost decrease as the level of

constraint increases. !

When the constraints are nonlinear, the sensitivity interpretation of Lagrange multi-
pliers is still valid, provided some assumptions are satisfied. Typically, these assumptions
include the linear independence of the constraint gradients, but also additional conditions
involving second derivatives (see e.g., the textbook [Ber99]). In this thesis, we provide a sen-
sitivity interpretation of Lagrange multipliers for general nonlinear optimization problems

under a weak set of assumptions.

1 This information is very useful in engineering design applications. Suppose that we
have designed a system that involves determining the values of a large number of components
to satisfy certain objectives, and we are allowed to tune up some of the parameters in order
to improve the performance of the system. Instead of solving the problem every time we
change the value of a parameter, we can use the information provided by the Lagrange

multipliers of this problem to see the resulting impact on the performance.
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Level sets of f

Figure 1.1.2. Sensitivity interpretation of Lagrange multipliers. Suppose that
we have a problem with two inequality constraints, gi(z) < 0 and g2(z) < 0,
where the optimal solution is denoted by z*. If the constraints are perturbed
a little, the optimal solution of the problem changes. Under certain conditions,
Lagrange multipliers can be shown to give the rates of change of the optimal cost

as the level of constraint changes.

1.2. CONSTRAINT QUALIFICATIONS

As we have seen in the previous section, Lagrange multipliers hold fundamental significance
in a variety of different areas in optimization theory. However, not every optimization prob-
lem can be treated using Lagrange multipliers and additional assumptions on the problem

structure are required to guarantee their existence, as illustrated by the following example.

Example 1.2.1: (A Problem with No Lagrange Multipliers)

Consider the problem of minimizing

flx) =21+ 22

subject to two equality constraints
hi(z) = 3 — 10 =0,
hao(z) = x% + x2 = 0.

The geometry of this problem is illustrated in Figure 1.2.3. The only feasible solution is

x* = (0,0), which is therefore the optimal solution of this problem. It can be seen that at the
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local minimum z* = (0, 0), the cost gradient V f(z*) = (1,1) cannot be expressed as a linear
combination of the constraint gradients Vhi(z*) = (0, —1) and Vha(z*) = (0,1). Thus the

Lagrange multiplier condition
V(™) + A Vhi(z™) + A5Vha(z") =0

cannot hold for any A7 and A3.

Figure 1.2.3. [Illustration of how Lagrange multipliers may not exist for some
problems (cf. Example 1.2.1). Here the cost gradient can not be expressed as a
linear combination of the constraint gradients, so there are no Lagrange multipli-

ers.

The difficulty in this example is that the subspace of first order feasible variations
V(z*) = {y | Vhi(z*)'y =0, Vha(z*)y = O}

[cf. Eq. (1.3)], which is {y | y1 € R, y2 = 0}, has larger dimension than the true set of
feasible variations {y | y = 0}. The optimality of x* implies that V f(z*) is orthogonal

to the true set of feasible variations, but for a Lagrange multiplier to exist, V f(z*) must
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be orthogonal to the subspace of first order of feasible variations. This problem would not
have occurred if the constraint gradients Vhi(z*) and Vha(z*) were linearly independent,
since then there would not be a mismatch between the set of feasible variations and the set

of first order feasible variations.

A fundamental research question in nonlinear optimization is to determine the type
of qualifications that are needed to be satisfied by a problem so that Lagrange multipliers
can be of use in its analysis. Such conditions can be meaningful if they are independent of
the cost function, so that when they hold, the same results can be inferred for any other
cost function with the same optimality properties. Hence, it is the constraint set of an
optimization problem that needs to have additional structure for the existence of Lagrange

multipliers.

There has been much interest in developing general and easily verifiable conditions that
guarantee the existence of Lagrange multipliers for a problem. There are a large number
of such conditions developed in the 60s and early 70s, for problems with smooth equality
and inequality constraint functions, which are often referred to as constraint qualifications.
Modern applications require using more general optimization models with more complicated
side conditions [cf. Egs. (0.1)-(0.2)]. Analysis of such optimization problems demands a
more sophisticated and deeply understood theory of Lagrange multipliers. Developing such

a unified and extended theory is one of the main themes of this thesis.

1.2.1. Linear Equality Constraints

To see why Lagrange multipliers may be expected to exist for some problems, let us consider
a simple equality-constrained problem where the equality constraint functions h; are linear

so that
hi(z) = ajx =0, i=1,...,m,
for some vectors a; [cf. problem (1.1)]. To analyze this problem, we make use of the well-

known necessary optimality condition for optimization over a convex set (for the proof, see

[Ber99]).
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Proposition 1.2.2: Let X be a convex set. If z* is a local minimum of f over X,
then
Vf(z*)(z—2x*) >0, Ve X.

Constraint set X

Figure 1.2.4. Illustration of the necessary optimality condition
Vi(z*) (x —x*) >0, VzeX,
for * to be a local minimum of f over X.
Geometric interpretation of this result is illustrated in Figure 1.2.4. Hence, at a given
local minimum z* of the above linear equality-constrained problem, we have
Vf(z*) (x—ax*) >0, V x such that alz =0, Vi=1,...,m.

The feasible set of this problem is given by the nullspace of the m x n matrix A having as
rows the a;, which we denote by N(A). By taking 2 = 0 and z = 2z* in the preceding
relation, it is seen that

Vf(x*)z* =0.
Combining the last two relations, we obtain V f(z*)’xz > 0 for all z € N(A). Since for
all z € N(A), we also have —z € N(A), it follows that Vf(z*)'z = 0 for all x € N(A).
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Therefore, V f(x*) belongs to the range space of the matrix having as columns the a;, and

can be expressed as a linear combination of the a;. Hence, we can write

for some scalars A;, which implies the existence of Lagrange multipliers.

In the general case, where the constraint functions h; are nonlinear, additional assump-
tions are needed to guarantee the existence of Lagrange multipliers. One such condition,
called regularity of x*, is that the gradients Vh;(z*) are linearly independent, as hinted in
the discussion following Example 1.2.1. We will digress into this topic in more detail in

Chapter 4.

1.2.2. Fritz John Conditions

Over the years, there has been considerable research effort in deriving optimality condi-
tions involving Lagrange multipliers under different constraint qualifications. Necessary
optimality conditions for constrained problems that involve Lagrange multipliers were first
presented in 1948 by John [Joh48]. These conditions are known as Fritz John necessary
conditions. These conditions assume no qualification, instead involves an additional multi-
plier for the cost gradient in their statement. (An excellent historical review of optimality

conditions for nonlinear programming can be found in [Kuh76].1)

1 The following quotation from Takayama [Tak74] gives an accurate account of the his-
tory of these conditions. “Linear programming aroused interest in constraints in the form
of inequalities and in the theory of linear inequalities and convex sets. The Kuhn-Tucker
study appeared in the middle of this interest with a full recognition of such developments.
However, the theory of nonlinear programming when the constraints are all in the form
of equalities has been known for a long time— in fact since Euler and Lagrange. The in-
equality constraints were treated in a fairly satisfactory manner already in 1939 by Karush.
Karush’s work is apparently under the influence of a similar work in the calculus of variations

by Valentine. Unfortunately, Karush’s work has been largely ignored. Next to Karush, but
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To get a sense of the main idea of Fritz John conditions, we consider the equality-

constrained problem
minimize f(z)

subject to hi(x) =0, i=1,...,m.

There are two possibilities at a local minimum z*:

(a) The gradients Vh;(xz*) are linearly independent (x* is regular). Then, there exist

scalars (Lagrange multipliers) A}, ..., A% such that

Vi) + > N Vhi(z*) = 0.

=1

(b) The gradients Vh;(z*) are linearly dependent, so there exist scalars Aj,..., A}, not

all equal to 0, such that

i)\;‘Vhi(x*) ~ 0.
=1

These two possibilities can be lumped into a single condition: at a local minimum x* there

exist scalars pog, A1, ..., Am, not all equal to 0, such that o > 0 and
poV f(2*) + > NiVhi(z*) = 0. (2.1)
i=1

Possibility (a) corresponds to the case where pg > 0, in which case the scalars Af = \;/po
are Lagrange multipliers. Possibility (b) corresponds to the case where pp = 0, in which

case condition (2.1) provides no information regarding the existence of Lagrange multipliers.

Fritz John conditions can also be extended to inequality-constrained problems, and

they hold without any further assumptions on x* (such as regularity). However, this extra

still prior to Kuhn and Tucker, Fritz John considered the nonlinear programming problem
with inequality constraints. He assumed no qualification except that all functions are con-
tinuously differentiable. Here the Lagrangian expression looks like o f(z) + p/g(x) instead
of f(z)+ p'g(x) and po can be zero in the first order conditions. The Karush-Kuhn-Tucker
constraint qualification amounts to providing a condition which guarantees po > 0 (that is,

a normality condition).”

32



1.3.

generality comes at a price, because the issue of whether the cost multiplier o can be taken
to be positive is left unresolved. Unfortunately, asserting that po > 0 is nontrivial under
some commonly used assumptions, and for this reason, traditionally, Fritz John conditions in
their classical form have played a somewhat peripheral role in the development of Lagrange
multiplier theory. Nonetheless, the Fritz John conditions, when properly strengthened, can
provide a simple and powerful line of analysis of Lagrange multiplier theory, as we will see

in Chapter 3.

EXACT PENALTY FUNCTIONS

An important analytical and algorithmic technique in nonlinear programming to solve
problem (0.1)-(0.2) involves the use of penalty functions. The basic idea in penalty methods
is to eliminate the equality and inequality constraints and add to the cost function a penalty
term that prescribes a high cost for their violation. Associated with the penalty term is a
parameter ¢ that determines the severity of the penalty and as a consequence, the extent
to which the “penalized” problem approximates the original. An important example is the

quadratic penalty function

m T

Qelw) = fl@) + 5 | Do (hi@))” + (g7 (@) |

i=1 =1

where ¢ is a positive penalty parameter, and we use the notation

g;-“ (z) = max{0, gj () }.

Instead of the original optimization problem (0.1)-(0.2), consider minimizing this function
over the set constraint X. For large values of ¢, a high penalty is incurred for infeasible
points. Therefore, we may expect that by minimizing Q. (z) over X for a sequence {c*}
of penalty parameters with ¢¥ — oo, we will obtain in the limit a solution of the original
problem. Indeed, convergence of this type can generically be shown, and it turns out that

typically a Lagrange multiplier vector can also be simultaneously obtained (assuming such
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a vector exists); see e.g., [Ber99]. We will use these convergence ideas in various proofs

throughout the thesis.

The quadratic penalty function is not exact in the sense that a local minimum z* of
the constrained minimization problem is typically not a local minimum of Q.(z) for any

value of c¢. A different type of penalty function is given by

Fe(z) = f(z) + ¢ Z |hi(2)| + ng(w) :

where c is a positive penalty parameter. It can be shown that for certain problems, z* is
also a local minimum of F¢, provided that c is larger than some threshold value. This idea

is depicted in Figure 1.3.5.

A A
Fe(x)
f(x) f(x)
Feasible region Feasible region
—> >
X" X X X
9(x)
9(x)
(a) (b)
Figure 1.3.5. Illustration of an exact penalty function for the case of one-

dimensional problems with a single inequality constraint and an optimal solution
at z*. Figure (a) illustrates the case in which z* is also a local minimum of F.(z) =
f(z) + cgT(z), hence the penalty function is “exact”. Figure (b) illustrates an
exceptional case where the penalty function is not exact. In this case, Vg(z*) =
0, thus violating the condition of constraint gradient linear independence (we
will show later that one condition guaranteeing the exactness of Fi. is that the
constraint gradients at x* are linearly independent). For this constraint set, it is
possible that F.(x) does not have a local minimum at z* for any ¢ > 0 (as for
the cost function depicted in the figure, where the downward order of growth of
f exceeds the upward order of growth of g at * when moving from x* towards

smaller values).
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1.4.

Hence, through the use of penalty functions, the constrained optimization problem
can be solved via unconstrained optimization techniques. The conditions under which a
problem admits an exact penalty have been an important research topic since 70s. It is
very interesting to note that such conditions (as well as the threshold value for ¢) bear
an intimate connection with constraint qualification theory of Lagrange multipliers. The
line of analysis we adopt in this thesis clearly depicts how exact penalty functions fit in a

theoretical picture with Lagrange multipliers.

A NEW THEORY OF LAGRANGE MULTIPLIERS

In this work, we present a new theory of Lagrange multipliers, which is simple and more
powerful than the classical treatments. Our objective is to generalize, unify, and stream-
line the theory of constraint qualifications, which are conditions on the constraint set that
guarantee the existence of Lagrange multipliers. The diversity of these conditions moti-
vated researchers to examine their interrelations and try to come up with a central notion
that places these conditions in a larger theoretical picture. For problems that have smooth
equality and inequality constraint functions, but no abstract set constraint, the notion called
quasiregularity, acts as the unifying concept that relates constraint qualifications. In the
presence of an abstract set constraint, quasiregularity fails to provide the required unifi-
cation. Our development introduces a new notion, called pseudonormality, as a substitute
for quasiregularity for the case of an abstract set constraint. Even without an abstract set
constraint, pseudonormality simplifies the proofs of Lagrange multiplier theorems and pro-
vides information about special Lagrange multipliers that carry sensitivity information. Our
analysis also yields a number of interesting related results. In particular, our contributions

can be summarized as follows:

(a) The optimality conditions of the Lagrange multiplier type that we develop are sharper
than the classical Karush-Kuhn-Tucker conditions (they include extra conditions,

which may narrow down the set of candidate local minima). They are also more
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general in that they apply when in addition to the equality and inequality constraints,

there is an additional abstract set constraint.

We introduce the notion of pseudonormality, which serves to unify the major constraint
qualifications and forms a connecting link between the constraint qualifications and
existence of Lagrange multipliers. This analysis carries through even in the case of an

additional abstract set constraint, where the classical treatments of the theory fail.

We develop several different types of Lagrange multipliers for a given problem, which
can be characterized in terms of their sensitivity properties and the information they
provide regarding the significance of the corresponding constraints. We investigate the
relations between different types of Lagrange multipliers. We show that one particular
Lagrange multiplier vector, called the informative Lagrange multiplier, has nice sensi-
tivity properties in that it characterizes the direction of steepest rate of improvement
of the cost function for a given level of the norm of the constraint violation. Along
that direction, the equality and inequality constraints are violated consistently with
the signs of the corresponding multipliers. We show that, under mild convexity as-
sumptions, an informative Lagrange multiplier always exists when the set of Lagrange

multipliers is nonempty.

There is another equally powerful approach to Lagrange multipliers, based on exact
penalty functions, which has not received much attention thus far. In particular, let
us say that the constraint set C' admits an exact penalty at the feasible point z* if for
every smooth function f for which z* is a strict local minimum of f over C, there is

a scalar ¢ > 0 such that x* is also a local minimum of the function
Fe(w) = f(2) +c | D [hi(@)| + D g (x)
i=1 j=1
over x € X, where we denote

g;r(x) = max{0, gj(z)}.

Exact penalty functions have traditionally been viewed as a device used in compu-

tational methods. In this work, we use exact penalty functions as a vehicle towards
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asserting the existence of Lagrange multipliers. In particular, we make a connec-
tion between pseudonormality, the existence of Lagrange multipliers, and the exact
penalty functions. We show that pseudonormality implies the admittance of exact

penalty functions, which in turn implies the existence of Lagrange multipliers.

We extend the theory developed for the case where the functions f, h; and g; are
assumed to be smooth, to the case where these functions are nondifferentiable, but

are instead assumed convex, using the theory of subgradients.

We consider problems that do not necessarily have an optimal solution. For this
purpose, we adopt a different approach based on tools from convex analysis. We
consider certain types of multipliers, called geometric, that are not tied to a specific
local or global minimum and do not assume differentiability of the cost and constraint
functions. Geometric multipliers admit insightful visualization through the use of hy-
perplanes and the related convex set support/separation arguments. Under convexity
assumptions, geometric multipliers are strongly related to Lagrange multipliers. Geo-
metric multipliers can also be viewed as the optimization variables of a related auxil-
iary optimization problem, called the dual problem. We develop necessary optimality
conditions for problems without an optimal solution under various assumptions. In
particular, under convexity assumptions, we derive Fritz John-type conditions, which
provides a pathway that highlights the relations between the original and the dual
problems. Under additional closedness assumptions, we develop Fritz John optimality

conditions that involve sensitivity-type conditions.

We introduce a special geometric multiplier, called informative, that provides similar
sensitivity information regarding the constraints to violate to effect a cost reduction,
as the informative Lagrange multipliers. We show that an informative geometric

multiplier always exists when the set of geometric multipliers is nonempty.

We derive Fritz John-type optimality conditions for the dual problem. Based on these
optimality conditions, we introduce a special type of dual optimal solution, called
informative, which is analogous to informative geometric multipliers. We show that

such a dual optimal solution always exists, when the dual problem has an optimal
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solution.

The outline of the thesis is as follows: In Chapter 2, we provide basic definitions and
results that will be used throughout this thesis. We also study the geometry of constraint
sets of optimization problems in detail in terms of conical approximations and present
general optimality conditions. In Chapter 3, we develop enhanced necessary optimality
conditions of the Fritz John-type for problems that involve smooth equality and inequality
constraints and an abstract (possibly nonconvex) set constraint. We also provide a clas-
sification of different types of Lagrange multipliers, based on the sensitivity information
they provide; investigate their properties and relations. In Chapter 4, we introduce the
notion of pseudonormality and show that it plays a central role within the taxonomy of
interesting constraint characteristics. In particular, pseudonormality unifies and expands
classical constraint qualifications that guarantee the existence of Lagrange multipliers. We
also show that, for optimization problems with additional set constraints, the classical treat-
ment of the theory based on the notion of quasiregularity fails, whereas pseudonormality
still provides the required connections. Moreover, the relation of exact penalty functions
and the Lagrange multipliers is well understood through the notion of pseudonormality.
In Chapter 5, we extend the theory regarding pseudonormality to problems in which con-
tinuity /differentiability assumptions are replaced by convexity assumptions. We consider
problems without an optimal solution and derive optimality conditions for such problems.

Finally, Chapter 6 summarizes our results and points out future research directions.
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CHAPTER 2

CONSTRAINT GEOMETRY

We consider finite dimensional optimization problems of the form

minimize f(x)

subject to = € C,

where f : " — R is a function and C is a subset of Rn.

Necessary optimality conditions for equality and inequality-constrained problems were
presented by Karush, Kuhn, and Tucker with a constraint qualification (cf. Chapter 1).
However, these conditions do not cover the case where there is an additional abstract set
constraint X, and therefore is limited to applications where it is possible and convenient to
represent all constraints explicitly by a finite number of equalities and inequalities. More-
over, necessary optimality conditions are often presented with the assumption of “linear
independence of constraint gradients”. This is unnecessarily restrictive especially for prob-
lems with inequality constraints. Therefore, the key to understanding Lagrange multipliers
is through a closer study of the constraint geometry in optimization problems. For this
purpose, at first, we do not insist on any particular representation for C'; we just assume

that C is some subset of f".

The problem of minimizing f over C' leads to the possibility that points of interest
may lie on the boundary of C. Therefore, an in-depth understanding of the properties of
the boundary of C is crucial in characterizing optimal solutions. The boundary of C' may

be very complicated due to all kinds of curvilinear faces and corners.

In this chapter, we first study the local geometry of C' in terms of “tangent vectors”
and “normal vectors”, which are useful tools in studying variational properties of set C'

despite boundary complications. This type of analysis is called nonsmooth analysis due to
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2.1.

one-sided nature of the geometry as well as kinks and corners in set boundaries. We next

use this analysis in connection with optimality conditions.

NOTATION AND TERMINOLOGY

In this section, we present some basic definitions and results that will be used throughout

this thesis.

We first provide some notation. All of the vectors are column vectors and a prime
denotes transposition. We write z > 0 or x > 0 when a vector x has nonnegative or
positive components, respectively. Similarly, we write z < 0 or x < 0 when a vector z
has nonpositive or negative components, respectively. We use throughout the thesis the
standard Euclidean norm in R7, ||z| = (z’/z)1/2, where 2’y denotes the inner product of
any x,y € R"*. We denote by cl(C) and int(C') the closure and the interior of a set C,

respectively.

We also use some of the standard notions of convex analysis. In particular, for a set
X, we denote by conv(X) the convex hull of X, i.e., the intersection of all convex sets
containing X, or equivalently the set of all convex combinations of elements of X. For a
convex set C, we denote by aff (C') the affine hull of C, i.e., the smallest affine set containing
C, and by ri(C) the relative interior of C, i.e., its interior relative to aff(C'). The epigraph
{(z,w) | f(z) <w, z € X, w € R} of a function f: X — R is denoted by epi(f).

Given any set X, the set of vectors that are orthogonal to all elements of X is a

subspace denoted by X<:
Xt={y|yx=0,Vze X}
If S is a subspace, S+ is called the orthogonal complement of S. A set C' is said to be a

cone if for all x € C' and A > 0, we have Az € C.

We next give an important duality relation between cones. Given a set C', the cone
given by
Cr={y|yz <0, Vael}
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is called the polar cone of C. Clearly, the polar cone C*, being the intersection of a collection
of closed halfspaces, is always closed and convex (regardless of whether C is closed and/or
convex). If C'is a subspace, it can be seen that the polar cone C* is equal to the orthogonal
subspace C'L. The following basic result generalizes the equality C' = (C1)L, which holds
in the case where C' is a subspace (for the proof see [BNO02]).

Proposition 2.1.1: (Polar Cone Theorem) For any cone C, we have
(C*)* = cl(conv(C)).

In particular, if C' is closed and convex, we have (C*)* = C.

We next give some basic results regarding cones and their polars that will be useful

in our analysis (for the proofs, see [BNO02]).

Proposition 2.1.2:
(a) Let C1 and C3 be two cones. If C; C Cq, then C5 C Cf.

(b) Let C; and C5 be two cones. Then,
(Cl -+ CQ)* = Cik M C;,

and

CT + C; C (01 N 02)*.

In particular if C; and C5 are closed and convex, (C1 N Cy)* = cl(CF + C3).

Existence of Optimal Solutions

A basic question in optimization problems is whether an optimal solution exists. This
question can often be resolved with the aid of the classical theorem of Weierstrass, given

in the following proposition. To this end, we introduce some terminology. Let X be a
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nonempty subset of *”. We say that a function f : X — (—o0, 00] is coercive if

lim f(xg) = o0

k—oo

for every sequence {x} of elements of X such that ||z| — oo. Note that as a consequence

of the definition, a nonempty level set {z | f(z) < a} of a coercive function f is bounded.

Proposition 2.1.3: (Weierstrass’ Theorem) Let X be a nonempty closed subset
of ®", and let f : X — R be a lower semicontinuous function over X. Assume that

one of the following three conditions holds:
(1) X is bounded.

(2) There exists a scalar a such that the level set
{zeX|f(x)<a}

is nonempty and bounded.
(3) f is coercive.

Then the set of minima of f over X is nonempty and compact.

Separation Results

In Chapter 5, our development will require tools from convex analysis. For the purpose
of easy reference, we list here some of the classical supporting and separating hyperplane
results that we will use in our analysis. Recall that a hyperplane in R™ is a set of the form

{z | d/z = b}, where a € R", a # 0, and b € R. The sets

{z |d'x > b}, {z | dx < b},

are called the closed halfspaces associated with the hyperplane.
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Proposition 2.1.4: (Supporting Hyperplane Theorem) Let C be a nonempty
convex subset of R and let T be a vector in R™. If either C' has empty interior or,
more generally, if Z is not an interior point of C, there exists a hyperplane that passes
through Z and contains C' in one of its closed halfspaces, i.e., there exists a vector a # 0
such that

az < dzx, Vazed. (1.1)

Proposition 2.1.5: (Proper Separation Theorem) Let C; and C2 be nonempty

convex subsets of R such that
ri(C1) Nri(Ca) = 0.

Then there exists a hyperplane that properly separates C; from Cs, i.e., a vector a
such that

sup ¢’x < inf d'z, inf a’x < sup a'z.
z€Cy zeCy zeCly zeCy

Proposition 2.1.6: (Polyhedral Proper Separation Theorem) Let C; and C5

be nonempty convex subsets of " such that 'y is polyhedral and
ri(Cl) NCy = (.

Then there exists a hyperplane that properly separates them and does not contain C1,

i.e., a vector a such that

sup ¢’z < inf o'z, inf a’x < sup a'z.
zeCo zeCy zeCy zeCq
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Saddle Points

Our analysis also requires the following result regarding the existence of saddle points of
functions, which is a slight extension of the classical theorem of von Neumann (for the proof,

see [BNO02]).

Proposition 2.1.7: (Saddle Point Theorem) Let X be a nonempty convex
subset of R, let Z be a nonempty convex subset of ™, and let ¢ : X x Z +— R be a
function such that either

—o00 < sup inf o(z, 2
zGBxGX¢( ’ )7

or

inf su x,z) < 00.

Assume that for each z € Z, the function ¢, : R +— (—o0, oo] defined by

() = {cb(w,z), ifze X,

00, ife ¢ X,

is closed and convex, and that for each z € X, the function r, : R — (—o00, 0| defined

by

—¢(x,2) ifzeZ,
re(z) =
00 otherwise,
is closed and convex. The set of saddle points of ¢ is nonempty and compact under

any of the following conditions:
(1) X and Z are compact.

(2) Z is compact and there exists a vector Z € Z and a scalar v such that the level

set

{:1: € X |p(z,z) < 'y}

is nonempty and compact.
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(3) X is compact and there exists a vector T € X and a scalar v such that the level

set

{z€2]¢@ 2) =7}
is nonempty and compact.

(4) There exist vectors T € X and Z € Z, and a scalar 7 such that the level sets

{xGX\gb(m,E)gv}, {ZEZ]¢(E,Z)27}.

2.2. CONICAL APPROXIMATIONS

The analysis of constrained optimization problems is centered around characterizing how
the cost function behaves as we move from a local minimum to neighboring feasible points.
In optimizing a function f over a set C, since the local minima may very well lie on the
boundary, properties of the boundary of C' can be crucial in characterizing an optimal
solution. The difficulty is that the boundary may have all kinds of weird curvilinear facets,
edges, and corners. In such a lack of smoothness, an approach is needed through which main
variational properties of set C' can be characterized. The relevant variational properties can
be studied in terms of various tangential and normal cone approximations to the constraint

set at each point.

Many different definitions of tangent and normal vectors have been offered over the
years. It turns out that two of these are particularly useful in characterizing local optimality
of feasible solutions, and are actually sufficient to go directly into the heart of the issues

about Lagrange multipliers.

2.2.1. Tangent Cone

A simple notion of variation at a point = that belongs to the constraint set C' can be defined
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by taking a vector y € R" and considering the vector x + ay for a small positive scalar
a. (For instance, directional derivatives are defined in terms of such variations). This idea

gives rise to the following definition.

Definition 2.2.1:  Given a subset C of " and a vector = € C, a feasible direction
of C' at x is a vector y € 1" such that there exists an @ > 0 with  + ay € C for all

a € [0,a]. The set of all feasible directions of C' at z is a cone denoted by Fg(x).

It can be seen that if C' is convex, the feasible directions at x are the vectors of the

form o(T — x) with a > 0 and T € C [cf. Figure 2.2.1(a)].

However, when C' is nonconvex, straight line variations of the preceding sort may
not be appropriate to characterize the local structure of the set C' near the point z. [For
example, often there is no nonzero feasible direction at x when C' is nonconvex, think of
the set C' = {z | h(z) = 0}, where h: ®* — R is a nonlinear function, see Figure 2.2.1(b)].
Nonetheless, the concept of direction can still be utilized in terms of sequences that converge
to the point of interest without violating the set constraint. The next definition introduces

a cone that illustrates this idea.

X Feasible
directions at x

Not a feasible
direction

Constraint set C

\

Constraint set C

€Y (b)

Figure 2.2.1. Feasible directions at a vector x. By definition, y is a feasible

direction if changing z in the direction y by a small amount maintains feasibility.
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Definition 2.2.2:  Given a subset C' of R and a vector x € C, a vector y is said to
be a tangent of C at z if either y = 0 or there exists a sequence {x}} C C such that
xy # x for all k and

Tk — Yy

T — X, —_— s
lze =zl [yl

The set of all tangents of C' at x is a cone called the tangent cone of C' at x, and is

denoted by Tc(z).

Thus a nonzero vector y is a tangent at x if it is possible to approach x with a feasible
sequence {zx} such that the normalized direction sequence (zx — x) /||y — x|| converges to
y/|ly|l, the normalized direction of y, cf. Figure 2.2.2(a). The tangent vectors to a set C
at a point z are illustrated in Figure 2.2.2(b). It can be seen that T¢(z) is a cone, hence
the name “tangent cone”. The following proposition provides an equivalent definition of a

tangent, which is sometimes more convenient in analysis.

Tc(X)
C
Xk-1
Xk X
X
y : tangent at x
(@) (b)

Figure 2.2.2. Part (a) illustrates a tangent y at a vector z € C. Part (b)

illustrates the tangent cone to set C' at a vector z.
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Proposition 2.2.8: Given a subset C of " and a vector z € C, a vector y is a
tangent of C' at z if and only if there exists a sequence {z;} C C with x; — =z, and a
positive sequence {ay} such that oy — 0 and

(@5 — )
a,

Proof: Let y be a tangent of set C' at the vector x. If y = 0, take x; = x for all k and «y
any positive sequence that converges to 0, and we are done. Therefore, assume that y # 0.

Then, we take zj to be the sequence in the definition of a tangent, and ay = ||xx — z||/||y]|-

Conversely, assume that y is such that sequences {xx} and {aj} with the above
properties exist. If y = 0, then y is a tangent of C' at z. If y # 0, then since (xx — x) /o — vy,

we have

Tp — T (xr — x)/ag Y

= —
ok =zl l(zx —2)/arll  lyll

so {x} satisfies the definition of a tangent. Q.E.D.

Figure 2.2.3 illustrates the cones Fc(z) and T (x), and hints at their relation with
examples. The following proposition gives some of the properties of the cones Fe(x) and

Tc(z) (for the proofs, see [BNOO02]).

Proposition 2.2.9: Let C' be a nonempty subset of R and let  be a vector in
C'. The following hold regarding the cone of feasible directions F¢(x) and the tangent

cone To(x).
(a) Tc(x) is a closed cone.

(b) c(Fo(z)) C Te(x).
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N 7 X
Tc (¥)
Tc (x)=cl(Fc (X)) Fc (x)={0}
(@) (b)

Figure 2.2.3. [Illustration of feasible cone of directions and tangent cone. In
part (a), set C' is convex, and the tangent cone of C at z is equal to the closure of
the cone of feasible directions. In part (b), the cone of feasible directions consists

of just the zero vector.

(c) If C is convex, then Fo(x) and Te(x) are convex, and we have

cl(Fo(z)) = To(w).

2.2.2. Normal Cone

In addition to the cone of feasible directions and the tangent cone, there is one more conical

approximation that is of special interest in relation to optimality conditions in this thesis.

Definition 2.2.3:  Given a subset C' of R and a vector x € C, a vector z is said to

be a normal of C' at x if there exist sequences {zx} C X and {z} such that
Tr — T, 2k — 2, zi € To(xg)*, for all k.

The set of all normals of C' at x is called the normal cone of C' at x, and is denoted by

Ne(z).
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Hence, the normal cone N¢(x) is obtained from the polar cone T (z)* by means of
a closure operation. Equivalently, the graph of N (-), viewed as a point-to-set mapping, is
the intersection of the closure of the graph of T¢(-)* with the set {(z,2) | 2 € C}. In the
case where C is a closed set, the set {(x, z) | & € C} contains the closure of the graph of

Tc(+)*, so the graph of N¢ () is equal to the closure of the graph of T (-)*! :

{(z,2) |z €C, z€ Ne(z)} =cl({(z,2) |z € C, 2 € Tc(x)*})
if C' is closed.

In general, it can be seen that Tc(z)* C Ne(x) for any € C. However, N¢(x) may

not be equal to T (x)*, and in fact it may not even be a convex set (see the examples of

Figure 2.2.4).

AN NC (x)

%(9\

NC () = Tc (%)

(a) (b)

Figure 2.2.4. Examples of normal cones. In the case of part (a), we have
Ne(z) = Te(z*), hence C is regular at . In part (b), No(z) is the union of two
lines. In this case N¢(z) is not equal to T (z) and is nonconvex, i.e., C is not

regular at x.

1 The normal cone, introduced by Mordukhovich [Mor76], has been studied by several
authors, and is of central importance in nonsmooth analysis (see the books by Aubin and

Frankowska [AuF90], Rockafellar and Wets [RoW98], and Borwein and Lewis [BoL00]).
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Definition 2.2.4: A set C is said to be regular at some vector x € C' if

Tc(l‘)* = Nc<:L‘)

The term “regular at = in the sense of Clarke” is also used in the literature.

2.2.3. Tangent-Normal Cone Relations

The relationships between tangent and normal cones defined in the previous sections play
a central role in our development of enhanced optimality conditions in Chapter 3. It turns
out that these cones are nicely connected through polarity relations. Furthermore, these
relations reveal alternative characterizations of “Clarke regularity”, which will be useful
for our purposes. These polarity relations were given in [RoW98] as a result of a series
of exercises. Here, we provide a streamlined development of these results together with
detailed proofs. These proofs make use of concepts related to sequences of sets and their

convergence properties, which we summarize in the following section.

2.2.3.1. Sequences of Sets and Set Convergence:

Let {Ck} be a sequence of nonempty subsets of ®". The outer limit of {C)}, denoted
lim supy,_, o, Ck, is the set of all x € " such that every neighborhood of x has a nonempty
intersection with infinitely many of the sets C, k = 1,2,.... Equivalently, limsup,_, . Ck

is the set of all limits of subsequences {xj}x such that x € Cy for all k € K.

The inner limit of {Cx}, denoted liminfy_. o, Cy, is the set of all x € R™ such that
every neighborhood of z has a nonempty intersection with all except finitely many of the
sets Ck, k = 1,2,.... Equivalently, liminf;_,, C} is the set of all limits of sequences {x}

such that x, € C), for all k =1,2,.... These definitions are illustrated in Figure 2.2.5.

The sequence {C}} is said to converge to a set C if

C = liminf C; = limsup C.

k—o0 k—o0
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liminf kKCk limsup kCk

Figure 2.2.5. Inner and outer limits of a nonconvergent sequence of sets.

In this case, C is called the limit of {Cy}, and is denoted by limg_, C.1

The inner and outer limits are closed (possibly empty) sets. It is clear that we al-
ways have liminfy .o C) C limsup,_,., Ck. If each set C} consists of a single point zy,
limsupy,_, ., Ck is the set of limit points of {x}, while liminfy_ o, C is just the limit of

{zy} if {z} converges, and otherwise it is empty.

The next proposition provide a major tool for checking results about inner and outer

limits.

1 Set convergence in this sense is known more specifically as Painleve- Kuratowski convergence.
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Proposition 2.2.10 (Set Convergence Criteria): Let {C;} be a sequence of
nonempty closed subsets of $t* and C' be a nonempty closed subset of R”. Let B(x,¢)

denote the closed ball centered at x with radius e.
(a)

(i) C C liminfg_. Cy if and only if for every ball B(z, €) with C'Nint(B(z,€)) # &,
we have Cj, Nint(B(z,€)) # O for all sufficiently large k.

(ii) C D limsupy_, ., C if and only if for every ball B(x,¢) with C N B(z,€) = 0, we
have Ci, N B(xz, €) = @ for all sufficiently large k.

(b) In part (a), it is sufficient to consider the countable collection of balls B(z, €), where

€ and the coordinates of x are rational numbers.

Proof:
(a)

(i) Assume that C' C liminf,_.o C and let B(z, €) be a ball such that C'Nint(B(z,€)) #
0. Let x be a vector that belongs to C N int (B(x,e)). By assumption, it follows
that x € liminfy_ ., Ck, which by definition of the inner limit of a sequence of sets,
implies the existence of a sequence {xy} with z; € Cj such that x; — x. Since
z € int(B(z,€)), we have that z € int(B(z,¢€)) for all sufficiently large k, which
proves that Cj, Nint(B(z,€)) # O for all sufficiently large k.

Conversely, assume that for every ball B(z,e) with C' Nint(B(z,€)) # &, we have
Cy Nint (B(:L’, 6)) # () for all sufficiently large k. Consider any x € C' and € > 0. By
assumption, there exists some xj that belongs to Cx Nint (B (x, e)) for sufficiently large
k, thereby implying the existence of a sequence {z}} with xy € C) such that z — =z,

and hence proving that x € liminfx_, o Ck.

(ii) Assume that C' D limsup,_, ., Cx and let B(x,¢€) be a ball such that C'N B(z,€) = @.

Hence, for any T € B(x,¢€), we have T ¢ C, which by assumption implies that T ¢
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limsupy_. ¢, - By definition of the outer limit of a sequence of sets, it follows that
T ¢ Cy for all sufficiently large k, proving that Cyx N B(xz,€) = @ for all sufficiently
large k.

Conversely, assume that for every ball B(x,¢) with C' N B(x,e) = @, we have C; N
B(z,€) = O for all sufficiently large k. Let ¢ C. Since C is closed, there exists some
e > 0 such that C' N B(xz,€) = @, which implies by assumption that Cx N B(x,€) = @

for all sufficiently large k, thereby proving that x ¢ lim sup,_, ., Ck.

(b) Since this condition is a special case of the condition given in part (a), the implications

“ =" hold trivially. We now show the reverse implications.

(i) Assume that for every ball B(z,¢€), where € and the coordinates of x are rational
numbers with C Nint(B(z,€)) # &, we have Cy Nint(B(xz,¢€)) # @ for all sufficiently
large k. Consider any x € C' and any rational € > 0. There exists a point T € B(z,€/2)
whose coordinates are rational. For such a point, we have CNB(Z, €/2) # @, which by
assumption implies Cj, N int (B (z,¢/ 2)) # () for all sufficiently large k. In particular,
we have T € Cj, +¢€/2B [B denotes the closed ball B(0,1)], so that x € C}, + B for all
sufficiently large k. This implies the existence of a sequence {xy} with x) € C) such

that z; — x, and hence proving that € liminfy_, ., Ck.

(ii) Assume that for every ball B(z,€), where e and the coordinates of x are rational
numbers with CNB(z,€) = O, we have CyNB(x,¢) = O for all sufficiently large k. Let
x ¢ C. Since C is closed, there exists some rational € > 0 such that C'N B(z,2¢) = 0.
A point T with rational coordinates can be selected from int (B (z, e)) Then, we have
z € int(B(T,€)) and C N B(T,e) = ¢. By assumption, we get Cy N B(T,¢) = O for
all sufficiently large k. Since z € int (B(T, e)), this implies that = ¢ limsup,_, . Ck,
proving the desired claim. Q.E.D.

We next provide alternative characterizations for set convergence through distance

functions and projections.
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Proposition 2.2.11 (Set Convergence through Distance Functions): Let
{C%} be a sequence of nonempty closed subsets of " and C be a nonempty closed
subset of R". Let d(z,C) denote the distance of a vector x € R" to set C, i.e.,

d(z, C) = mingec [|lz - yl|.
(a)
(i) C C liminfy_, Cy if and only if d(x, C) > limsup,,_, ., d(z, Cy) for all x € R».
(ii) C D limsupy_, ., Ck if and only if d(x,C) < liminfy_.« d(z, Cy) for all x € R».
In particular, we have Cj, — C' if and only if d(z, Cx) — d(z,C) for all x € R".

(b) The result of part (a) can be extended as follows: Cy, — C'if and only if d(xx, Ck) —

d(z,C) for all sequences {zy} — = and all x € R".

Proof:
(a)

(i) Assume that C' C liminfy_,o C;. Consider any x € R”. It can be seen that for a
closed set C,
d(z,C) < a if and only if C Nint(B(z,®)) # &, (2.1)

(cf. Weierstrass’ Theorem). Let a = limsup,,_, . d(z, C). Since C is closed, d(z,C)
is finite (cf. Weierstrass’ Theorem), and therefore, by Proposition 2.2.10(a)-(i) and
relation (2.1), it follows that « is finite. Suppose, to arrive at a contradiction, that
d(z,C) < a. Let € > 0 be such that d(z,C) < a —e. It follows from Proposition
2.2.10(a)-(i) and relation (2.1) that

limsupd(z,Cr) < a — e,

k—oo
which is a contradiction.
Conversely, assume that
d(z,C) > limsupd(z, Cy), Ve R (2.2)
k—o0
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Let B(x,¢€) be a closed ball with C'Nint (B(.CL’, e)) # (). By Eq. (2.1), this implies that
d(z,C) < e, which by assumption (2.2) yields d(x,C)) < € for all sufficiently large k.
Using Proposition 2.2.10(a)-(i) and relation (2.1), it follows that C' C liminfy_ . Ck.

(ii) Assume that C D limsup,_,., Ci. Consider any = € R". It can be seen that for a
closed set C,
d(xz,C) > (3 if and only if C N B(x,3) = O, (2.3)

(cf. Weierstrass” Theorem). Let § = liminf,_,o d(x,Cy). Since C' is closed, d(z,C)
is finite (cf. Weierstrass’ Theorem), and therefore, by Proposition 2.2.10(a)-(ii) and
relation (2.3), it follows that (3 is finite. Suppose, to arrive at a contradiction, that
d(z,C) > (. Let € > 0 be such that d(x,C) > [+ e. It follows from Proposition
2.2.10(a)-(ii) and relation (2.3) that

lim inf d(z, Cx) > 5 + ¢,
which is a contradiction.
Conversely, assume that
d(z,C) < 1ikn_1>£f d(z,Cy), vV x e R, (2.4)

Let B(x,€) be a closed ball with C' N B(z,e) = @. By Eq. (2.3), this implies that
d(z,C) > €, which by assumption (2.4) yields d(x,C}) > € for all sufficiently large k.
Using Proposition 2.2.10(a)-(ii) and relation (2.3), it follows that C' D limsup,_, ., Ck-

(b) This part follows from part (a) and the fact that for any closed set C, d(z,C) is a
continuous function of x. In particular, for any sequence {:131} that converges to x and any

closed set Cj, we have

lim d(zi,Cy) = d(z, Cy),

17— 00
from which we get

lim sup d(zg, Cx) = limsup d(z, Cy),

k—o0 k—o0

and

liminf d(zk, Ck) = likm inf d(z, Cy),

k—o0
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which together with part (a) proves the desired result. Q.E.D.

Proposition 2.2.12 (Set Convergence through Projections):  Let {Cy} be
a sequence of nonempty closed subsets of 8 and C be a nonempty closed subset of
Rn. Let Pc(z) denote the projection set of a vector xz € R” to set C, i.e., Po(z) =

arg mingec ||z — y||.

(a) We have C, — C if and only if limsup,,_, ., d(0,C) < oo and

limsup Pe, (z) C Pc(x), for all z € R

k—oo

(b) The result of part (a) can be extended as follows: Cj — C' if and only if

limsup;,_, ., d(0,Ck) < oo and

limsup Pg, (vx) C Po(x), for all sequences {xx} — x and all x € R".

k— o0
(c) Define the graph of the projection mapping Pc as a subset of R2” given by
gph(Po) = {(a:,u) | z € R ju € Pc(:n)}.

Cy — C if and only if the corresponding sequence of graphs of projection map-

pings {Pc, } converges to the graph of Pc.

Proof:

(a) Assume that Cy — C. By Proposition 2.2.11(a), this implies that d(z, Cy) — d(z,C)
for all x € ®". In particular, for z = 0, we have limsup,_, ., d(0,Cx) = d(0,C) < oo (by
closedness of C' and Weierstrass’ Theorem). For any x € R, let T € limsup,_,,, Pc, (z). By
definition of the outer limit of a sequence of sets, this implies the existence of a subsequence

{Pck (:U)}kelC and vectors xy, € P, (x) for all k£ € IC, such that limg o, rex Tx = T. Since
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xy € Pc, (), we have

lxx — z|| = d(z, Ck), VEkek.

Taking the limit in the preceding relation along the relevant subsequence and using Propo-
sition 2.2.11(a), we get
[T — 2| = d(z,C).

Since by assumption C} — C and T = limy_.o, rex 1 With 23, € C), we also have that
T € C, from which, using the preceding relation, we get T € Pc(z), thereby proving that

lim sup;,_, ., Pc, (x) C Po(zx) for all x € Rn.

Conversely, assume that limsup,_, . d(0,Ck) < oo and

limsup Pe, (z) C Pc(x), for all x € Rn. (2.5)

k—oo

To show that C — C, using Proposition 2.2.11(a), it suffices to show that for all x € R,
d(z,Cy) — d(x,C). Since the set Oy is closed for all k, it follows that the set Pc, () is
nonempty for all k. Therefore, for all k£, we can choose a vector x, € Pc, (), i.e., i € Cj
and

lzx — ]| = d(z, C).

From the triangle inequality, we have
e =yl < llzll +llyll, vy €Ck,
for all k. By taking the minimum over all y € C of both sides in this relation, we get
d(z,Cy) < ||z|| + d(0, Cy).

In view of the assumption that limsup,_, ., d(0,C)) < oo, and the preceding relation, it
follows that {d(:z:, Ck;)} forms a bounded sequence. Therefore, using the continuity of the
norm, any limit point of this sequence must be of the form ||Z — z|| for some limit point =
of the sequence {x}. But, by assumption (2.5), such a limit point Z belongs to Pc(z), and
therefore we have

[ — x| = d(z, C).

58



Hence, the bounded sequence {d(a:, Ck)} has a unique limit point, d(x,C'), implying that
d(z,Cy) — d(x,C) for all z € R", and proving by Proposition 2.2.11 that C — C.

(b) The proof of this part is nearly a verbatim repetition of the proof of part (a), once we

use the result of Proposition 2.2.11(b) instead of the result of Proposition 2.2.11(a) in part

(a).

(c) We first assume that C, — C. From part (b), this is equivalent to the conditions,

lim sup d(0, C) < oo, (2.6)
k—oo
limsup Pe, (zx) C Po(x), for all {zx} — x and all € R7. (2.7)

k—oo

It can be seen that condition (2.7) is equivalent to
lim sup gph(Pc, ) C gph(Fc). (2.8)
k—o0
We want to show that
lim gph(Pc, ) = gph(Fc).

k—o0
We will show that gph(P¢) C liminfy_ o gph(Pc, ), which together with Eq. (2.8) and the

relation liminfy_. . gph(Pc, ) C limsup,_, ., gph(Pc, ) proves the desired result.

Let 9 € R and Ty € Pco(xo). For any € > 0, we define zc = (1 — €)zo + €To. It can
be verified using triangle inequality that the set Po(z¢) consists of a single vector To. For
each k, we select any xp € Pc, (ve). (This can be done since the set Pg, (x) is nonempty

for all k£.) Using the triangle inequality, we get
@) — || = d(we, Ck) < d(0, Cr) + [|zel.

By assumptions (2.6) and (2.7)and the preceding relation, we have that the sequence {xy}
is bounded and all its limit points belong to Pc(x¢), which only contains the vector o.
Hence, the vectors (z¢,zr) € gph(Pc, ) converge to (ze,Zo) € gph(Pc), which by definition
of the inner limit of a sequence of sets implies that (z¢,Zo) € liminfy_ . gph(Pc, ). This
being true for arbitrary € > 0, we get (xo0,Z0) € liminfy_. gph(Pc, ), proving the desired

claim.
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Conversely, assume that limy .o gph(Pc, ) = gph(FPc). This implies that lim sup,,_, ., gph(Pc, ) C
gph(Pc), which is equivalent to condition (2.7). It remains to show condition (2.6). By
assumption, for any (z,7) € gph(Pc), there exists a sequence of points (z,Zx) € gph(Pc,)

that converge to (z,T). From triangle inequality, we have
d(0,Cr) < llzell + llzr — z .

Taking the limit in the preceding relation, we get lim sup,,_, . d(0,C}) < oo, hence proving

that Cy, — C.  Q.E.D.

A remarkable feature of set convergence is that there is an associated “compactness
property,” i.e., for any sequence of sets {C}}, there exists a convergent subsequence, as

shown in the next proposition.

Proposition 2.2.13 (Extraction of Convergent Subsequences): Let {C}}
be a sequence of nonempty subsets of 3t». Let T be a vector in the outer limit set
limsup,_, ., Crx. The sequence {Cy} has a subsequence converging to a nonempty

subset C of "™ that contains Z.

Proof: Let T be a vector in the set limsup,_,., Cx. Then, there exists an index set
No and a corresponding subsequence {zj }ie Ny such that zp € Cj for all k& € Npand
limg oo, keny Tx = T. Consider the countable collection of open balls given in Proposition
2.2.10 [i.e., balls int(B(z,€)) where € and the coordinates of  are rational] and arrange
them in a sequence {Oy}. We construct a nest of index sets Ng D Ny D N2 D --- by

defining

{k e Nj_1|Cr,nNO; # O} if this set of indices is infinite,
T {k,‘ S Nj71 | CiL N Oj = 0} otherwise.

Finally, we form another index set N by taking the first index in Ny, and at each step,
letting the jt" element of N to be the first index in N; larger than all the indices previously
added to N. Then, N has infinitely many elements, and for each j, either C, N O; # O for
all but finitely many k£ € N or C; N O; = @ for all but finitely many k € N.
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Let C' = limsupyey Ck. The set C contains 7, and is therefore nonempty. For each
of the balls O; intersecting C, it can’t be true that C, N O; = ¢ for all but finitely many &,
so such balls O; must be in the other category in the above construction scheme: we must
have Cy, N O; # O for all but finitely many & € N. Therefore, using Proposition 2.2.10, it
follows that C' C liminfyecn Cf, proving that limy o0, ken Cr = C.  Q.E.D.

2.2.3.2. Polars of Tangent and Normal Cones

In this section, we derive polar cones corresponding to tangent and normal cones. We will
use these results to relate tangent and normal cones to each other and obtain alternative
characterizations of regularity. These will also be useful later on in our analysis in Chapter

4.

Proposition 2.2.14 (Polar of the Tangent Cone): Let C be a subset of 7. A
vector v € R™ belongs to T (z)* if and only if

v'(Z —z) < o]z — =), Vzed.

Proof: Let v be a vector such that
V(T —z) < o||z — x|, vVzecl. (2.9)

Let y be an arbitrary vector in T¢(z). By Prop. 2.2.8, this implies the existence of sequences

{1’k} C C and ag | 0 with
L — X

Yk =

— .
Qg

We have from Eq. (2.9) that
V' (zk — x) < o||ak — ),
from which using the definition of y;, we get

plar=a) o olllee—al) _ ofoxlyel)

Qg Qg 73
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Taking the limit as k — oo in the preceding relation together with the fact that y, — y, we

obtain

v’y < 0.

Since y € T¢(x) is arbitrary, this shows that v € Te(z)*.

To show the converse, we first note that the property given in Eq. (2.9) is equivalent
to the condition that for all sequences {z} C C such that z — x with x) # x for all k,

we have

Tp— T
lim sup L —— <0.
k—oo Tk — ||
Suppose that vector v does not satisfy this condition, i.e., there exists a sequence {xy} C C

such that xp — x with xp # z for all k£ and

lim sup U’M > 0.
k—oo |7k — 2|
We show that v ¢ Te(z)*. Denote
L — X
Ye = 57— -
[z — |

By passing to the appropriate subsequence if necessary and using the continuity of the inner

product, we assume without loss of generality that y, — y with

v'y > 0.

We also have by definition of a tangent that y € T (z). Hence, it follows that v ¢ T (z)*,
concluding the proof. Q.E.D.

We next define a special kind of normal vector, which can be used to approximate

normal vectors and is easier to use in analysis.
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Proposition 2.2.15 (Proximal Normals): Let C be a closed subset of ®" and
for any x € ®7, let T be the projection of x on C, i.e., T € Pc(x). Any vector v of the
form v = A(z —T) for some A > 0 is called a prozimal normal to C' at . [The proximal

vectors to C' at T are thus the vectors v such that T € Po(T + 7v) for some 7 > 0.]
(a) Every proximal normal vector is a normal vector.

(b) Assume that C' is convex. Every normal vector is a proximal normal vector.

Proof:

(a) Let v be a proximal normal vector to C' at some T € C. By definition, this implies that
v = Mz — ) for some A > 0 with Z € Po(z). Hence, T € argminyec 1 |ly — z||2, which,

using the necessary optimality condition, implies that
@ —=)y=0, VyeTo(@),

and therefore (z — ) € To(T) C N¢(T). Since Ne(z) is a cone, it follows that A(x —T) €
N, (%) for all A > 0, showing that v € N¢(T).

(b) Let v € N¢(Z) for some T € C. Consider the function f(z) = 1|z — (Z + v)||2. The
gradient of this function at T is Vf(Z) = —v, which by assumption satisfies —V f(T) €
Nc(Z). Since C is a convex set and f is a strictly convex function, this condition is
necessary and sufficient for T to minimize f(x) over C. Hence, we have T € Pc(T + v),

which by definition implies that v is a proximal normal to C' at =, and concludes the proof.

Q.E.D.

For a nonconvex set C', there can be normal vectors that are not proximal normal

vectors. Consider the set C' given by

C={(z1,22) | 22 > :z:“;’/“r’, z2 > 0}.

The vector v = (1,0) is a normal vector to C' at T = (0,0). However, no point of {Z + 7v |

7 > 0} projects onto Z, implying that v is not a proximal normal to C' at T. The next
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proposition illustrates how proximal normal vectors can be used to approximate normal

vectors.

Proposition 2.2.16 (Approximation of Normal Vectors): Let C be a nonempty

closed subset of R” and let T € C and 7 € N¢ (7).

(a) There exist a feasible sequence x, — T and a sequence v, — U such that vy is a

proximal normal to C' at xj, (see Proposition 2.2.15), and therefore v € No(xg).

(b) Let {Ck} be a sequence of nonempty closed sets with lim sup,,_, . Cx = C. There
exists a subsequence {Cf}rex together with vectors z € C and proximal nor-

mals vy € N¢, (xf) such that

{zk} ek — 7, {vk}kex — .

(c) Let I be an arbitrary index set and for each ¢ € I, let {C}} be a sequence of
nonempty closed sets with (J,.; limsup,_,,, Cj = C. For each i € I such that
T € limsup,_,,, C}, there exists a subsequence {C}}rcx together with vectors

z, € C} and proximal normals v; € Ngi (z) such that
k

{zk} ek — 7, {vk}kex — .

Proof:

(a) It is sufficient to treat the case when v € T (Z)*. (The more general case follows
straightforwardly from the definition of a normal vector.) Assume without loss of generality

that ||v]| = 1. For a sequence of values € | 0, consider the vectors
Tk =T+ €4, (2.10)

and their projection set P (&), which is nonempty. For each k, let z; € Po(Z). It follows
from Eq. (2.10) that z; — Z. consider the proximal normals to C' at xj, defined by
T — Tk T — Tk

o= Tk 54 : (2.11)
€k €k

64



We now show that vy, — ©. Since xy, € Po (%) and ||Zy — || = €k, we have e > ||Zr — zk]|,
so that ||vg|| < 1. We get from Eq. (2.11)
H@ — kaZS 2 — 20 vy,

:2—2<1+5’x_x'“>
€x

T — X

=20

€k
_ ol —7])
o me =l
In the last inequality, we used the assumption that 7 € T (T)* together with the charac-
terization of T¢(Z)* given in Proposition 2.2.14. We also used the fact that e, > ||zx — Z||,
which follows from elementary geometry and the fact that (2 — zx) € Te(zk)* (cf. Propo-
sition 2.2.15). Taking the limit in the preceding relation as k — oo, we see that vy — T,

hence proving our claim.

(b) Using part (a), it is sufficient to consider the case when ¥ is a proximal normal to C
at T, i.e., for some 7 > 0, we have T € P (T + 70). From Proposition 2.2.13, we have that
there exists a subsequence {Cj }rex with limg_.o, kex Cr =Y, such that T belongs to Y.
Since Y C C' and 7 €Y, it follows that T € Py (Z + 70). Then, using Proposition 2.2.12(c),
we have that there exist sequences

{zk ke — 7, {uktkex — T + 77,

with 3, € Pc, (u). Equivalently, there exist sequences

{Tk}rex — 7, {Vk}hex — 0

with x, € Pc, (vx + Tvi), which implies that vy is a proximal normal to Cj at zj, and

concludes the proof.

(c¢) The proof of this part is nearly a verbatim repetition of the proof of part (b) once we

focus on the outer limit sets limsup;_, ., Cy that contain z. Q.E.D.

We next characterize the polar of the normal cone. The estimate obtained in part (c)

of the following proposition is crucial for this purpose.

65



Proposition 2.2.17 (Normals to Tangent Cones): Let C be a closed nonempty
subset of }” and let z € C. Denote the tangent cone of C' at x by T for notational

convenience.

(a) For any vector w € T and scalar A > 0,

TT()\UJ) = TT (w)

(b) N7(0) = Uy er Nr(w) C No().

(c) For any vector w ¢ T, there is a vector v € N¢(z) with |lv]] = 1 such that
d(w,T) = v'w, where d(w,T') denotes the distance of the vector w to set T, i.e.,

d(w,T) = minyer ||y — w||.

Proof:

(a) Let y be a vector in Tpr(w). By definition, this implies the existence of sequences

{wr} C T with wy, — w, and «aj, | 0 such that

wE —w

- Y,
Qg

or equivalently for some A > 0,

AW — A\w \
— H .
(%% y

Since T'is a cone, the sequence {\wy } C T with Awy, — Aw. This implies that Ay € Tr(A\w).

Because Tr(Aw) is also a cone and A > 0, we also have y € Tr(A\w).

Conversely, let y € Tr(Aw) for some A > 0. By definition, this implies the existence

of sequences {wy} C T with wy, — Aw, and «aj, | 0 such that

WE — AW
- Y,
g

or equivalently,
Wi / A—w
/A
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Since T is a cone and A > 0, the sequence {“t} C T with “* — w. Moreover, 5t | 0,

implying together with the preceding relation that y € Tr(w) and concluding the proof.

(b) We first show that N7(0) = ,,cr Nr(w). Clearly N7(0) C U, er N7(w). Next, we
show that for all w € T', Npr(w) C Nr(0). Let y € Np(w). By definition, this implies that
there exist sequences {wy} C T with wy, — w and yr — y with yi € Tr(wg)*. Consider
next the sequence {\ywy} for an arbitrary sequence Ay | 0. Since T' is a cone, it follows
that

{Mwi} C T, AMwy — 0.

We also have from part (a) that
TT<)\]€wk> = TT(wk), YV k.

Hence, there exist sequences {A\ywy} C T with Aywy — 0 and yr — y with yi € Trp(Apwg)*,
which by definition of a tangent implies that y € N7 (0), and thus proving that ( J,,., N7 (w) C
Nr(0).

Next, we show that Np(0) C No(x). Consider any vector v € Np(0). By definition,

the tangent cone can equivalently be represented as

T:U{limsupc_m ‘TklO},

k—o0 Tk

i.e., the union is taken over all sequences 7, | 0. Hence, from Proposition 2.2.16, there

exists a sequence 7 | 0 along with points wy € T, = CT_“T and vectors vy € N, (wy) such

that wyr — 0 and v — v. For each k, define
T = T + TRpW.

We have that {z}} C C with ), — «. It also follows that N7, (wi) = N¢(zx). Hence, there
exist sequences {z} C C with z; — = and vy — v with vy € Neo(zg). Using the definition

of the normal cone, this implies that v € No(z) and concludes the proof.

(c) Consider the set Pr(w) = argminyer ||y —w||, which is nonempty since 7" is closed. Let
w € Pr(w), and define
w—w
V=
[[w — 0]
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which is a proximal normal to 7" at w and therefore, by Proposition 2.2.15, v € Nr(w),
which implies by part (a) that v € N¢(z). This establishes the first part of the assertion.
We now show that

d(w,T) = ||w —w|| = v'w.

For this purpose, consider the function f(7) = 1|lw — 7w||2. Since T is a closed cone, we

have 7w € T for all 7 > 0, and because W € Pr(w), the minimum of f(7) over 7 > 0 is

attained at 7 = 1. This implies

Hence, it follows that v'w = 0 and
v'(w—w) = ||w—w|| = vw,

which is the desired result. Q.E.D.

Proposition 2.2.18 (Polar of the Normal Cone): Let C be a closed subset of
Rn. A vector w € R™ belongs to N (x)* if and only if for every sequence {z,} C C

with xp — x, there are vectors wy € To(zk) such that wy — w.

Proof: Let w be a vector such that for every sequence {x} C C with x, — =z, there
are vectors wy, € Te(xy) such that wyp — w. Let v be an arbitrary vector that belongs to
N¢(z). By definition of the normal cone, this implies that there exist sequences {Z} C C

with T, — x and v, — v with vy, € Te(T)*. Hence, for each k& we have
vwy <0,

which taking the limit as k — oo yields
vw < 0.

Since v € N¢(z) is arbitrary, we have w € N¢(z)*.
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Conversely, assume that w does not satisfy the condition given in this exercise, i.e.,
there exists a sequence {x}} C C with z; — 2 and € > 0 such that d(w, Tc(a:k)) > ¢. Using

Proposition 2.2.17(c), this implies that there exist vectors vy € Ne () with ||vg|| = 1 and
vhw = d(w,Te(zr)) > e

Any limit point v of the sequence {vy} belongs to Nco(x), by definition of the normal cone,

and satisfies

v'w > e >0,

thereby implying that w ¢ N¢(x)*, and proving the desired result. Q.E.D.

Proposition 2.2.19 (Alternative Characterization of Regularity):  Assume

that C is closed. An equivalent definition of regularity at z (cf. Definition 2.2.4) is
To(x) = No(z)*.

In particular, if C' is regular at z, the cones T¢(x) and N¢(z) are convex.

Proof: Assume that No(z) = Te(z)*. Using the Polar Cone Theorem, this implies
Ne(x)* = (TC(:E)*)* = conv (T (z)).

From Proposition 2.2.18, it follows that N¢(xz)* C Teo(x). Together with the preceding

relation, this implies that the cone T (x) is convex and Ne(z)* = Te(x).

Conversely, assume that No(z)* = To(z). Using the Polar Cone Theorem, this implies
To(x)* = (Nc(x)*)* = conv(N¢(z)).

By definition of the normal cone, it follows that T (z)* C Ne(x). Together with the pre-

ceding relation, this implies that the cone N¢(z) is convex and T¢(x)* = Neo(z).  Q.E.D.
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2.3. OPTIMALITY CONDITIONS

We have already seen in Chapter 1 necessary optimality conditions for optimizing arbitrary
cost functions over convex constraint sets. In this section we present classical optimality
conditions for different types of constrained optimization problems. Here, we do not assume
any structure on the constraint set C. For the proofs of these results, see [BNOO02]. In

particular, we consider problems involving;:
(a) A smooth cost function and an arbitrary constraint set.
(b) A convex (not necessarily smooth) cost function and a convex constraint set.
(¢) A convex ( not necessarily smooth)cost function and an arbitrary constraint set.

When the constraint set is nonconvex, the tangent cone defined in the preceding section is
used as a suitable approximation to the constraint set, as illustrated in the following basic

necessary condition for local optimality.

Proposition 2.3.20: Let f : ®” — R be a smooth function, and let x* be a local

minimum of f over a set C' C R". Then
Vf(z*)y >0, VyeTo(x*).
If C is convex, this condition can be equivalently written as
Vf(z*)(x—x*) >0, Vzedl,

and in the case where C' = R, reduces to V f(z*) = 0.

The necessary condition of Prop. 2.3.20 for a vector x* € C to be a local minimum of

the function f over the set C' can be written as
—Vf(xz*) € To(x*)*. (3.1)

An interesting converse was given by Gould and Tolle [GoT71], namely that every vector in

To(x*)* can be described as the negative of the gradient of a function having x* as a local
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minimum over C. The following version of this result was given by Rockafellar and Wets

([RoW98], p. 205).

Proposition 2.3.21:  If z* is a vector in C, then for every z € Tc(z*)*, there is a
smooth function f with —V f(z*) = 2, which achieves a strict global minimum over C

at o*.

We will return to this result and to the subject of conical approximations when we

discuss Lagrange multipliers and conical approximations in Chapters 3 and 4.

Proposition 2.3.22: Let f: R" — R be a convex function. A vector x* minimizes
f over a convex set C' C R if and only if there exists a subgradient d € df(z*) such
that

d(z—x*) >0, Vazecd.

Equivalently, x* minimizes f over a convex set C' C R" if and only if
0 € df(z*) + Te(a*)*,

where Tc(z*)* is the polar of the tangent cone of C' at x*.

We finally extend the optimality conditions of Props. 2.3.20 and 2.3.22 to the case

where the cost function is convex (possibly nondifferentiable).

Proposition 2.3.23:  Let x* be a local minimum of a function f : R" — R over a

subset C' of R". Assume that the tangent cone T¢(z*) is convex and f is convex. Then

—afl (CL‘*) S Tc(:E*)*.
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CHAPTER 3

ENHANCED OPTIMALITY CONDITIONS AND DIFFERENT

TYPES OF LAGRANGE MULTIPLIERS

We focus on optimization problems of the form
minimize f(x)
(0.1)
subject to x € C,
where the constraint set C' consists of equality and inequality constraints as well as an
additional abstract set constraint X:

C=Xn{z|hi(z)=0,...,hm(z) =0} N{z | g1(z) <0,...,g-(x) <0}. (0.2)

We assume in Chapters 3 and 4 that f, h;, g; are continuously differentiable (smooth)
functions from R™ to R, and X is a nonempty closed set. More succinctly, we can write

problem (0.1)-(0.2) as
minimize f(x)
subject to z € X, h(z)=0, g(x) <0,

where h : 7 — R™ and ¢ : R — R" are functions
h=(hi,...,hm), g=1(91,---,9r).

We have seen in Chapter 2 that a classical necessary condition for a vector z* € C to

be a local minimum of f over C' is

Vf(xz*)y >0, Vy e To(x*), (0.3)
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3.1.

where Te(z*) is the tangent cone of C' at x*. In this chapter, our objective is to develop
optimality conditions for problem (0.1) that take into account the specific representation of
set C' in terms of constraint functions h; and g;. These optimality conditions are sharper
than the classical Karush-Kuhn-Tucker conditions in that they include extra conditions,
which may narrow down the set of candidate local minima. They are also more general
in that they apply when in addition to the equality and inequality constraints, there is an
additional abstract set constraint. For this purpose, we make use of the variational geometry
concepts that we have developed in Chapter 2. These optimality conditions motivate the
introduction of new types of Lagrange multipliers that differ in the amount of sensitivity
information they provide. In this chapter, we also investigate existence of such multipliers

and their relations.

CLASSICAL THEORY OF LAGRANGE MULTIPLIERS

Necessary optimality conditions for optimization problems with equality constraints have
been known for a long time, in fact since Euler and Lagrange. Lagrange multiplier theorems
for inequality constraints come considerably later. Important works in this area were done
by Karush [Kar39], and Kuhn and Tucker[KuT50], who essentially proved the same result
under different assumptions. The next proposition presents this result under a “regularity”
assumption (for the proof, see [Ber99]). For any feasible vector x, the set of active inequality

constraints is denoted by
A(z) = {j | g;(=) = 0}.

We say that a feasible vector of problem (0.1)-(0.2) is regular when X = R, and the equality
constraint gradients Vh;(x*), ¢ = 1,...,m, and the active inequality constraint gradients

Vg;(z*), j € A(x*) are linearly independent.
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Proposition 3.1.1 (Karush-Kuhn-Tucker Necessary Optimality Conditions):
Let x* be a local minimum of problem (0.1)-(0.2), where X = ®”, and assume that
x* is regular. Then there exist unique Lagrange multiplier vectors \* = (A}, ..., A\f),

p* = (pi, ..., ur), such that

V@) + > N Vhi(a*) + Y @i Vg;(a*) =0,

i=1 j=1

pi =0,  Vj¢Ar).

The preceding is an important, widely-used result; however it is limited by the reg-
ularity assumption. Although this assumption is natural for equality constraints, it is
somewhat restrictive for inequality constraints. The reason is that in many types of prob-
lems; for instance linear programming problems, there may be many inequality constraints
that are satisfied as equalities at a local minimum, but the corresponding gradients are
linearly dependent because of inherent symmetries in the problem’s structure. Therefore,
we would like to have a development of the Lagrange multiplier theory that is not based on
regularity-type assumptions.

Moreover, the preceding proposition does not apply to the case where the constraint
set description includes an additional abstract set constraint X. We would like to build
up a theory that handles such constraint sets. With this motivation, we give the following

definition of Lagrange multipliers.

Definition 3.1.1:  We say that the constraint set C, as represented by Eq. (0.2),
admits Lagrange multipliers at a point x* € C' if for every smooth cost function f for
which z* is a local minimum of problem (0.1) there exist vectors \* = (A],...,\})

and p* = (ui, ..., ) that satisfy the following conditions:
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=1
pi>0,  Vi=1,...m (1.2)
=0, Vg A, (1.3)

A pair (\*, p*) satisfying Eqgs. (1.1)-(1.3) is called a Lagrange multiplier vector corre-
sponding to f and x*.

When there is no danger of confusion, we refer to (A\*, u*) simply as a Lagrange multi-
plier vector or a Lagrange multiplier, without reference to the corresponding local minimum
x* and the function f. Figure 3.1.1 illustrates the definition of a Lagrange multiplier. Con-
dition (1.3) is referred to as the complementary slackness condition (CS for short). Note
that from Eq. (1.1), it follows that the set of Lagrange multiplier vectors corresponding
to a given f and z* is the intersection of a collection of closed half spaces [one for each

y € Tx(x*)], so it is a (possibly empty or unbounded) closed and convex set.

The condition (1.1) can be viewed as the necessary condition for z* to be a local

minimum of the Lagrangian function

L(x, A%, ) +Z/\* )+ ) wrg;(x)
j=1

over x € X (cf. Prop. 2.3.22). This is consistent with the traditional characteristic property
of Lagrange multipliers: rendering the Lagrangian function stationary at x*. When X is a

convex set, Eq. (1.1) is equivalent to
/

j=1

This is because when X is convex, Tx(x*) is equal to the closure of the set of feasible
directions Fx (z*) (cf. Proposition 2.2.9), which is in turn equal to the set of vectors of the
form a(z — x*), where « > 0 and x € X. If X = R", Eq. (1.4) becomes

V@) + Y A Vhi(a*) + ) piVg(a*) =0,

i=1 j=1
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TX(X")"

vg(x)
/
TX(X")
g(x) =<0
Figure 3.1.1. Illustration of a Lagrange multiplier for the case of a single

inequality constraint and the spherical set X shown in the figure. The tangent
cone T'x (z*) is a closed halfspace and its polar Tx (z*)* is the halfline shown
in the figure. There is a unique Lagrange multiplier p*, and it is such that
- (Vf(:t*) + u*Vg(a:*)) belongs to Tx (x*)*.

which together with the nonnegativity condition (1.2) and the CS condition (1.3), comprise

the classical Karush-Kuhn-Tucker conditions (cf. Proposition 3.1.1).

3.2. ENHANCED FRITZ JOHN CONDITIONS

The analysis in this thesis is strongly motivated by an enhanced set of optimality conditions,
which will be the focus of this section. Weaker versions of these conditions were shown in a
largely overlooked analysis by Hestenes [Hes75] for the case where X = R”, and in [Ber99]
for the case where X is a closed convex set. They are strengthened here [cf. condition (iv)
of the following proposition] and further generalized for the case where X is a closed but

not necessarily convex set.

The following proposition presents these optimality conditions. It enhances the classi-

cal Fritz John optimality conditions by providing additional necessary conditions through a
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penalty function-based proof. These conditions will turn out to be crucial in our analysis in
the next chapter. They also form the basis for enhancing the classical Karush-Kuhn-Tucker
conditions. The proposition asserts that there exist multipliers corresponding to a local
minimum z*, including a multiplier uf for the cost function gradient. These multipliers
have standard properties [conditions (i)-(iii) below], but they also have a special nonstan-
dard property [condition (iv) below]. This condition asserts that by violating the constraints
corresponding to nonzero multipliers, we can improve the optimal cost (the remaining con-
straints, may also need to be violated, but the degree of their violation is arbitrarily small

relative to the other constraints).

Proposition 3.2.3:  Let * be a local minimum of problem (0.1)-(0.2). Then there

exist scalars pg, AJ,..., A, and puj, ..., ur, satisfying the following conditions:
() = (5V S (27) + S0y i Vha(a®) + S5y 15 Vg5 (2)) € Nx(a).
(ii) pf >0forall j=0,1,...,7
(i) pegs ATs- oy Ay il .., uy are not all equal to 0.
(iv) If the index set I U J is nonempty where
I={i[ A #0},  J={7#0[n;>0},
there exists a sequence {z¥} C X that converges to z* and is such that for all k&,
f(@k) < f(x*), Afhi(zk) >0, Viel, pigi(ak)>0, Vje, (2.1)

|hi(xk)| = o(w(:vk)), Viégl, g;“(:c’“) = O(w(:ﬁk)), VjéJ, (2.2)

where we denote g*(z) = max{0, g;(z)} and

w(z) = min{r{gﬂhi(:ﬂﬂ, %i?g;'(x)}. (2.3)
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Proof: We use a quadratic penalty function approach. For each £ = 1,2, ..., consider the
“penalized” problem

m T

(@)’ + 5 37 (6 @) + gl — ]

i=1 j=1

k
minimize Fk(z) = f(z) + B)

subject to z € X NS,

where we denote

S=A{z|llz —z*|[ <},

and € is positive and such that f(z*) < f(z) for all feasible x with z € S. Since X N S
is compact, by Weierstrass’ theorem, we can select an optimal solution x* of the above
problem. We have for all k, Fk(zF) < Fk(z*), which can be written as
AL . py2 o R (.t 2 1 Lk 2
F@®) + 5D (hi(@k) "+ 5 ) (g5 (=) + glla® = 2|2 < f(a). (2.4)

2 4 24
=1 =1

Since f(z*) is bounded over X NS, we obtain

lim |hi(zF)| =0, i=1,...,m, lim gj(:rk)zo, j=1,...,m

k—o0 k—o0

otherwise the left-hand side of Eq. (2.4) would become unbounded from above as k — oo.
Therefore, every limit point T of {z*} is feasible, i.e., T € C. Furthermore, Eq. (2.4) yields
f(xk) 4+ (1/2)||xF — z*||2 < f(x*) for all k, so by taking the limit as k — oo, we obtain

£@) + 3l - 2 < f).

Since T € S and T is feasible, we have f(z*) < f(Z), which when combined with the
preceding inequality yields |[Z — x*|| = 0 so that T = z*. Thus the sequence {z*} converges
to x*, and it follows that z* is an interior point of the closed sphere S for all k greater than

some k.

For k > k, we have the necessary optimality condition of Prop. 2.3.22: —VFF(zF) €
Tx (z*)*, which [by using the formula V(g;f(x))z = 2g;f(:c)ng (z)] is written as

— | VF@k) + > €EVhi(ak) + ) FVg (k) + (zk —a%) | € Tx(ak)*,  (2.5)
i=1 j=1
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where

&F = khi(zF), CF = kg (zF). (2.6)
Denote
OF = 14D (62 + D (CH? (2.7)
i=1 j=1
P 1 e & RS
MO:(S_]{;’ )\'L:(S—]g7 Z:l,...7m7 M]:(S_k, j:1,...,T. (28)

Then by dividing Eq. (2.5) with §*, we obtain

— | ubV f(zF) + Z NeVh; (zk) + Zusgj(:ck) + 5%(:}0’“ —a*) | € Tx(ak)* (2.9)

i=1 j=1

Since by construction we have

()2 + > A2+ (uh)2 =1, (2.10)
i=1 j=1
the sequence {u’g, e N kL uk) is bounded and must contain a subsequence that

converges to some lmit {ud, A5, ..., N, 13, ..., i}

From Eq. (2.9) and the defining property of the normal cone Nx(x*) [xF — z*,
zk — z*, and zF € Tx(z*)* for all k, imply that z* € Nx(z*)|, we see that pg, A, and
w; must satisfy condition (i). From Egs. (2.6) and (2.8), uf and p} must satisfy condition
(ii), and from Eq. (2.10), ug, A7, and p} must satisfy condition (iii). Finally, to show that
condition (iv) is satisfied, assume that I U J is nonempty, and note that for all sufficiently
large k within the index set K of the convergent subsequence, we must have Af\¥ > 0 for
all i € I and pip% > 0 for all j € J. Therefore, for these k, from Eqgs. (2.6) and (2.8),
we must have Afh;(z%) > 0 for all ¢ € I and pjg;(z*) > 0 for all j € J, while from Eq.
(2.4), we have f(zF) < f(z*) for k sufficiently large (the case where z* = z* for infinitely
many k is excluded by the assumption that /U.J is nonempty). Furthermore, the conditions

|hi(z%)| = o(w(x*)) for all i ¢ I, and g;L(xk) < o(w(z*)) for all j ¢ J are equivalent to

]/\ﬂzo(min{rglei?|kf|,1}1eiguf}), Vigl,
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and

respectively, so they hold for k € K. This proves condition (iv). Q.E.D.

Condition (iv) of Prop. 3.2.3 resembles the “complementary slackness” (CS) condition
(1.3) of Karush-Kuhn-Tucker optimality conditions. Recall that, this name derives from the
fact that for each j, whenever the constraint g;(z*) < 0 is slack [meaning that g;(z*) < 0],
the constraint ©; = 0 must not be slack (meaning that Wi = 0). In analogy with this
interpretation, we refer to condition (iv) as the complementary violation condition (CV for
short), signifying the fact that for all j, u > 0 implies g;(z) > 0 for some x arbitrarily
close to x*. This condition can be visualized in the examples of Fig. 3.2.2. It will turn out
to be of crucial significance in our development. The next proposition clarifies the relation

between CS and CV conditions.

Proposition 3.2.4: Let pu* be a vector that satisfies CV condition. Then p* also

satisfies CS condition.

Proof: Let p* be a vector that satisfies CV condition. This implies that, if 7 > 0 for
some j, then the corresponding jth inequality constraint must be violated arbitrarily close
to z* [cf. Eq. (2.1)]. Hence, we must have g;(z*) = 0, showing that p* satisfies CS condition.
Q.E.D.

The following example shows that the converse of the preceding statement is not true.

Example 3.2.1:

Suppose that we convert the problem miny,;)—o f(x), involving a single equality constraint,
to the inequality constrained problem

minimize f(z)

subject to h(z) <0, —h(z)<O0.
Assume that Vf(z*) = Vh(x") and consider the multipliers 47 = 1, 43 = 2 in Definition

3.1.1. These multipliers satisfy the Lagrangian stationary condition as well as the CS con-
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dition. However, they fail the CV condition, since both constraints have positive multipliers

and it is not possible to find a vector x € R™ that violates both constraints simultaneously.

Level sets of f

Figure 3.2.2.
X = R2, the multipliers that satisfy the enhanced Fritz John conditions are the

g91(x) =<0

Vg2(x")

/]

TX(X")"

Levey

-

/
\

sets of f

/

)
Vg1(x)

92(x) =0

<3

(b)

Ilustration of the CV condition. In the example of (a), where

positive multiples of a unique vector of the form (1, p},us) where 7 > 0 and

puy > 0. It is possible to violate both constraints simultaneously by approaching

x* along the sequence {z*} shown, which has a lower cost value than z*. In the
example of (b) X is the shaded region shown rather than X = R2. Origin is the

only feasible solution, therefore is optimal for the cost function depicted in the

figure. An example of a multiplier that satisfy the enhanced Fritz John conditions

is the vector (0, u], u3), where puf > 0 and p3 > 0. It is possible to violate both

constraints simultaneously by approaching z* along the sequence {z*} shown.
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If X is regular at x*, i.e., Nx(a*) = Tx (x*)*, condition (i) of Prop. 3.2.3 becomes

— | V@) + D> N Vhi(a*) + > wiVg,(a*) | € Tx(z+)*,
i=1 j=1

or equivalently

/

BEV I+ 3N Vhi(a) + 3 V() | y20, Yy e Tx(ar).

i=1 j=1

If in addition, the scalar uf can be shown to be strictly positive, then by normalization we
can choose pf = 1, and condition (i) of Prop. 3.2.3 becomes equivalent to the Lagrangian
stationarity condition (1.1). Thus, if X is regular at 2* and we can guarantee that uf =1,
the vector (A\*, u*) = {\, ..., A, uf, ..., pur} is a Lagrange multiplier vector, which satisfies

the stronger CV condition.

As an example, if there is no abstract set constraint (X = R7), and the gradients
Vhi(z*),i=1,...,m, and Vg;(z*), j € A(xz*), are linearly independent, we cannot have
pg = 0, since then condition (i) of Prop. 3.2.3 would be violated. It follows that there exists
a Lagrange multiplier vector, which in this case is unique in view of the linear independence
assumption. We thus obtain the Lagrange multiplier theorem presented in Proposition
3.1.1. This is a classical result, found in almost all nonlinear programming textbooks, but
it is obtained here through a simple argument and in a stronger form, since it includes the

assertion that the multipliers satisfy the stronger CV condition in place of the CS condition.

To illustrate the use of the generalized Fritz John conditions of Prop. 3.2.3 and the

CV condition in particular, consider the following example.

Example 3.2.2:

Consider the problem of Example 3.2.1 and let z* be a local minimum. The Fritz John
conditions, in their classical form, assert the existence of nonnegative ug, A™, A, not all
zero, such that

poVf(z*) + ATVh(z*) — A" Vh(z®) = 0. (2.11)

The candidate multipliers that satisfy the above condition as well as the CS condition

ATh(z*) = Ah(z*) = 0, include those of the form uf = 0 and At = A~ > 0, which provide
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3.3.

no relevant information about the problem. However, these multipliers fail the stronger CV
condition of Prop. 3.2.3, showing that if u§ = 0, we must have either AT # 0 and A\~ =0
or At = 0 and A\~ # 0. Assuming Vh(z*) # 0, this violates Eq. (2.11), so it follows that
pug > 0. Thus, by dividing Eq. (2.11) by ug, we recover the familiar first order condition
Vf(z*) + \*Vh(z*) = 0 with A* = (AT — A7) /u, under the assumption Vh(z*) # 0. Note
that this deduction would not have been possible without the CV condition.

We will further explore the CV condition as a vehicle for characterizing Lagrange

multipliers in the next section.

DIFFERENT TYPES OF LAGRANGE MULTIPLIERS

Motivated by the complementary violation condition of the preceding section, we introduce
different types of Lagrange multipliers in this section, which carry different amount of

information about sensitivity to constraints of the problem, and investigate their relations.
3.3.1. Minimal Lagrange Multipliers

In some applications, it may be of analytical or computational interest to deal with Lagrange
multipliers that have a minimal number of nonzero components (a minimal support). We
call such Lagrange multiplier vectors minimal, and we define them as having support I U J

that does not strictly contain the support of any other Lagrange multiplier vector.

In the next proposition, we will show that under some convexity assumptions regard-
ing the abstract set constraint X, every minimal Lagrange multiplier possesses significant
amount of sensitivity information. For this purpose, we first make the following definition.
In particular, let us say that a Lagrange multiplier (A\*, u*) is strong if in addition to Eqgs.

(1.1)-(1.3), it satisfies the condition

(iv/) If the set I U J is nonempty, where I = {i | A} # 0} and J = {j # 0 | uj > 0}, there

exists a sequence {x¥} C X that converges to x* and is such that for all k,
f(@F) < f(x*), Afhi(z*) >0, Viel, pigij(z*) >0, VjeJ (3.1)
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Proposition 3.3.5:  Let z* be a local minimum of problem (0.1)-(0.2). Assume
that the tangent cone T'x(z*) is convex and that the set of Lagrange multipliers is

nonempty. Then, each minimal Lagrange multiplier vector is strong.

Proof: We first show the following lemma, which is of independent interest.

Lemma 3.3.1: Let N be a closed convex cone in R™. Let ag,a1,...,a, be given

vectors in 7, and A be the cone generated by a1, ..., a,:

T
A= Z,ujaj ‘ wi>0,5=1,...,r
j=1
Assume that the sets —ap+ A and N have nonempty intersection. Among index subsets
J C {1,...,r} such that, for some positive p;, j € J, we have (—ao + Zje] ujaj) €N,
let J C {1,...,7} have a minimal number of elements. If the set .J is nonempty, then

there exists a vector y € N* such that

aly <0, v jeJu{o}.

Proof: Consider the index set J defined in the Lemma, and let m; >0,7¢€ J, be such
that

—ag + Zﬁjaj € N. (3.2)

Let A be the finitely generated cone

A= y‘yZZM% pj>0,j€J o,
jed
and its polar

Z*:{y\agygajej}.

85



It can be seen that the vectors aj, j € J, are linearly independent, since otherwise for some

Aj, J € J, all of which are not equal to 0, we would have
Z Aja; = 0.
€T

Since N is a convex cone, this implies

—ag + Z(ﬁj —YAj)aj | €N,
JjET

for all scalars =, and an appropriate value of v would yield an index subset J with

—aop + Z,ujaj €N,
JjedJ

pj >0, 7 € J, and a smaller number of elements than those of J. Thus, we can find a

vector y such that a;y < 0 for all j € J, and it follows that the interior of Z*, given by
int(A") ={y | aly <0, je T},

is nonempty.

Let F' be the cone generated by ao,

F = {Moao ‘ 10 20}

We claim that int(A” N F*) is nonempty. Note that ag cannot be represented as a non-
negative combination of vectors a;, j € J’, where J’ is a strict subset of J, since this
would violate the minimal support assumption in Eq. (3.2). It is possible to have ag =
Zje? Bja;, B; > 0 for all j, in which case F' C A, which implies by Proposition 2.1.2 of
Chapter 2 that A C F*. Hence, we have int(A N F*) = int(A"), which is nonempty.
Otherwise, the vectors ag, and a;, j € J are all linearly independent and we can find a
vector y such that agy < 0 and a’y < 0, for all j € J. This implies that int(Z* N F*) is

nonempty.

We next show that there exists a y € N* N int (Z* nF *) Assume, to arrive at a

contradiction, that N* and int (Z* ﬂF*) are disjoint. These sets are nonempty [cf. preceding
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discussion] and convex (since the intersection of two convex sets is convex and the interior
of a convex set is convex). Hence, by the Separating Hyperplane Theorem, there exists a

nonzero vector p such that
p'x1 < pxo, YV x1 Eint(z*ﬂF*), Vxg € N*.
Using the Line Segment Principle and the preceding relation, it can be seen that
px1 < p'aa, Vo € (ﬁ*ﬂF*), V xo € N*. (3.3)
In particular, taking x1 = 0 in this equation, we obtain
0 < pxo, Va2 € N*,
which implies, by the Polar Cone Theorem, that
—p € (N*)* = N.
Similarly, taking z2 = 0 in Eq. (3.3), we obtain
p'x1 <0, VmE(Z*ﬂF*),

which implies that

pe (A nF)".
Since both A and F are finitely generated cones, their polars are polyhedral cones (see
[BNOO2]). Therefore, the set A NF*is polyhedral and closed, and it follows from Propo-

sition 2.1.2 that
(A NnF) =4+F,

Hence, the vector p belongs to A + F and can be expressed as

p=%ao+ Y &aj, & >0,V eJu{o}. (3.4)
Jj€J
Since —p € N, we have from the preceding relation that
—&oao + Z(—fj)aj €N,
jeJ
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and therefore

—&ovao + Y _(=&v)a; €N,
jeJ

for all v > 0. Together with Eq. (3.2), this implies that

~(L+&vao+ Y (7, —1&)a; €N, ¥y =0, (3.5)

jes
Thus we can find v > 0 such that 7z; —~§; > 0, for all j and @; — & = 0 for at least one
index j € J. Since (1 + &) > 0, we can divide Eq. (3.5) by (1 + &) and the resulting
coefficient vector has less support than (fy,...,f,). This contradicts the assumption that

the index set J has a minimal number of elements. Hence, there must exist a vector y that

is in both N* and int (X* N F*), implying that aby <0 for all j € Ju{0}. Q.E.D.

We now return to the proof of Proposition 3.3.5. For simplicity we assume that all
the constraints are inequalities that are active at x* (equality constraints can be handled
by conversion to two inequalities, and inactive inequality constraints are inconsequential in

the subsequent analysis). We apply Lemma 3.3.1 with the following identifications:
N = Tx (z*)*, ag = V f(z*), aj = —=Vgj(xz*), j=1,...,r

If -V f(x*) € Tx(x*)*, the scalars fi; = 0, j = 1,...,7, form a strong Lagrange multiplier
vector, and we are done. So assume that —V f(z*) ¢ T'x (z*)*. Then, since by assumption,
there exist Lagrange multipliers corresponding to z*, the sets —ap+ A and N have nonempty
intersection [cf. Eq. (1.1)], and by Lemma 3.3.1, there exists a nonempty set J C {1,...,7}

and positive scalars 11, j € J, such that
— [ Vf(z*) + Zﬂngj(x*) € Tx (z*)*,
jeJ
and a vector y € (Tx (2*)*)" = Tx(z*) (by the Polar Cone Theorem, since by assumption
Tx (z*) is convex) such that
Vf(z*)y <0, Vg;(z*)'y > 0, Vijed. (3.6)
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Let {z*} C X be a sequence such that =¥ # z* for all k and

ak—ar oy
|2k — x| |yl

Using Taylor’s Theorem for the cost function f, we have for some vector sequence &k

xk — x*,

converging to 0,
f(@k) = fla*) + Vf(a*) (a% — %) + o([lz* — z*]])

= Vf(ary (h+ € ) ot~ + offet — )

= ||z — 2| (Vf(a:*)’i V() ek + o([|z* — x*H)) ’

lyll JaF — 2]
From Eq. (3.6), we have V f(z*)'y < 0, so we obtain f(z¥) < f(x*) for k sufficiently large.
Using also Taylor’s Theorem for the constraint functions g;, j € J, we have, for some vector
sequence £k converging to 0,

9(x*) = gj(x*) + Vg (x*)'(a* — 2%) + o([|aF — z*])

= oy (g + ) et =l + oflat o)

y of[|% — z*[])
= ||k — p* Vg x*)! +Vg T* I£k+ ,
o= (Vosto) i + Vst ye + S

from which it follows that for k sufficiently large, we have g;(z¥) > 0. It follows that the
scalars i, j € J, together with the scalars =0,y ¢ J, form a strong Lagrange multiplier
vector. Q.E.D.

The next example shows that the converse of the preceding result is not true, i.e.,

there may exist Lagrange multipliers that are strong but are not minimal.

Example 3.3.3:

Let the constraint set C be specified by two identical inequality constraints, g1 (z) = g2(x) <
0, and consider the vector *. The tangent cone at z*, Tc(z*) and its polar To(x*)* are
depicted in Fig. 3.3.3. Let f be a cost function that has a local minimum at z*. By the
necessary condition for optimality, this implies that —V f(z*) € Tc(z*)*. The Lagrange

multipliers are determined from the requirement
V(") +piVe(z™) + p2Vga(z) = 0. (3.7)
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Note that by appropriate normalization, we can select u7 = p5 > 0. These multipliers are
strong. However, they are not minimal since we can set only one of the multipliers to be

positive and still satisfy Eq. (3.7).

Te(x)"

/

A Vo1(x) = Vg2(x)

/ a4 TC()

g1(x) = g2(x)

Figure 3.3.3. Constraint set of Example 3.3.5. The tangent cone of the
feasible set T (2*) and its polar T (x*)* are illustrated in the figure.

3.3.2. Informative Lagrange Multipliers

The Lagrange multipliers whose existence is guaranteed by Prop. 3.2.3 (assuming that puf =
1) are special: they satisfy the stronger CV condition in place of the CS condition. These
multipliers provide a significant amount of sensitivity information by in effect indicating
which constraints to violate in order to effect a cost reduction. In view of this interpretation,
we refer to a Lagrange multiplier vector (A*, u*) that satisfies, in addition to Eqgs. (1.1)-(1.3),
the CV condition [condition (iv) of Prop. 3.2.3] as being informative.

Since CV condition is stronger than condition (iv’) in the definition of a strong mul-
tiplier [cf. Eq. (3.1)], it follows that informative Lagrange multipliers are also strong. We
have seen in the previous section that minimal Lagrange multipliers are strong. However,

it is not true that minimal Lagrange multipliers are necessarily informative. For example,
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think of the case where some of the constraints are duplicates of others. Then in a minimal
Lagrange multiplier vector, at most one of each set of duplicate constraints can have a
nonzero multiplier, while in an informative Lagrange multiplier vector, either all or none of
these duplicate constraints will have a nonzero multiplier. The relations between different

types of Lagrange multipliers are illustrated in Fig. 3.3.4.

Strong

9

Lagrange multipliers

Figure 3.3.4. Relations of different types of Lagrange multipliers, assuming
that the tangent cone T'x (z*) is convex (which is true in particular if X is regular
at x*).

The salient defining property of informative Lagrange multipliers is consistent with the
classical sensitivity interpretation of a Lagrange multiplier as the rate of cost improvement
when the corresponding constraint is violated. Here we are not making enough assumptions
for this stronger type of sensitivity interpretation to be valid. Yet it is remarkable that with
hardly any assumptions, at least one informative Lagrange multiplier vector exists if X is
regular and we can guarantee that we can take ufj = 1 in Prop. 3.2.3. In fact we will show
in the next proposition a stronger and more definitive property: if the tangent cone Tx (z*)
is convex (which is true if X is convex or regqular, cf. Proposition 2.2.19 of Chapter 2) and

there exists at least one Lagrange multiplier vector, there exists one that is informative.
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Proposition 3.3.6:  Let z* be a local minimum of problem (0.1)-(0.2). Assume
that the tangent cone T'x(z*) is convex and that the set of Lagrange multipliers is
nonempty. Then, the set of informative Lagrange multiplier vectors is nonempty, and

in fact the Lagrange multiplier vector that has minimum norm is informative.

Proof: We summarize the essence of the proof argument in the following lemma.

Lemma 3.3.2: Let N be a closed convex cone in ", and let ao,...,a, be given

vectors in . Suppose that the closed and convex subset of R" given by
T
M = MZO‘ - ao—i—Zujaj eN
j=1

is nonempty. Then there exists a sequence {d¥} C N* such that

apd® — —[|p*?, (3-8)
(ajdk)T — w3, j=1,...,r, (3.9)

where p* is the vector of minimum norm in M and we use the notation (a}dk)* =

max{0, a’d*}. Furthermore, we have

r

1 . 1
—Slul2 = inf S apd+ 5> ((@d)+)’

dEN* :
7j=1
(3.10)
: 1 o 2
= lim qapdt+ 2} ((afdh)*)
j=1
In addition, if the problem
1 2
minimize and 4+ = (a’d)*

subject to d € N*,

has an optimal solution, denoted d*, we have
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apd* = —||p*?, (afd )t =z, j=1,...,m (3.12)

Proof: We consider the function

/

. 1
L(d,p) = a0+ pja; | d— g lull?,
j=1

and we note that L is convex in d, and concave and coercive in p. For any v > 0, we
consider saddle points of L over d € N* N B(0,1/v) and p > 0, where B(0,1/v) denotes
the closed unit ball centered at 0 with radius 1/+. From the Saddle Point Theorem, L has
a saddle point for each v > 0, denoted by (dv, u7).

By making a change of variable d = y/~ and using the fact that N* is a cone (and
therefore N* = N*/v), we have

deN*NB(0,1/7) yeN*NB(0,1)

inf L(d,ur) = inf L <y,/ﬂ>
Y
. s’Y'y 1
_= f —_ _— — Y 2
yeN*lgB(o,l) ( vy * 2”“ | )’

where
T
57 = — GO+ZM’JGJ'
j=1
Hence, it follows that d¥ = y7/~, where

. sy
Y7 € arg min -
yEN*NB(0,1) ¥

The necessary optimality condition for the above minimization problem yields
s7(y —y7) <0, VyeN*NB(0,1),V~y>0. (3.13)
In particular, letting y = 0 in the preceding relation, we obtain

s7yr >0, YV y>0. (3.14)

93



We now note that, for any u € M, we have by the definition of M,

/

ao+z,ujaj d >0, Vde N~
j=1

so that
/
il Ldp) =l a0t Y e | de L2 = L.
deN*NB(0,1/7) deN*NB(0,1/~) o 2 2
Therefore,

L{dv, ) = inf L(d,
R P

> su inf L(d,
- Me]\% deN*NB(0,1/7) ( ,u)

1
= sup (—5nm|2)
neM

1
— _ * |2
i 2
It follows that

¥ v v
o =5 () =
Y

1 1
— |2 = =2 ]2 3.15
- 1L = I (3.15)

Since s7'y7 > 0 for all 4 > 0 [cf. Eq. (3.14)], we see from the preceding relation that
lim 57y =0, (3.16)
y—0

and that ||u7|| < ||p*||, so that uY remains bounded as v — 0. Let & be a limit point of
{p7}. Taking the limit along the relevant subsequence in Eq. (3.13), and using Eq. (3.16),
we get

/

OSIiHbsV'(y—yV):— a0+g aiaj | v, Vye N*NB(0,1).
'Y‘)
j=1

This implies that — (ao +> i ﬁjaj> € (N*n B(0,1))" = N + B(0,1)* = N. Hence
€ M, and since ||g]| < ||p*]| (in view of ||pY] < [|p*|]), by using the minimum norm

property of p*, we conclude that any limit point @ of p¥ must be equal to p*. Thus
WY =
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To show Egs. (3.8) and (3.9), we note that since L is quadratic in p, the supremum
in sup,,>q L(d, p1) is attained at

py = (ajd)t, j=1,...,m, (3.17)
so that
1 2
sup L(d, 1) = ajd + - > ((ahd)t)”, (3.18)
nw=>0 j=1
and
1
L(dv, p) = sup L(d7, p) = apd? + - || |2 (3.19)
p>0 2

From Eq. (3.15) and the facts p¥ — p* and s7'y7 > 0 for all v > 0, we obtain s7'y7 /v — 0
and

1
lim, L(d7, 17) = — = [l 2. (3.20)
¥—0 2

Equations (3.17), (3.19), and (3.20), together with the fact v — p*, yield
apdy — —||p*|?, (abd )t —pk, j=1,...,m

To show Eq. (3.10), we note that we have

T

1 2
' = i rd 4+ = ' d)+
dler}é* igpo L(d, p) dler}\f[* apd + 5 jgzl ((afd)*)™ p. (3.21)

We also have
inf_sup L(d, ) = | inf L,
. PO =y 2B LA

= lim inf L(d, u~
y—0deN*NB(0,1/) (d, 1)
1
= lim —=||u||?
Ty = 7l
1
- __ *||2
e
Combining the last two equations, we obtain the desired relation

T

1 . 1 2
sl = in S agd+ 3 S ((a))
=1

T

: 1 2
= %11% apdy + 3 ;((a;dﬂﬂ
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[cf. Eq. (3.10)].

Finally, if d* attains the infimum in the right-hand side above, it is seen that (d*, u*)
is a saddle point of L over d € N* and p > 0, and that

apd* = —||p*|?, (afd )t =pi, j=1,...,m

Q.E.D.

We now return to the proof of Prop. 3.3.6(a). For simplicity we assume that all the
constraints are inequalities that are active at z* (equality constraints can be handled by
conversion to two inequalities, and inactive inequality constraints are inconsequential in the

subsequent analysis). We will use Lemma 3.3.2 with the following identifications:
N = Tx(z*)*, ap =V f(x*), aj =Vgj(x*), j=1,...,7
M = set of Lagrange multipliers,
u* = Lagrange multiplier of minimum norm.

If u* = 0, then p* is an informative Lagrange multiplier and we are done. If p* # 0, by

Lemma 3.3.2 [cf. (3.8) and (3.9)], for any € > 0, there exists a d € N* = Tx(z*) such that
apd <0, (3.22)
a;E>O, Y jeJ, a’ESergi}naﬂ, Vg Jx, (3.23)
where
J*={j | wj>0}
By suitably scaling the vector d, we can assume that ||d|| = 1. Let {#*} C X be such that

xk # x* for all k and
k _ % _
xk — ¥, % —d.
[t — ]
Using Taylor’s theorem for the cost function f, we have for some vector sequence &F con-
verging to (

f(@k) = fla*) = Vf(a*) (aF —2*) + o(||lz* — =)

= V@Y @+ €5) o+ — o]+ ofla* — ) (3.21)
— ok — 2 Vi wyer 4 oIzt =)
o~ (Vo) + vy + T
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From Eq. (3.22), we have Vf(z*)'d < 0, so we obtain f(x*) < f(z*) for k sufficiently
large. Using also Taylor’s theorem for the constraint functions g;, we have for some vector

sequence &F converging to 0,

9(x*) — gj(2*) = Vg (@*)'(a* — 2) + o([|aF — z*])

= Vgj(z*) (d+ &) [lak — 2| + o(|Ja* — z*|)) (3.25)
_ k _ px
= ||xk — 2| (ng(a:*)’d + Vgj(a*)€k + —Oﬂfk - ;*HH)> :

This, combined with Eq. (3.23), shows that for k sufficiently large, g;(«*) is bounded from
below by a positive constant times ||x*—z*|| for all j € J*, and satisfies g;(z¥) < o(||x*k—z*||)
for all j ¢ J*. Thus, the sequence {z*} can be used to establish the CV condition for p*,

and it follows that p* is an informative Lagrange multiplier. Q.E.D.

Lemma 3.3.2 also provides an alternative proof for Proposition 3.3.5, as shown in the

following.

Alternative Proof for Proposition 3.3.5:

The essence of the proof argument can be summarized in the following lemma.

Lemma 3.3.3: Let N be a closed convex cone in ", let ag,ai,...,a, be given

vectors in . Suppose that the closed and convex set M C R" given by
T
M = MZO‘ - ao—i—Zujaj eN
j=1

is nonempty. Among index subsets J C {1,...,r} such that for some p € M we have
J=1{j|pj >0}, let JC{l,...,7} have a minimal number of elements. Then if J is

nonempty, there exists a vector d € N* such that

apd < 0, a}g > 0, for all j € J. (3.26)
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Proof: We apply Lemma 3.3.2 with the vectors ai,...,a, replaced by the vectors aj,
j € J. The subset of M given by

M = ,uZO‘ — CLO+ZMjaj EN,uj=0,viji¢J
jedJ
is nonempty by assumption. Let 77 be the vector of minimum norm on M. Since J has a

minimal number of indices, we must have zi; > 0 for all j € J. If J is nonempty, Lemma

3.3.2 implies that there exists a d € N* such that Eq. (3.26) holds. Q.E.D.

Given Lemma 3.3.3, the proof is very similar to the corresponding part of the proof

of Proposition 3.3.5. Q.E.D.

3.3.3. Sensitivity

Let us consider now the special direction d* that appears in Lemma 3.3.2, and is a solution
of problem (3.11) (assuming this problem has an optimal solution). Let us note that this
problem is guaranteed to have at least one solution when N* s a polyhedral cone. This is

because problem (3.11) can be written as

r

minimize afd + % Z 27

j=1

subject to d € N*, 0<z;, ajd<z;, j=1,...,m
where the z; are auxiliary variables. Thus, if N* is polyhedral, then problem (3.11) is a
convex quadratic program with a cost function that is bounded below by Eq. (3.10), and
it has an optimal solution. An important context where this is relevant is when X = R»
in which case Nx (z*)* = T'x(z*) = R", or more generally when X is polyhedral, in which

case Tx (x*) is polyhedral.

Assuming now that problem (3.11) has an optimal solution, the line of proof of Prop.
3.3.6(a) [combine Egs. (3.24) and (3.25)] can be used to show that if the Lagrange multiplier

that has minimum norm, denoted by (A\*, u*), is nonzero, there exists a sequence {zF} C X,
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3.4.

corresponding to the vector d* € T'x (z*) of Eq. (3.12), such that

m

fla) = o) =Y Nhi(ah) = ) uig; (k) + ofja* — ax|]). (3.27)

i=1 j=1
Furthermore, the vector d* solves problem (3.11), from which it can be seen that d* solves
the problem
minimize V f(z*)'d
subject to Z(Vhi(x*)’d)z + Z (ng(x*)’d)+)2 =03, deTx(zv),
i=1 JEA(z*)
where (3 is given by
m o
B=> (Vhiz*yd) + > ((Vgj(z*)yd) ")
i=1 JEA(z®)
More generally, it can be seen that for any given positive scalar 3, a positive multiple of d*

solves the problem

minimize V f(z*)'d

subject to Y (Vhi(z*)d)* + Y ((Vgi(e)d) ) =5, deTx(a*).
=1 (z*)

Thus, d* is the tangent direction that maximizes the cost function improvement (calculated

up to first order) for a given value of the norm of the constraint violation (calculated up to

first order). From Eq. (3.27), this first order cost improvement is equal to

Z)\* (*) "‘ZMJQJ (k).

7j=1
Thus, the minimum norm multipliers A} and [Vj express the rate of improvement per unit
constraint violation, along the maximum improvement (or steepest descent) direction d*.

This is consistent with the traditional sensitivity interpretation of Lagrange multipliers.

AN ALTERNATIVE DEFINITION OF LAGRANGE MULTIPLIERS

In this section, we make the connection with another treatment of Lagrange multipliers,

due to Rockafellar [Roc93]. Consider vectors A\* = (A},..., Ah) and p* = (uf,...,ur) that
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satisfy the conditions

— | VF@*) + ) N Vhi(a) + ) piVgi(a*) | € Nx(z%), (4.1)
i=1 j=1

Such vectors are called “Lagrange multipliers” by Rockafellar, but here we will refer to
them as R-multipliers, to distinguish them from Lagrange multipliers as we have defined
them [cf. Egs. (1.1)-(1.3)]. It can be seen that the set of R-multipliers is a closed set [since
Nx(z*) is closed], and is convex when Nx (x*) is convex [if Nx(z*) is not convex, the set

of R-multipliers need not be convex].

When X is regular at o*, the sets of Lagrange multipliers and R-multipliers coincide.
In general, however, the set of Lagrange multipliers is a (possibly strict) subset of the set
of R-multipliers, since T'x (z*)* C Nx (x*) with inequality holding when X is not regular at
x*. Note that multipliers satisfying the enhanced Fritz John conditions of Prop. 3.2.3 with
ug = 1 are R-multipliers, and they still have the extra sensitivity-like property embodied in
the CV condition. Furthermore, Lemma 3.3.2 can be used to show that assuming Nx (z*)
is convex, if the set of R-multipliers is nonempty, it contains an R-multiplier with the

sensitivity-like property of the CV condition.

However, if X is not regular at x*, an R-multiplier may be such that the Lagrangian
function can decrease along some tangent directions. This is in sharp contrast with Lagrange
multipliers, whose salient defining property is that they render the Lagrangian function

stationary at x*. The following example illustrates this.

Example 3.4.4:

In this 2-dimensional example, there are two linear constraints ajx < 0 and abz < 0 with

the vectors a1 and a2 linearly independent. The set X is the (nonconvex) cone
X = {z | (ay7)(ayr) = 0}.

Consider the vector * = (0,0). Here T'x(z*) = X and Tx(z*)* = {0}. However, it
can be seen that Nx (z*) consists of the two rays of vectors that are colinear to either a; or
asg:

Nx(z") = {ya1 |y € R} U{yaz [y € R}
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Ny (x*) a,

7

X =Tylx*)

Figure 3.4.5. Constraints of Example 3.4.4. We have

Tx (%) = X = {« | (a}z)(ahz) =0}

and Nx (z*) is the nonconvex set consisting of the two rays of vectors that

are colinear to either aq or as.

(see Fig. 3.4.5).

Because Nx(z*) # Tx(x*)*, X is not regular at z*. Furthermore, both Tx (z*) and
Nx (z*) are not convex. For any f for which x* is a local minimum, there exists a unique
Lagrange multiplier (u], p3) satisfying Eqgs. (1.1)-(1.3). The scalars pI, p5 are determined
from the requirement

Vf(z") + piar + psaz = 0. (4.3)

Except in the cases where V f(x*) is equal to 0 or to —ay or to —az, we have ui > 0 and
w3 > 0, but the Lagrange multiplier (7, 43) is neither informative nor strong, because there
is no x € X that simultaneously violates both inequality constraints. The R-multipliers here
are the vectors (uI, p3) such that Vf(x*) + uiar + psasz is either equal to a multiple of a1
or to a multiple of az. Except for the Lagrange multipliers, which satisfy Eq. (4.3), all other
R-multipliers are such that the Lagrangian function has negative slope along some of the

feasible directions of X.

The existence of R-multipliers does not guarantee the existence of Lagrange multi-
pliers. Furthermore, as shown in the previous example, even if Lagrange multipliers exist,
none of them may be informative or strong, unless the tangent cone is convex (which is

guaranteed if the set X is regular, cf. Proposition 2.2.19 of Chapter 2). Thus regularity
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of X at the given local minimum is the property that separates problems that possess a

satisfactory Lagrange multiplier theory and problems that do not.

Example 3.4.5:

In this 2-dimensional example, there exists an R-multiplier for every smooth cost function f,
but the constraint set does not admit Lagrange multipliers. Let X be the subset of #? given

by

X = {(x1,22) | (@2 — 21) (w2 + 21) = 0},

and let there be a single equality constraint
h(z) =z2 =0

(see Fig. 3.4.6). There is only one feasible point * = (0,0), which is optimal for any cost
function f. Here we have Tx(z*) = X and Tx(z*)* = {0}, so for A* to be a Lagrange

multiplier, we must have

Vf(z*) + A" (0,1) = 0.

Thus, there exists a Lagrange multiplier if and only if 9f(z*)/dz1 = 0. On the other hand,

it can be seen that we have

Nx(:L'*) = X,

and that there exists an R-multiplier for every smooth cost function f.

3.5. NECESSARY AND SUFFICIENT CONDITIONS FOR ADMITTANCE
OF LAGRANGE AND R-MULTIPLIERS

In this section, we provide necessary and sufficient conditions for the constraint set C' of
Eq. (0.2) to admit Lagrange and R-multipliers. Conditions of this kind related to Lagrange
multipliers were dealt with in various forms by Gould and Tolle [GoT72], Guignard [Gui69],
and Rockafellar [Roc93]. To show this result, we make use of the extended result on the

gradient characterization of vectors in T (z*)*, given in Proposition 2.3.21 in Chapter 2.
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X=Tx(x") = Nx(x")

A -
~

h(x) = 0

Figure 3.4.6. Constraints of Example 3.4.5. Here,
X = {(z1,22) | (w2 — 1) (22 +21) = 0},

and X is not regular at z* = (0,0), since we have T'x (z*) = X, T'x (z*)* = {0},
but Nx (z*) = X. For
h(z) =22 =0

the constraint set admits no Lagrange multipliers at x*, yet there exist R-multipliers
for every smooth cost function f, since for any f, there exists a A* such that
— (Vf(:c*) + )\*Vh(x*)) belongs to Nx (z*).

Proposition 3.5.7:  Let * be a feasible vector of problem (0.1)-(0.2). Then:

(a) The constraint set admits Lagrange multipliers at x* if and only if

To(x*)* = Tx (z*)* + V(x*)*.

(b) The constraint set admits R-multipliers at x* if and only if

To(x*)* C Nx(x*) + V(x*)*.
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Proof:

(a) Denote by D(z*) the set of gradients of all smooth cost functions for which z* is a
local minimum of problem . We claim that —D(z*) = To(2*)*. Indeed by the necessary

condition for optimality, we have
—D(x*) C To(x*)*.

To show the reverse inclusion, let y € T (x*)*. By Proposition 2.3.21, there exists a smooth
function F' with —V F(z*) = y, which achieves a strict global minimum over C' at Z. Thus,
y € —D(z*), showing that

—D(z*) = To(x*)*. (5.1)

We now note that by definition, the constraint set C' admits Lagrange multipliers at z* if
and only if
—D(z*) C Tx(z*)* + V(z*)*.

In view of Eq. (5.1), this implies that the constraint set C' admits Lagrange multipliers at
x* if and only if

To(x*)* C Tx(z*)* + V(z*)*. (5.2)

We next show that
To(x*) C Tx(z*) NV (x*).

Since C' C X, it can be seen by the definition of the tangent cone that
Tc(x*) C Tx(m*). (5.3)

Next, we show that T (z*) C V(z*). Let y be a nonzero tangent of C' at x*. Then there
exist sequences {¢+} and {«*} C C such that z¥ # x* for all £,

fk - 07 rk — x*,
and
xk — x* Yy
- - _Z +€k
|zk =z |yl
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By the mean value theorem, we have for all j and &
0> gj(ak) = gj(z*) + Vg;(2F) (zF — 2*) = Vg;(z+) (zF — 2*),

where ¥ is a vector that lies on the line segment joining x* and x* . This relation can be

written as
|zF — a~||

Iyl

where y¥ = y + £¥||y||, or equivalently

Vg;(zk)yk <0,

Vg;i(zk)'yk <0, yk =y + &k |y

Taking the limit as k — oo, we obtain Vg;(z*)'y < 0 for all j, thus proving that y € V' (z*).
Hence, Tc(z*) C V(z*). Together with Eq. (5.3), this shows that

To(x*) C Tx(x*) NV (x*). (5.4)
Using the properties of polar cones given in Proposition 2.1.2 of Chapter 2, this implies
Tx(x*)* + V(x*)* - (Tx(x*) N V(JC*))* - Tc(a,‘*)*,

which combined with Eq. (5.2), yields the desired relation, and concludes the proof.

(b) By definition, the constraint set C' admits R-multipliers at z* if and only if
—D(z*) C Nx(a*) + V(z*)*.

In view of Eq. (5.1), this implies that the constraint set C' admits R-multipliers at x* if and
only if
Te(x*)* C Nx(z*) + V(x*)*.
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CHAPTER 4

PSEUDONORMALITY AND CONSTRAINT QUALIFICATIONS

In this chapter, our objective is to identify the structure of the constraint set that guarantees

the existence of Lagrange multipliers. We consider the problem

minimize f(x)
(0.1)
subject to x € C,

where the constraint set C' consists of equality and inequality constraints as well as an

additional abstract set constraint X:
C=Xn{z|hi(z)=0,....,hm(z) =0} N {z | g1(z) <0,...,g-(z) <0} (0.2)

Our purpose is to find and analyze in depth conditions on the above problem that guarantee
the existence of Lagrange multipliers. Note that we are interested in conditions that are
independent of the cost function f, and are only properties of the constraint set; hence the
name constraint qualifications. Therefore, if the constraint qualification holds, the Lagrange

multiplier rules are valid for the same constraints and any other smooth cost function.

In the case where X = R, a typical approach to asserting the admittance of Lagrange
multipliers is to assume structure in the constraint set, which guarantees that the tangent
cone T (x*) has the form

To(z*) = V(x*),
where V (z*) is the cone of first order feasible variations at x*, given by
V(zx) ={y| Vhi(z*)y =0, i=1,...,m, Vg;(z*)'y <0, j € A(z*)}. (0.3)

In this case we say that x* is a quasiregular point or that quasiregularity holds at x* [other

terms used are x* “satisfies Abadie’s constraint qualification” (Abadie [Aba67], Bazaraa,
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Sherali, and Shetty [BSS93]), or “is a regular point” (Hestenes [Hes75])]. When there is no
abstract set constraint, it is well-known (see e.g., Bertsekas [Ber99], p. 332) that for a given

smooth f for which x* is a local minimum, there exist Lagrange multipliers if and only if
Vi(xz*)y >0, VyeVix).

This result, a direct consequence of Farkas’ Lemma, leads to the classical theorem that the
constraint set admits Lagrange multipliers at x* if x* is a quasiregular point. Therefore,
quasiregularity plays a central role in the classical line of development of Lagrange multi-
plier theory for the case X = R™. A common line of analysis is based on establishing various
conditions, also known as constraint qualifications, which imply quasiregularity, and there-
fore imply that the constraint set admits Lagrange multipliers. This line of analysis requires
fairly complicated proofs to show the relations of constraint qualifications to quasiregular-
ity. Some of the most useful constraint qualifications, for the case when X = R are the

following;:

CQ1: X = R™ and z* is a regular point in the sense that the equality constraint gradients
Vhi(x*), i = 1,...,m, and the active inequality constraint gradients Vg;(z*), j €

A(z*), are linearly independent.

CQ2: X = R~, the equality constraint gradients Vh;(z*), ¢ = 1,...,m, are linearly inde-
pendent, and there exists a y € R™ such that

Vhi(xz*)y=0, i=1,...,m, Vgj(z*)y <0, VjeA(z*).

For the case where there are no equality constraints, this is known as the Arrow-
Hurwitz-Uzawa constraint qualification, introduced in [AHUG61]. In the more general
case where there are equality constraints, it is known as the Mangasarian-Fromovitz

constraint qualification, introduced in [MaF67].
CQ3: X = R, the functions h; are linear and the functions g; are concave.

It is well-known that all of the above constraint qualifications imply the quasiregularity
condition Te(z*) = V(x*), and therefore imply that the constraint set admits Lagrange

multipliers (see e.g., [BNOO02], or [BSS93]; a survey of constraint qualifications is given by
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Peterson [Pet73]). These results constitute the classical pathway to Lagrange multipliers
for the case where X = R”. Figure 4.0.1 summarizes the relationships discussed above for

the case X = Rn.

, Mangasarian-Fromovitz Linear/Concave
Regularity Constraint Qualification Constraints

Quasiregularity

Admittance of Lagrange
Multipliers

Figure 4.0.1. Characterizations of the constraint set C that imply admittance

of Lagrange multipliers in the case where X = R™.

Unfortunately, when X is a strict subset of ", the situation changes significantly
because there does not appear to be a satisfactory extension of the notion of quasiregu-
larity, which implies admittance of Lagrange multipliers. We will focus on the relation of
quasiregularity and the existence of Lagrange multipliers later in this chapter. In the next
section, we introduce an alternative notion, and show that it forms the connecting link
between major constraint qualifications and the existence of Lagrange multipliers, even for

the case when X is a strict subset of fn.

4.1. PSEUDONORMALITY

The enhanced Fritz John conditions of Chapter 3 provides Lagrange multiplier-like con-
ditions that hold for the general optimization problem , which includes an abstract set

constraint, under no assumption on the constraint set structure. If X is regular, and if we
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can guarantee that the cost multiplier g is positive for some constraint set, then it auto-
matically follows that the constraint set admits Lagrange multipliers. This motivates us to
introduce the following general constraint qualification under which the cost multiplier s

in Prop. 3.2.3 cannot be zero.

Definition 4.1.1:  We say that a feasible vector 2* of problem (0.1)-(0.2) is pseudonor-

mal if there are no scalars A1,..., Am, ti1, ..., tir, and a sequence {x¥} C X such that:

() — (S0 \Vhi(a*) + 25, 15 V5(2%) ) € Nx ().

(ii) p; >0, forall j =1,...,7r, and p; =0 for all j ¢ A(x*), where

A(z*) = {j | gj(a")}.
(iii) {z*} converges to z* and

Z)\lhz(l’k) + Zujgj($k) > 0, vV k. (1.1)
i—1 j=1

If x* is a pseudonormal local minimum, the enhanced Fritz John conditions of Prop.
3.2.3 cannot be satisfied with pf; = 0, so that pfj can be taken equal to 1. Then, if X is
regular at x*, the vector (A\*,u*) = (A},..., A, pf, ..., ur) obtained from the enhanced

Fritz John conditions is an informative Lagrange multiplier.

4.1.1. Relation to Major Constraint Qualifications

We now focus on various constraint qualifications, which will be shown in this section
to imply pseudonormality of a feasible vector x* and hence also existence of informative

Lagrange multipliers (assuming also regularity of X at z*).

The next constraint qualification applies to the case where X is a strict subset of ».
A weaker version of this constraint qualification, for the case where X is a closed convex

set and none of the equality constraints is linear, was shown in [Ber99]. We refer to it as
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the generalized Mangasarian-Fromouvitz constraint qualification (MFCQ for short), since it

reduces to CQ2 when X = " and none of the equality constraints is linear.

MFCQ:

(a) The equality constraints with index above some m < m:

are linear.

(b) There does not exist a vector A = (A1,..., \p,) such that

> XiVhi(z*) € Nx (z*) (1.2)
i=1
and at least one of the scalars A1, ..., A7 is nonzero.

(c¢) The subspace
Vi(z*) = {y | Vhi(z*)'y=0,i=m+1,...,m}

has a nonempty intersection with either the interior of Nx (z*)*, or, in the case

where X is convex, with the relative interior of Nx (x*)*.

(d) There exists a y € Nx(z*)* such that

Vhi(x*)y=0, i=1,...,m, Vgj(z*)y <0, Vje A(z*).

The following is an example where the above constraint qualification holds. Later in
this section, we will show that this constraint qualification implies pseudonormality, and

therefore guarantees existence of Lagrange multipliers.

Example 4.1.1:
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Let the constraint set be specified by
C={zeR’|h(z)=0, ha(z) =0, g(x) <0},

where

hi(z) =z1, ho(z)=—xz1, g(z)= 3 — T,

(see Fig. 4.1.2). Consider the feasible vector z* = (0,0). The vector [0, 1]" satisfies condition
(d) of MFCQ. Hence, although none of CQ1-CQ3 holds at z*, MFCQ holds at z*.

A xo
g(x)
Vho(x) Vh1(x")
S X1
x =(0,0)
vg(x")
Y

Figure 4.1.2. Constraints of Example 4.1.1.

MFCQ has several special cases for constraint sets that have different representations
in terms of equalities and inequalities. For instance, if we assume that all the equality

constraints are nonlinear, we get the following special case of MFCQ.

112



MFCQa:

(a) There does not exist a nonzero vector A = (A1, ..., Ay, ) such that

— i AiVhi(z*) € Nx(z*).

i=1
(b) There exists a y € Nx(x*)* such that

Vhi(x*)y=0, i=1,...,m, Vg(z*)y <0, Vje A(z*).

When there are no inequality constraints and no linear equality constraints, the fol-

lowing constraint qualification guarantees that assumption (b) of MFCQ holds.

MFCQb: There are no inequality constraints, the gradients Vh;(x*), i = 1,...,m,

are linearly independent, and the subspace
V(:L‘*) = {y ‘ Vhi(;z,‘*)ly =0,i=1,... ,m}

contains a point in the interior of Ny (z*)*.

To see why this condition implies assumption (b) of MFCQ, assume the contrary, i.e.,

there exists a nonzero vector A = (A1,..., \p,) such that

—z == ANVhi(z*) € Nx(z*).

=1

The vector z cannot be equal to 0, since this would contradict the linear independence
assumption of the Vh;(z*). By the definition of the polar cone, the preceding relation
implies that

2y >0, Vy e Nx(xr)*.
Let 3§ be the vector of hypothesis in MFCQb, i.e., g € V(z*) N int(NX(x*)*). Since y €
int (N X (a:*)*), it follows that, for some sufficiently small positive «, the vector § — az €
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Nx (z*)*. Substituting this vector in the preceding relation, we obtain

27> allz|2 > 0,
where the strict inequality follows since z # 0. But this contradicts the fact that g € V(z*),
which implies that 2’y = 0, thus proving that MFCQb implies assumption (b) of MFCQ.
Note that the interior point of Nx (z*)* assumption of condition MFCQb cannot be replaced
by a relative interior point assumption.

Finally, we state another useful special case of MFCQ), which holds under convexity

assumptions.

MFCQc: X is convex, the functions h;, i = 1,...,m are linear, and the linear manifold
L={z|hi(z)=0,i=1,...,m}

contains a point in the relative interior of X. Furthermore, the functions g; are convex

and there exists a feasible vector ¥ satisfying

g;(Z) <0, Vg e A(x*).

The convexity assumptions in MFCQc can be used to establish the corresponding
assumptions (c) and (d) of MFCQ. In particular, if X is convex, we have from Proposition
2.2.9 that

CI(FX(:E*)) = Tx(x*) = Nx(x*)*,

which, using properties of relative interior, implies that
ri(Fx (z*)) = ri(Nx (a*)*). (1.3)

Let & be the vector of hypothesis in condition MFCQc, i.e., € L Nri(X). Using the

Taylor’s theorem for affine constraint functions h;, we see that
0 = hi(2) = hi(z*) + Vhi(z*) (& — x*) = Vhi(z*) (Z —x*), YVi=1,...,m,

which implies that the vector £ — x* € Vp(x*). Since Z € ri(X) and X is convex, the

vector & — z* belongs to the set ri(Fx(z*)), which in view of relation (1.3) implies that
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T —ax* € ri(N X (:c*)*), hence showing that condition (c¢) of MFCQ holds. Similarly, the
feasible vector T given in MFCQc could be used in conjunction with the linearity of equality
constraints and the convexity of inequality constraints to construct the vector y that satisfies

the properties of condition (d) of MFCQ.

In the case where there are no equality constraints, MFCQc is a classical constraint

qualification, introduced by Slater [Sla50] and known as Slater’s condition.

The following constraint qualification is simpler to state than the preceding ones, and
it is immediately seen to imply pseudonormality. It is the constraint qualification introduced
by Rockafellar [Roc93], [RoW98], who used McShanes’s line of proof to derive Fritz John
conditions in their classical form where the CS condition replaces the CV condition, for

problems that involve an abstract set constraint.

RCQ: The set
W = {()\, 1) | Aty Ay i1, - - ., oo satisfy conditions (i) and (ii)
(1.4)
of the definition of pseudonormality}

consists of just the vector 0.

It can be shown that the set W of Eq. (1.4) is the recession cone of the set of R-
multipliers, provided that the set of R-multipliers is a nonempty convex set (so that we can
talk about its recession cone; note that the set of R-multipliers is closed, cf. Chapter 3). To

see this, let (A\*, u*) be any R-multiplier. For any (A, u) € W, we have for all a > 0,

— | Vf(z*)+ Z(z\f + aXi)Vhi(z*) + Z(u;" + ap;)Vgi(z*) | € Nx(z¥),

i=1 j=1

since Nx(x*) is a cone. Thus (A, u) is a direction of recession. Conversely, if (A, u) is a

direction of recession, then for all R-multipliers (A*, u*), we have for all a > 0,

(s 35 (o 0 e
+ Z;; (éu;‘f +,uj> ng(x*)> € Nx(z*).
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Taking the limit as & — 0 and using the closedness of Nx (z*), we see that (A, u) € W.

Since compactness of a closed, convex set is equivalent to its recession cone consisting
of just the 0 vector, it follows that if the set of R-multipliers is nonempty, convex, and
compact, then RCQ holds. In view of Prop. 3.2.3, the reverse is also true, provided the set
of R-multipliers is guaranteed to be convex, which is true in particular if Nx (z*) is convex.
Thus, if Nx(z*) is convexr, RCQ is equivalent to the set of R-multipliers being nonempty

and compact.

We will next show that if X is regular at *, then RCQ is equivalent to MFCQa. This
was shown by Rockafellar and Wets in the case where X = R" (see page 226 of [RoW9S]).

L We generalize it to the case where X is regular in the following proposition.

Proposition 4.1.1:  If X is regular at x*, the constraint qualifications MFCQa and
RCQ are equivalent.

Proof: We first show that MFCQa implies RCQ. Assume MFCQa holds:

(a) There does not exist a nonzero vector A = (A1, ..., A\p) such that

i )\thi(l‘*) S Nx(x*)

i=1
(b) There exists a d € Nx (z*)* = Tx (z*) (since X is regular at z*) such that

Vhi(z*)'d =0, i=1,...,m, Vgj(x*)d <0, Vje A(z*).

To arrive at a contradiction, assume that RCQ does not hold, i.e., there are scalars

Alyeooy Amy M1, .- -, i, not all of them equal to zero, such that

— | D o AiVhi(a) + ) Vgi(a*) | € Nx(a®).

i=1 j=1

1 In fact, it is well known that, for X = R, MFCQa is equivalent to nonemptiness and

compactness of the set of Lagrange multipliers, this is a result of Gauvin [Gau77].
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(ii) pj >0, forall j=1,...,r, and pu; =0 for all j ¢ A(z*).

In view of our assumption that X is regular at z*, condition (i) can be written as

— | D NVhi(@*) + Y Vg(ar) | € T (a),
i=1 j=1

or equivalently,

/

Z AiVhi(z*) + Zungj(a:*) y >0, VyeTx(x*). (1.5)
i=1 j=1

Since not all the \; and p; are equal to 0, we conclude that p; > 0 for at least one j € A(z*);
otherwise condition (a) of MFCQa would be violated. Since p§ > 0 for all j, with uf =0

for j ¢ A(z*) and p} > 0 for at least one j, we obtain

> NVhi(z*)yd+> " pVgs(a*)d <0,

i=1 =1
where d € T'x (x*) is the vector in condition (b) of MFCQa. But this contradicts Eq. (1.5),
showing that RCQ holds.

Conversely, assume that RCQ holds. It can be seen that this implies condition (a) of
MFCQa. We next show that condition (b) of MFCQa holds. Let H denote the subspace
spanned by the vectors Vhi(z*),..., Vhpy(x*), and let G denote the cone generated by the
vectors Vg;(z*), j € A(x*). Then, the orthogonal complement of H is given by

HL ={y|Vhi(z*)'y=0, Vi= 1,...,m},
whereas the polar of GG is given by
G* = {y | Vgj(z*)y <0, Vje A(x*)}
The interior of G* is the set
int(G*) = {y | Vgj(z*)y <0, V j € A(z*)}.

Assume, to arrive at a contradiction, that condition (b) of MFCQa does not hold. This
implies that
Nx(z*)* N (HL ﬁint(G*)) = 0.
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Since X is regular at z*, the preceding is equivalent to
Tx(z*)N (HL N int(G*)) =0.

The regularity of X at z* implies that T'x (z*) is convex. Similarly, since the interior of a
convex set is convex and the intersection of two convex sets is convex, it follows that the set
HLNint (G*) is convex. By the Separating Hyperplane Theorem, there exists some vector

a # 0 such that
a'x < ay, VaoeTx(xx), Vyce (Hiﬁint(G*)),
or equivalently,
a(x—y) <0, VaeTx(zx), Vye (HLNG*),
which implies that
a€ (Tx(z*) — (HLNG¥))".
Using the properties of cones given in Proposition 2.1.2 of Chapter 2, we have
(TX(x*) —(HLtnN G*))*: Tx(x*)*N—(H+NG*)*

= Tx(z*)*N—(cl(H + G))
= Tx(z*)*N—(H +G)
= Nx(z*)N—(H 4+ G),

where the second equality follows since H+ and G* are closed and convex, and the third
equality follows since H and G are both polyhedral cones. Combining the preceding rela-

tions, it follows that there exists a nonzero vector a that belongs to the set
Nx($*> N —(H —+ G)

But this contradicts RCQ, thus completing our proof. Q.E.D.

Clearly RCQ implies pseudonormality, since the vectors in W are not required to

satisfy condition (iii) of the definition of pseudonormality. However, CQ3 and MFCQ do
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not preclude unboundedness of the set of Lagrange multipliers and hence do not imply RCQ.
Thus RCQ is not as effective in unifying various constraint qualifications as pseudonormality,

which is implied by all these constraint qualifications, as shown in the following proposition.

Proposition 4.1.2: A feasible point z* of problem (0.1)-(0.2) is pseudonormal if
any one of the constraint qualifications CQ1-CQ3, MFCQ, and RCQ is satisfied.

Proof: We will not consider CQ2 since it is a special case of MFCQ. It is also evident
that RCQ implies pseudonormality. Thus we will prove the result for the cases CQ1, CQ3,
and MFCQ in that order. In all cases, the method of proof is by contradiction, i.e., we
assume that there are scalars A\;, ¢ =1,...,m, and pj, 7 = 1,...,r, which satisfy conditions
(1)-(iii) of the definition of pseudonormality. We then assume that each of the constraint
qualifications CQ1, CQ3 and MFCQ is in turn also satisfied, and in each case we arrive at

a contradiction.

CQ1: Since X = R», implying that Nx(z*) = {0}, and we also have u; = 0 for all

Jj ¢ A(z*) by condition (ii), we can write condition (i) as

Z AiVh;i(z*) + Z ;i Vgi(x*) = 0.
i=1

jeA(z™)

Linear independence of Vh;(z*),i=1,...,m, and Vg;(z*), j € A(z*), implies that A; =0
for all 4 and pu; = 0 for all j € A(x*). This, together with the condition p; = 0 for all
Jj & A(xz*), contradicts condition (iii).

CQ3: By the linearity of h; and the concavity of g;, we have for all x € R,
hi(z) = hi(x*) + Vh(z*) (x — x*), i=1,...,m,

9i(x) < gj(x*) + Vgj(z*)'(x —a*),  j=1...,r

By multiplying these two relations with A\; and p;, and by adding over ¢ and j, respectively,

119



we obtain

Z Aihi(z) + Zujgj(x) < Z Aihi(x*) + Z,ujgj(x*)
i=1 j=1 =1 j=t
/

m " (1.6)
+ Z/\Nhi(w*) + ZMngj(x*) (. — %)

=0,
where the last equality holds because we have A\;h;(x*) = 0 for all i and pj;g;(z*) = 0 for
all j [by condition (ii)], and

> AiVhi(a*) + > piVgi(z*) =0
i=1 j=1

[by condition (i)]. On the other hand, by condition (iii), there is an z satisfying >~ Xihi(z)+
Z;Zl w;g;i(z) > 0, which contradicts Eq. (1.6).

MFCQ: We first show by contradiction that at least one of the A1,..., A\m and pj, j € A(x*)
must be nonzero. If this were not so, then by using a translation argument we may assume
that x* is the origin, and the linear constraints have the form ajz =0,i =m+1,...,m.

Using condition (i) we have

— zmz i@ ENx(x*). (1.7)

i=m+1
Consider first the case where X is necessarily convex and there is an interior point y
of Nx (z*)* that satisfies a,y = 0 for all i = m+1,...,m. Let S be an open sphere centered

at the origin such that g+ d € Nx(z*)* for all d € S. We have from Eq. (1.7),

> Ndid>0, VdeS,
1=m-+1

from which we obtain ) ;" | Aia; = 0. This contradicts condition (iii), which requires

that for some x € S N X we have Z?imﬂ Niatx > 0.

Consider now the alternative case where X is convex and there is a relative interior

point § of Nx (z*)* that satisfies ajy = 0 for all i =m + 1,...,m. Then, we have

i )\iagy =0,

i=m-+1
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while from Eq. (1.7), we have

Z Niaky >0, Vy e Nx(x*)*.
i=m—+1
The convexity of X implies that X —{z*} C T'(x*) = Nx (z*)* and that Nx (z*)* is convex
(cf. Proposition 2.2.19 of Chapter 2). Since the linear function ) ;- 41 Niajy attains a

minimum over Nx (xz*)* at the relative interior point ¥, it follows that this linear function is

m
i=m-+1

[since X — {z*} C Nx(z*)* and A\;a,xz* = 0 for all ]

constant over Ny (z*)*. Thus, we have ) Aiaty = 0 for all y € Nx(x*)*, and hence

Z Niaiz =0, VzoelX.

i=m-+1

m

This contradicts condition (iii), which requires that for some z € X we have ) ;"

Nia,z >
0. This completes the proof that at least one of the A1,..., A\m and pu;, j € A(x*) must be

nonzero.

Next we show by contradiction that we cannot have p; = 0 for all j. If this were so,

by condition (i) there must exist a nonzero vector A = (A1, ..., Am) such that
—> X\iVhi(z*) € Nx(z*). (1.8)
i=1
By what has been proved above, the multipliers A1,..., A7 of the nonlinear constraints

cannot be all zero, so Eq. (1.8) contradicts assumption (b) of MFCQ.

Hence we must have p; > 0 for at least one j, and since p; > 0 for all 7 with p; =0

for j ¢ A(z*), we obtain

m T

> NVhi(z*)y+ > pVgj(a*)y <0,

i=1 j=1
for the vector y of Nx (z*)* that appears in assumption (d) of MFCQ. Thus,

— | Do AiVhie®) + Y wVgi(ar) | ¢ (Nx(a)*)".
i=1 j=1

Since Nx (z*) C (NX(x*)*)*7 this contradicts condition (i). Q.E.D.
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Note that the constraint qualifications MFCQ and RCQ guarantee pseudonormality, as
per the preceding proposition, but do not guarantee that the constraint set admits Lagrange
multipliers at a point z*, unless X is regular at z*. As an illustration, in Example 3.4.5,
r* satisfies MFCQ and RCQ, and is therefore pseudonormal. However, as we have seen,
in this example, the constraint set does not admit Lagrange multipliers, although there do
exist R-multipliers for every smooth cost function f, consistently with the pseudonormality

of x*.

4.1.2. Quasinormality

A general constraint qualification, called quasinormality, was introduced for the special case
where X = R” by Hestenes in [Hes75]. Hestenes also showed that quasinormality implies
quasiregularity (see also Bertsekas [Ber99], Proposition 3.3.17). Since it is simple to show
that the major classical constraint qualifications imply quasinormality (see e.g. Bertsekas
[Ber99]), this provides an alternative line of proof that these constraint qualifications im-
ply quasiregularity for the case X = R”. In this section, we investigate the extension of
quasinormality to the case where X # R”. We subsequently compare this notion with
pseudonormality in this section, and also with an extension of the notion of quasiregularity

in the next section.

Definition 4.1.2:  We say that a feasible vector z* of problem (1.1)-(1.2) is quasi-
normal if there are no scalars A\i,..., A, g1, .., r, and a sequence {xk} C X such

that:
() — (S \Vhi(e) + Sy 15Vg5(27)) € Nx(a).
(ii) p; >0, forall j=1,...,7.

(iii) A1,... Am, 1, - - -, fr are not all equal to 0.

(iv) {zF} converges to z* and for all k, Ajh;(x¥) > 0 for all ¢ with A\; # 0 and
p;g;(xk) >0 for all j with p; # 0.
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If 2* is a quasinormal local minimum, the enhanced Fritz John conditions of Prop. 3.2.3
cannot be satisfied with pf = 0, so that uf can be taken equal to 1. Then, if X is regular
at x*, the vector (A*, u*) = (A}, ..., A, 4, ..., ;) obtained from the enhanced Fritz John
conditions is an informative Lagrange multiplier. It can be seen that pseudonormality

implies quasinormality. The following example shows that the reverse is not true.

Example 4.1.2:

Let the constraint set be specified by
C={zecX|g@) <0, g2(z) <0, gs(x) <0},

where X = 22 and

gi(x) =ai + (z2—1)* 1,
g2(z) = (1 — cos(7/6))” + (w2 + sin(w/6))” — 1,

g3(z) = (xl + (:0:3(7r/6))2 + (x2 + sin(7r/6))2 -1

(see Fig. 4.1.3). Consider the feasible vector z* = (0,0). Because there is no x that simulta-
neously violates all three constraints, quasinormality is satisfied. However, a straightforward

calculation shows that we have
Vgi(z®) + Vga(z") + Vgs(z") = 0,

while
91(z) + g2(x) + gs(x) = 3(aT +23) >0, Vaz#a’

so by using p = (1,1,1), the conditions for pseudonormality of x* are violated. Thus, even

when X = R", quasinormality does not imply pseudonormality.

In the next proposition, we show that under the assumption that Nx(z*) is convex
(which is true in particular if X is regular at x*), quasinormality is in fact equivalent to a

slightly weaker version of pseudonormality.
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g3(x) <0

Figure 4.1.3. Constraints of Example 4.1.2.

Proposition 4.1.3 Let z* be a feasible vector of problem (1.1)-(1.2), and assume
that the normal cone Nx(z*) is convex. Then x* is quasinormal if and only if there
are no scalars Ai,..., A\, i1, ..., ur satisfying conditions (i)-(iii) of the definition of

quasinormality together with the following condition:

(iv’) {x*} converges to xz* and for all k, Ashi(z¥) > 0 for all ¢, p;g;(x*) > 0 for all j,

and
m

> Nihi(xk) + ) pigi (k) > 0,
j=1

=1

Proof: For simplicity we assume that all the constraints are inequalities that are active at
x*. First we note that if there are no scalars ui1, ..., u, with the properties described in the
proposition, then there are no scalars p1, ..., u, satisfying the more restrictive conditions
(1)-(iv) in the definition of quasinormality, so z* is not quasinormal. To show the converse,
suppose that there exist scalars 1, ..., u, satisfying conditions (i)-(iii) of the definition of

quasinormality together with condition (iv’), i.e., there exist scalars p1, ..., g, such that:

() — () 1 Ve5(@") ) € Nx(a®).
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(ii)) pj >0, forall j=1,...,r.

(iii) {x*} converges to z* and for all k, g;(z¥) > 0 for all j, and
> nigi(xk) > 0.
j=1

Condition (iii) implies that g;(z*) > 0 for all j, and g;(z*) > 0 for some j such that
p5 > 0. Without loss of generality, we can assume j =1, so that we have g1 (x%) > 0
for all k. Let a; = Vg;(z*), j =1,...,r. Then by appropriate normalization, we can

assume that p1 = 1, so that

— a1+2ujaj € Nx (z*). (1.9)
=2

If —a1 € Nx(z*), the choice of scalars i; = 1 and jz; = 0 for all j = 2,...,r, satisfies
conditions (i)-(iv) in the definition of quasinormality, hence z* is not quasinormal and

we are done. Assume that —a; ¢ Nx(x*). The assumptions of Lemma 3.3.2 are

satisfied, so it follows that there exist scalars f,, ..., ,, not all 0, such that
— a1+ _ma; | € Nx(27), (1.10)
j=2

and a vector d € Nx (z*)* with a;E > 0, for all j =2,...,r such that 7z; > 0. Thus
Vgj(x*)'d > 0, Vj=2,...,r with z; >0, (1.11)

while by Eq. (1.10), the z; satisfy

— | Vai(a*) + D 1, Vyg(z*) | € Nx(a*). (1.12)

j=2
Next, we show that the scalars i; = 1 and T, .. ., 1, satisfy condition (iv) in the def-
inition of quasinormality, completing the proof. We use Proposition 2.2.18 of Chapter
2 to argue that for the vector d € Nx(z*)* and the sequence x* constructed above,
there is a sequence d* € Tx (x*) such that d¥ — d. Since 2% — x* and d¥ — d, by Eq.

(1.11), we obtain for all sufficiently large k,
Vg;(zk)'dk > 0, Vj=2,...,r with 7i; > 0.
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Since d* € Tx (z*), there exists a sequence {xf} C X such that, for each k, we have

xf # zF for all v and

E_ rk dk
ks gk i (1.13)
xy — Tk, — , as v — o0. .
’ lzf —a®| [la*|
For each j = 2,...,r such that 1z; > 0, we use Taylor’s theorem for the constraint

function g;. We have, for some vector sequence £ converging to 0,
9i(z5) = g;(2%) + Vg; (k) (2F — a*) + o(||zs — 2*]))

dk
> Vg () (m ; sv) Ik — 2] + o5 — 2*])

a o s — *1)
— b — ot} (Vs (o) o + Vaplaryer + A=),
) g+ VO o5 — o]

where the inequality above follows from Eq. (1.13) and the assumption that g;(z*) > 0,
for all j and x*. It follows that for v and k sufficiently large, there exists zf € X
arbitrarily close to % such that g;(z%) > 0, for all j = 2,...,r with f; > 0. Since
g1(z¥) > 0 and g; is a continuous function, we have that ¢1(z) > 0 for all Z in some
neighborhood Vj, of z*. Since ¥ — z* and zf — z* for each k, by choosing v and
k sufficiently large, we get g;(xf) > 0 for j = 1 and each j = 2,...,r with f; > 0.
This together with Eq. (1.12), violates the quasinormality assumption of x*, which
completes the proof. Q.E.D.

The following example shows that convexity of Nx (z*) is an essential assumption for

the conclusion of Prop. 4.1.3.

Example 4.1.3:
Here X is the subset of R? given by
X={22>0] ((z1 +1)*+ (z2+1)* = 2) ((x1 — 1) + (22 + 1)* = 2) < 0}

(see Fig. 4.1.4). The normal cone Nx (z*) consists of the three rays shown in Fig. 4.1.4, and

is not convex. Let there be two inequality constraints with

gi() = —(x1 +1)° = (22)° +1,  g2(x) = —2o.
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Figure 4.1.4. Constraints of Example 4.1.3.

In order to have — Zj w;iVgi(xz*) € Nx(x*), we must have u1 > 0 and p2 > 0. There is no
x € X such that g2(z) > 0, so " is quasinormal. However, for —2 < 21 < 0 and z2 = 0,
we have ©z € X, g1(z) > 0, and g2(x) = 0. Hence z* does not satisfy the weak form of

pseudonormality given in Prop. 4.1.3.

4.1.3. Quasiregularity

We will now provide an extension of the notion of quasiregularity, which also applies to the
case where X is a strict subset of 8. We will then develop the connection of this notion
with pseudonormality and quasinormality, and we explain the reasons why quasiregularity

is not a satisfactory vehicle for unification of Lagrange multiplier theory when X # R».

We recall that for the case where X = R, a point x in the constraint set
C={z|hi(z)=0,....,;hm(z) =0} N{z | g1(z) <0,...,9-(z) <0}
is said to be a quasiregular point of C' if
To(x) =V (x), (1.14)
where V() is the cone of first order feasible variations

Viz) = {y | Vhi(z)y=0,i=1,...,m,Vg;(x)y <0, j€ A(:z:)}, (1.15)
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where A(z) = {j | g;(z) = 0}.
A classical approach to showing existence of Lagrange multipliers for the case where

X = Rn is to argue that at a local minimum z* of f over C, we have V f(z*)'y > 0 for all

y € Te(z*). Thus, if 2* is quasiregular, we have
Vi(*)y>0, VyeV(zH).

By Farkas’ Lemma, it follows that we either have that V f(z*) = 0 or else there exists a

nonzero Lagrange multiplier vector (\*, u*).

For the case where X # R", we say that a feasible vector z* of problem (0.1)-(0.2) is
quasireqular if

To(x*) =V(z*) N Tx(x*).

Our first aim is to show that under a regularity assumption on X, quasinormality implies
quasiregularity. Moreover, since pseudonormality implies quasinormality, it follows that
under the given assumption, pseudonormality also implies quasiregularity. This shows that

any constraint qualification that implies pseudonormality imply quasiregularity.

We first prove the following result that relates to the properties of the quasinormality

condition.

Proposition 4.1.4: If a vector z* € C is quasinormal, then all feasible vectors in a

neighborhood of x* are quasinormal.

Proof: We assume for simplicity that all the constraints of problem (0.1)-(0.2) are inequal-
ities; equality constraints can be handled by conversion to inequality constraints. Assume
that the claim is not true. Then we can find a sequence {z*} C C such that z* # z* for
all k, z¥ — x* and z* is not quasinormal for all k. This implies, for each k, the existence

of scalars &¥, ..., &k, and a sequence {z¥} C X such that:

(a)

— | 22 & Vai(eh) | € Nx(ah), (1.16)
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(b) 5;; >0, forall j =1,...,r,and &F,... &F are not all equal to 0.
(¢) limy_ s ;pf = x5, and for all [, f;“g](:vf) > 0 for all j with 5;“ > 0.

For each k denote,

Since 6% # 0 and Nx(z*) is a cone, conditions (a)-(c) for the scalars &F,... ¢&F yield the

following set of conditions that hold for each k for the scalars p¥, ..., uk:

D H5Vg;(ak) | € Nx(ah), (1.17)

(i) pk >0, forall j=1,...,7, and pf, ..., ui are not all equal to 0.

(ili) There exists a sequence {z;} C X such that lim; . 2 = x*, and for all [, u¥g;(z}) >

0 for all j with u? > 0.
Since by construction we have

Z(u§)2 — 1, (1.18)

the sequence {u¥, ..., uF} is bounded and must contain a subsequence that converges to
some nonzero limit {u%, ..., pi}. Assume without loss of generality that {u¥, ..., u¥} con-
verges to {7, ..., pur}. Taking the limit in Eq. (1.17), and using the closedness of the normal

cone, we see that this limit must satisfy

Z“ Vgi(z*) | € Nx(z*). (1.19)

Moreover, from condition (ii) and Eq. (1.18), it follows that ¥ > 0, for all j = 1,...,r, and
[y, ..., 1y are not all equal to 0. Finally, let

J={jlwu;>0}
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Then, there exists some kg such that for all k& > kg, we must have u? > 0 for all j € J.

From condition (iii), it follows that for each k > ko, there exists a sequence {xf} C X with

lim af = z*, gi(zf) >0, VI, Vjel

[—o0

For each k > kg, choose an index [ such that [1 < ... <lz_1 <l and

k

lim z} = z*.
k—oo 'k
Consider the sequence {y*} defined by
yk = gFoth=t kE=1,2,....

T lkgtk—1’

It follows from the preceding relations that {y*} C X and

lim y*k = z*, gi(yk) >0, VEk, Vjell

k—o0

The existence of scalars uf, ..., us that satisfy Eq. (1.19) and the sequence {y*} that sat-
isfies the preceding relation violates the quasinormality of x*, thus completing the proof.

Q.E.D.

We next use Proposition 2.3.21 of Chapter 2, i.e., gradient characterization of vectors
in the polar of the tangent cone, to obtain a specific representation of a vector that belongs
to Tc(Z)* for some T € C under a quasinormality condition. This result will be central in

showing the relation of quasinormality to quasiregularity.

Proposition 4.1.5: If T is a quasinormal vector of C, then any y € T¢(Z)* can be
represented as i
y=z+Y V(T
j=1
where 2 € Nx(T), fi; > 0, for all j = 1,...,r. Furthermore, there exists a sequence
{z*k} C X that converges to T and is such that 7i;g;(2*) > 0 for all k and all j with
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Proof: We assume for simplicity that all the constraints are inequalities. Let y be a vector
that belongs to Tc(Z)*. By Prop. 2.3.21, there exists a smooth function F' that achieves a
strict global minimum over C' at T with —V F(Z) = y. We use a quadratic penalty function

approach. For each kK =1,2,..., choose an € > 0 and consider the “penalized” problem
minimize F*(x)
subject to z € X NS,

where
k 2
Fh(z) = F(z) + 5 > (g5 (@),
j=1
and S = {z | ||z — Z|| < €}. Since X NS is compact, by Weierstrass’ theorem, there exists
an optimal solution z* for the above problem. We have for all &
k T
F(a*) + 2 Y (g7 («4))* = Fr(ak) < Fr(z) = F(z) (1.20)

2 4
7j=1

and since F'(z*) is bounded over X NS, we obtain
; + (k)| — - .
kh—{go’gj <:E )|_07 .]_17"'7Ta

otherwise the left-hand side of Eq. (1.20) would become unbounded from above as k — oo.
Therefore, every limit point Z of {z*} is feasible, i.e., & € C. Furthermore, Eq. (1.20) yields
F(zF) < F(7) for all k, so by taking the limit along the relevant subsequence as k — oo,
we obtain

F(z) < F(@).

Since Z is feasible, we have F(T) < F(z) (since I achieves a strict global minimum over C'
at ), unless & = 7, which when combined with the preceding inequality yields £ = Z. Thus
the sequence {z*} converges to T, and it follows that z* is an interior point of the closed

sphere S for all k greater than some k.

For k > k, we have the necessary optimality condition, VF¥(zk)y > 0 for all y €

Tx (x*), or equivalently —VFk*(zk) € Tx (x*)*, which is written as

— | VF(xF) + inng(xk) € Tx (zhk)*, (1.21)

Jj=1

131



where

k + (K
¢ = kgj (aF). (1.22)
Denote,
ok = (1.23)
1 k
“15:577 '“?:5_2’ j=1,...,r (1.24)
Then by dividing Eq. (1.21) with §%, we get
— | WbV (k) + > pkvg;(ak) | € Tx(ak)*. (1.25)
j=1
Since by construction the sequence {,u’g, ,u’f ..., &} is bounded, it must contain a subse-
quence that converges to some nonzero limit {fg, @y, ..., 4, }. From Eq. (1.25) and the

defining property of the normal cone Nx(Z) [z — T, zF — Z, and 2k € Tx(z*)* for all k,

imply that Z € Nx ()], we see that Jiy and the i; must satisfy

— | mVF@) +) m;Vg(T) | € Nx(@). (1.26)

j=1

Furthermore, from Eq. (1.24), we have g;(x*) > 0 for all j such that 7i; > 0 and k sufficiently
large. By using the quasinormality of Z, it follows that we cannot have 7i; = 0, and by

appropriately normalizing, we can take 1z, = 1 and obtain
— | VF@) +) 1;Vg(@) | € Nx(@).
j=1

Since —VF(T) =y , we see that

y=z+Y V(@)

j=1

where z € Nx(T), and the scalars fy,..., [, and the sequence {z¥} satisfy the desired

properties, thus completing the proof. Q.E.D.

132



Next, we prove the main result of this section, namely that under a regularity assump-

tion on X, quasinormality implies quasiregularity.

Proposition 4.1.6: If z* is a quasinormal vector of C' and X is regular at x*, then

x* is quasiregular.

Proof: We assume for simplicity that all the constraints are inequalities. We must show

that T (z*) = Tx (z*)NV (2*), and to this end, we first show that T (z*) C T'x (z*)NV (x*).

Indeed, since C' C X, using the definition of the tangent cone, we have
Te(z*) C Tx (z*). (1.27)

To show that To(z*) C V(x*), let y be a nonzero tangent of C' at x*. Then there exist
sequences {{¥} and {x*k} C C such that zF # x* for all k,

é‘k - 07 rk — T*,
and

xk — o+ Yy

|zk =z |yl

By the mean value theorem, we have for all j and &
0> gj(z%) = gj(2*) + Vg (ZF) (aF — a*) = Vg; (ZF) (aF — 2¥),

where ¥ is a vector that lies on the line segment joining z* and x* . This relation can be

written as
|zF — a~||

[yl
where y¥ = y + ¥||y||, or equivalently

Vg;(zk)yk <0,

Vg;(Zk)y* <0, Yk =y +&F|y|l

Taking the limit as kK — oo, we obtain Vg;(z*)'y < 0 for all j, thus proving that y € V(z*).
Hence, Tc(x*) C V(z*). Together with Eq. (1.27), this shows that

To(x*) C Tx(z*) NV (x*). (1.28)
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To show the reverse inclusion T'x (z*) NV (z*) C Te(z*), we first show that
Ne(z*) C Tx(x*)* + V(x*)*.

Let y* be a vector that belongs to N¢(z*). By the definition of the normal cone, this
implies the existence of a sequence {z*¥} C C that converges to z* and a sequence {y*}
that converges to y*, with y* € Te(zF)* for all k. In view of the assumption that z* is
quasinormal, it follows from Prop. 4.1.4 that for all sufficiently large k, x* is quasinormal.
Then, by Prop. 4.1.5, for each sufficiently large k, there exists a vector zk € Nx(z*) and

nonnegative scalars ¥, ..., u¥ such that

yk = 2k + Zu?ng(:vk). (1.29)
=1

Furthermore, there exists a sequence {2} C X such that

lim zf = z*,
[—o0

and for all [, u;?gj (zF) > 0 for all j with ,u;? > 0.

We will show that the sequence {u%,...,ur} is bounded. Suppose, to arrive at a
contradiction, that this sequence is unbounded, and assume without loss of generality, that

for each k, at least one of the ué? is nonzero. For each k, denote

1

ok = T k\o 0
Zj:l(:uj)2

and

f;?:(Skué?, Vi=1,...,m

It follows that §* > 0 for all £ and 6* — 0 as k — oo. Then, by multiplying Eq. (1.29) by

0k, we obtain
Skyk = gk 2k 4 Zéj’?ng(xk),
7j=1

or equivalently, since z¥ € Nx(zF) and 6% > 0, we have

r

Skzk = | Skyk — " ekVg;(ak) | € Nx(ah),

Jj=1
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Note that by construction, the sequence {£F, ..., &F} is bounded, and therefore has a nonzero
limit point {7, ..., & }. Taking the limit in the preceding relation along the relevant sub-
sequence and using the facts 6% — 0, y* — y*, and ¥ — z* together with the closedness
of the normal cone Nx (z*) (cf. Prop. 4.1.4), we see that 0kzF converges to some vector z*

in Nx (z*), where
2= (> &Vila)
j=1
Furthermore, by defining an index I for each k such that [} < --- <1 <l and

lim zkF =

= x*
k—oo I ’

we see that for all j with £F > 0, we have g (xfk) > 0 for all sufficiently large k. The existence
of such scalars &, ..., & violates the quasinormality of the vector x*, thus showing that
the sequence {u¥, ..., uk} is bounded.

Let {u%,...,ps} be a limit point of the sequence {u¥, ..., uk}, and assume without

loss of generality that {u¥, ..., uk} converges to {u3,...,us}. Taking the limit as k — oo

in Eq. (1.29), we see that z*k converges to some z*, where

=y — [ D Vi) | . (1.30)
j=1

By closedness of the normal cone Nx (x*) and in view of the assumption that X is regular
at x*, so that Nx(z*) = Tx (z*)* , we have that z* € Tx (z*)*. Furthermore, by defining
an index [ for each k such that [1 < --- <lp_1 < i and

lim zF =

= x*
k—oo L ’

we see that for all j with u7 > 0, we have g; (mfk) > 0 for all sufficiently large k, showing
that g;(z*) = 0. Hence, it follows that u* = 0 for all j ¢ A(x*), and using Eq. (1.30), we

can write y* as

yr=z 4 Y uiVg(a)
JEA(z*)
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By Farkas’ Lemma, V (z*)* is the cone generated by Vg,(z*), j € A(z*). Hence, it follows
that y* € T'x (z*)* + V(z*)*, and we conclude that

No(x*) C Tx (x*)* + V(x*)*. (1.31)

Finally, using the properties relating to cones and their polars and the fact that T'x (z*)
is convex (which follows by the regularity of X at z*, cf. Proposition 2.2.19 of Chapter 2),
we obtain

(Tx (z*)* + V(z*)*)" = Tx(z*) NV (2*) C Ne(z*)*. (1.32)

Using the relation N¢(z*)* C Teo(x*) (cf. Proposition 2.2.18 of Chapter 2), this shows that
Tx(z*) NV (z*) C Te(x*), which together with Eq. (1.28) concludes the proof. Q.E.D.

Note that in the preceding proof, we showed
To(x*) C Tx(x*) NV (x*),
which implies that
Tx(x*)* + V(z*)* C (Tx(z*) NV (z*))" C To(z*)*. (1.33)
We also proved that if X is regular at z* and z* is quasinormal, we have
Ne(x*) C Tx (x*)* + V(x*)*,

[cf. Eq. (1.31)]. Combining the preceding two relations with the relation T¢(x*)* C N (x*),

we obtain

Tc(x*)* = Nc(.r*),

thus showing that quasinormality of z* together with regularity of X at z* implies that C

is regular at z*.

Note that contrary to the case where X = R, quasiregularity is not sufficient to
guarantee the existence of a Lagrange multiplier. What is happening here is that the

constraint set admits Lagrange multipliers at z* if and only if

To(x*)* = Tx (x*)* + V(z*)*, (1.34)
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(cf. Chapter 3). Note that this condition is equivalent to the following two conditions! :
(a) V(z*)N cl(conV(TX(:z;*))> = cl(conv(TC(:c*))),

(b) V(z*)* + Tx(x*)* is a closed set.
Quasiregularity is a weaker condition, even under the assumption that X is regular,

since the vector sum V(z*)* + T'x(x*)* need not be closed even if both of these cones

themselves are closed, as shown in the following example.

Example 4.1.4:
Consider the constraint set C' C R® specified by,
C:{x€X|h(:L'):O},

where

X = {(Il,l‘g,(Eg) ‘ I% +m§ < -'L'g, T3 < 0}7

and

h(z) = z2 + 3.

Let z* denote the origin. Since X is closed and convex, we have that X = T'x(z*), and that

X is regular at *. The cone of first order feasible variations, V(z*), is given by
V(z") = {(ml,xg,xg) | 2 + x5 = 0}.

It can be seen that the set V(x*)* 4+ Tx (z*)" is not closed, implying that C' does not admit

Lagrange multipliers. On the other hand, we have
Te(z™) =Tx(z") NV (z"),

i.e., z* is quasiregular.

Hence, quasiregularity is not powerful enough to assert the existence of Lagrange

multipliers for the general case X # R, unless additional assumptions are imposed. It is

1 Note that this is exactly the same condition given by Guignard [Gui69] as a sufficient

condition for the constraint set to admit Lagrange multipliers at z*.
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4.2.

effective only for special cases, for instance, when T'x (z*) is a convex and polyhedral cone,
in which case the vector sum V(z*)* + Tx (x*)* is closed, and quasiregularity implies the
admittance of Lagrange multipliers. Thus the importance of quasiregularity, the classical
pathway to Lagrange multipliers when X = 7, diminishes when X # R". By contrast,

pseudonormality provides satisfactory unification of the theory.

EXACT PENALTY FUNCTIONS

In this section, we relate the problem
minimize f(x)
(2.1)
subject to x € C,

where
C=Xn{z|hi(z)=0,...,~hm(z) =0} N{z | g1(z) <0,...,g.(x) <0}, (2.2)

with another problem that involves minimization over X of the cost function

m T
Fo(w) = f(2) +c | Y [hi(@)|+ Y gf(2) |,
i=1 j=1
where c is a positive scalar, and as earlier, we use the notation

g;-“ (z) = max{0, gj () }.

Here the equality and inequality constraints are eliminated, and instead the cost is aug-
mented with a term that penalizes the violation of these constraints. The severity of the
penalty is controlled by ¢, which is called the penalty parameter, and determines the extent
to which the penalized problem approximates the original constrained problem. As c takes
higher values, the penalty approximation becomes increasingly accurate. In fact, it can
be shown that the optimal solution of the original constrained problem can be obtained by
solving a sequence of problems, where we minimize F_. over X, for some sequence {c*} that

goes to infinity (see [Ber99]). However, although the penalized problem is less constrained,
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it becomes seriously ill-conditioned as ¢ goes to infinity. It turns out that, under some con-
ditions on the constraint set, the optimal solution of the original constrained problem can
be obtained by a single optimization problem, which minimizes the penalized cost function

F. over X, for a finite value of the parameter c.

Definition 4.2.3:  Let us say that the constraint set C' admits an exact penalty
at the feasible point x* if for every smooth function f for which x* is a strict local
minimum of f over C, there is a scalar ¢ > 0 such that z* is also a local minimum of

the function F,. over X.

Note that, like admittance of Lagrange multipliers, admittance of an exact penalty is
a property of the constraint set C, and does not depend on the cost function f of problem
(2.1).

Traditionally exact penalty functions have been viewed as useful computational devices
and they have not been fully integrated within the theory of constraint qualifications. There
has been research on finding conditions that guarantee that the constraint set admits an
exact penalty for optimization problems that do not have an abstract set constraint. In fact,
it was shown by Pietrzykowski [Pie69] that the constraint set admits an exact penalty if
CQ1 holds. Similarly, the fact that CQ2 implies admittance of an exact penalty was studied
by Zangwill [Zan67]|, Han and Mangasarian [HaM79], and Bazaraa and Goode [BaG82]. In
this work, we will clarify the relations of exact penalty functions, Lagrange multipliers, and
constraint qualifications. We show that pseudonormality is the key property that places all
these notions in one big picture. In the process we prove in a unified way that the constraint
set admits an exact penalty for a much larger variety of constraint qualifications than has

been known up to now.

Note that, in the absence of additional assumptions, it is essential for our analysis
to require that x* be a strict local minimum in the definition of admittance of an exact
penalty. This restriction may not be important in analytical studies, since we can replace a
cost function f(x) with the cost function f(x) 4+ ||z — z*||? without affecting the problem’s

Lagrange multipliers. On the other hand if we allow functions f involving multiple local
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minima, it is hard to relate constraint qualifications such as the ones of the preceding
section, the admittance of an exact penalty, and the admittance of Lagrange multipliers.

This is illustrated in the following example.

Example 4.2.5:

Consider the 2-dimensional constraint set specified by

The feasible points are of the form = = (x1,0) with 1 € R, and at each of them the gradient
Vhi(x™) is nonzero, so * is regular (CQ1 holds). If f(x) = x2, every feasible point is a local

minimum, yet for any ¢ > 0, we have

. |z2]
f =
wlen%Q {xz—l—cx%_’_l o0

(take z1 = 2 as x2 — —o0). Thus, the penalty function is not exact for any ¢ > 0. It
follows that regularity of ™ would not imply the admittance of an exact penalty if we were

to change the definition of the latter to allow cost functions with nonstrict local minima.

We will next show that pseudonormality implies that the constraint set admits an exact
penalty, which in turn, together with regularity of X at z*, implies that the constraint set
admits Lagrange multipliers. We first use the generalized Mangasarian-Fromovitz constraint
qualification MFCQ to obtain a necessary condition for a local minimum of the exact penalty

function.
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Proposition 4.2.7:  Let z* be a local minimum of

Fu(x) = Z\h D)+ gt @)

over X. Then there exist A}, ..., A, and pj, ..., u7 such that

— | Vf(@) ZA*Vh (z*) +Zu;vgj € Nx(z*),

A =1 if hi(z*) >0, A= -1 if hy(z*) <0,
A€ [=1,1] if hi(a*) =0,
w; =1 if g;(z*) >0, p; =0 if gj(z*) <0,

py € [0,1] if gj(a*) =0.

Proof: The problem of minimizing Fe(x) over x € X can be converted to the problem

minimize f(z E w; + E v

subject to = € X, hz(m) < wj, —hi(x) <w;, i=1,...,m,

gi(x) <wvj, 0<v;, j=1,...,7,

which involves the auxiliary variables w; and v;. It can be seen that at the local minimum of
this problem that corresponds to z*, the constraint qualification MFCQ is satisfied. Thus,
by Prop. 4.1.2, this local minimum is pseudonormal, and hence there exist multipliers sat-
isfying the enhanced Fritz John conditions (Prop. 3.2.3) with pf = 1. With straightforward
calculation, these conditions yield scalars A],..., A}, and pf, ..., ur, satisfying the desired

conditions. Q.E.D.
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Proposition 4.2.8:  If z* is a feasible vector of problem (2.1)-(2.2), which is pseudonor-

mal, the constraint set admits an exact penalty at x*.

Proof: Assume the contrary, i.e., that there exists a smooth f such that x* is a strict
local minimum of f over the constraint set C', while z* is not a local minimum over x € X

of the function
Fi(z) = f(x) +k | D |hi(@)] + > g (@)
i=1 j=1
for all k =1,2,... Let € > 0 be such that
flz*) < f(x), V z € C with z # z* and ||z — z*|| <e. (2.3)

Suppose that ¥ minimizes Fy(x) over the (compact) set of all z € X satisfying ||z —z*|| < e.
Then, since z* is not a local minimum of Fj over X, we must have that z* # z*, and that

xk is infeasible for problem (2.2), i.e.,

Z |hi(xF)| 4+ Zgj(:rk) > 0. (2.4)

=1

We have
Fi(ak) = fak) + k[ D [ha(ak)| +> gl (k) | < fa*), (2.5)
i=1 j=1

so it follows that h;(z*) — 0 for all ¢ and gj(x’f) — 0 for all j. The sequence {z*} is
bounded and if T is any of its limit points, we have that T is feasible. From Eqgs. (2.3) and
(2.5) it then follows that Z = x*. Thus {z*} converges to z* and we have ||xk — z*|| < € for
all sufficiently large k. This implies the following necessary condition for optimality of x¥

(cf. Prop. 4.2.7):

VAR + AT I + D Vg ) | € Nx(ah), (26)
i=1 j=1

where

ANE=1 if hy(zk) >0,  MN=-1 if hy(zk) <0,
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AF € [=1,1] if hi(ak) =0,
ph=1 if gj(z*) >0,  ph=0 if g;(a*) <0,
uy €[0,1] if gj(z*) = 0.

In view of Eq. (2.4), we can find a subsequence {\F, uF}icic such that for some equality
constraint index i we have |[A\¥| = 1 and h;(z*) # 0 for all k € K or for some inequality
constraint index j we have pf =1 and g;(«*) > 0 for all k € K. Let (A, z2) be a limit point
of this subsequence. We then have (A, 1) # (0,0), x> 0. Using the closure of the mapping
x — Nx(z), Eq. (2.6) yields

= | 2N Vi) + 31 Vgi(a) | € Nx(a). (2.7)

Finally, for all k& € K, we have A\¥h;(z¥) > 0 for all i, ,u;?gj(x’f) > 0 for all j, so that,
for all k € IC, Aihi(z¥) > 0 for all i, pjg;(x¥) > 0 for all j. Since by construction of the
subsequence {\¥, u¥}icic, we have for some ¢ and all k € K, |\¥| =1 and h;(zF) # 0, or for
some j and all k € K, u? =1 and g;(x*) > 0, it follows that for all k € K,

m

Z Xihi(zF) + Z,Ltjgj(l'k) > 0. (2.8)

i=1 j=1

Thus, Egs. (2.7) and (2.8) violate the hypothesis that x* is pseudonormal. Q.E.D.

The following example shows that the converse of Prop. 4.2.8 does not hold. In partic-
ular, the admittance of an exact penalty function at a point x* does not imply pseudonor-

mality.

Example 4.2.6:

Here we show that even with X = R", the admittance of an exact penalty function does not
imply quasiregularity and hence also pseudonormality. Let C' = {:L“ eR? | gi(x) <0, g2(z) <

0, gs(x) < O}, where
gi(x) = —(21+1)" = (x2)* + 1,

g2(x) =i+ (w2 +1)° -1,

gs(x) = —x2,
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(see Fig. 4.2.5). The only feasible solution is 2 = (0,0) and the constraint gradients are

given by

Vi (z™)

(_270)7 VQQ(CC*) = (072)7 Vg3(33*) = (07_1)'

At z* = (0,0), the cone of first order feasible variations V' (z*) is equal to the nonnegative x;

axis and strictly contains T'(x*), which is equal to 2* only. Therefore ™ is not a quasiregular

point.

Figure 4.2.5.

| X,
A *
Vg, (x')
V(X"
x*:O:TX(x*)
X1

1Vg3(x)

Constraints of Example 4.2.6. The only feasible point is

z* = (0,0). The tangent cone T(z*) and the cone of first order feasible

variations V (z*) are also illustrated in the figure.

However, it can be seen that the directional derivative of the function P(x)

S g (@)

at ™ is positive in all directions. This implies that we can choose a sufficiently large penalty

parameter ¢, so that ™ is a local minimum of the function F.(z). Therefore, the constraint

set admits an exact penalty function at z™.

The following proposition establishes the connection between admittance of an exact

penalty and admittance of Lagrange multipliers. Regularity of X is an important condition

for this connection.
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4.3.

Proposition 4.2.9:  Let z* be a feasible vector of problem (2.1)-(2.2), and let X be
regular at x*. If the constraint set admits an exact penalty at x*, it admits Lagrange

multipliers at x*.

Proof: Suppose that a given smooth function f(x) has a local minimum at z*. Then the
function f(z)+ || —z*||2 has a strict local minimum at z*. Since C' admits an exact penalty
at x*, there exist A} and u satisfying the conditions of Prop. 4.2.7. (The term ||z —2*[|2 in
the cost function is inconsequential, since its gradient at x* is 0.) In view of the regularity

of X at z*, the A} and p} are Lagrange multipliers.  Q.E.D.

Note that because Prop. 4.2.7 does not require regularity of X, the proof of Prop.
4.2.9 can be used to establish that admittance of an exact penalty implies the admittance
of R-multipliers, as defined in Section 5.3. On the other hand, Example 3.4.5 shows that
the regularity assumption on X in Prop. 4.2.9 cannot be dispensed with. Indeed, in that
example, z* is pseudonormal, the constraint set admits an exact penalty at z* (consistently

with Prop. 4.2.8), but it does not admit Lagrange multipliers.

The relations shown thus far are summarized in Fig. 4.2.6, which illustrates the uni-
fying role of pseudonormality. In this figure, unless indicated otherwise, the implications
cannot be established in the opposite direction without additional assumptions (the exer-

cises provide the necessary additional examples and counterexamples).

USING THE EXTENDED REPRESENTATION

In practice, the set X can often be described in terms of smooth equality and inequality

constraints:

X:{x]hi(:p):O,i:m+1,...,m,gj(a:)§0,j:7’+1,...,7}.
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X= RN X= RN and Regular

Constrggtl%uQagﬂcatlons Constraint Qualifications
MFCQ, RCQ
\ \
Pseudonormality Pseudonormality
) IAdmittance of an Exact
Quasiregu'arity Admittance of an Exact Pena'ty
Penalty

Admittance of Informative and
Admittance of Informative and Strong Lagrange Multipliers

Strong Lagrange Multipliers

" A v A
Admittan,\ﬁa t?; ||i'§%range Admlttanl\(/:lﬁltci); Ili_é\ar%range
X= RN
Constraint Qualifications
MFCQ, RCQ
\

Pseudonormality

IAdmittance of an Exact
Penalty

Admittance of R-multipliers

Figure 4.2.6. Relations between various conditions, which when satisfied at a
local minimum z*, guarantee the admittance of an exact penalty and correspond-
ing multipliers. In the case where X is regular, the tangent and normal cones
are convex. Hence, by Prop. 3.3.6, the admittance of Lagrange multipliers im-
plies the admittance of an informative Lagrange multiplier, while by Prop. 4.2.5,

pseudonormality implies the admittance of an exact penalty.
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Then the constraint set C' can alternatively be described without an abstract set constraint,

in terms of all of the constraint functions
hi(x) =0, i=1,...,m, gi(x) <0, j=1,...,F

We call this the extended representation of C, to contrast it with the representation (2.2),
which we call the original representation. Issues relating to exact penalty functions and
Lagrange multipliers can be investigated for the extended representation and results can be

carried over to the original representation by using the following proposition.

Proposition 4.3.10:

(a) If the constraint set admits Lagrange multipliers in the extended representation,

it admits Lagrange multipliers in the original representation.

(b) If the constraint set admits an exact penalty in the extended representation, it

admits an exact penalty in the original representation.

Proof: (a) The hypothesis implies that for every smooth cost function f for which z* is

a local minimum there exist scalars A7, ..., A= and uj,..., u= satisfying

Vf(z*) —l—ZA*Vh (x*) +Z,u Vg;(xz*) =0, (3.1)

/“6_7207 Vj:O)]‘?"‘?F7
wp=0,  Vj¢A@),
where
Alx*) =1{j | gij(z*)=0,7=1,...,F}.

For y € T'x(x*), we have Vh;(z*)'y =0 for all i = m +1,...,m, and Vg;(z*)'y < 0 for all
j=r+1,...,7 with j € A(z*). Hence Eq. (3.1) implies that
/

V f(x*) +Z)\*Vh (z*) +Zu Vgi(z*) ]| y >0, Vy e Tx(x*),
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and it follows that AY, i =1,...,m, and uj, j = 1,...,r, are Lagrange multipliers for the

original representation.

(b) Consider the exact penalty function for the extended representation:

Fe(z) = fl@)+c| Y lhi(@)| +)_ g (2)
i=1 j=1
We have F.(x) = F.(x) for all z € X. Hence if 2* is an unconstrained local minimum of
F.(), it is also a local minimum of F.(z) over x € X. Thus, for a given ¢ > 0, if z* is
both a strict local minimum of f over C' and an unconstrained local minimum of F.(z), it

is also a local minimum of F,.(z) over z € X. Q.E.D.

Prop. 4.3.10 can be used in the case when all the constraints are linear and X is a
polyhedron. Here, the constraint set need not satisfy pseudonormality (as shown in the
following example). However, by Prop. 4.1.2, it satisfies pseudonormality in the extended
representation, so using Prop. 4.3.10, it admits Lagrange multipliers and an exact penalty

at any feasible point in the original representation.

Example 4.3.7:
Let
C:{x€X|a’x§0, b’:cSO},

where a = (1,—-1), b = (—1,-1), and X = {m ceR?*| d'z>0, bz > 0}. The constraint set
is depicted in Fig. 4.3.7.

The only feasible point is * = (0,0). By choosing p = (1, 1), we get
—(a+b) € Tx(z7)",

while in every neighborhood N of z* there is an x € X N N such that a’x > 0 and b’z > 0
simultaneously. Hence z* is not pseudonormal. This constraint set, however, admits Lagrange
multipliers at z* = (0,0) with respect to its extended representation (cf. Prop. 4.3.10), and

hence it admits Lagrange multipliers at 2™ = (0, 0) with respect to the original representation.
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X = Ty(x)

Figure 4.3.7. Constraints of Example 4.3.7. The only feasible point is z* =
(0,0). The tangent cone T'x (x*) and its polar Tx (z*)* are shown in the figure.

Note that part (a) of Prop. 4.3.10 does not guarantee the existence of informative
Lagrange multipliers in the original representation, and indeed in the following example,
there exists an informative Lagrange multiplier in the extended representation, but there
exists none in the original representation. For this to happen, of course, the tangent cone

Tx (x*) must be nonconvex, for otherwise Proposition 3.3.6 applies.

Example 4.3.8:

Let the constraint set be represented in extended form without an abstract set constraint as
C= {x e R? | aiz <0, asx <0, (aiz)(ase) = 0},

where a1 = (—1,0) and a2 = (0, —1). Consider the vector ™ = (0,0). It can be verified that
this constraint set admits Lagrange multipliers in the extended representation. Since X = R?
in this representation, the constraint set also admits informative Lagrange multipliers, as

shown by Proposition 3.3.6.

Now let the same constraint set be specified by the two linear constraint functions

ajx <0 and abx < 0 together with the abstract constraint set
X = {a: | (aiz)(abr) = 0}
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X = Ty(x")

V(x") .
ToX) Te(x) —
a a
|||||=|1|: ||||T1||
L) Vi)Y —§ a
1oy e S

€)) (b)

Figure 4.3.8. Constraints and relevant cones for different representations

of the problem in Example 4.3.8.

Here Tx (z*) = X and Tx(z*)* = {0}. The normal cone Nx (z*) consists of the coordinate
axes. Since Nx (z*) # Tx (z*)", X is not regular at z*. Furthermore, Tx (x*) is not convex,
so Prop. 3.3.6(a) cannot be used to guarantee the admittance of an informative Lagrange
multiplier. For any f for which x* is a local minimum, we must have —V f(z*) € Tc(z*)*

(see Fig. 4.3.8). The candidate multipliers are determined from the requirement that

2
| VI + D mas | € Tx(a")" = {0},
j=1
which uniquely determines pq and po. If Vf(a*) lies in the interior of the positive orthant,
we need to have g1 > 0 and p2 > 0. However, there exists no x € X that violates both
constraints ajz < 0 and abz < 0, so the multipliers do not qualify as informative. Thus, the

constraint set does not admit informative Lagrange multipliers in the original representation.
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CHAPTER 5

MULTIPLIERS AND CONVEX PROGRAMMING

In this chapter, our objective is to extend the theory of the preceding chapters to problems
in which continuity/differentiability assumptions are replaced by convexity assumptions.
For this purpose, we adopt a different approach based on tools from convex analysis, such
as hyperplanes, convex set support/separation arguments, and saddle point theory. Because
of the geometric character of the analysis, the results and their proofs admit insightful vi-
sualization. Moreover, since this line of analysis does not depend on using gradients at
a specific local or global minimum, it allows us to analyze the global problem structure.
Thus, it becomes possible to develop a similar theory for optimization problems without
guaranteeing the existence of an optimal solution. This development motivates us to de-
fine an extended notion of pseudonormality, which is a property of the constraint set, as
opposed to being tied to a specific feasible vector of the constraint set. Through the notion
of pseudonormality, this development provides an alternative pathway to obtain strong du-
ality results of convex programming. Pseudonormality also admits an insightful geometric

visualization under convexity assumptions.

We first present a straightforward extension of the theory of the preceding chapters
to convex programming problems by using subgradients, instead of gradients, for convex
possibly nondifferentiable functions. For this purpose, we use generic optimality conditions
given in Chapter 2 for minimizing a convex function over a constraint set. However, us-
ing subgradients requires more stringent assumptions than necessary on the cost and the
constraint functions. Therefore, in Section 5.2, we use a different line of analysis based on
convexity and saddle point theory to derive optimality conditions for convex problems with

optimal solutions.

We next introduce a new notion of a multiplier vector, called geometric, that is not

tied to a specific local or global minimum and does not require differentiability or even
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5.1.

continuity of the cost and constraint functions. We show that, under convexity assump-
tions, these multipliers are related to Lagrange multipliers defined in Chapter 3. Then we
focus on problems that do not necessarily have optimal solutions and develop enhanced
Fritz John conditions for these problems. We consider special geometric multipliers that
carry sensitivity information regarding constraints of the problem (similar to ‘informative
Lagrange multipliers’), and investigate the conditions required for their existence. Finally,
we derive Fritz John optimality conditions for a dual optimization problem. Based on these
conditions, we define a special dual optimal solution that carries sensitivity information and

show its existence under general assumptions.

EXTENSIONS OF THE DIFFERENTIABLE CASE

We consider the problem
minimize f(x)

(1.1)

subject to z € X, g(x) <0,

where g(z) = (91(), ..., gr(z)), under the following assumption:

Assumption 5.1.1:  The set X is nonempty and closed, and the functions f and g;

are real-valued and convex over R".

For simplicity, we assume no equality constraints. The extension of the following

analysis to cover equality constraints is straightforward.

The theory of the preceding chapters can be generalized by substituting the gradients
of convex but nondifferentiable functions with subgradients. In particular, we use the
necessary optimality condition given in Chapter 2 for the problem of minimizing a convex
function F(z) over X: if z* is a local minimum and the tangent cone T'x (z*) is convex,
then

0 € OF (z*) + T'x (x*)*. (1.2)

We have the following proposition.
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Proposition 5.1.1:  Let z* be a local minimum of problem (1.1). Let Assumption
5.1.1 hold, and assume that the tangent cone Tx(x*) is convex. Then, there exist

scalars g, and pf, ..., pr, satisfying the following conditions:
(i) 0 € pusof(z*) + 325, u;0g;(x*) + Nx (a*).
(i) p; >0 forall j =0,1,...,r

(iii) pg, p, ..., p are not all equal to 0.

(iv) If the index set J = {j # 0 | pj > 0} is nonempty, there exists a sequence

{zF} C X that converges to z* and is such that for all k,
fah)y < fla*),  pigij(a*) >0, Vjel

g (%) = O(géiygj(x))a Vil

Proof: The proof is similar to the proof of Prop. 3.2.3, in that we use the condition
0 € OFk(xk) + Tx (z*)* in place of —VFk(xk) € Tx(x*)*, together with the closedness of
Nx(z*). Q.E.D.

The straightforward extensions for the definitions of Lagrange multiplier and pseudonor-

mality are as follows.

Definition 5.1.1:  Consider problem (1.1), and let z* be a local minimum. A vector

w* is called a Lagrange multiplier vector corresponding to f and x* if

0.€ 0f () + D wi0gs () + T (), (13)

Jj=1

s >0, ' g(z*) = 0. (1.4)
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Definition 5.1.2:  Consider problem (1.1) under Assumption 5.1.1. A feasible vector
x* is said to be pseudonormal if there do not exist any scalars pui, ..., u,, and any

sequence {z¥} C X such that:
(i) 0€ >0 idgj(x*) + Nx (2*).
(ii) >0 and p'g(x*) = 0.

(iii) {x*} converges to z* and for all k,

> wigi(ak) > 0.

Jj=1

If a local minimum z* is pseudonormal and the tangent cone T'x(z*) is convex, by
Prop. 5.1.1, there exists a Lagrange multiplier vector, which also satisfies the extra condition

(iv) of that proposition, hence qualifies as an ‘informative’ Lagrange multiplier.

The theory of Chapter 4 can be extended to relate constraint qualifications to pseudonor-
mality. In particular, it can be seen that a feasible vector z* is pseudonormal under any of

the following conditions:
(1) Linearity criterion: X is a polyhedron and the constraint functions g; are affine.

(2) Slater criterion: X is closed and convex, the functions g; : R +— R are convex over

Rn.1 and there exists a feasible vector Z such that

Thus, under either any one of these criteria, a Lagrange multiplier vector, satisfying the

extra CV condition (iv) of Prop. 5.1.1, is guaranteed to exist.

I The assumptions that X is closed and the functions g; are convex over $" can be

relaxed using the proposition given in the next section.
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5.2. OPTIMALITY CONDITIONS FOR CONVEX PROGRAMMING PROBLEMS

We now consider the problem

minimize f(x)

(2.1)

subject to z € X, g(x) <0,

where g(z) = (g1(2),...,9-(2)), under weaker convexity assumptions. [The extension of
the analysis to the case where there are affine equality constraints is straightforward: we
replace each equality constraint with two affine inequality constraints.] In particular, we

assume the following:

Assumption 5.2.2: The set X is nonempty and convex, and the functions f : X +—

R and g; : X — R are closed and convex.

Since in this section we do not require convexity of the cost and constraint functions
over the entire space R, the line of analysis using subgradients breaks down. In the next
proposition, we use a different line of proof that does not rely on gradients and subgradients,

and is based instead on the saddle point theory.

Proposition 5.2.2: (Enhanced Fritz John Conditions for Convex Problems
with an Optimal Solution) Consider problem (2.1) under Assumption 5.2.2,
and let z* be a global minimum. Then there exists a scalar pj and a vector pu* =

(3, ..., uy), satisfying the following conditions:
(1) pif () = infoex{pif(z) + p*'g(z)}.
(ii) pf >0forall j=0,1,...,7

(ii) ped, g, ..., py are not all equal to 0.
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(iv) If the index set J = {j # 0 | pj > 0} is nonempty, there exists a sequence
{z¥} C X that converges to z* and is such that for all k,

flzk) < f(x*), wigi(zk) >0, Vje (2.2)

jeJ

ot ) =0 (mings () ). Vg (2.3

Proof: For each positive integer k and m, we consider the function

Lo, €) = 1) + o — a*]2 + rg(a) — 1oI°
LN k’3 . ,

For each k, we consider the set
Xk=Xn{z||z—2*| <k)}.

Since the functions f and the g; are closed and convex over X, they are closed and convex
over X%, which implies that, for each & > 0, Lg (-, ) is closed and convex over XF.
Similarly, for each © € R", Ly, (z, -) is closed, convex, and coercive in £. Since X% is also
bounded, we use the saddle point theorem given in Chapter 2 to assert that Ly ,, has a

saddle point over x € X* and £ > 0, which we denote by (zkm, {km).

Since (zkm, gkm) is a saddle point of Ly, over z € X* and £ > 0, the infimum of

L m(x,&Fm) over x € X* is attained at %™, implying that
1 , ) 1 /
Flakom) + o — a2 4 g’ glakm)= inf, @) + Ll — o0+ 6 g(a)
k3 zeXk k3

< inf {f(x)Jr %Ilw—x*H“ré’“’m'g(x)}

zeXk, g(z)<0

1
< inf + |z — z*[]?
—xexk{“g@go{f@) Lle o] }

= f(z*).
(2.4)
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Hence, we have

1 , 1
Ly m(xhm, ghm) = f(zkm) + ﬁ”afk’m — z*||2 4 EFm g(zkom) — %HS’WII2

< flakm) 4 5 llokm — |2 + gh’g(zkom) (25)
< f(@).

Since Ly, is quadratic in &, the supremum of Ly, ,, (x5, &) over £ > 0 is attained at

é‘f»m — kgj(xkym)’ j = 17 P ,7‘. (26)

This implies that

1 m
Lieam(ahim, §bm) = f(abm) + llakm — | + Zlg* (@hm) |2
1
> flakm) + llakm — a2 (27)

> f(akm).

From Egs. (2.5) and (2.7), we see that the sequence {z%™} belongs to the set {z €
Xk | f(x) < f(a*)}, which is compact. Hence, {z¥™} has a limit point (as m — oo),
denoted by Z*, which belongs to {z € X*| f(z) < f(z*)}. By passing to a subsequence if
necessary, we can assume without loss of generality that {z*™} converges to Z* as m — oc.
For each k, the sequence f(z*™) is bounded from below by inf_ s« f(x), which is finite by
Weierstrass’ Theorem since f is closed and coercive over X*. Also, for each k, L ., (¥, &F)
is bounded from above by f(z*) [cf. Eq. (2.5)], therefore, Eq. (2.7) implies that

lim sup g(z%™) <0, (2.8)

from which, by using the lower semicontinuity of g;, we obtain g(Z*) < 0, implying that
Z" is a feasible point of problem (2.1), so that f(z*) > f(x*). Using Eqgs. (2.5) and (2.7)

together with the lower semicontinuity of f, we also have

f(@*) < liminf f(z*km) < limsup f(zkm) < f(z*),

m—oo m— o0

hence showing that for each k,

lim f(xzkm) = f(z*). (2.9)

m—00
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Together with Eq. (2.7), this also implies that for each k,

lim xkm = g*.
m—00

Combining the preceding relations with Eqgs. (2.5) and (2.7), for each k, we obtain

lim (f(zkm) — f(z*) + Ebm' g(zkm)) = 0. (2.10)

m—00

Denote

Skm — 1+ Z(g?,m)z
j=1

1 gk,m
k, k, j .
/‘LOm:W7 Mjm:(si,m, jzl,...,’l". (211)

Since k™ is bounded from below, Eq. (2.10) yields

lim u T (f(zkm) = f(z*)) —i—z,u gj(xkm) =0. (2.12)

k—o0

Dividing both sides of the first relation in Eq. (2.4) by 6™, we get

1 - 1
k, k, ,
() 4 sk e 2 43 g (k) < +Zu e R
i=1
Ve XFk.
Since the sequence {uf™, uB™, ..., ui™} is bounded, it has a limit point (as k — oo and
m — 00), denoted by {u§, 13, ..., p5}. Taking the limit along the relevant subsequences in

the preceding relation together with Eq. (2.12) yields
pi f () < pi f (@ +Zujgy VaeX,

which implies that
pi = < inf {pif(x) + gu;gm)}

T zeX, g;(z)<

S G )+ wigi(x)}
i—1

< _inf opgf(a)

z€X, g;(x)<0
ok
=pof*
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Thus, equality holds throughout, and we have
pof(e*) = inf {5 f(x) + Zl 1;95(2)},
]:

showing that puf, ..., ur satisfy conditions (i), (ii), and (iii) of the proposition.

For each k, choose an index my such that

1 1 1
0 < labme —z=l| < =, [flahme) = flz)] < -, llgt(amme)| < 7,
k k k
k,m * 1 .
|Mj k_:uj|§E7 J=1...,r

Dividing both sides of Eq. (2.6) by ¢%™k, and using Eq. (2.11), we obtain

lim SE =, jg=1,...,r

From Eq. (2.7), we also have
fahme) < f(z*),

for all k sufficiently large (the case where x*™k = x* for infinitely many k is excluded by
the assumption that the set J is nonempty). Hence the sequence {x*™k } satisfies condition

(iv) of the proposition as well, concluding the proof. Q.E.D.

We next provide a geometric interpretation for the proof of the preceding proposition.

Consider the function Ly ,,, introduced in the proof of the proposition,

NS
2m

1
Lion(,€) = F(@) + 2 lla — a2 + €'g(a)
Note that the term (1/k3)||z —x*||2 is introduced to ensure that z* is a strict local minimum
of the function f(z) + (1/k3)||z — z*||2. In the following discussion, let us assume without
loss of generality that f is strictly convex, so that this term can be ommitted from the
definition of Ly p,.

For any nonnegative vector u € ", we consider the following perturbed version of the

original problem
minimize f(x)

subject to g(z) < u, (2.13)
reXk=Xn{z||z—z*| <k},
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where v is a nonnegative vector in R”. In this problem, the abstract set constraint is
replaced by the bounded set X%, which has the property that any x € X belongs to Xk
for all k sufficiently large. We denote the optimal value of problem (2.13) by p¥(u). For
each k and m, the saddle point of the function Ly ,(x,&), denoted by (xzkm £Fm) can be
characterized in terms of p¥(u) as follows.

Because of the quadratic nature of Ly ,,, the maximization of Ly ., (x,&) over £ > 0

for any fixed x € X* yields

& = mgf(z), j=1,...,m (2.14)

so that we have

Lk’m(th’gk,m) = inf sup {f(:c) + S’Q(w) _ HfHQ }

zeXF £>0 2m
. m 9
= inf {f(@)+ ZDllg+(@))2}.
zeXFk 2
This minimization can be written as

L@k, gem) = inf inf  {f(z)+ Do+ (@))2 ]
Rt ’ (2.15)

m
:'f{k - +2}.
b pF(u) + S llut]

The vector ukm = g(ak-™) attains the infimum in the preceding relation. This minimization
can be visualized geometrically as in Fig. 5.2.1. The point of contact of the functions p*(u)
and Ly, (xkm £km) —m/2||ut]|?2 corresponds to the vector ukF-™ that attains the infimum

in Eq. (2.15).
We can also interpret 5 in terms of the function p*. In particular, the infimum of

L m(z,E%m) over © € XF is attained at x*™, implying that

flakm) +ghm'g(ahm) = inf {f(@)+¢hm'g(2)}

Replacing ukm = g(zkm) in the preceding, and using the fact that xk-™ is feasible for

problem (2.13) with v = uk™ we obtain
k(ykm) < km) — inf k k,m’ — uykm) L.
pHukm) < flekm) = inf {pk(u) + €6 (u— b))}
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L pk(u)

Lk,m(xkm, Ekm)\

/—
Lk,mO<ksm, gkm) _ my2 jju+|2

slope = - Ek,m

Figure 5.2.1. [Illustration of the saddle points of the function Ly ., (x,&) over
x € X* and € > 0 in terms of the function p*(u), which is the optimal value of

problem (2.13) as a function of .

Thus, we see that
pr(ukm) < pk(u) + E0m' (u —ubm), ¥ ue R,
which, by the definition of the subgradient of a function, implies that
—gkam ¢ Ppk (yhom),

(cf. Fig. 5.2.1). It can be seen from this interpretation that, the limit of Ly ,, (xk-m, km)
as m — oo is equal to p#(0), which is equal to f(z*) for each k. The limit of the normalized

sequence

{ (1,&km) }
1+ [[€bm]2
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as k — oo and m — oo yields the Fritz John multipliers that satisfy conditions (i)-(iii) of
the proposition, and the sequence {x*m} is used to construct the sequence that satisfies
condition (iv) of the proposition.

The next example demonstrates the saddle points of the function Ly ,,(x,£) and the
effect of using a bounded approximation of the abstract set constraint [cf. problem (2.13)]

on the original problem.

Example 5.2.1:

Consider the two-dimensional problem
minimize f(x)
subject to z1 <0, zeX ={x|z >0},

where

f(z) =e V12 VaoelX.

It can be seen that f is convex and closed. Since for feasibility, we must have x1 = 0, we see

that f(z*) = 1. Consider the following perturbed version of the problem
minimize f(x)
subject to 1 < w, zeX={x|z >0}

The optimal value of this problem, which we denote by p(u), is given by

oo ifu <O,

p(u) = inf sup{e_vgclm2 + p(xr — u)} =<1 ifu=0,
rzeX u>0

0 ifu>0,

(cf. Fig. 5.2.2). Thus, even though p(0) is finite, p is not lower semicontinuous at 0. We also

consider the following problem,
minimize f(x)
subject to 1 < u, zeXF={z|z>0, ||z| <k}
where the abstract set constraint is approximated by a compact set X* around z* = (0,0).

The approximation is parameterized by the nonnegative scalar k and becomes increasingly

accurate as k — co. The optimal value of this problem, denoted by p*(u), is given by

p*(u) = inf sup{e_vmlw + p(xr — u)} =
zexk >0

{oo if u <0,

1
2,2 4
e~ (TR —uD T e > 0.

162



p(u)

) =1 epi(p)
) =

cy

Figure 5.2.2. The function p for Example 5.2.1:

oo ifu <0,
pluy=<¢ 1 ifu=0,
0 if u > 0.

Here p is not lower semicontinuous at 0.

Note that p® is lower semicontinuous at 0. Hence, the compactification has the effect of
regularizing the function p(u) around u = 0 by using the approximation p®(u), which is lower
semicontinuous at 0.

Figure 5.2.3 illustrates the function p*(u) and the quadratic term —m/2||u™||* for
different values of k and m. For each fixed k, it can be seen that Ly ("™, 5™) — f(z*),

g(z®™) = 2"™ = 0 and f(z¥™) — f(z*) as m — .
1

5.3 GEOMETRIC MULTIPLIERS AND DUALITY

We consider the problem
minimize f(x)
(3.1)
subject to z € X, g¢g;(z) <0, j=1,...,7,

where f: R — R, g; : R* — RN, j =1,...,r, are given functions, and X is a nonempty

subset of 1", and we use the notation

g(SC) = (gl(x)a s ,gr(fL“)),
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f(x*) f(x")

Lk,m(xK:m, gk,
Lk,m(xK:m, gkim)

Figure 5.2.3. Illustration of the function p* (u) and the quadratic term —m/2||u™ ||
for different values of k and m. The figure in (a) corresponds to the case where

k =2, and m = 1, 10, whereas the figure in (b) corresponds to the case where

k =50, and m =1, 10.

for the constraint functions. We denote the optimal value of problem (3.1) by f*, and
assume throughout this section that —co < f* < o0, i.e., the problem is feasible and the cost
function is bounded from below over the constraint set. Again, for clarity and simplicity

of presentation, we only consider inequality constraints and note that the extension to

problems with equality constraints is straightforward.

We have the following notion of a multiplier vector, that is not tied to a specific
optimal solution, and does not require any differentiability assumptions on the cost and

constraint functions.

Definition 5.3.3:  We say that there exists a geometric multiplier vector (or simply
a geometric multiplier) for problem (3.1) if there exists a vector p* = (u3,...,ur) >0

that satisfies
fr :mlg’(L(a:,u*), (3.2)

where L(z, u*) = f(z) + p* g(z) denotes the Lagrangian function.
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To get the intuition behind the preceding definition, assume that problem (3.1) has an
optimal solution z*, and the functions f and the g; are smooth. Then, by using the necessary
optimality condition given in Chapter 2 and the definition of a geometric multiplier, we
obtain

,
— | V@) + > V() | € Tx(z*)*,
j=1
wigj(z*) =0, Vi=1,...,r
Hence, the geometric multiplier is the vector that renders the Lagrangian function stationary
and satisfies the complementary slackness condition, hence is the Lagrange multiplier for

problem (3.1) under these assumptions.

The geometric multiplier can be visualized using hyperplanes in the constraint-cost
space. In particular, it can be seen that geometric multipliers correspond to slopes of
nonvertical hyperplanes that support the set of constraint-cost pairs as x ranges over the

set X, denoted by S5,
s ={(9(@), f@)) | 2w € X},
(cf. Fig. 5.3.4).

However, it may not always be possible to find a vector p* that satisfies Eq. (3.2).
Figure 5.3.5 shows some examples where there exist no geometric multipliers. Therefore, a
natural question is to find conditions under which problem (3.1) has at least one geometric
multiplier. One of our goals in this chapter is to develop an approach that addresses this

question under convexity assumptions, through using Fritz John-type optimality conditions.

5.3.1. Relation between Geometric and Lagrange Multipliers

As indicated in the previous section, there is a strong connection between geometric and
Lagrange multipliers for problems with a convex structure. Consider the following assump-

tion:

Assumption 5.3.3:  The set X is nonempty closed and convex, and the functions

f and g; are real-valued and convex over R".
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(M* i 1) SZ{(g(X),f(X)) X EX}

(of

=

Figure 5.3.4. Geometrical interpretation of a geometric multiplier in terms of

hyperplanes supporting the set

S = {(g(m),f(w)) EX X}.

0,
<\

@) (b)

(0, .

Figure 5.3.5. Examples where there are no geometric multipliers.

Before presenting the connection between geometric and Lagrange multipliers, we

recall the definition of Lagrange multipliers, given in Section 5.1.
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Definition 5.3.4:  Consider problem (3.1), and let z* be a global minimum. A

vector p* is called a Lagrange multiplier vector if

0€df(z*)+ Y pidg(a*) + T (a*), (3.3)

=1

s >0, ' g(z*) = 0. (3.4)

Proposition 5.3.3:  Consider problem (3.1) under Assumption 5.3.3. Assume fur-
ther that problem (3.1) has at least one optimal solution z*. Then, the set of Lagrange

multipliers associated with z* is the same as the set of geometric multipliers.

Proof: If u* is a geometric multiplier, we have p* > 0. By definition (3.2), we have
@) < @)+ pg(z),  VaeX,
which, since z* € X and g(x*) < 0, implies that

fla) < fla*) + p'g(z*) < f(z7),

form which we obtain p*'g(z*) = 0, i.e., CS condition holds. The preceding also implies
that x* minimizes L(z, u*) over X, so by using the necessary conditions of Chapter 2, we

get
0€df(z*)+ Z,u;@gj(m*) + T (x*)*.

j=1
Thus all the conditions of Definition 5.3.4 are satisfied and p* is a Lagrange multiplier.
Conversely, if p* is a Lagrange multiplier, Definition 5.3.4 and the convexity assump-
tions imply that 2* minimizes L(x, u*) over X, so using also the CS condition [p*'g(z*) = 0],
we have

fr=fa*) = fla*) + p'g(e*) = L(z*, p*) = min L(z, p*).

Since p* > 0 as well, it follows that p* is a geometric multiplier. Q.E.D.
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Prop. 5.3.3 implies that for a convex problem that has multiple optimal solutions, all
the optimal solutions have the same set of Lagrange multipliers, which is the same as the set
of geometric multipliers. However, even for convex problems, the notions of geometric and
Lagrange multipliers are different. In particular, there may exist geometric multipliers, but
no optimal solution and hence no Lagrange multipliers. As an example, consider the one-
dimensional convex problem of minimizing e—% subject to the single inequality constraint
x > 05 it has the optimal value f* = 0 and the geometric multiplier u* = 0, but it has no

optimal solution, and therefore no Lagrange multipliers.

Note that if problem (3.1) has at least one optimal solution that is pseudonormal, then
a Lagrange multiplier is guaranteed to exist by the theory of Chapter 4. Under Assumption
5.3.3, this Lagrange multiplier is geometric by Prop. 5.3.3. Recall from Section 5.1 two
criteria that relate to pseudonormality in the convex case and guarantee the existence of at

least one Lagrange multiplier.
(a) Linearity criterion: X is a polyhedron, and the functions g; are affine.

(b) Slater criterion: X is convex, the functions g; : X — R are convex, and there exists

a feasible vector T such that

gj(:i)<0, j=1...,r

Thus using Prop. 5.3.3, we obtain the following proposition.

Proposition 5.3.4:  Consider problem (3.1) under Assumption 5.3.3. Assume fur-
ther that problem (3.1) has at least one optimal solution z*. Then under either the

linearity criterion or the Slater criterion there exists at least one geometric multiplier.

In Section 5.4, we will derive conditions on the constraint set that guarantee existence

of a geometric multiplier, without requiring that the problem has an optimal solution.

5.3.2. Dual Optimization Problem

In this section, we show that conditions related to existence of geometric multipliers give
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information about a ‘dual optimization problem’. We consider problem (3.1) and introduce

the related optimization problem

maximize q(u)
(3.5)
subject to p > 0,

where

g(p) = inf {f(x)+wg(x)}.
We call problem (3.5) the dual problem and denote its optimal value by ¢*. It is well-known
that regardless of the structure of the original problem (3.1), the dual problem has nice
convexity properties, given in the following proposition. (For the proof, see [BNO02].)

Proposition 5.3.5:  The function ¢ is concave and upper semicontinuous over .

The optimal values of the dual problem and problem (3.1) satisfy the following relation:

Proposition 5.3.6: (Weak Duality Theorem) We always have

qg* < [

If g = f*, we say that there is no duality gap, or that strong duality holds. The next
proposition shows that the existence of a geometric multiplier is related to the no duality

gap condition. (For the proof, see [Ber99].)

Proposition 5.3.7:  Assume that —oco < f* < oo. There exists a geometric mul-
tiplier if and only if there is no duality gap and the dual problem has an optimal

solution.
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5.4 OPTIMALITY CONDITIONS FOR PROBLEMS WITH
NO OPTIMAL SOLUTION

In this section, we consider the problem

minimize f(x)
(4.1)
subject to z € X, g(z) <0,

where g(z) = (g1(z),...,g+(2)), under various convexity assumptions, and we focus on
Fritz John-type of optimality conditions. For simplicity, we assume no equality constraints.
The following analysis extends to the case where we have affine equality constraints, by
replacing each equality constraint by two affine (and hence convex) inequality constraints.
We denote the optimal value of problem (4.1) by f*, and we assume that —oo < f* < o0,
i.e., the problem is feasible and the cost function is bounded from below over the constraint

set.

We have already derived in Section 5.2 Fritz John conditions in the case where there
exists an optimal solution x*. These conditions were shown in their enhanced form, which

includes the CV condition and relates to the notion of pseudonormality.

Our goal in this section is to derive Fritz John optimality conditions without being tied
to a specific optimal solution. In fact we allow problem (4.1) to have no optimal solution
at all. The next proposition presents Fritz John conditions in their classical form, i.e.,
the corresponding Fritz John multipliers satisfy the CS condition as opposed to CV-type
conditions. (We include the proof of this proposition here for the sake of completeness of

the analysis.)
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Proposition 5.4.8: (Fritz John Conditions in Classical Form) Consider prob-
lem (4.1), and assume that X is convex, the functions f and g; are convex over X,
and —oo < f* < oo. Then there exists a scalar puf and a vector p* = (pu3,..., us),

satisfying the following conditions:
(i) pif* = infeex {ugf(a) +p'g(x)}.
(i) u; >0 forall j=0,1,...,r

(iii) pg, p7, ..., p are not all equal to 0.

Proof: Consider the subset of &7+1 given by
M = {(u1,...,ur,w) | there exists z € X such that
6i(@) <uj, =101, f@) < w),
(cf. Fig. 5.4.6). We first show that M is convex. To this end, we consider vectors (u, w) € M

and (4, w) € M, and we show that their convex combinations lie in M. The definition of

M implies that for some z € X and ¥ € X, we have

f(l‘)gw, gj(x)guj, jg=1...,7
f@) <w,  gj(@) <a;, j=1,...,r

For any « € [0, 1], we multiply these relations with « and 1 — «, respectively, and add. By

using the convexity of f and g;, we obtain
flaz+(1—a)z) <af(x)+ (1—a)f(@) <aw+ (1 - o),

gi(ax+ (1 —a)z) < agj(@) + (1 - a)g; () < auj + (1 —a);, j=1,...,n

In view of the convexity of X, we have ax + (1 — «)Z € X, so these equations imply that
the convex combination of (u,w) and (@, w), i.e., (au+ (1 — a)i, aw + (1 — a)w), belongs
to M, proving the convexity of M.

We next note that (0, f*) is not an interior point of M; otherwise, for some € > 0,

the point (0, f* — €) would belong to M, contradicting the definition of f* as the optimal
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|/ M={ (u,w) | there exists x&X such that g(x)=u, f(x) sw}
-
e
l S={(g(x).f(x)) | x =X}
w1 |~

(O,f*) / l[l /_ =

Figure 5.4.6. [Illustration of the set

s ={(s@) f@) |z € X}
and the set

M = {(u17 ..., Uup,w) | there exists z € X such that

gi(x) <wuj, j=1,...,7r, f(x) Sw},

used in the proof of Prop. 5.4.8. The idea of the proof is to show that M is
convex and that (0, f*) is not an interior point of M. A hyperplane passing
through (0, f*) and supporting M is used to define the Fritz John multipliers.

value of problem (4.1). Therefore, by the supporting hyperplane theorem (cf. Section 2.1),
there exists a hyperplane passing through (0, f*) and containing M in one of the two
corresponding closed halfspaces. In particular, there exists a vector (u*, uf) # (0,0) such
that

pof* < piw + p*'u, V (u,w) € M. (4.2)

This equation implies that



since for each (u,w) € M, we have that (u,w++v) € M and (u1,...,u; +7,...,ur,w) € M

forally>0and j=1,...,r.

Finally, since for all z € X, we have (g(z), f(z)) € M, Eq. (4.2) implies that

pof* < pof(x) +p'g(x),  VaeelX

Taking the infimum over all x € X, it follows that

po < inf {pgf (@) + p'g(w) }

< 3 f * x/
_xex,lg(x)go{%f(x) +p'g(x) }

< inf x
=pex, g@<o’ o/ (%)

=pof*

Hence, equality holds throughout above, proving the desired result. Q.E.D.

Note that, in the above proposition, if it can be guaranteed that the scalar p can be
taken to be nonzero (and without loss of generality equal to 1), then the remaining scalars

*

[y, ..., 1y constitute a geometric multiplier.

We next prove a stronger Fritz John theorem for problems with linear constraints,
i.e., the constraint functions g; are affine. Our ultimate goal is to use the preceding propo-
sition (Fritz John conditions in their classical form) and the next proposition (Fritz John
conditions for linear constraints) to show the existence of geometric multipliers under var-
ious constraint qualifications without requiring that the problem has an optimal solution.
Using Prop. 5.3.7, this also provides conditions under which there is no duality gap and the
dual problem has an optimal solution. Hence, this line of analysis provides an alternative

pathway to obtain the strong duality results of convex programming.
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Proposition 5.4.9: (Fritz John Conditions for Linear Constraints) Consider
the problem
minimize f(z)
(4.3)
subject to z € X, g;(z) <0, j=1,...,m
where X is a nonempty convex set, the function f : X — R is convex and the functions

g;j + X — N are affine, and —oo < f* < co. Then there exists a scalar p and a vector

p* = (pi, ..., pur), satisfying the following conditions:
(i) pif* = infrex{pgf(x) + p*'g(x)}.
(i) u; >0 forall j =0,1,...,r

(iii) pg, p, ..., p are not all equal to 0.

(iv) If the index set J = {j # 0 | uj > O} is nonempty, there exists a vector T € X
such that

/

p* g(T) > 0.

Proof: If f* =inf,cx f(x), then set uf =1, and p* = 0, and we are done. Hence, assume

that there exists some T € X with f(Z) < f*. Consider the convex sets defined by

C1 = {(z,w) | there is a vector z € X, f(z) <w},

Cy = {(w, ) | g(x) < 0}.
The set Cy is polyhedral. Also C7 and Cy are disjoint. To see this, note that if (x, f*) €
C1NC4, then by the definition of Cq, this would imply that z € X, g(z) <0, and f(z) < f*,
contradicting the fact that f* is the optimal value of problem (4.3).

Hence, by the polyhedral proper separation theorem (cf. Section 2.1), there exists a
hyperplane that separates C and C2 and does not contain C1, i.e., a vector (§, i) such
that

pof* +&z < piw + &'z, Ve X with f(x) <w, g(z) <0, (4.4)

inf {piw+E&x} < sup {pjw+ &}
(z,w)eCy (z,w)eCy
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The preceding two relations also imply that

psf*+ sup &z < sup {piw+E&x}. (4.5)
g(2)<0 (z,w)eCy

Note that Eq. (4.4) imply that pf > 0, otherwise it would be possible to increase w to co
and break the inequality.
Next, we focus on the linear program
maximize &'z
subject to g(z) <0,
where ¢g(z) = Az — b. By Eq. (4.4), this linear program is bounded (since the set C; is

nonempty), and therefore has an optimal solution, which we denote by z*. The dual of this

program is
maximize — b'p

subject to £ = A’u, wp>0.

By linear programming duality, it follows that this problem has a dual optimal solution

w* > 0, and satisfies
£ 2% = p*'b, Al =€, (4.6)

which implies that
w Azt = u*'b.

From Eq. (4.4), we have

uof*+ sup 'z < pjw + 'z, Ve X with f(z) < w,
9(2)<0

which by using the preceding relations imply that
phf* < pgw + p' (Az —b), Ve X with f(x) < w.
In particular, we have

pof* < ppf(x) +p*' (Az —b).  VazeX,
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from which we get

pf < inf § s f(@) + Zlujgj(:v)
J:

< inf s F(x) +
_Q:GX,H;(w)SO pof () jz_:llu]gj(x)
<  inf *
—mex}g(m)goﬂojc(m)

=pof*

Hence, equality holds throughout above, which proves condition (i) of the proposition.

Substituting the relations in (4.6) in Eq. (4.5) yields

pof* < sup  {pjw+ pg(x)}.
zeX, f(x)<w

If pi = 0, we obtain

li

0< sup  p*g(z),
zeX, f(z)<w

thus showing condition (iv). Assume that pf > 0. We claim that

pof* < sup  {ppw+pg(x)}. (4.7)
2€X, fla)<wsf*

To show this, assume to arrive at a contradiction that

pof* > sup {usw + ' g(x)}. (4.8)
v€X, flo)<w<f*

From Eq. (4.4), we have
pof* + sup &'z < pjw + &'z, VeelX, f(r) <w,
9(2)<0
Substituting the relations in (4.6) in the preceding relation, we obtain
Wi < g+ ptg(a),  VaeX, f(2)<w.

In particular, this implies that

pof* <ppw+prgl),  VazeX, f(x) <w< fr.



Combining with Eq. (4.8), it follows that
piw + ' g(x) = s f*, V€ X, Vwsuch that f(x) <w < f*. (4.9)

By assumption, there exists some T € X with f(Z) < f*. Let e = f* — f(Z) > 0, and
w = f(T) + ¢/4. Then, from Eq. (4.9), we have

s f* = pi (f(®) + €e/4) + p' g(T).

Since f(T) + €/2 < f*, we have, combining Eqgs. (4.9) and the preceding relation, that

WL = S+ poe/4,

which is a contradiction, showing that Eq. (4.8) holds. Hence, there exists some T € C, and

w with f(T) <w < f* such that
pof* < psw + p' g(7),

which implies that
0< i (f*—w) < p'g(x),

thus showing condition (iv), and concluding the proof. Q.E.D.

Note that the proof of the preceding proposition relies on a special type of separation
result for polyhedral sets. We will see in the next section that these separation arguments
form the basis for bringing out the structure in the constraint set that guarantees the

existence of geometric multipliers.

5.4.1 Existence of Geometric Multipliers

In this section, we use the Fritz John Theorems of Propositions 5.4.8 and 5.4.9 to assert
the existence of geometric multipliers under some conditions. This development parallels
our analysis of the relation of the constraint qualifications and the existence of Lagrange
multipliers of Chapter 4. However, here we do not require that the problem has an optimal

solution.
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Before, we present these conditions, we show the following result, related to extended
representations of the constraint set, which is analogous to Prop. 4.3.10 of Chapter 4. In
particular, consider problem (4.1), and assume that the set X is partially described in terms

of inequality constraints:
X = {xef(|gj(x) <0,j=r+1,...,T}.
Then the constraint set can alternatively be described as:
{x€X|gj(:c) <0, jzl,...,r,r+1,...,?}.

We call this the extended representation of the constraint set (cf. Section 4.3), whereas we
call the representation given in problem (4.1), the original representation. We have the
following result, which relates issues about existence of geometric multipliers between the

two representations.

Proposition 5.4.10: If there exist geometric multipliers in the extended represen-

tation, there exist geometric multipliers in the original representation.

Proof: The hypothesis implies that there exist nonnegative scalars uf, ..., iz, py 1,

such that

reX

fr=inf Q¢ fa)+) i)
j=1
Since X C X, this implies that
< f@)+> pigi(x), VaeX.
j=1

For any » € X, we have g;(z) <0, for all j = r+1,...,7, so that ujg;(z) < 0, for all

j=r+1,...,7. Therefore, it follows from the preceding relation that
< @)+ pigi(x),  VYweX.
j=1
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Taking the infimum over all x € X, it follows that
fr < inf {f(z) + Z; wigi(x)}
j:

T zEeX, g5 (2)<0

< inf  {f(@)+)) wigi(z)}
j=1
SxEX,i;ljf(I)SOf(m)

—f*

Hence, equality holds throughout above, showing that pj...,ur constitute a geometric

multiplier for the original representation. Q.E.D.

We will use this result when we are examining a problem with affine constraint func-

tions and a polyhedral set constraint.

5.4.1.1 Convex Constraints

We consider the problem

minimize f(x)
(4.10)
subject to z € X, g¢;(x) <0, j=1,...,7,

under the following assumption:

Assumption 5.4.4: (Slater Condition) The optimal value f* of problem (4.10)
is finite, the set X is convex, and the functions f : X +— R and g; : X — R are convex.

Furthermore, there exists a vector T € X such that ¢;(Z) <0 forall j=1,...,r.

We have the following proposition.

Proposition 5.4.11: (Strong Duality Theorem - Convex Constraints) Let
Assumption 5.4.4 hold for problem (4.10). Then, there exists a geometric multiplier.
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Proof: Under the given assumptions, it follows from Prop. 5.4.8 that there exist nonneg-

ative scalars pf, 13, ..., ur, not all of which are zero, such that
T

i f* = (s @)+ o (@)}
]:

We will show that under Slater Condition, pj can not be zero. Assume to arrive at a

contradiction that pf is equal to zero. then it follows from the preceding relation that
0< ) pigi(x), VazeX (4.11)
j=1

By assumption, u; > 0 for all j =1,...,r, and at least one of them is nonzero. Therefore,
in view of the assumption that there exists some T € X such that g;(Z) < 0, for all j, we

obtain

> wig(@) <0,
j=1

thus contradicting Eq. (4.11), and showing that uf > 0. Without loss of generality, we
can assume that pf = 1, and the remaining uj, ..., pus constitute a geometric multiplier.

Q.E.D.

5.4.1.2 Linear Constraints
We consider the linearly-constrained problem

minimize f(z)
(4.12)
subject to = € X, ajr—b; <0, j=1,...,m

Without loss of generality, we assume that there are no equality constraints (each equal-
ity constraint can be converted into two inequality constraints). We have the following

assumption:
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Assumption 5.4.5: (Linear Constraints) The optimal value f* of problem (4.12)
is finite, and the following hold:

(1) The set X is the intersection of a polyhedral set P and a convex set C.
(2) The cost function f: R" — R is convex over C.

(3) There exists a feasible solution of the problem that belongs to the relative interior

of C.

Proposition 5.4.12: (Strong Duality Theorem - Linear Constraints) Let
Assumption 5.4.5 hold for problem (4.12). Then, there exists a geometric multiplier.

Proof: Let X = PNC, where P is a polyhedral set expressed in terms of linear inequalities

as

P={z|adx—0b; <0, j=r+1,...,p},

for some integer p > r. We consider the following extended representation of the constraint

set,

{reC|adx—b; <0, j=1,...,p}.
By Prop. 5.4.9, there exist nonnegative scalars pf, 7, . .., up, not all of which are zero, such
that

p
pof = inf, usf<x>+;u;<a;x—bj> : (4.13)
]:

Furthermore, if the index set J = {j # 0 | uj > 0} is nonempty, there exists a vector 7 € C
such that

p
> wi(alT —by) > 0. (4.14)
7j=1
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We will show that under Assumption 5.4.5, p§ can not be zero. Assume to arrive at

a contradiction that pg is equal to zero. Then it follows from Eq. (4.13) that
p
ng,uj(a;x—bj), VaeC. (4.15)

By assumption, there exists some Z € ri(C), that satisfies a;2 —b; <0, for all j =1,.

Combining with the preceding relation, we obtain

P
0< > pi(alid —b;) 0.
J=1

Hence, the function Y°7_, p¥(a)x — bj) attains its minimum over z € C' at some relative

interior point of C', implying that
Z ,u] T — bj) =0, Vaed.

But this contradicts Eq. (4.14), showing that p§ > 0, and therefore, the scalars pj, ..., up
constitute a geometric multiplier for the extended representation of problem (4.12). By
Prop. 5.4.10, this implies that there exists a geometric multiplier in the original represen-

tation of problem (4.12) as well. Q.E.D.

5.4.2. Enhanced Primal Fritz John Conditions

The Fritz John conditions of Propositions 5.4.8 and 5.4.9 are weaker than the ones that we
have encountered in the preceding sections in that they do not include conditions analogous
to the CV condition, which formed the basis for the notion of pseudonormality and our
analysis of Chapter 4. A natural form of this condition would assert the existence of a

sequence {z¥} C X such that

Jim f(zk) = fr, lilglsogpg(wk) <0, (4.16)

and for all &,
flzk) < fx, gj(z*) >0, Vj with pf >0, (4.17)
9; Fak)=o (rjrémg (w’“)) V j with pf =0, (4.18)

(assuming that p* # 0). Unfortunately, such a condition does not hold in the absence of

additional assumptions, as can be seen in the following example.
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Example 5.4.2

Consider the one-dimensional problem
minimize f(x)

subject to g(z) =2 <0, z€ X ={z |z >0},

where
-1 ifx >0,
fle)=¢0 ifz=0,
1 if x <0.

Then f is convex over X and the assumptions of Prop. 5.4.8 are satisfied. Indeed the Fritz
John multipliers that satisfy conditions (i)-(iii) of Prop. 5.4.8 must have the form pg5 = 0 and
w* >0 (cf. Fig. 5.4.7). However, here we have f* = 0, and for all z with g(x) > 0, we have
x>0 and f(z) = —1. Thus, there is no sequence {z*} C X satisfying conditions (4.16) and
(4.17) simultaneously.

M = {(u,w) | there exists x € X
such that g(x) =< u, f(x) < w}

Y

f*
N
/

S={(g().f()) | x € X}
\

Figure 5.4.7. [Illustration of the set

§={(s(x). f(@)) |z € X}

and the set
M = {(u,w) | there exists € X such that

g(x) <u, fa) <w},

for Example 5.4.2.

The following proposition imposes slightly stronger assumptions in order to derive an

enhanced set of Fritz John conditions. In particular we assume the following:
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Assumption 5.4.6: The set X is nonempty and convex, and the functions f and gj,

viewed as functions from X to R, are closed and convex. Furthermore, —oo < f* < oc0.

We have the following proposition.

Proposition 5.4.13: (Enhanced Fritz John Conditions) Consider problem
(4.1) under Assumption 5.4.6. Then there exists a scalar pf and a vector pu* =

(3, ..., uy), satisfying the following conditions:
(i) pgf* = mfoex{ugf(z) +n'glx)}.

(ii) pf >0forall j =0,1,...,7

(ii) g, g, ..., py are not all equal to 0.

(iv) If the index set J = {j # 0 | pj > 0} is nonempty, there exists a sequence
{z¥} C X such that

klim fxk) = fx, limsup g(z*) <0, (4.19)
— k—o0
and for all k,
pigi(zk) >0, Vi€, (4.20)
g; (z%) =0 <r]r1€i§gf(wk)) . Vigd (4.21)

Proof: If f(x) > f* for all x € X, then we set puf =1 and p* = 0, and we are done. We

will thus assume that there exists some T € X such that f(Z) < f*. Consider the problem

minimize f(z)
(4.22)
subject to g(x) <0, x€ Xk,

where

Xk:Xﬂ{x‘H:cHgk:}.
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We assume without loss of generality that for all £ > 1, the constraint set is nonempty.
Since the constraint set of this problem, {z € X | g(z) <0} n{z | ||z| < k} is compact, and
f is lower semicontinuous over X, this problem has an optimal solution, which we denote
by Z¥. Since this is a more constrained problem than the original, we have f* < f(z*) and
f(@*) | f* as k — oco. Let vk = f(z*) — f*. Note that if v* = 0 for some k, then it follows
that Z* is an optimal solution for problem (4.1), and the result follows by the enhanced Fritz
John conditions for convex problems with an optimal solution (cf. Prop. 5.2.2). Therefore,

we assume that v* > 0 for all k.

For positive integers k£ and positive scalars m, we consider the function

(vF)? 1€11?
om’

Tz — 7|2 + €19 ) -

Lig,m(2,€) = f(x) +

and we note that Ly ., is convex in x, and concave and coercive in . Since f and g; are
closed and convex, they are closed, convex, and coercive when restricted to X*. Hence, we
can use the saddle point theorem to assert that L ,, has a saddle point over x € X* and

¢ > 0, which we denote by (zkm, km).

The infimum of Ly, (z, ™) over x € XF is attained at =%, implying that
flakm) + = o llatm =22 4 ghmig(ahm)
: (7%)?
= inf
in {f(x) + 12

rzeXk

e — 72 + gkym’gcc)}

< inf {f(x) + (’7k>2 ||x _ kaQ + fk,m/g(x)} (423)

atEXk,g(x)SO 4k2

< inf {f(x)—i—wﬂx—fk\]?}
T zexk, g(z)<0 452

— (@),

Hence, we have

Lim ko, ghm) = farkm) 4 D b — |2 4 ghon’g(ghim) — L gkom|2
’ ’ 4k2 2m

k)2
< f(akm) + L fokom — 4|2 4 ghon'g(kim) (429
< f@").

Since L m, is quadratic in &, the supremum of Ly, (x5, &) over £ > 0 is attained at

M = mgf (@hm),  j=1,.m, (4.25)
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This implies that

k)2 m
Li(atom, gbm) = flakom) + 8 akom g 1 72 g (ahom) 2

e (4.26)

> fakm).

For any sequence m — oo, consider the corresponding sequence {z*™}. From Egs.
(4.24) and (4.26), we see that the sequence {z%™} belongs to the set {z € X* | f(z) <
f (ik)}, which is compact, since f is closed. Hence, {2%™} has a limit point, denoted by &*,
which belongs to {z € X* | f(z) < f (ik)} By passing to a subsequence if necessary, we
can assume without loss of generality that {z*™} converges to zk. For each k, the sequence
{f(z*m)} is bounded from below by inf, ¢ v& f(z), which is finite by Weierstrass’ Theorem
since f is closed and coercive when restricted to X*. Also, for each k, Ly, (zFm™, &Fm) is

bounded from above by f(z*) [cf. Eq. (4.24)], so Eq. (4.26) implies that

lim sup g(z*™) < 0.

Therefore, by using the lower semicontinuity of the g;, we obtain g(2*) < 0, implying that
&k is a feasible point of problem (4.22), so that f(#*) > f(z"*). Using Egs. (4.24) and (4.26)

together with the closedness of f, we also have

f(&%) <liminf f(zkm) < limsup f(zkm) < f(@F),

m—0oo m—o00

thereby showing that for each k,

lim f(ahm) = f(7%) = f* + b, (4.27)

m—00

Let v = f* — f(T). For sufficiently large k, we have T € X* and ¥ < ~. Consider the

9yl 9k
zkz(l— i )Tk—i— Tz

vector

Y+ v+
which belongs to X* for sufficiently large k [by the convexity of X* and the fact that
(2vk /4% + ~) < 1]. By the convexity of f, we have

f(zF) < (1 - §7k )f(fk) + = f(@)
2~k 2~k 4.28

186



Similarly, by the convexity of the g;, we have

2k & 2k _
i(2F) < |1————)g;(@T")+ ——y;(=
5 < (1- 2 )o@+ 2@
2~k _ (4.29)
——g;(T
< o(vV7*).
Using Eqs. (4.24) and (4.25), we obtain
k)2
flakom) < fakm) + 0 ki 262 4 2 g ()2

< J@+ P2+ Dot @2, Ve Xk,

Substituting = z* in the preceding relation, and using Eqs. (4.28) and (4.29), we see that
for large k,

flakm) < fr =k + (4%)? + mo(yF).

Since y* — 0, this implies that for sufficiently large k and for all scalars m < 1/4/~%, we
have

f(akm) < fx — %k (4.30)

We next show that for sufficiently large k, there exists some scalar my > 1/4/~F such
that
~k

flakme) = fr— <. (4.31)

For this purpose, we first show that Ly ., (x%™, £8™) changes continuously with m, i.e, for
all m > 0, we have Ly p,(zF,EFm) — Ly m(ak™ ) as m — . [By this we mean,
for every sequence {mt?} that converges to M, we have that the corresponding sequence
Ly, (zkm' gk:m') converges to Ly m(z*, €57).] Denote

_ k)2

Flakm) = flakom) + X fakom 2.

Note that for all m > m, we have
km ¢km) = f(rpkm m+km2
Ly (zhm,gbm) = fabm) + o |lg* (zhm)|
_ m
< flahm) + S llgr(akm)|?
— m
< flakm) + S llg*(@km)|?
— .. m _
< flahm) + o llgt@sm)2,
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showing that Ly ,,(xkm, Ekm) — Ly (ak™, EF™) as m | m. Similarly, we have for all
m < m,

_ o m _ — _ m _

flabm) + gt @tm)|2 < flabm) + gt (@sm)|2

< F(ehm) + 2 gt (@tm)|P

m—m
2

m—m
2

For each k, the sequence g;(x*™) is bounded from below by inf . vk gj(x), which is finite

m
= flakm) + Sllg* (@hm)|2 +

lg+ ()2

< fakm) + %Hgﬂﬂﬂ"“mll2 + g (zhm)2.
by Weierstrass’ Theorem since g; is closed and coercive when restricted to X*. Therefore,
we have from the preceding that Ly ,(zF™, £8m) — Ly m(xk™, E67) as m 1 m, which
shows that Ly, (zF™, Fm) changes continuously with m.

Next, we show that zk™m — zk™ as m — . Since, for each k, the sequence zk.m
belongs to a compact set, it has a limit point as m — M. Let & be a limit point of xk-m,
Using the continuity of Ly ,, and the closedness of f and the g;, we obtain

L (a7, €677) = lim inf F(ahm) + g+ (k) |2
— . m .
> 7(@) + Fllgt @I

. - m
> inf, {0+ G o (@)l
zeXk 2
= Ly (ko ghom),
This shows that & attains the infimum of f(z)+ 2 ||g*+(x)||2 over € X*. Since this function

is strictly convex, it has a unique optimal solution, showing that & = k..

Finally, we show that f(zk™) — f(zk™) as m — ™. Assume that f(zF™) <
limsup,,, _ f(z*¥™). Using the continuity of Ly ,, and the fact that zFm™ — k™ as

m — m, we have
J (@) + lim inf [|g* (z5m) |2 < limsup L g (aF-m, gFm)
m—m m

m—m
= Ly (ko £hom)
= fahm) + g+ (zhm)||2.
But this contradicts the lower semicontinuity of the g;, hence showing that f(zk™) >
limsup,,, . f(x%™), which together with the lower semicontinuity of f yields the desired

result.
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Egs. (4.30), (4.27), and the continuity of f(xz*™) in m imply the existence of some
scalar my > 1/4/~F such that
k
flakmi) = fr - T (4.32)

Combining the preceding relation with Eqgs. (4.24) and (4.26) (for m = my,), together
with the facts that f(Z*) — f* and v* — 0 as k — oo, we obtain

k)2 ,
fim (k) = foot Gl otk a2 4 ghmigaim) ) 0. (039

Denote

ok = |1+ D (™),
j=1

k,m
1 &
/-‘Llé = 5_k’ :u;ﬂ = Jék ’ J = 17"'7T' (434)

Since 0% is bounded from below, Eq. (4.33) yields

(v*)?

)
Jim, | St = b+ agpllebms ~ e+ S ubas(ah) | <o, (439
j:

Substituting m = my, in Eq. (4.23) and dividing both sides of the first relation by &%,

we get
(v%)? _ d
Iugf(xk,mk) + TR ||xk,mk _ kag + ZM;?gj(xk,mk)
j=1
- (7%)?
< pbf(x)+ ) phgi(z) + 5,3 . VazeXk
j=1

Since the sequence {/ﬂg, uh, ..., puk}is bounded, it has a limit point, denoted by g, 13, ik
Taking the limit along the relevant subsequences in the preceding relation together with
Eq. (4.35) yields

pof* < pgf(x) +p'gx), Ve,
which implies that

pof* < inf {pif (@) + p'g(@)}

: f * */
meX}g(x)So{uof(w)Jru g(x)}

< inf x
= pexX, g(z)<0 Hof ()

IN

= uof*
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Thus we have
uof* = inf {ugf (@) +p'g(w)},
so that uf, uy, ..., uy satisfy conditions (i), (ii), and (iii) of the proposition.
Finally, dividing both sides of Eq. (4.25) by d*, and using Eq. (4.34) and the fact that

u;? — pj, as k — 0o, we obtain

myg; (zkm)

lim 5 = 13, j=1,...,r.

k—oo

Since, we also have from Eq. (4.32) that

f(l.k:,mk) < f*, lim f(i?k’mk) — f*,

k—oo

it follows that the sequence {z*™r} satisfies condition (iv) of the proposition, thereby

completing the proof. Q.E.D.

The preceding proposition motivates a definition of pseudonormality that is not tied

to a specific optimal primal solution.

Definition 5.4.5:  Consider problem (4.1), under Assumption 5.4.6. The constraint
set of problem (4.1) is said to be pseudonormal if there do not exist a vector p =

(11, ..., pr) >0, and a sequence {z¥} C X such that:

(i) 0 =infzex p'g(x).

ii) limsup,_, . g(z%) <0 and p'g(xF) > 0 for all k.
k—o0

Figure 5.4.8 provides a geometric interpretation of pseudonormality. As an example,
it is easily seen with the aid of Fig. 5.4.8 that if f is convex over R”, the functions g; are

affine, and X = R, then the constraint set is pseudonormal.

In view of Prop. 5.4.13, if problem (P) has a closed and convex cost function f and a
pseudonormal constraint set, there exists a geometric multiplier and there is no duality gap.

This geometric multiplier satisfies in addition the special condition (iv) of Prop. 5.4.13.
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G ={g(q) | x O X}
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u G={g() | xOX} G={g(X) |xOX}

v

ENER 0
=

\\ H
(b) (©

Figure 5.4.8. Geometric interpretation of pseudonormality, assuming for sim-

plicity that there are no equality constraints. Consider the set

GZ{g(ac)|m€X}.

For feasibility, G should intersect the nonpositive orthant {z | z < 0}. The first
condition in the definition of pseudonormality means that there is a hyperplane
with normal p, which simultaneously supports G and passes through 0 [note that,
as illustrated in figure (b), this cannot happen if G intersects the interior of the
nonpositive orthant; cf. the Slater criterion]. The second and third conditions
in the definition of pseudonormality mean that the negative orthant can be ap-
proached by a sequence {g(wk)} C GNint(H), where H is the positive halfspace
defined by the hyperplane,

H={z|p'z>0}

[cf. figure (a)]. Pseudonormality means that there is no p > 0 and {z*} C X
satisfying both of these conditions.
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5.4.3. Enhanced Dual Fritz John Conditions

The Fritz John multipliers of Props. 5.4.8-5.4.13 define a hyperplane with normal (p*, ;1)
that supports the set of constraint-cost pairs (i.e., the set M of Fig. 5.4.6) at (0, f*). On
the other hand, it is possible to construct a hyperplane that supports the set M at the point

(0, g*), where ¢* is the optimal dual value

q* = sup q(p) = sup inf { f(z) + ' g(z)},
p>0 p>0r€X

while asserting the existence of a sequence that satisfies a condition analogous to the CV

condition. The next proposition addresses this question.

Proposition 5.4.14: (Enhanced Dual Fritz John Conditions) Consider prob-

lem (4.1) under assumption 5.4.6. We also assume that
q* > —o0.

Then there exists a scalar p and a vector pu* = (uf, ..., p), satisfying the following

conditions:
(i) pyq* = infrex {psf (@) + p'g(z)}.
(ii) pf >0forall j=0,1,...,7

(ii) ped, g, ..., py are not all equal to 0.
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(iv) If the index set J = {j # 0 | pj > 0} is nonempty, there exists a sequence
{z¥} C X such that

klim f(zk) = q*, limsup g(zF) <0, (4.36)
o0 k—oo
and for all k,
f@k) <q* pjgi(a*) >0, Vjel (4.37)
ot ) =0 (mings () ), Vg (433)
JjeJ

Proof: First we prove the following lemma.

Lemma 5.4.1:  Consider problem (4.1), and assume that X is convex, the functions
f and the g; are convex over X, and —oo < f* < oco. For each é§ > 0, let
r® = inf f(z), (4.39)

reX
g(z)<ée

where e € R" is a vector, whose components are all equal to 1. Then ¢ < ¢* for all
0 >0 and

* = lim 9.
4 610

Proof: Since f* is finite, there exists some T € X such that g(Z) < 0. Hence, for each
d > 0 such that 70 > —oo, the Slater condition is satisfied for problem (4.39), and therefore,
by Prop. 5.4.11, this problem has a geometric multiplier, i.e., there exists a nonnegative

vector 9 such that
5 — i 8 —_
ré = zlgf {f(:p) + p (g(x) 56)}

< inf {f(z) +1g(2)}
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For each 6 > 0 such that 79 = —oo, we also have 7% < ¢*, so that
rd < g*, Vo>0.
Taking the limit as § | 0, we obtain

lim rd < ¢*.
510

To show the converse, for each § > 0, choose z0 € X such that g;(z%) < ¢ for all j

and f(xz%) <%+ . Then, for any u > 0,

dnggjﬂ@+uvwﬁSf@ﬂ+wﬂﬂ)éﬂ+6+52)@

Taking the limit as § | 0, we obtain

< lim rd
qW)_ggr,

so that ¢* <lims)or9. Q.E.D.

We now return to the proof of the proposition. Consider the problem
minimize f(z)

1
subject to z € X, g(x) < e

By the previous lemma, for each k, the optimal value of this problem is less than or equal

to ¢*. For each k, let 7% € X be a vector that satisfies

FE) <q g gl@) < e
Consider also the problem
minimize f(x)
subject to g(z) < %e, (4.40)

reXk=XnN {:E | ||| < k( max ||z +1)}.
1<i<k
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Since {z | g(z) < (1/k*)e} N X is the intersection of the closed set {z € X | g(z) <
(1/k%)e} and the compact set {a: ‘ llz|l < ||l&%| + k’}, we see that the constraint set of the
preceding problem is compact. Since f is closed, and therefore lower semicontinuous over
Xk, by Weierstrass’ Theorem, the preceding minimization problem has an optimal solution,
which we denote by Z¥. Note that since ¥ belongs to the feasible set of this problem, we

have

F@) < S S ¢+ o (1.41)

We consider the function

_ el

Li(@,) = J(@) + €'gle) = 15

and we note that L is convex in z, and concave and coercive in £. For each k, we consider

the saddle points of Li over z in
Xk =Xk {z|g(x) < ke} (4.42)

and £ > 0. Note that Xk = {x ‘ ||| <k (maxi<i<k |2 + 1)} N{zeX|gjx)<k j=
1,... ,r}, from which using the closedness of the g;, we see that X% is compact. Therefore,
we can use the saddle point theorem to assert that Lj has a saddle point over z € X* and

€ > 0, denoted by (z*,&F).

Since Ly is quadratic in &, the supremum of L (xF, &) over £ > 0 is attained at
&8 =kgy (zF),  j=1,...,r (4.43)

Similarly, the infimum of Ly (z,&*) over € X* is attained at z*, implying that
J(@*) + Fglak)= inf {f(@)+Mg(x)}

= inf {f(x) + kg* (")g(x)}

< inf {f(z)+ kgt (z*)g(z)}

zeXP, g(z)<

4.44
< inf f)+— (4.44)
vex*, g(a)< k
_ T
= f(@") + 2
r+1
<q + [CR



where the last inequality follows from Eq. (4.41).
We also have

Ly (zk,&F)=sup inf Lg(z,¢)
£>0zeXk

> sup inf Lg(z,
_gzngX k< 5)

e Loy Ll
B e
= g%) {q(é) 5% }

AR (12

for each k, where {\F} is a nonnegative sequence such that

k2

k * 4.4
) =g, IE =0 (1.46)

as k — oo.

Combining Egs. (4.45) and (4.44), we obtain

Ak H)‘kH2<L k gk} — k K q(rk LTpe

QOF) = 5, < Le(ah, €5) = f(a%) + &6 g(ah) — o l€¥]
< flak) + ¥ glab) (447)
Sq*—i—r;l.

Taking the limit in the preceding relation, and using Eq. (4.46), we have

Jim (f(z*) — g* + & g(z*)) = 0. (4.48)
Denote
ok =
K 1
o = S C T (4.49)
Since 0% is bounded from below, Eq. (4.48) yields
Jim g (F(ak) = q*) + D pyg;(at) =0. (4.50)
j=1
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Dividing both sides of the first relation in Eq. (4.44) by 6%, we get

b f (k) +angg (x%) < pf f(x) +Zujgg Ve Xk
7j=1

Since the sequence {,ulg, pk, ..., uk}is bounded, it has a limit point, denoted by {us, wi, .o )
Taking the limit along the relevant subsequence in the preceding relation together with Eq.

(4.50) yields

pias < inf {15 f(@) + Y i (@)}
=1

If p§ > 0, we obtain from the preceding relation

. w*
¢* < mb +Z ga Q(M*)_q

0

Similarly, if uf = 0, it can be seen that 0 = inf, cx u*'g(a:). Hence, in both cases, we have

**:‘f
uoas = inf ¢ pif(x +Zujgj :

thus showing that uf, ..., ur satisfy conditions (i)-(iii) of the proposition.

Let J = {j # 0| uj > 0}, and assume that J is nonempty. Dividing both sides of Eq.
(4.43) by ¢k, and using Eq. (4.49) and the fact that u? — wj, forall j =1,..., 7, we obtain
kg (ak)

lim J

Jm — :u;, j=1,...,r.

This implies that for all sufficiently large k,
gj(zF) >0, Ve,
and

59 =o (migsh).  Vig

JjeJ

Note also that, for all k, we have from Eq. (4.47) that

BT (@) — ) + ¥ hg(ak) < T
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Using Eq. (4.43), this yields

r

. K r+1
B(F) =) + 3 (€))7 < ——
7j=1
Dividing by (6%)2 and taking the limit, we get
. k(f(@F) — g -
hinsup % < - Z(u;)Q, (4.51)

implying that f(z*) < ¢* for all sufficiently large k, since the index set J is nonempty.

We finally show that f(z*) — ¢* and limsup,_, ., g(z¥) < 0. By Eq. (4.47), we have

k1|2
e

li 0
2k T
which implies that
lim l€*]2 = 0. (4.52)
k—oo 2k

Similarly, combining Eqs. (4.47) and (4.43), we obtain

lim (f(z%) —¢*) + IE™1®

=0
k—oo 2k ’

which together with Eq. (4.52) shows that f(z*) — ¢*. Moreover, Egs. (4.52) and (4.43)
imply that

Jm k3 (g (@) =0

showing that limsup,_, ., g(z¥) < 0. Therefore, the sequence {z*} satisfies condition (iv)

of the proposition, completing the proof. Q.E.D.

In the preceding proposition, if we can guarantee that uf > 0, then there exists a dual

optimal solution, which satisfies the special condition (iv) of Prop. 5.4.14.

The proof of this proposition is similar to the proof of Prop. 5.2.2. Essentially, the

proof generates saddle points of the function

€112
2k

Ly(x,€) = f(z) + &g(x) -
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over x in the compact set X* [cf. Eq. (4.42)] and £ > 0. It can be shown that

. k
L9 = iuf, {p#)+ Kl ).

where p#(u) is the optimal value of the problem

minimize f(z)
(4.53)
subject to g(z) <u, x € XF,

(see the discussion following the proof of Prop. 5.2.2). For each k, the value Ly (z*, &) can

be visualized geometrically as in Fig. 5.2.1.

Note that p¥(u) is the primal function corresponding to the problem where the set
constraint X in the original problem is replaced by X*. Using a compact set approximation
of the abstract set constraint X has the effect of approximating the original problem with
one that has no duality gap. Hence, the corresponding primal function p#(u) is lower
semicontinuous at 0 and approximates the primal function p(u) with greater accuracy as
k — oo. In this proof, the rate at which X* approaches X is chosen high enough so that
L. (z*, &F) converges to g* as k — oo [cf. Eq. (4.47)], and not to f*, as in the proof of Prop.
5.2.2.

5.4.4. Informative Geometric Multipliers and Dual Optimal Solutions

In this section, we focus on geometric multipliers and dual optimal solutions, which are
special in that they satisfy conditions analogous to the CV condition. Consistent with our
analysis in Chapter 4, we refer to geometric multipliers that satisfy these conditions as
being informative, since they provide sensitivity information by indicating the constraints

to violate in order to effect a cost reduction.
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Definition 5.4.6: A vector p* > 0 is said to be an informative geometric multiplier

if the following two conditions hold:

(i) f* =infeex{f(z) + p*'g(z)}.

(ii) If the index set J = {j [ uj > O} is nonempty, there exists a sequence {z*} C X
such that
lim f(z¥) = f*, limsupg(z*) <0,

k—o0 k—o0

and for all k,
flak) < f, pigi(ak) >0, VjelJ,

o} @) =0 (ming,an) . vig

In the next proposition, we show the existence of an informative geometric multiplier

under very general assumptions.

Proposition 5.4.15: (Existence of Informative Geometric Multipliers) Con-
sider problem (4.1) under Assumption 5.4.6. We assume that the set of geometric

multipliers, denoted by

M = {u > 0] f* = inf {f() +u’g(aﬁ)}}a

is nonempty. Then the vector of minimum norm in M is informative.

Proof: Let ZF be a feasible sequence for problem (4.1) such that f(z*) — f* and

G <P = k=12,
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Consider the problem
minimize f(x)
subject to g(z) <0,

reXk=XnN {x | l|lz|| < k max ||:%’H}
1<i<k

Since {z | g(z) <0} N X* is the intersection of the closed set { € X | g(z) < 0} and the
compact set {a: ‘ |l < ||1Z%| + k‘}, we see that the constraint set of the preceding problem
is compact. Since f is closed, and therefore lower semicontinuous over X%, by Weierstrass’
Theorem, the preceding minimization problem has an optimal solution, which we denote

by Z¥. Note that since #* belongs to the feasible set of this problem, we have
f@*) < f@*) < f*+ 5. (4.54)

We consider the function

[l
Li(z, p) = kf(z) + p'kg(z) — ==,
and we note that Ly is convex in x, and concave and coercive in u. For each k, we consider
the saddle points of Ly over x € X* and pu > 0. Since X* is bounded, we use the saddle

point theorem to assert that Lj has a saddle point for each k, denoted by (x*, u¥).

Let p* be the vector of minimum norm in M. If p* = 0, then p* is an informative
geometric multiplier and we are done, so assume that p* # 0. For any u € M, we have by

the definition of M,
3 / — fx*
nf {f(z) +pwg(@)} = I,

so that
1
3 3 — * 2
nf, Li(z,p) 2 inf Li(z, p) = kf* = 5llpl.
Therefore,
Li(xF, pk) = sup inf Lg(x,p)
u>0zeXk
> sup inf Lg(x,p)
pueM zeXxk
- (4.55)
> sup (k7 — 2
peM
1
2 *[|2
= Sl
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where p* denotes the vector of minimum norm in the set M. Since (z*,uk) is a saddle
point of Ly over x € X* and p > 0, the minimum in the left hand side of

A

inf, Li(z, 1) = inf k{f(2) + n¥g(a)} - =5,

zeXk

is attained at x*, implying that

J(@*) +u¥ g(ak)= int {f(z) +p¥gla)}

< inf  {f(x)+pFg(z)}
zeXF, g(x)<0

< inf x 4.56
zeXk, g(x)<0 f( ) ( )

= f(@")

where the last inequality follows from Eq. (4.54). Combining Egs. (4.55) and (4.56), we
obtain

: 1
f* = %lef“ll2 < Ly(ah, pub) = k{f(2F) + p¥ g(a¥) } — Sl k]|?

- (4.57)
< * — _ = k|2,
<kfr o+ = ol

It follows from the preceding relation that ||u*|| remains bounded as k — oco. Let & be a

limit point of {u¥}. We also have from the preceding relation that

lim (f(zx) — f*) + p¥ g(z*) = 0.

k—oo

Hence, taking the limit along the relevant subsequence in the first relation in Eq. (4.56)

yields
fr< mf {f(@) +W9(@)} = a(m) < f7,

where the last inequality follows from weak duality. Hence 7i belongs to set M, and since
|| < ||p*]| [which follows by taking the limit in Eq. (4.57)], by using the minimum norm
property of u*, we conclude that any limit point &z of % must be equal to p*. Thus puk — p*,
and using Eq. (4.57), we obtain

. 1
Jim (L (F, pk) =k f*) = =5 [lue]]?. (4.58)
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Since Ly is quadratic in p, the supremum of Ly (z*, u) over p > 0 is attained at
M? = kgj(xk)—’_v J=1...,r (459)

so that

1
Ly(ak, p*) = sup Ly (2%, p) = kf(@*) + 5 [|*]]?,
n=0

which combined with Eq. (4.58) yields

lim k(f(xk) — f*) = —||u*||2,

k—o0

implying that f(z*) < f* for all sufficiently large k, since p* # 0. Since, u* — p*, Eq.
(4.59) also implies

klirgokgj(xk):u;f, j=1,...,r

Thus the sequence {z*} fulfills condition (ii) of the definition of an informative geometric

multiplier, thereby completing the proof. Q.E.D.

When there is a duality gap, there exists no geometric multipliers, even if there is a
dual optimal solution. In this case, we are motivated to investigate the existence of a special

dual optimal solution, which satisfies condition (iv) of Proposition 5.4.14,

(iv) If the index set J = {j | uj > O} is nonempty, there exists a sequence {z*} C X such
that
lim f(zF) = ¢*, lim sup g(z¥) <0,

k—o0 k—o0

and for all &,
fah) <q  pigi(ar) >0, Viel

ot @) =0 (ming,a) . vig

We call such a dual optimal solution informative, since it provides information by
indicating the constraints to violate to result in a cost reduction by an amount which is

strictly greater than the size of the duality gap, i.e., f* — ¢*.

We have the following result, which is analogous to the preceding proposition.
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Proposition 5.4.16: (Existence of Informative Dual Optimal Solutions) Con-
sider problem (4.1) under Assumption 5.4.6. Assume further that ¢* is finite and that
there exists a dual optimal solution, i.e., there exists a nonnegative vector u such that

q(p) = ¢*. Then the dual optimal solution with minimum norm is informative.

Proof: Let p* be the dual optimal solution of minimum norm. If pu* = 0, then p* is an
informative dual optimal solution and we are done, so assume that p* # 0. Consider the

problem
minimize f(z)
1
subject to = € X, g(z) < e
By Lemma 5.4.1, for each k, the optimal value of this problem is less than or equal to ¢*.

For each k, let ¥ € X be a vector that satisfies

Consider also the problem
minimize f(x)

1
subject to g(z) < ol

reXk=XnN {x | |lz|| < k(max [|&| —i—l)}.
1<i<k

Since {z | g(z) <0} N X* is the intersection of the closed set {x € X | g(z) < 0} and the
compact set {:p ‘ |lz|| < ||Z*| + k:}, we see that the constraint set of the preceding problem
is compact. Since f is closed, and therefore lower semicontinuous over X%, by Weierstrass’
Theorem, the preceding minimization problem has an optimal solution, which we denote
by Z¥. Note that since #* belongs to the feasible set of this problem, we have

f@*) < f(@%) < g+ % (4.60)

We consider the function

_ el

Li(z, p) = kf(z) + p'kg(z) — ==,
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and we note that Lj is convex in z, and concave and coercive in y. For each k, we consider

the saddle points of L over z in
Xk =Xkn {z ] g(z) < ke}

and p > 0. Since X is bounded, Ly has a saddle point for each k, denoted by (x*, k).

Since Ly is quadratic in p, the supremum of Lg(x*, u) over u > 0 is attained at
ph = kg (zk),  j=1,...,r (4.61)

Similarly, the infimum of L (x, u*) over x € X is attained at x*, implying that

f@*) + ¥ gleh)= inf {f(2) +p¥g(@)}

= inf {7(2)+ kg (2¥)g(x)}

= xexk,liixk%e{f(x) + kg (@F)g(x) }
< xexk,if(i)gk%ef(x) + % (4.62)
= @) + 33
<q 4 7“2—2 1,

where the last inequality follows from Eq. (4.60).
We also have

Ly (2%, p*)=sup inf Ly(x,pn)
u>0zeXk
> inf L

2 sup inf k(@ 1)

= sup { Inf (kf(z) + p'kg(w)) - @}

n=0
ME (4.63)
=sup{kqw)— ! }
nw=>0
,U,* 2
> hq(ur) - 12,
* |2
e Ll

2 Y
where p* is the dual optimal solution with the minimum norm.
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Combining Egs. (4.63) and (4.62), we obtain

1 / 1
Kt = 52 < Lok, o) = {F () + ¥ glak)} = 3 2
(4.64)
<k *+2_1” k|2
= Rq L2 K

It follows from the preceding relation that ||p*|| remains bounded as k — oo. Let & be a

limit point of {y*}. We also have from the preceding relation that

lim (f(zx) —q*) + p¥ g(a*) = 0.

k—oo

Hence, taking the limit along the relevant subsequence in the first relation in Eq. (4.62)
yields
¢ < inf {f(2) +7g(2)} = (@) < ",

Hence 7 is a dual optimal solution, and since ||z|| < ||p*|| [which follows by taking the limit
in Eq. (4.64)], by using the minimum norm property of u*, we conclude that any limit point

7 of p* must be equal to p*. Thus puk — p*, and using Eq. (4.64), we obtain
1 k .k * 1 * |2
Jim (Ly(ak, 1) — o) = — 2 (4.65)
Using Eq. (4.61), it follows that

1
Ly (xF, p#) = sup Ly (xF, p) = kf(x*) + 5\!#’“!12,
nw=>0

which combined with Eq. (4.65) yields

lim k(f(2%) —q*) = —||u*]2.

k—oo

implying that f(z*) < ¢* for all sufficiently large k, since pu* # 0. Since, u* — p*, Eq.
(4.61) also implies

klg]go kgj(a:k) = W, j=1,...,r

thus completing the proof. Q.E.D.
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CHAPTER 6

CONCLUSIONS

In this thesis, we present a new development of Lagrange multiplier theory that significantly
differs from the classical treatments. Our objective is to generalize, unify, and streamline the
theory of constraint qualifications, which are conditions on the constraint set that guarantee

existence of Lagrange multipliers.

Our analysis is motivated by an enhanced set of necessary optimality conditions of
the Fritz John-type, which are stronger than the classical Karush-Kuhn-Tucker conditions
(they include extra conditions, which may narrow down the set of candidate optima). They
are also more general in that they apply even when there is a possibly nonconvex abstract
set constraint, in addition to smooth equality and inequality constraints. For this purpose,
we use concepts from nonsmooth analysis to analyze the local structure of the abstract set
constraint. We show that the notion of ‘regularity of constraint sets’ is a crucial property

in identifying problems that have satisfactory Lagrange multiplier theory.

A Lagrange multiplier theory should determine the fundamental constraint set struc-
ture that guarantees the existence of Lagrange multipliers. Without an abstract set con-
straint, this structure is identified by the notion of quasiregularity. The classical line of
analysis has been either to relate constraint qualifications to quasiregularity, or to show
existence of Lagrange multipliers under each constraint qualification separately, using a
different and complicated proof. In the presence of an abstract set constraint, quasiregu-
larity fails as a central unification concept, as we have shown in our work. Based on the
enhanced Fritz John conditions, we introduce a new general constraint qualification, called
pseudonormality. Pseudonormality unifies and expands the major constraint qualifications,

and simplifies the proofs of Lagrange multiplier theorems.

Fritz John conditions also motivate us to introduce a taxonomy of different types
of Lagrange multipliers. In particular, under mild convexity assumptions, we show that

there exists a special Lagrange multiplier, called informative. The nonzero components of
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informative Lagrange multipliers identify the constraints that need to be violated in order

to improve the optimal cost function value.

A notion that is related to pseudonormality, called quasinormality, is given by Hestenes
[Hes75] (for the case where X = R"). In this thesis, we extend this notion to the case where
X is a closed set and we discuss the relation between pseudonormality and quasinormality.
We show that pseudonormality is better suited as a unifying vehicle for Lagrange multiplier
theory. Quasinormality serves almost the same purpose as pseudonormality when X is
regular, but fails to provide the desired theoretical unification when X is not regular. For
this reason, it appears that pseudonormality is a theoretically more interesting characteristic

than quasinormality.

In this thesis, we also examine the connection between Lagrange multiplier theory
and exact penalty functions. In particular, we show that pseudonormality implies the
admittance of an exact penalty function. This provides in a unified way a much larger set
of constraint qualifications under which we can guarantee that the constraint set admits an

exact penalty.

Using a different line of analysis that does not involve gradients or subgradients, we
extend the theory we developed regarding Fritz John conditions and pseudonormality to
nonsmooth problems under convexity assumptions. Finally, we consider problems that
do not necessarily have an optimal solution. We introduce a new notion of a multiplier,
called geometric, that is not tied to a specific optimal solution. We develop Fritz John
optimality conditions for such problems under different sets of assumptions. In particular,
under convexity assumptions, we derive Fritz John conditions, which provides an alterna-
tive approach to obtain strong duality results of convex programming. Under additional
closedness assumptions, we develop Fritz John conditions that involve conditions analogous
to the complementary violation condition. This motivates us to introduce special types
of geometric multipliers, called informative (consistent with informative Lagrange multi-
pliers), that carry significant amount of sensitivity information regarding the constraints
of the problem. We show that if the set of geometric multipliers is nonempty, then there
exists an informative geometric multiplier. We also consider a dual optimization problem

associated with the original problem, and we derive Fritz John-type optimality conditions
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for the dual problem. When there is no duality gap, the set of geometric multipliers and the
set of optimal solutions of the dual problem coincide. When there is a duality gap, there
exists no geometric multiplier; however the dual problem may still have an optimal solution.
Based on dual Fritz John optimality conditions, we introduce special types of dual opti-
mal solutions, called informative (similar to informative geometric multipliers), that carries
sensitivity information. We show that an informative dual optimal solution always exists
when the dual problem has an optimal solution. An interesting research direction for the
future is to use the sensitivity information provided by the informative multipliers that we

have defined in this thesis in various computational methods.
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