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CHAPTER 1

INTRODUCTION

Optimization theory arises in a vast variety of problems. Engineers, managers, operation

researchers are constantly faced with problems that need optimal decision making. In the

past, a wide range of solutions was considered acceptable. However, the rapid increase in

human needs and objectives is forcing us to make more efficient use of our scarce resources.

This is making optimization techniques critically important in a wide range of areas.

Mathematical models for these optimization problems can be constructed by specifying

a constraint set C, which consists of the available decisions x, and a cost or objective function

f(x) that maps each x ∈ C into a scalar and represents a measure of undesirability of

choosing decision x. This problem can then be written as

minimize f(x)

subject to x ∈ C.

(0.1)

In this thesis, we focus on the case where each decision x is an n-dimensional vector, i.e.,

x is an n-tuple of real numbers (x1, . . . , xn). Hence, the constraint set C is a subset of �n,

the n-dimensional Euclidean space. We assume throughout the thesis (with the exception

of the last chapter where we use some convexity assumptions instead) that the function

f : �n �→ � is a smooth (continuously differentiable) function. A vector x that belongs to

set C is referred to as a feasible solution of problem (0.1). We want to find a feasible vector

x∗ that satisfies

f(x∗) ≤ f(x), for all x ∈ C.

We call such a vector a global optimal solution (or global minimum) of problem (0.1), and

the corresponding cost value f(x∗) the optimal value (or optimal cost) of problem (0.1). A

15



vector x∗ is called a local optimum solution (or local minimum) if it is no worse than its

neighbors, i.e., if there exists some scalar ε > 0 such that

f(x∗) ≤ f(x), for all x ∈ C with ‖x − x∗‖ ≤ ε.

The global or local minimum x∗ is said to be strict if the corresponding inequalities above

are strict for all x ∈ C with x �= x∗.

The optimization problem stated in (0.1) is very broad and arises in a large variety of

practical applications. This problem contains as special cases several important classes of

problems. In nonlinear programming problems either the cost function f is nonlinear or the

constraint set C is specified by nonlinear equations and inequalities. In linear programming

problems, the cost function f is linear and the constraint set C is a polyhedron. Both classes

of problems have a vast range of applications, such as communication, manufacturing,

production planning, scheduling, logistics, and pattern classification.

Another major class of problems is network flow problems. Network flow problems are

one of the most important and most frequently encountered class of optimization problems.

They arise naturally in the analysis and design of large systems, such as communication,

transportation, and manufacturing networks. They can also be used to model important

classes of combinatorial problems, such as assignment, shortest path and travelling salesman

problems. Loosely speaking, network flow problems consist of supply and demand points,

together with several routes that connect these points and are used to transfer the supply

to the demand. Often the supply, demand, and intermediate points can be modelled by the

nodes of a graph, and the routes may be modelled by the paths of the graph. Furthermore,

there may be multiple types of supply/demand (or commodities) sharing the routes. For

example, in communication networks, the commodities are the streams of different classes

of traffic (telephone, data, video, etc.) that involve different origin-destination pairs. In
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such problems, roughly speaking, we try to select routes that minimize the cost of transfer

of the supply to the demand.

A fundamental issue that arises in attempting to solve problem (0.1) is the character-

ization of optimal solutions via necessary and sufficient optimality conditions. Optimality

conditions often provide the basis for the development and the analysis of algorithms. In

general, algorithms iteratively improve the current solution, converging to a solution that

approximately satisfy various optimality conditions. Hence, having optimality conditions

that are rich in supplying information about the nature of potential solutions is important

for suggesting variety of algorithmic approaches.

Necessary optimality conditions for problem (0.1) can be expressed generically in

terms of the relevant conical approximations of the constraint set C. On the other hand,

the constraint set of an optimization problem is usually specified in terms of equality and

inequality constraints. In this work, we adopt a more general approach and assume that

the constraint set C consists of equality and inequality constraints as well as an additional

abstract set constraint x ∈ X:

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
. (0.2)

In this thesis, the constraint functions hi and gj are assumed to be smooth functions from

�n to � (except in the last chapter where we have various convexity assumptions instead).

An abstract set constraint in this model represents constraints in the optimization problem

that cannot be represented by equalities and inequalities. It is also convenient in repre-

senting simple conditions for which explicit introduction of constraint functions would be

cumbersome, for instance, sign restrictions or bounds on the components of the decision

vector x.

If we take into account the special structure of the constraint set, we can obtain more
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refined optimality conditions, involving some auxiliary variables called Lagrange multipli-

ers. These multipliers facilitate the characterization of optimal solutions and often play an

important role in computational methods. They provide valuable sensitivity information,

quantifying up to first order the variation of the optimal cost caused by variations in prob-

lem data. They also play a significant role in duality theory, a central theme in nonlinear

optimization.

1.1. ROLE OF LAGRANGE MULTIPLIERS

Lagrange multipliers have long been used in optimality conditions for problems with con-

straints, but recently, their role has come to be understood from many different angles. The

theory of Lagrange multipliers has been one of the major research areas in nonlinear opti-

mization and there has been a variety of different approaches. Lagrange multipliers were

originally introduced for problems with equality constraints. Inequality-constrained prob-

lems were addressed considerably later. Let us first highlight the traditional rationale for

illustrating the importance of Lagrange multipliers by considering a problem with equality

constraints of the form

minimize f(x)

subject to hi(x) = 0, i = 1, . . . , m.
(1.1)

We assume that f : �n �→ � and hi : �n �→ �, i = 1, . . . , m, are smooth functions. The basic

Lagrange multiplier theorem for this problem states that, under appropriate assumptions,

at a given local minimum x∗, there exist scalars λ∗
1, . . . , λ

∗
m, called Lagrange multipliers,

such that

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) = 0. (1.2)

This implies that at a local optimal solution x∗, the cost gradient ∇f(x∗) is orthogonal to

the subspace of first order feasible variations

V (x∗) =
{
∆x | ∇hi(x∗)′∆x = 0, i = 1, . . . , m

}
. (1.3)
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This is the subspace of variations ∆x from the optimal solution x∗, for which the resulting

vector satisfies the constraints hi(x) = 0 up to first order. Hence, condition (1.2) implies

that, at the local minimum x∗, the first order cost variation ∇f(x∗)′∆x is zero for all

variations ∆x in the subspace V (x∗). This is analogous to the“zero cost gradient” condition

of unconstrained optimization problems. This interpretation is illustrated in Figure 1.1.1.

V(x*)

h1 (x)=0

h2 (x)=0

x*

∇h1 (x*)

∇h2 (x*)

∇f (x*)

Figure 1.1.1. Illustration of the Lagrange multiplier condition (1.2) for an

equality-constrained problem. The cost gradient ∇f(x∗) belongs to the sub-

space spanned by the constraint gradients at x∗, or equivalently, the cost gra-

dient ∇f(x∗) is orthogonal to the subspace of first order feasible variations at x∗,

V (x∗).

Lagrange multiplier conditions, given in Eq. (1.2), are n equations which together

with the m constraints hi(x∗) = 0, constitute a system of n + m equations with n +
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m unknowns, the vector x∗ and the multipliers λ∗
i . Thus, through the use of Lagrange

multipliers, a constrained optimization problem can be “transformed” into a problem of

solving a system of nonlinear equations. While this is the role in which Lagrange multipliers

were seen traditionally, this viewpoint is certainly naive since solving a system of nonlinear

equations numerically is not easier than solving an optimization problem by numerical

means. In fact, nonlinear equations are often solved by converting them into nonlinear least

squares problems and using optimization techniques. Still, most computational methods in

nonlinear programming almost invariably depends on some use of Lagrange multipliers.

Lagrange multipliers also have interesting interpretations in different contexts.

1.1.1. Price Interpretation of Lagrange Multipliers

Lagrange multipliers can be viewed as the “equilibrium prices” of an optimization prob-

lem. This interpretation forms an important link between mathematics and theoretical

economics. 1

To illustrate this interpretation, we consider an inequality-constrained problem,

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,
(1.4)

and assume that the functions f , gj are smooth and convex over �n, and that the optimal

value of this problem is finite. The Lagrange multiplier condition for this problem is that,

under appropriate assumptions, at a given global minimum x∗, there exist nonnegative

multipliers µ∗
1, . . . , µ

∗
r such that

∇f(x∗) +
r∑

j=1

µ∗
j∇gj(x∗) = 0, (1.5)

where the µ∗
j satisfy the complementary slackness condition:

µ∗
jgj(x∗) = 0, ∀ j = 1, . . . , r,

1 According to David Gale [Gal67], Lagrange multipliers provide the “single most im-

portant tool in modern economic analysis both from the theoretical and computational

point of view.”
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i.e., the only constraint gradients associated with nonzero multipliers in condition (1.5)

correspond to constraints for which gj(x∗) = 0.2 [We call constraints for which gj(x∗) = 0,

the active constraints at x∗.]

Under the given convexity assumptions, it follows that the Lagrange multiplier con-

dition (1.5) is a sufficient condition for x∗ to be a global minimum of the function f(x) +
∑r

j=1 µ∗
jgj(x). Together with complementary slackness condition, this implies that

f(x∗) = inf
x∈�n





f(x) +

r∑

j=1

µ∗
jgj(x)





. (1.6)

We next consider a perturbed version of problem (1.1) for some u = (u1, . . . , ur) in

�r:
minimize f(x)

subject to gj(x) ≤ uj , j = 1, . . . , r.
(1.7)

We denote the optimal value of the perturbed problem by p(u). Clearly, p(0) is the optimal

value of the original problem (1.1). Considering vector u = (u1, . . . , ur) as perturbations of

the constraint functions, we call the function p as the perturbation function or the primal

function.

We interpret the value f(x) as the “cost” of choosing the decision vector x. Thus, in the

original problem (1.4), our objective is to minimize the cost subject to certain constraints.

We also consider another scenario in which we are allowed to relax the constraints to our

advantage by buying perturbations u. In particular, assume that we are allowed to change

problem (1.4) to a perturbed problem (1.7) for any u that we want, with the condition that

we have to pay for the change, the price being µj per unit of perturbation variable. Then,

for any perturbation u, the minimum cost we can achieve in the perturbed problem (1.7),

plus the perturbation cost, is given by

p(u) +
r∑

j=1

µjuj ,

2 The name complementary slackness comes from the analogy that for each j, whenever

the constraint gj(x∗) is slack [meaning that gj(x∗) < 0], the constraint µ∗
j ≥ 0 must not be

slack [meaning that µ∗
j > 0], and vice versa.
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and we have

inf
u∈�r





p(u) +

r∑

j=1

µjuj





≤ p(0) = f(x∗),

i.e., the minimum cost that can be achieved by a perturbation is at most as high as the

optimal cost of the original unperturbed problem. A perturbation is worth buying if we

have strict inequality in the preceding relation.

We claim that the Lagrange multipliers µ∗
j are the prices for which no perturbation

would be worth buying, i.e., we are in an equilibrium situation such that we are content

with the constraints as given. To see this, we use Eq. (1.6) to write

p(0) = f(x∗)= inf
x∈�n





f(x) +

r∑

j=1

µ∗
jgj(x)






= inf{
(u,x)|u∈�r, x∈�n, gj(x)≤uj , j=1,...,r

}





f(x) +

r∑

j=1

µ∗
jgj(x)






= inf{
(u,x)|u∈�r, x∈�n, gj(x)≤uj , j=1,...,r

}





f(x) +

r∑

j=1

µ∗
juj






= inf
u∈�r

{
p(u) +

r∑

j=1

µ∗
juj

}

≤ p(0).

Hence, equality holds throughout in the above, proving our claim that the Lagrange multi-

pliers are the equilibrium prices.

1.1.2. Game Theoretic Interpretation and Duality

Under suitable convexity assumptions, Lagrange multipliers take on a game-theoretic role,

which was motivated by the creative insights of von Neumann in applying mathematics to

models of social and economic conflict [Neu28], [NeM44].

To put things into perspective, let us consider the following general scenario. Let X

and Z be subsets of �n and �r, respectively, and let φ : X×Z �→ � be a function. Consider

a zero sum game, defined in terms of φ, X, and Z as follows: There are two players. X is

22



the “strategy set” for the first player , Z is the “strategy set” for the second player, and φ

is the “payoff function”. The game proceeds as follows:

(1) First player selects an element x ∈ X, and second player selects an element z ∈ Z.

(2) The choices are revealed simultaneously,

(3) At the end, first player pays an amount of φ(x, z) to the second player. 1

The following definition provides a concept that defines an equilibrium situation in

this game.

Definition 1.1.1: A pair of vectors x∗ ∈ X and z∗ ∈ Z is called a saddle point of

the function φ if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z, (1.8)

or equivalently,

sup
z∈Z

φ(x∗, z) = φ(x∗, z∗) = inf
x∈X

φ(x, z∗).

Given a saddle point (x∗, z∗) of the function φ, by choosing x∗, the first player is

guaranteed that no matter what player two chooses, the payment cannot exceed the amount

φ(x∗, z∗) [cf. Eq. (1.8)]. Similarly, by choosing z∗, the second player is guaranteed to receive

at least the same amount regardless of the choice of the first player. Hence, the saddle point

concept is associated with an approach to the game in which each player tries to optimize

his choice against the worst possible selection of the other player.

This idea motivates the following equivalent characterization of a saddle point in terms

of two optimization problems (for the proof see [BNO02]).

1 Although this model is very simple, a wide variety of games can be modelled this way

(chess, poker etc.). The amount φ(x, z) can be negative, which corresponds to the case that

the first player wins the game. The name of the game “zero sum” derives from the fact that

the amount won by either player is the amount lost by the other player.
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Proposition 1.1.1: A pair (x∗, z∗) is a saddle point of φ if and only if x∗ is an

optimal solution of the problem

minimize sup
z∈Z

φ(x, z)

subject to x ∈ X,
(1.9)

while z∗ is an optimal solution of the problem

maximize inf
x∈X

φ(x, z)

subject to z ∈ Z,
(1.10)

and the optimal value of the two problems are equal, i.e.,

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z).

In the worst case scenario adopted above, problem (1.9) can be regarded as the opti-

mization problem of the first player used to determine the strategy to be selected. Similarly,

problem (1.10) is the optimization problem of the second player to determine its strategy.

Equipped with this general scenario, let us consider the inequality-constrained problem

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,
(1.11)

and introduce the, so called, Lagrangian function

L(x, µ) = f(x) +
r∑

j=1

µjgj(x),

for this problem. It can be seen that

sup
µ≥0

L(x, µ) =
{

f(x) if gj(x) ≤ 0 for all j = 1, . . . , r,

∞ otherwise.

Hence, the original problem (1.11) can be written in terms of the Lagrangian function as

minimize sup
µ≥0

L(x, µ)

subject to x ∈ �n.
(1.12)
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In the game-theoretic setting constructed above, this problem can be regarded as the strat-

egy problem corresponding to the first player. The strategy problem corresponding to the

second player is
maximize inf

x∈�n
L(x, µ)

subject to µ ≥ 0.
(1.13)

Let (x∗, µ∗) be a saddle point of the Lagrangian function L(x, µ). By Proposition

1.1.1, it follows that x∗ is the optimal solution of problem (1.12), and µ∗ is the optimal

solution of problem (1.13), and using the equivalence of problem (1.12) with the original

problem (1.11), we have

f(x∗) = inf
x∈�n

L(x, µ∗) = inf
x∈�n





f(x) +

r∑

j=1

µ∗
jgj(x)





.

Using the necessary optimality condition for unconstrained optimization, this implies that

∇f(x∗) +
r∑

j=1

µ∗
j∇gj(x∗) = 0, (1.14)

and

µ∗
jgj(x∗) = 0, ∀ j = 1, . . . , r,

showing that µ∗ = (µ∗
1, . . . , µ

∗
r) is a Lagrange multiplier for problem (1.11). Hence, assuming

that the Lagrangian function has a saddle point (x∗, µ∗), a game-theoretic approach provides

an alternative interpretation for Lagrange multipliers, as the optimal solution of a related

optimization problem, which is called the dual problem [cf. Eq. (1.13)]. Conditions under

which the Lagrangian function has a saddle point, or under which the optimal values of the

problems (1.12) and (1.13) are equal form the core of duality theory. A detailed analysis of

this topic can be found in [BNO02].

1.1.3. Sensitivity Analysis

Within the mathematical model of Eqs. (0.1)-(0.2), Lagrange multipliers can be viewed as

rates of change of the optimal cost as the level of constraint changes [cf. Figure 1.1.2].
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To motivate the idea, let us consider a problem with a single linear equality constraint,

minimize f(x)

subject to a′x = b,

where a �= 0. Here, x∗ is a local minimum and λ∗ is a corresponding Lagrange multiplier.

If the level of constraint b is changed to b + ∆b, the minimum x∗ will change to x∗ + ∆x.

Since b + ∆b = a′(x∗ + ∆x) = a′x∗ + a′∆x = b + a′∆x, we see that the variations ∆x and

∆b are related by

a′∆x = ∆b.

Using the Lagrange multiplier condition ∇f(x∗) = −λ∗a, the corresponding cost change

can be written as

∆cost = f(x∗ + ∆x) − f(x∗) = ∇f(x∗)′∆x + o(‖∆x‖) = −λ∗a′∆x + o(‖∆x‖).

By combining the above two relations, we obtain ∆cost = −λ∗∆b + o(‖∆x‖), so up to first

order we have

λ∗ = −∆cost
∆b

.

Thus, the Lagrange multiplier λ∗ gives the rate of optimal cost decrease as the level of

constraint increases. 1

When the constraints are nonlinear, the sensitivity interpretation of Lagrange multi-

pliers is still valid, provided some assumptions are satisfied. Typically, these assumptions

include the linear independence of the constraint gradients, but also additional conditions

involving second derivatives (see e.g., the textbook [Ber99]). In this thesis, we provide a sen-

sitivity interpretation of Lagrange multipliers for general nonlinear optimization problems

under a weak set of assumptions.

1 This information is very useful in engineering design applications. Suppose that we

have designed a system that involves determining the values of a large number of components

to satisfy certain objectives, and we are allowed to tune up some of the parameters in order

to improve the performance of the system. Instead of solving the problem every time we

change the value of a parameter, we can use the information provided by the Lagrange

multipliers of this problem to see the resulting impact on the performance.
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g1(x) ≤ 0

g2(x) ≤ 0

x*

Level sets of f

Figure 1.1.2. Sensitivity interpretation of Lagrange multipliers. Suppose that

we have a problem with two inequality constraints, g1(x) ≤ 0 and g2(x) ≤ 0,

where the optimal solution is denoted by x∗. If the constraints are perturbed

a little, the optimal solution of the problem changes. Under certain conditions,

Lagrange multipliers can be shown to give the rates of change of the optimal cost

as the level of constraint changes.

1.2. CONSTRAINT QUALIFICATIONS

As we have seen in the previous section, Lagrange multipliers hold fundamental significance

in a variety of different areas in optimization theory. However, not every optimization prob-

lem can be treated using Lagrange multipliers and additional assumptions on the problem

structure are required to guarantee their existence, as illustrated by the following example.

Example 1.2.1: (A Problem with No Lagrange Multipliers)

Consider the problem of minimizing

f(x) = x1 + x2

subject to two equality constraints

h1(x) = x2
1 − x2 = 0,

h2(x) = x2
1 + x2 = 0.

The geometry of this problem is illustrated in Figure 1.2.3. The only feasible solution is

x∗ = (0, 0), which is therefore the optimal solution of this problem. It can be seen that at the
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local minimum x∗ = (0, 0), the cost gradient ∇f(x∗) = (1, 1) cannot be expressed as a linear

combination of the constraint gradients ∇h1(x
∗) = (0,−1) and ∇h2(x

∗) = (0, 1). Thus the

Lagrange multiplier condition

∇f(x∗) + λ∗
1∇h1(x

∗) + λ∗
2∇h2(x

∗) = 0

cannot hold for any λ∗
1 and λ∗

2.

x1

x2

∇h2(x*)

∇h1(x*)

∇f(x*)

x*

Figure 1.2.3. Illustration of how Lagrange multipliers may not exist for some

problems (cf. Example 1.2.1). Here the cost gradient can not be expressed as a

linear combination of the constraint gradients, so there are no Lagrange multipli-

ers.

The difficulty in this example is that the subspace of first order feasible variations

V (x∗) =
{
y | ∇h1(x∗)′y = 0, ∇h2(x∗)′y = 0

}

[cf. Eq. (1.3)], which is {y | y1 ∈ �, y2 = 0}, has larger dimension than the true set of

feasible variations {y | y = 0}. The optimality of x∗ implies that ∇f(x∗) is orthogonal

to the true set of feasible variations, but for a Lagrange multiplier to exist, ∇f(x∗) must
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be orthogonal to the subspace of first order of feasible variations. This problem would not

have occurred if the constraint gradients ∇h1(x∗) and ∇h2(x∗) were linearly independent,

since then there would not be a mismatch between the set of feasible variations and the set

of first order feasible variations.

A fundamental research question in nonlinear optimization is to determine the type

of qualifications that are needed to be satisfied by a problem so that Lagrange multipliers

can be of use in its analysis. Such conditions can be meaningful if they are independent of

the cost function, so that when they hold, the same results can be inferred for any other

cost function with the same optimality properties. Hence, it is the constraint set of an

optimization problem that needs to have additional structure for the existence of Lagrange

multipliers.

There has been much interest in developing general and easily verifiable conditions that

guarantee the existence of Lagrange multipliers for a problem. There are a large number

of such conditions developed in the 60s and early 70s, for problems with smooth equality

and inequality constraint functions, which are often referred to as constraint qualifications.

Modern applications require using more general optimization models with more complicated

side conditions [cf. Eqs. (0.1)-(0.2)]. Analysis of such optimization problems demands a

more sophisticated and deeply understood theory of Lagrange multipliers. Developing such

a unified and extended theory is one of the main themes of this thesis.

1.2.1. Linear Equality Constraints

To see why Lagrange multipliers may be expected to exist for some problems, let us consider

a simple equality-constrained problem where the equality constraint functions hi are linear

so that

hi(x) = a′
ix = 0, i = 1, . . . , m,

for some vectors ai [cf. problem (1.1)]. To analyze this problem, we make use of the well-

known necessary optimality condition for optimization over a convex set (for the proof, see

[Ber99]).
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Proposition 1.2.2: Let X be a convex set. If x∗ is a local minimum of f over X,

then

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ X.

Level sets of f

 x * - ∇f(x*)

Constraint set X

x*

Figure 1.2.4. Illustration of the necessary optimality condition

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ X,

for x∗ to be a local minimum of f over X.

Geometric interpretation of this result is illustrated in Figure 1.2.4. Hence, at a given

local minimum x∗ of the above linear equality-constrained problem, we have

∇f(x∗)′(x − x∗) ≥ 0, ∀ x such that a′
ix = 0, ∀ i = 1, . . . , m.

The feasible set of this problem is given by the nullspace of the m × n matrix A having as

rows the ai, which we denote by N(A). By taking x = 0 and x = 2x∗ in the preceding

relation, it is seen that

∇f(x∗)′x∗ = 0.

Combining the last two relations, we obtain ∇f(x∗)′x ≥ 0 for all x ∈ N(A). Since for

all x ∈ N(A), we also have −x ∈ N(A), it follows that ∇f(x∗)′x = 0 for all x ∈ N(A).
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Therefore, ∇f(x∗) belongs to the range space of the matrix having as columns the ai, and

can be expressed as a linear combination of the ai. Hence, we can write

∇f(x∗) +
m∑

i=1

λiai = 0

for some scalars λi, which implies the existence of Lagrange multipliers.

In the general case, where the constraint functions hi are nonlinear, additional assump-

tions are needed to guarantee the existence of Lagrange multipliers. One such condition,

called regularity of x∗, is that the gradients ∇hi(x∗) are linearly independent, as hinted in

the discussion following Example 1.2.1. We will digress into this topic in more detail in

Chapter 4.

1.2.2. Fritz John Conditions

Over the years, there has been considerable research effort in deriving optimality condi-

tions involving Lagrange multipliers under different constraint qualifications. Necessary

optimality conditions for constrained problems that involve Lagrange multipliers were first

presented in 1948 by John [Joh48]. These conditions are known as Fritz John necessary

conditions. These conditions assume no qualification, instead involves an additional multi-

plier for the cost gradient in their statement. (An excellent historical review of optimality

conditions for nonlinear programming can be found in [Kuh76].1)

1 The following quotation from Takayama [Tak74] gives an accurate account of the his-

tory of these conditions. “Linear programming aroused interest in constraints in the form

of inequalities and in the theory of linear inequalities and convex sets. The Kuhn-Tucker

study appeared in the middle of this interest with a full recognition of such developments.

However, the theory of nonlinear programming when the constraints are all in the form

of equalities has been known for a long time– in fact since Euler and Lagrange. The in-

equality constraints were treated in a fairly satisfactory manner already in 1939 by Karush.

Karush’s work is apparently under the influence of a similar work in the calculus of variations

by Valentine. Unfortunately, Karush’s work has been largely ignored. Next to Karush, but
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To get a sense of the main idea of Fritz John conditions, we consider the equality-

constrained problem
minimize f(x)

subject to hi(x) = 0, i = 1, . . . , m.

There are two possibilities at a local minimum x∗:

(a) The gradients ∇hi(x∗) are linearly independent (x∗ is regular). Then, there exist

scalars (Lagrange multipliers) λ∗
1, . . . , λ

∗
m such that

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) = 0.

(b) The gradients ∇hi(x∗) are linearly dependent, so there exist scalars λ∗
1, . . . , λ

∗
m, not

all equal to 0, such that
m∑

i=1

λ∗
i∇hi(x∗) = 0.

These two possibilities can be lumped into a single condition: at a local minimum x∗ there

exist scalars µ0, λ1, . . . , λm, not all equal to 0, such that µ0 ≥ 0 and

µ0∇f(x∗) +
m∑

i=1

λi∇hi(x∗) = 0. (2.1)

Possibility (a) corresponds to the case where µ0 > 0, in which case the scalars λ∗
i = λi/µ0

are Lagrange multipliers. Possibility (b) corresponds to the case where µ0 = 0, in which

case condition (2.1) provides no information regarding the existence of Lagrange multipliers.

Fritz John conditions can also be extended to inequality-constrained problems, and

they hold without any further assumptions on x∗ (such as regularity). However, this extra

still prior to Kuhn and Tucker, Fritz John considered the nonlinear programming problem

with inequality constraints. He assumed no qualification except that all functions are con-

tinuously differentiable. Here the Lagrangian expression looks like µ0f(x) + µ′g(x) instead

of f(x) +µ′g(x) and µ0 can be zero in the first order conditions. The Karush-Kuhn-Tucker

constraint qualification amounts to providing a condition which guarantees µ0 > 0 (that is,

a normality condition).”
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generality comes at a price, because the issue of whether the cost multiplier µ0 can be taken

to be positive is left unresolved. Unfortunately, asserting that µ0 > 0 is nontrivial under

some commonly used assumptions, and for this reason, traditionally, Fritz John conditions in

their classical form have played a somewhat peripheral role in the development of Lagrange

multiplier theory. Nonetheless, the Fritz John conditions, when properly strengthened, can

provide a simple and powerful line of analysis of Lagrange multiplier theory, as we will see

in Chapter 3.

1.3. EXACT PENALTY FUNCTIONS

An important analytical and algorithmic technique in nonlinear programming to solve

problem (0.1)-(0.2) involves the use of penalty functions. The basic idea in penalty methods

is to eliminate the equality and inequality constraints and add to the cost function a penalty

term that prescribes a high cost for their violation. Associated with the penalty term is a

parameter c that determines the severity of the penalty and as a consequence, the extent

to which the “penalized” problem approximates the original. An important example is the

quadratic penalty function

Qc(x) = f(x) +
c

2




m∑

i=1

(
hi(x)|

)2 +
r∑

j=1

(
g+

j (x)
)2



 ,

where c is a positive penalty parameter, and we use the notation

g+
j (x) = max

{
0, gj(x)

}
.

Instead of the original optimization problem (0.1)-(0.2), consider minimizing this function

over the set constraint X. For large values of c, a high penalty is incurred for infeasible

points. Therefore, we may expect that by minimizing Qck(x) over X for a sequence {ck}
of penalty parameters with ck → ∞, we will obtain in the limit a solution of the original

problem. Indeed, convergence of this type can generically be shown, and it turns out that

typically a Lagrange multiplier vector can also be simultaneously obtained (assuming such
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a vector exists); see e.g., [Ber99]. We will use these convergence ideas in various proofs

throughout the thesis.

The quadratic penalty function is not exact in the sense that a local minimum x∗ of

the constrained minimization problem is typically not a local minimum of Qc(x) for any

value of c. A different type of penalty function is given by

Fc(x) = f(x) + c




m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)



 ,

where c is a positive penalty parameter. It can be shown that for certain problems, x∗ is

also a local minimum of Fc, provided that c is larger than some threshold value. This idea

is depicted in Figure 1.3.5.

f(x)f(x)

g(x)
g(x)

xx

Feasible region Feasible region

Fc(x)

(a) (b)

x* x*

Figure 1.3.5. Illustration of an exact penalty function for the case of one-

dimensional problems with a single inequality constraint and an optimal solution

at x∗. Figure (a) illustrates the case in which x∗ is also a local minimum of Fc(x) =

f(x) + cg+(x), hence the penalty function is “exact”. Figure (b) illustrates an

exceptional case where the penalty function is not exact. In this case, ∇g(x∗) =

0, thus violating the condition of constraint gradient linear independence (we

will show later that one condition guaranteeing the exactness of Fc is that the

constraint gradients at x∗ are linearly independent). For this constraint set, it is

possible that Fc(x) does not have a local minimum at x∗ for any c > 0 (as for

the cost function depicted in the figure, where the downward order of growth of

f exceeds the upward order of growth of g at x∗ when moving from x∗ towards

smaller values).
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Hence, through the use of penalty functions, the constrained optimization problem

can be solved via unconstrained optimization techniques. The conditions under which a

problem admits an exact penalty have been an important research topic since 70s. It is

very interesting to note that such conditions (as well as the threshold value for c) bear

an intimate connection with constraint qualification theory of Lagrange multipliers. The

line of analysis we adopt in this thesis clearly depicts how exact penalty functions fit in a

theoretical picture with Lagrange multipliers.

1.4. A NEW THEORY OF LAGRANGE MULTIPLIERS

In this work, we present a new theory of Lagrange multipliers, which is simple and more

powerful than the classical treatments. Our objective is to generalize, unify, and stream-

line the theory of constraint qualifications, which are conditions on the constraint set that

guarantee the existence of Lagrange multipliers. The diversity of these conditions moti-

vated researchers to examine their interrelations and try to come up with a central notion

that places these conditions in a larger theoretical picture. For problems that have smooth

equality and inequality constraint functions, but no abstract set constraint, the notion called

quasiregularity, acts as the unifying concept that relates constraint qualifications. In the

presence of an abstract set constraint, quasiregularity fails to provide the required unifi-

cation. Our development introduces a new notion, called pseudonormality, as a substitute

for quasiregularity for the case of an abstract set constraint. Even without an abstract set

constraint, pseudonormality simplifies the proofs of Lagrange multiplier theorems and pro-

vides information about special Lagrange multipliers that carry sensitivity information. Our

analysis also yields a number of interesting related results. In particular, our contributions

can be summarized as follows:

(a) The optimality conditions of the Lagrange multiplier type that we develop are sharper

than the classical Karush-Kuhn-Tucker conditions (they include extra conditions,

which may narrow down the set of candidate local minima). They are also more
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general in that they apply when in addition to the equality and inequality constraints,

there is an additional abstract set constraint.

(b) We introduce the notion of pseudonormality, which serves to unify the major constraint

qualifications and forms a connecting link between the constraint qualifications and

existence of Lagrange multipliers. This analysis carries through even in the case of an

additional abstract set constraint, where the classical treatments of the theory fail.

(c) We develop several different types of Lagrange multipliers for a given problem, which

can be characterized in terms of their sensitivity properties and the information they

provide regarding the significance of the corresponding constraints. We investigate the

relations between different types of Lagrange multipliers. We show that one particular

Lagrange multiplier vector, called the informative Lagrange multiplier, has nice sensi-

tivity properties in that it characterizes the direction of steepest rate of improvement

of the cost function for a given level of the norm of the constraint violation. Along

that direction, the equality and inequality constraints are violated consistently with

the signs of the corresponding multipliers. We show that, under mild convexity as-

sumptions, an informative Lagrange multiplier always exists when the set of Lagrange

multipliers is nonempty.

(d) There is another equally powerful approach to Lagrange multipliers, based on exact

penalty functions, which has not received much attention thus far. In particular, let

us say that the constraint set C admits an exact penalty at the feasible point x∗ if for

every smooth function f for which x∗ is a strict local minimum of f over C, there is

a scalar c > 0 such that x∗ is also a local minimum of the function

Fc(x) = f(x) + c




m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)





over x ∈ X, where we denote

g+
j (x) = max

{
0, gj(x)

}
.

Exact penalty functions have traditionally been viewed as a device used in compu-

tational methods. In this work, we use exact penalty functions as a vehicle towards
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asserting the existence of Lagrange multipliers. In particular, we make a connec-

tion between pseudonormality, the existence of Lagrange multipliers, and the exact

penalty functions. We show that pseudonormality implies the admittance of exact

penalty functions, which in turn implies the existence of Lagrange multipliers.

(e) We extend the theory developed for the case where the functions f, hi and gj are

assumed to be smooth, to the case where these functions are nondifferentiable, but

are instead assumed convex, using the theory of subgradients.

(f) We consider problems that do not necessarily have an optimal solution. For this

purpose, we adopt a different approach based on tools from convex analysis. We

consider certain types of multipliers, called geometric, that are not tied to a specific

local or global minimum and do not assume differentiability of the cost and constraint

functions. Geometric multipliers admit insightful visualization through the use of hy-

perplanes and the related convex set support/separation arguments. Under convexity

assumptions, geometric multipliers are strongly related to Lagrange multipliers. Geo-

metric multipliers can also be viewed as the optimization variables of a related auxil-

iary optimization problem, called the dual problem. We develop necessary optimality

conditions for problems without an optimal solution under various assumptions. In

particular, under convexity assumptions, we derive Fritz John-type conditions, which

provides a pathway that highlights the relations between the original and the dual

problems. Under additional closedness assumptions, we develop Fritz John optimality

conditions that involve sensitivity-type conditions.

(g) We introduce a special geometric multiplier, called informative, that provides similar

sensitivity information regarding the constraints to violate to effect a cost reduction,

as the informative Lagrange multipliers. We show that an informative geometric

multiplier always exists when the set of geometric multipliers is nonempty.

(h) We derive Fritz John-type optimality conditions for the dual problem. Based on these

optimality conditions, we introduce a special type of dual optimal solution, called

informative, which is analogous to informative geometric multipliers. We show that

such a dual optimal solution always exists, when the dual problem has an optimal
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solution.

The outline of the thesis is as follows: In Chapter 2, we provide basic definitions and

results that will be used throughout this thesis. We also study the geometry of constraint

sets of optimization problems in detail in terms of conical approximations and present

general optimality conditions. In Chapter 3, we develop enhanced necessary optimality

conditions of the Fritz John-type for problems that involve smooth equality and inequality

constraints and an abstract (possibly nonconvex) set constraint. We also provide a clas-

sification of different types of Lagrange multipliers, based on the sensitivity information

they provide; investigate their properties and relations. In Chapter 4, we introduce the

notion of pseudonormality and show that it plays a central role within the taxonomy of

interesting constraint characteristics. In particular, pseudonormality unifies and expands

classical constraint qualifications that guarantee the existence of Lagrange multipliers. We

also show that, for optimization problems with additional set constraints, the classical treat-

ment of the theory based on the notion of quasiregularity fails, whereas pseudonormality

still provides the required connections. Moreover, the relation of exact penalty functions

and the Lagrange multipliers is well understood through the notion of pseudonormality.

In Chapter 5, we extend the theory regarding pseudonormality to problems in which con-

tinuity/differentiability assumptions are replaced by convexity assumptions. We consider

problems without an optimal solution and derive optimality conditions for such problems.

Finally, Chapter 6 summarizes our results and points out future research directions.
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CHAPTER 2

CONSTRAINT GEOMETRY

We consider finite dimensional optimization problems of the form

minimize f(x)

subject to x ∈ C,

where f : �n �→ � is a function and C is a subset of �n.

Necessary optimality conditions for equality and inequality-constrained problems were

presented by Karush, Kuhn, and Tucker with a constraint qualification (cf. Chapter 1).

However, these conditions do not cover the case where there is an additional abstract set

constraint X, and therefore is limited to applications where it is possible and convenient to

represent all constraints explicitly by a finite number of equalities and inequalities. More-

over, necessary optimality conditions are often presented with the assumption of “linear

independence of constraint gradients”. This is unnecessarily restrictive especially for prob-

lems with inequality constraints. Therefore, the key to understanding Lagrange multipliers

is through a closer study of the constraint geometry in optimization problems. For this

purpose, at first, we do not insist on any particular representation for C; we just assume

that C is some subset of �n.

The problem of minimizing f over C leads to the possibility that points of interest

may lie on the boundary of C. Therefore, an in-depth understanding of the properties of

the boundary of C is crucial in characterizing optimal solutions. The boundary of C may

be very complicated due to all kinds of curvilinear faces and corners.

In this chapter, we first study the local geometry of C in terms of “tangent vectors”

and “normal vectors”, which are useful tools in studying variational properties of set C

despite boundary complications. This type of analysis is called nonsmooth analysis due to
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one-sided nature of the geometry as well as kinks and corners in set boundaries. We next

use this analysis in connection with optimality conditions.

2.1. NOTATION AND TERMINOLOGY

In this section, we present some basic definitions and results that will be used throughout

this thesis.

We first provide some notation. All of the vectors are column vectors and a prime

denotes transposition. We write x ≥ 0 or x > 0 when a vector x has nonnegative or

positive components, respectively. Similarly, we write x ≤ 0 or x < 0 when a vector x

has nonpositive or negative components, respectively. We use throughout the thesis the

standard Euclidean norm in �n, ‖x‖ = (x′x)1/2, where x′y denotes the inner product of

any x, y ∈ �n. We denote by cl(C) and int(C) the closure and the interior of a set C,

respectively.

We also use some of the standard notions of convex analysis. In particular, for a set

X, we denote by conv(X) the convex hull of X, i.e., the intersection of all convex sets

containing X, or equivalently the set of all convex combinations of elements of X. For a

convex set C, we denote by aff(C) the affine hull of C, i.e., the smallest affine set containing

C, and by ri(C) the relative interior of C, i.e., its interior relative to aff(C). The epigraph
{
(x, w) | f(x) ≤ w, x ∈ X, w ∈ �

}
of a function f : X �→ � is denoted by epi(f).

Given any set X, the set of vectors that are orthogonal to all elements of X is a

subspace denoted by X⊥:

X⊥ = {y | y′x = 0, ∀ x ∈ X}.

If S is a subspace, S⊥ is called the orthogonal complement of S. A set C is said to be a

cone if for all x ∈ C and λ > 0, we have λx ∈ C.

We next give an important duality relation between cones. Given a set C, the cone

given by

C∗ = {y | y′x ≤ 0, ∀ x ∈ C},
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is called the polar cone of C. Clearly, the polar cone C∗, being the intersection of a collection

of closed halfspaces, is always closed and convex (regardless of whether C is closed and/or

convex). If C is a subspace, it can be seen that the polar cone C∗ is equal to the orthogonal

subspace C⊥. The following basic result generalizes the equality C = (C⊥)⊥, which holds

in the case where C is a subspace (for the proof see [BNO02]).

Proposition 2.1.1: (Polar Cone Theorem) For any cone C, we have

(C∗)∗ = cl
(
conv(C)

)
.

In particular, if C is closed and convex, we have (C∗)∗ = C.

We next give some basic results regarding cones and their polars that will be useful

in our analysis (for the proofs, see [BNO02]).

Proposition 2.1.2:

(a) Let C1 and C2 be two cones. If C1 ⊂ C2, then C∗
2 ⊂ C∗

1 .

(b) Let C1 and C2 be two cones. Then,

(C1 + C2)∗ = C∗
1 ∩ C∗

2 ,

and

C∗
1 + C∗

2 ⊂ (C1 ∩ C2)∗.

In particular if C1 and C2 are closed and convex, (C1 ∩ C2)∗ = cl(C∗
1 + C∗

2 ).

Existence of Optimal Solutions

A basic question in optimization problems is whether an optimal solution exists. This

question can often be resolved with the aid of the classical theorem of Weierstrass, given

in the following proposition. To this end, we introduce some terminology. Let X be a
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nonempty subset of �n. We say that a function f : X �→ (−∞,∞] is coercive if

lim
k→∞

f(xk) = ∞

for every sequence {xk} of elements of X such that ‖xk‖ → ∞. Note that as a consequence

of the definition, a nonempty level set
{
x | f(x) ≤ a} of a coercive function f is bounded.

Proposition 2.1.3: (Weierstrass’ Theorem) Let X be a nonempty closed subset

of �n, and let f : X �→ � be a lower semicontinuous function over X. Assume that

one of the following three conditions holds:

(1) X is bounded.

(2) There exists a scalar a such that the level set

{
x ∈ X | f(x) ≤ a

}

is nonempty and bounded.

(3) f is coercive.

Then the set of minima of f over X is nonempty and compact.

Separation Results

In Chapter 5, our development will require tools from convex analysis. For the purpose

of easy reference, we list here some of the classical supporting and separating hyperplane

results that we will use in our analysis. Recall that a hyperplane in �n is a set of the form

{x | a′x = b}, where a ∈ �n, a �= 0, and b ∈ �. The sets

{x | a′x ≥ b}, {x | a′x ≤ b},

are called the closed halfspaces associated with the hyperplane.
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Proposition 2.1.4: (Supporting Hyperplane Theorem) Let C be a nonempty

convex subset of �n and let x be a vector in �n. If either C has empty interior or,

more generally, if x is not an interior point of C, there exists a hyperplane that passes

through x and contains C in one of its closed halfspaces, i.e., there exists a vector a �= 0

such that

a′x ≤ a′x, ∀ x ∈ C. (1.1)

Proposition 2.1.5: (Proper Separation Theorem) Let C1 and C2 be nonempty

convex subsets of �n such that

ri(C1) ∩ ri(C2) = Ø.

Then there exists a hyperplane that properly separates C1 from C2, i.e., a vector a

such that

sup
x∈C2

a′x ≤ inf
x∈C1

a′x, inf
x∈C2

a′x < sup
x∈C1

a′x.

Proposition 2.1.6: (Polyhedral Proper Separation Theorem) Let C1 and C2

be nonempty convex subsets of �n such that C2 is polyhedral and

ri(C1) ∩ C2 = Ø.

Then there exists a hyperplane that properly separates them and does not contain C1,

i.e., a vector a such that

sup
x∈C2

a′x ≤ inf
x∈C1

a′x, inf
x∈C1

a′x < sup
x∈C1

a′x.
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Saddle Points

Our analysis also requires the following result regarding the existence of saddle points of

functions, which is a slight extension of the classical theorem of von Neumann (for the proof,

see [BNO02]).

Proposition 2.1.7: (Saddle Point Theorem) Let X be a nonempty convex

subset of �n, let Z be a nonempty convex subset of �m, and let φ : X × Z �→ � be a

function such that either

−∞ < sup
z∈Z

inf
x∈X

φ(x, z),

or

inf
x∈X

sup
z∈Z

φ(x, z) < ∞.

Assume that for each z ∈ Z, the function tz : �n �→ (−∞,∞] defined by

tz(x) =

{
φ(x, z), if x ∈ X,

∞, if x /∈ X,

is closed and convex, and that for each x ∈ X, the function rx : �m �→ (−∞,∞] defined

by

rx(z) =

{
−φ(x, z) if z ∈ Z,

∞ otherwise,

is closed and convex. The set of saddle points of φ is nonempty and compact under

any of the following conditions:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z ∈ Z and a scalar γ such that the level

set
{
x ∈ X | φ(x, z) ≤ γ

}

is nonempty and compact.
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(3) X is compact and there exists a vector x ∈ X and a scalar γ such that the level

set
{
z ∈ Z | φ(x, z) ≥ γ

}

is nonempty and compact.

(4) There exist vectors x ∈ X and z ∈ Z, and a scalar γ such that the level sets

{
x ∈ X | φ(x, z) ≤ γ

}
,

{
z ∈ Z | φ(x, z) ≥ γ

}
.

2.2. CONICAL APPROXIMATIONS

The analysis of constrained optimization problems is centered around characterizing how

the cost function behaves as we move from a local minimum to neighboring feasible points.

In optimizing a function f over a set C, since the local minima may very well lie on the

boundary, properties of the boundary of C can be crucial in characterizing an optimal

solution. The difficulty is that the boundary may have all kinds of weird curvilinear facets,

edges, and corners. In such a lack of smoothness, an approach is needed through which main

variational properties of set C can be characterized. The relevant variational properties can

be studied in terms of various tangential and normal cone approximations to the constraint

set at each point.

Many different definitions of tangent and normal vectors have been offered over the

years. It turns out that two of these are particularly useful in characterizing local optimality

of feasible solutions, and are actually sufficient to go directly into the heart of the issues

about Lagrange multipliers.

2.2.1. Tangent Cone

A simple notion of variation at a point x that belongs to the constraint set C can be defined
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by taking a vector y ∈ �n and considering the vector x + αy for a small positive scalar

α. (For instance, directional derivatives are defined in terms of such variations). This idea

gives rise to the following definition.

Definition 2.2.1: Given a subset C of �n and a vector x ∈ C, a feasible direction

of C at x is a vector y ∈ �n such that there exists an α > 0 with x + αy ∈ C for all

α ∈ [0, α]. The set of all feasible directions of C at x is a cone denoted by FC(x).

It can be seen that if C is convex, the feasible directions at x are the vectors of the

form α(x − x) with α > 0 and x ∈ C [cf. Figure 2.2.1(a)].

However, when C is nonconvex, straight line variations of the preceding sort may

not be appropriate to characterize the local structure of the set C near the point x. [For

example, often there is no nonzero feasible direction at x when C is nonconvex, think of

the set C =
{
x | h(x) = 0

}
, where h : �n �→ � is a nonlinear function, see Figure 2.2.1(b)].

Nonetheless, the concept of direction can still be utilized in terms of sequences that converge

to the point of interest without violating the set constraint. The next definition introduces

a cone that illustrates this idea.

Constraint set C

x     Feasible 
directions at x 

Constraint set C

x

Not a feasible
   direction

(a) (b)

Figure 2.2.1. Feasible directions at a vector x. By definition, y is a feasible

direction if changing x in the direction y by a small amount maintains feasibility.
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Definition 2.2.2: Given a subset C of �n and a vector x ∈ C, a vector y is said to

be a tangent of C at x if either y = 0 or there exists a sequence {xk} ⊂ C such that

xk �= x for all k and

xk → x,
xk − x

‖xk − x‖ → y

‖y‖ .

The set of all tangents of C at x is a cone called the tangent cone of C at x, and is

denoted by TC(x).

Thus a nonzero vector y is a tangent at x if it is possible to approach x with a feasible

sequence {xk} such that the normalized direction sequence (xk − x)/‖xk − x‖ converges to

y/‖y‖, the normalized direction of y, cf. Figure 2.2.2(a). The tangent vectors to a set C

at a point x are illustrated in Figure 2.2.2(b). It can be seen that TC(x) is a cone, hence

the name “tangent cone”. The following proposition provides an equivalent definition of a

tangent, which is sometimes more convenient in analysis.

C x

TC(x)

x

y : tangent at x

xk-1

xk

C

(a) (b)

Figure 2.2.2. Part (a) illustrates a tangent y at a vector x ∈ C. Part (b)

illustrates the tangent cone to set C at a vector x.
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Proposition 2.2.8: Given a subset C of �n and a vector x ∈ C, a vector y is a

tangent of C at x if and only if there exists a sequence {xk} ⊂ C with xk → x, and a

positive sequence {αk} such that αk → 0 and

(xk − x)
αk

→ y.

Proof: Let y be a tangent of set C at the vector x. If y = 0, take xk = x for all k and αk

any positive sequence that converges to 0, and we are done. Therefore, assume that y �= 0.

Then, we take xk to be the sequence in the definition of a tangent, and αk = ‖xk −x‖/‖y‖.

Conversely, assume that y is such that sequences {xk} and {αk} with the above

properties exist. If y = 0, then y is a tangent of C at x. If y �= 0, then since (xk − x)/αk → y,

we have

xk − x

‖xk − x‖ =
(xk − x)/αk

‖(xk − x)/αk‖
→ y

‖y‖ ,

so {xk} satisfies the definition of a tangent. Q.E.D.

Figure 2.2.3 illustrates the cones FC(x) and TC(x), and hints at their relation with

examples. The following proposition gives some of the properties of the cones FC(x) and

TC(x) (for the proofs, see [BNO02]).

Proposition 2.2.9: Let C be a nonempty subset of �n and let x be a vector in

C. The following hold regarding the cone of feasible directions FC(x) and the tangent

cone TC(x).

(a) TC(x) is a closed cone.

(b) cl
(
FC(x)

)
⊂ TC(x).
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C

TC (x)=cl(FC (x))
TC (x)
FC (x)={ 0 }

C

x x

(a) (b)

Figure 2.2.3. Illustration of feasible cone of directions and tangent cone. In

part (a), set C is convex, and the tangent cone of C at x is equal to the closure of

the cone of feasible directions. In part (b), the cone of feasible directions consists

of just the zero vector.

(c) If C is convex, then FC(x) and TC(x) are convex, and we have

cl
(
FC(x)

)
= TC(x).

2.2.2. Normal Cone

In addition to the cone of feasible directions and the tangent cone, there is one more conical

approximation that is of special interest in relation to optimality conditions in this thesis.

Definition 2.2.3: Given a subset C of �n and a vector x ∈ C, a vector z is said to

be a normal of C at x if there exist sequences {xk} ⊂ X and {zk} such that

xk → x, zk → z, zk ∈ TC(xk)∗, for all k.

The set of all normals of C at x is called the normal cone of C at x, and is denoted by

NC(x).
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Hence, the normal cone NC(x) is obtained from the polar cone TC(x)∗ by means of

a closure operation. Equivalently, the graph of NC(·), viewed as a point-to-set mapping, is

the intersection of the closure of the graph of TC(·)∗ with the set
{
(x, z) | x ∈ C

}
. In the

case where C is a closed set, the set
{
(x, z) | x ∈ C

}
contains the closure of the graph of

TC(·)∗, so the graph of NC(·) is equal to the closure of the graph of TC(·)∗1 :

{
(x, z) | x ∈ C, z ∈ NC(x)

}
= cl

({
(x, z) | x ∈ C, z ∈ TC(x)∗

})

if C is closed.

In general, it can be seen that TC(x)∗ ⊂ NC(x) for any x ∈ C. However, NC(x) may

not be equal to TC(x)∗, and in fact it may not even be a convex set (see the examples of

Figure 2.2.4).

NC (x) = TC (x)*

TC (x)

x
NC (x) 

(a) (b)

x

Figure 2.2.4. Examples of normal cones. In the case of part (a), we have

NC(x) = TC(x∗), hence C is regular at x. In part (b), NC(x) is the union of two

lines. In this case NC(x) is not equal to TC(x) and is nonconvex, i.e., C is not

regular at x.

1 The normal cone, introduced by Mordukhovich [Mor76], has been studied by several

authors, and is of central importance in nonsmooth analysis (see the books by Aubin and

Frankowska [AuF90], Rockafellar and Wets [RoW98], and Borwein and Lewis [BoL00]).
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Definition 2.2.4: A set C is said to be regular at some vector x ∈ C if

TC(x)∗ = NC(x).

The term “regular at x in the sense of Clarke” is also used in the literature.

2.2.3. Tangent-Normal Cone Relations

The relationships between tangent and normal cones defined in the previous sections play

a central role in our development of enhanced optimality conditions in Chapter 3. It turns

out that these cones are nicely connected through polarity relations. Furthermore, these

relations reveal alternative characterizations of “Clarke regularity”, which will be useful

for our purposes. These polarity relations were given in [RoW98] as a result of a series

of exercises. Here, we provide a streamlined development of these results together with

detailed proofs. These proofs make use of concepts related to sequences of sets and their

convergence properties, which we summarize in the following section.

2.2.3.1. Sequences of Sets and Set Convergence:

Let {Ck} be a sequence of nonempty subsets of �n. The outer limit of {Ck}, denoted

lim supk→∞ Ck, is the set of all x ∈ �n such that every neighborhood of x has a nonempty

intersection with infinitely many of the sets Ck, k = 1, 2, . . .. Equivalently, lim supk→∞ Ck

is the set of all limits of subsequences {xk}K such that xk ∈ Ck for all k ∈ K.

The inner limit of {Ck}, denoted lim infk→∞ Ck, is the set of all x ∈ �n such that

every neighborhood of x has a nonempty intersection with all except finitely many of the

sets Ck, k = 1, 2, . . .. Equivalently, lim infk→∞ Ck is the set of all limits of sequences {xk}
such that xk ∈ Ck for all k = 1, 2, . . .. These definitions are illustrated in Figure 2.2.5.

The sequence {Ck} is said to converge to a set C if

C = lim inf
k→∞

Ck = lim sup
k→∞

Ck.
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C1

C2

C3
C4

liminf kCk limsup kCk

Figure 2.2.5. Inner and outer limits of a nonconvergent sequence of sets.

In this case, C is called the limit of {Ck}, and is denoted by limk→∞ Ck.1

The inner and outer limits are closed (possibly empty) sets. It is clear that we al-

ways have lim infk→∞ Ck ⊂ lim supk→∞ Ck. If each set Ck consists of a single point xk,

lim supk→∞ Ck is the set of limit points of {xk}, while lim infk→∞ Ck is just the limit of

{xk} if {xk} converges, and otherwise it is empty.

The next proposition provide a major tool for checking results about inner and outer

limits.

1 Set convergence in this sense is known more specifically as Painleve-Kuratowski convergence.
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Proposition 2.2.10 (Set Convergence Criteria): Let {Ck} be a sequence of

nonempty closed subsets of �n and C be a nonempty closed subset of �n. Let B(x, ε)

denote the closed ball centered at x with radius ε.

(a)

(i) C ⊂ lim infk→∞ Ck if and only if for every ball B(x, ε) with C ∩ int
(
B(x, ε)

)
�= Ø,

we have Ck ∩ int
(
B(x, ε)

)
�= Ø for all sufficiently large k.

(ii) C ⊃ lim supk→∞ Ck if and only if for every ball B(x, ε) with C ∩B(x, ε) = Ø, we

have Ck ∩ B(x, ε) = Ø for all sufficiently large k.

(b) In part (a), it is sufficient to consider the countable collection of balls B(x, ε), where

ε and the coordinates of x are rational numbers.

Proof:

(a)

(i) Assume that C ⊂ lim infk→∞ Ck and let B(x, ε) be a ball such that C∩ int
(
B(x, ε)

)
�=

Ø. Let x be a vector that belongs to C ∩ int
(
B(x, ε)

)
. By assumption, it follows

that x ∈ lim infk→∞ Ck, which by definition of the inner limit of a sequence of sets,

implies the existence of a sequence {xk} with xk ∈ Ck such that xk → x. Since

x ∈ int
(
B(x, ε)

)
, we have that xk ∈ int

(
B(x, ε)

)
for all sufficiently large k, which

proves that Ck ∩ int
(
B(x, ε)

)
�= Ø for all sufficiently large k.

Conversely, assume that for every ball B(x, ε) with C ∩ int
(
B(x, ε)

)
�= Ø, we have

Ck ∩ int
(
B(x, ε)

)
�= Ø for all sufficiently large k. Consider any x ∈ C and ε > 0. By

assumption, there exists some xk that belongs to Ck∩ int
(
B(x, ε)

)
for sufficiently large

k, thereby implying the existence of a sequence {xk} with xk ∈ Ck such that xk → x,

and hence proving that x ∈ lim infk→∞ Ck.

(ii) Assume that C ⊃ lim supk→∞ Ck and let B(x, ε) be a ball such that C ∩B(x, ε) = Ø.

Hence, for any x ∈ B(x, ε), we have x /∈ C, which by assumption implies that x /∈
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lim supk→∞Ck
. By definition of the outer limit of a sequence of sets, it follows that

x /∈ Ck for all sufficiently large k, proving that Ck ∩ B(x, ε) = Ø for all sufficiently

large k.

Conversely, assume that for every ball B(x, ε) with C ∩ B(x, ε) = Ø, we have Ck ∩
B(x, ε) = Ø for all sufficiently large k. Let x /∈ C. Since C is closed, there exists some

ε > 0 such that C ∩ B(x, ε) = Ø, which implies by assumption that Ck ∩ B(x, ε) = Ø

for all sufficiently large k, thereby proving that x /∈ lim supk→∞ Ck.

(b) Since this condition is a special case of the condition given in part (a), the implications

“ ⇒ ” hold trivially. We now show the reverse implications.

(i) Assume that for every ball B(x, ε), where ε and the coordinates of x are rational

numbers with C ∩ int
(
B(x, ε)

)
�= Ø, we have Ck ∩ int

(
B(x, ε)

)
�= Ø for all sufficiently

large k. Consider any x ∈ C and any rational ε > 0. There exists a point x ∈ B(x, ε/2)

whose coordinates are rational. For such a point, we have C∩B(x, ε/2) �= Ø, which by

assumption implies Ck ∩ int
(
B(x, ε/2)

)
�= Ø for all sufficiently large k. In particular,

we have x ∈ Ck + ε/2B [B denotes the closed ball B(0, 1)], so that x ∈ Ck + εB for all

sufficiently large k. This implies the existence of a sequence {xk} with xk ∈ Ck such

that xk → x, and hence proving that x ∈ lim infk→∞ Ck.

(ii) Assume that for every ball B(x, ε), where ε and the coordinates of x are rational

numbers with C∩B(x, ε) = Ø, we have Ck∩B(x, ε) = Ø for all sufficiently large k. Let

x /∈ C. Since C is closed, there exists some rational ε > 0 such that C ∩B(x, 2ε) = Ø.

A point x with rational coordinates can be selected from int
(
B(x, ε)

)
. Then, we have

x ∈ int
(
B(x, ε)

)
and C ∩ B(x, ε) = Ø. By assumption, we get Ck ∩ B(x, ε) = Ø for

all sufficiently large k. Since x ∈ int
(
B(x, ε)

)
, this implies that x /∈ lim supk→∞ Ck,

proving the desired claim. Q.E.D.

We next provide alternative characterizations for set convergence through distance

functions and projections.
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Proposition 2.2.11 (Set Convergence through Distance Functions): Let

{Ck} be a sequence of nonempty closed subsets of �n and C be a nonempty closed

subset of �n. Let d(x, C) denote the distance of a vector x ∈ �n to set C, i.e.,

d(x, C) = miny∈C ‖x − y‖.

(a)

(i) C ⊂ lim infk→∞ Ck if and only if d(x, C) ≥ lim supk→∞ d(x, Ck) for all x ∈ �n.

(ii) C ⊃ lim supk→∞ Ck if and only if d(x, C) ≤ lim infk→∞ d(x, Ck) for all x ∈ �n.

In particular, we have Ck → C if and only if d(x, Ck) → d(x, C) for all x ∈ �n.

(b) The result of part (a) can be extended as follows: Ck → C if and only if d(xk, Ck) →
d(x, C) for all sequences {xk} → x and all x ∈ �n.

Proof:

(a)

(i) Assume that C ⊂ lim infk→∞ Ck. Consider any x ∈ �n. It can be seen that for a

closed set C,

d(x, C) < α if and only if C ∩ int
(
B(x, α)

)
�= Ø, (2.1)

(cf. Weierstrass’ Theorem). Let α = lim supk→∞ d(x, Ck). Since C is closed, d(x, C)

is finite (cf. Weierstrass’ Theorem), and therefore, by Proposition 2.2.10(a)-(i) and

relation (2.1), it follows that α is finite. Suppose, to arrive at a contradiction, that

d(x, C) < α. Let ε > 0 be such that d(x, C) < α − ε. It follows from Proposition

2.2.10(a)-(i) and relation (2.1) that

lim sup
k→∞

d(x, Ck) ≤ α − ε,

which is a contradiction.

Conversely, assume that

d(x, C) ≥ lim sup
k→∞

d(x, Ck), ∀ x ∈ �n. (2.2)

55



Let B(x, ε) be a closed ball with C ∩ int
(
B(x, ε)

)
�= Ø. By Eq. (2.1), this implies that

d(x, C) < ε, which by assumption (2.2) yields d(x, Ck) < ε for all sufficiently large k.

Using Proposition 2.2.10(a)-(i) and relation (2.1), it follows that C ⊂ lim infk→∞ Ck.

(ii) Assume that C ⊃ lim supk→∞ Ck. Consider any x ∈ �n. It can be seen that for a

closed set C,

d(x, C) > β if and only if C ∩ B(x, β) = Ø, (2.3)

(cf. Weierstrass’ Theorem). Let β = lim infk→∞ d(x, Ck). Since C is closed, d(x, C)

is finite (cf. Weierstrass’ Theorem), and therefore, by Proposition 2.2.10(a)-(ii) and

relation (2.3), it follows that β is finite. Suppose, to arrive at a contradiction, that

d(x, C) > β. Let ε > 0 be such that d(x, C) > β + ε. It follows from Proposition

2.2.10(a)-(ii) and relation (2.3) that

lim inf
k→∞

d(x, Ck) ≥ β + ε,

which is a contradiction.

Conversely, assume that

d(x, C) ≤ lim inf
k→∞

d(x, Ck), ∀ x ∈ �n. (2.4)

Let B(x, ε) be a closed ball with C ∩ B(x, ε) = Ø. By Eq. (2.3), this implies that

d(x, C) > ε, which by assumption (2.4) yields d(x, Ck) > ε for all sufficiently large k.

Using Proposition 2.2.10(a)-(ii) and relation (2.3), it follows that C ⊃ lim supk→∞ Ck.

(b) This part follows from part (a) and the fact that for any closed set C, d(x, C) is a

continuous function of x. In particular, for any sequence {xi} that converges to x and any

closed set Ck, we have

lim
i→∞

d(xi, Ck) = d(x, Ck),

from which we get

lim sup
k→∞

d(xk, Ck) = lim sup
k→∞

d(x, Ck),

and

lim inf
k→∞

d(xk, Ck) = lim inf
k→∞

d(x, Ck),
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which together with part (a) proves the desired result. Q.E.D.

Proposition 2.2.12 (Set Convergence through Projections): Let {Ck} be

a sequence of nonempty closed subsets of �n and C be a nonempty closed subset of

�n. Let PC(x) denote the projection set of a vector x ∈ �n to set C, i.e., PC(x) =

arg miny∈C ‖x − y‖.

(a) We have Ck → C if and only if lim supk→∞ d(0, Ck) < ∞ and

lim sup
k→∞

PCk
(x) ⊂ PC(x), for all x ∈ �n.

(b) The result of part (a) can be extended as follows: Ck → C if and only if

lim supk→∞ d(0, Ck) < ∞ and

lim sup
k→∞

PCk
(xk) ⊂ PC(x), for all sequences {xk} → x and all x ∈ �n.

(c) Define the graph of the projection mapping PC as a subset of �2n given by

gph(PC) =
{
(x, u) | x ∈ �n, u ∈ PC(x)

}
.

Ck → C if and only if the corresponding sequence of graphs of projection map-

pings {PCk
} converges to the graph of PC .

Proof:

(a) Assume that Ck → C. By Proposition 2.2.11(a), this implies that d(x, Ck) → d(x, C)

for all x ∈ �n. In particular, for x = 0, we have lim supk→∞ d(0, Ck) = d(0, C) < ∞ (by

closedness of C and Weierstrass’ Theorem). For any x ∈ �n, let x ∈ lim supk→∞ PCk
(x). By

definition of the outer limit of a sequence of sets, this implies the existence of a subsequence
{
PCk

(x)
}

k∈K and vectors xk ∈ PCk
(x) for all k ∈ K, such that limk→∞, k∈K xk = x. Since
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xk ∈ PCk
(x), we have

‖xk − x‖ = d(x, Ck), ∀ k ∈ K.

Taking the limit in the preceding relation along the relevant subsequence and using Propo-

sition 2.2.11(a), we get

‖x − x‖ = d(x, C).

Since by assumption Ck → C and x = limk→∞, k∈K xk with xk ∈ Ck, we also have that

x ∈ C, from which, using the preceding relation, we get x ∈ PC(x), thereby proving that

lim supk→∞ PCk
(x) ⊂ PC(x) for all x ∈ �n.

Conversely, assume that lim supk→∞ d(0, Ck) < ∞ and

lim sup
k→∞

PCk
(x) ⊂ PC(x), for all x ∈ �n. (2.5)

To show that Ck → C, using Proposition 2.2.11(a), it suffices to show that for all x ∈ �n,

d(x, Ck) → d(x, C). Since the set Ck is closed for all k, it follows that the set PCk
(x) is

nonempty for all k. Therefore, for all k, we can choose a vector xk ∈ PCk
(x), i.e., xk ∈ Ck

and

‖xk − x‖ = d(x, Ck).

From the triangle inequality, we have

‖x − y‖ ≤ ‖x‖ + ‖y‖, ∀y ∈ Ck,

for all k. By taking the minimum over all y ∈ Ck of both sides in this relation, we get

d(x, Ck) ≤ ‖x‖ + d(0, Ck).

In view of the assumption that lim supk→∞ d(0, Ck) < ∞, and the preceding relation, it

follows that
{
d(x, Ck)

}
forms a bounded sequence. Therefore, using the continuity of the

norm, any limit point of this sequence must be of the form ‖x − x‖ for some limit point x

of the sequence {xk}. But, by assumption (2.5), such a limit point x belongs to PC(x), and

therefore we have

‖x − x‖ = d(x, C).
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Hence, the bounded sequence
{
d(x, Ck)

}
has a unique limit point, d(x, C), implying that

d(x, Ck) → d(x, C) for all x ∈ �n, and proving by Proposition 2.2.11 that Ck → C.

(b) The proof of this part is nearly a verbatim repetition of the proof of part (a), once we

use the result of Proposition 2.2.11(b) instead of the result of Proposition 2.2.11(a) in part

(a).

(c) We first assume that Ck → C. From part (b), this is equivalent to the conditions,

lim sup
k→∞

d(0, Ck) < ∞, (2.6)

lim sup
k→∞

PCk
(xk) ⊂ PC(x), for all {xk} → x and all x ∈ �n. (2.7)

It can be seen that condition (2.7) is equivalent to

lim sup
k→∞

gph(PCk
) ⊂ gph(PC). (2.8)

We want to show that

lim
k→∞

gph(PCk
) = gph(PC).

We will show that gph(PC) ⊂ lim infk→∞ gph(PCk
), which together with Eq. (2.8) and the

relation lim infk→∞ gph(PCk
) ⊂ lim supk→∞ gph(PCk

) proves the desired result.

Let x0 ∈ �n and x0 ∈ PC(x0). For any ε > 0, we define xε = (1 − ε)x0 + εx0. It can

be verified using triangle inequality that the set PC(xε) consists of a single vector x0. For

each k, we select any xk ∈ PCk
(xε). (This can be done since the set PCk

(x) is nonempty

for all k.) Using the triangle inequality, we get

‖xk − xε‖ = d(xε, Ck) ≤ d(0, Ck) + ‖xε‖.

By assumptions (2.6) and (2.7)and the preceding relation, we have that the sequence {xk}
is bounded and all its limit points belong to PC(xε), which only contains the vector x0.

Hence, the vectors (xε, xk) ∈ gph(PCk
) converge to (xε, x0) ∈ gph(PC), which by definition

of the inner limit of a sequence of sets implies that (xε, x0) ∈ lim infk→∞ gph(PCk
). This

being true for arbitrary ε > 0, we get (x0, x0) ∈ lim infk→∞ gph(PCk
), proving the desired

claim.
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Conversely, assume that limk→∞ gph(PCk
) = gph(PC). This implies that lim supk→∞ gph(PCk

) ⊂
gph(PC), which is equivalent to condition (2.7). It remains to show condition (2.6). By

assumption, for any (x, x) ∈ gph(PC), there exists a sequence of points (xk, xk) ∈ gph(PCk
)

that converge to (x, x). From triangle inequality, we have

d(0, Ck) ≤ ‖xk‖ + ‖xk − xk‖.

Taking the limit in the preceding relation, we get lim supk→∞ d(0, Ck) < ∞, hence proving

that Ck → C. Q.E.D.

A remarkable feature of set convergence is that there is an associated “compactness

property,” i.e., for any sequence of sets {Ck}, there exists a convergent subsequence, as

shown in the next proposition.

Proposition 2.2.13 (Extraction of Convergent Subsequences): Let {Ck}
be a sequence of nonempty subsets of �n. Let x be a vector in the outer limit set

lim supk→∞ Ck. The sequence {Ck} has a subsequence converging to a nonempty

subset C of �n that contains x.

Proof: Let x be a vector in the set lim supk→∞ Ck. Then, there exists an index set

N0 and a corresponding subsequence {xk}k∈N0 such that xk ∈ Ck for all k ∈ N0and

limk→∞, k∈N0 xk = x. Consider the countable collection of open balls given in Proposition

2.2.10 [i.e., balls int
(
B(x, ε)

)
where ε and the coordinates of x are rational] and arrange

them in a sequence {Ok}. We construct a nest of index sets N0 ⊃ N1 ⊃ N2 ⊃ · · · by

defining

Nj =

{
{k ∈ Nj−1 | Ck ∩ Oj �= Ø} if this set of indices is infinite,

{k ∈ Nj−1 | Ck ∩ Oj = Ø} otherwise.

Finally, we form another index set N by taking the first index in N0, and at each step,

letting the jth element of N to be the first index in Nj larger than all the indices previously

added to N . Then, N has infinitely many elements, and for each j, either Ck ∩Oj �= Ø for

all but finitely many k ∈ N or Ck ∩ Oj = Ø for all but finitely many k ∈ N .
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Let C = lim supk∈N Ck. The set C contains x, and is therefore nonempty. For each

of the balls Oj intersecting C, it can’t be true that Ck ∩Oj = Ø for all but finitely many k,

so such balls Oj must be in the other category in the above construction scheme: we must

have Ck ∩ Oj �= Ø for all but finitely many k ∈ N . Therefore, using Proposition 2.2.10, it

follows that C ⊂ lim infk∈N Ck, proving that limk→∞, k∈N Ck = C. Q.E.D.

2.2.3.2. Polars of Tangent and Normal Cones

In this section, we derive polar cones corresponding to tangent and normal cones. We will

use these results to relate tangent and normal cones to each other and obtain alternative

characterizations of regularity. These will also be useful later on in our analysis in Chapter

4.

Proposition 2.2.14 (Polar of the Tangent Cone): Let C be a subset of �n. A

vector v ∈ �n belongs to TC(x)∗ if and only if

v′(x − x) ≤ o
(
‖x − x‖

)
, ∀ x ∈ C.

Proof: Let v be a vector such that

v′(x − x) ≤ o
(
‖x − x‖

)
, ∀ x ∈ C. (2.9)

Let y be an arbitrary vector in TC(x). By Prop. 2.2.8, this implies the existence of sequences

{xk} ⊂ C and αk ↓ 0 with

yk =
xk − x

αk
→ y.

We have from Eq. (2.9) that

v′(xk − x) ≤ o
(
‖xk − x‖

)
,

from which using the definition of yk, we get

v′
(xk − x)

αk
= v′yk ≤ o

(
‖xk − x‖

)

αk
=

o
(
αk‖yk‖

)

αk
.
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Taking the limit as k → ∞ in the preceding relation together with the fact that yk → y, we

obtain

v′y ≤ 0.

Since y ∈ TC(x) is arbitrary, this shows that v ∈ TC(x)∗.

To show the converse, we first note that the property given in Eq. (2.9) is equivalent

to the condition that for all sequences {xk} ⊂ C such that xk → x with xk �= x for all k,

we have

lim sup
k→∞

v′
xk − x

‖xk − x‖ ≤ 0.

Suppose that vector v does not satisfy this condition, i.e., there exists a sequence {xk} ⊂ C

such that xk → x with xk �= x for all k and

lim sup
k→∞

v′
xk − x

‖xk − x‖ > 0.

We show that v /∈ TC(x)∗. Denote

yk =
xk − x

‖xk − x‖ .

By passing to the appropriate subsequence if necessary and using the continuity of the inner

product, we assume without loss of generality that yk → y with

v′y > 0.

We also have by definition of a tangent that y ∈ TC(x). Hence, it follows that v /∈ TC(x)∗,

concluding the proof. Q.E.D.

We next define a special kind of normal vector, which can be used to approximate

normal vectors and is easier to use in analysis.
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Proposition 2.2.15 (Proximal Normals): Let C be a closed subset of �n and

for any x ∈ �n, let x be the projection of x on C, i.e., x ∈ PC(x). Any vector v of the

form v = λ(x−x) for some λ ≥ 0 is called a proximal normal to C at x. [The proximal

vectors to C at x are thus the vectors v such that x ∈ PC(x + τv) for some τ > 0.]

(a) Every proximal normal vector is a normal vector.

(b) Assume that C is convex. Every normal vector is a proximal normal vector.

Proof:

(a) Let v be a proximal normal vector to C at some x ∈ C. By definition, this implies that

v = λ(x − x) for some λ ≥ 0 with x ∈ PC(x). Hence, x ∈ arg miny∈C
1
2‖y − x‖2, which,

using the necessary optimality condition, implies that

(x − x)′y ≥ 0, ∀ y ∈ TC(x),

and therefore (x − x) ∈ TC(x) ⊂ NC(x). Since NC(x) is a cone, it follows that λ(x − x) ∈
Nx(x) for all λ ≥ 0, showing that v ∈ NC(x).

(b) Let v ∈ NC(x) for some x ∈ C. Consider the function f(x) = 1
2‖x − (x + v)‖2. The

gradient of this function at x is ∇f(x) = −v, which by assumption satisfies −∇f(x) ∈
NC(x). Since C is a convex set and f is a strictly convex function, this condition is

necessary and sufficient for x to minimize f(x) over C. Hence, we have x ∈ PC(x + v),

which by definition implies that v is a proximal normal to C at x, and concludes the proof.

Q.E.D.

For a nonconvex set C, there can be normal vectors that are not proximal normal

vectors. Consider the set C given by

C =
{
(x1, x2) | x2 ≥ x

3/5
1 , x2 ≥ 0

}
.

The vector v = (1, 0) is a normal vector to C at x = (0, 0). However, no point of {x + τv |
τ > 0} projects onto x, implying that v is not a proximal normal to C at x. The next
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proposition illustrates how proximal normal vectors can be used to approximate normal

vectors.

Proposition 2.2.16 (Approximation of Normal Vectors): Let C be a nonempty

closed subset of �n and let x ∈ C and v ∈ NC(x).

(a) There exist a feasible sequence xk → x and a sequence vk → v such that vk is a

proximal normal to C at xk (see Proposition 2.2.15), and therefore vk ∈ NC(xk).

(b) Let {Ck} be a sequence of nonempty closed sets with lim supk→∞ Ck = C. There

exists a subsequence {Ck}k∈K together with vectors xk ∈ Ck and proximal nor-

mals vk ∈ NCk
(xk) such that

{xk}k∈K → x, {vk}k∈K → v.

(c) Let I be an arbitrary index set and for each i ∈ I, let {Ci
k} be a sequence of

nonempty closed sets with
⋃

i∈I lim supk→∞ Ci
k = C. For each i ∈ I such that

x ∈ lim supk→∞ Ci
k, there exists a subsequence {Ci

k}k∈K together with vectors

xk ∈ Ci
k and proximal normals vk ∈ NCi

k
(xk) such that

{xk}k∈K → x, {vk}k∈K → v.

Proof:

(a) It is sufficient to treat the case when v ∈ TC(x)∗. (The more general case follows

straightforwardly from the definition of a normal vector.) Assume without loss of generality

that ‖v‖ = 1. For a sequence of values εk ↓ 0, consider the vectors

x̃k = x + εkv, (2.10)

and their projection set PC(x̃k), which is nonempty. For each k, let xk ∈ PC(x̃k). It follows

from Eq. (2.10) that xk → x. consider the proximal normals to C at xk defined by

vk =
x̃k − xk

εk
= v +

x − xk

εk
. (2.11)
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We now show that vk → v. Since xk ∈ PC(x̃k) and ‖x̃k − x‖ = εk, we have εk ≥ ‖x̃k − xk‖,
so that ‖vk‖ ≤ 1. We get from Eq. (2.11)

‖v − vk‖2≤ 2 − 2v′vk

= 2 − 2
(

1 + v′
x − xk

εk

)

= 2v′
xk − x

εk

≤ 2
o(‖xk − x‖)
‖xk − x‖ .

In the last inequality, we used the assumption that v ∈ TC(x)∗ together with the charac-

terization of TC(x)∗ given in Proposition 2.2.14. We also used the fact that εk ≥ ‖xk − x‖,
which follows from elementary geometry and the fact that (x̃k − xk) ∈ TC(xk)∗ (cf. Propo-

sition 2.2.15). Taking the limit in the preceding relation as k → ∞, we see that vk → v,

hence proving our claim.

(b) Using part (a), it is sufficient to consider the case when v is a proximal normal to C

at x, i.e., for some τ > 0, we have x ∈ PC(x + τv). From Proposition 2.2.13, we have that

there exists a subsequence {Ck}k∈K with limk→∞, k∈K Ck = Y , such that x belongs to Y .

Since Y ⊂ C and x ∈ Y , it follows that x ∈ PY (x + τv). Then, using Proposition 2.2.12(c),

we have that there exist sequences

{xk}k∈K → x, {uk}k∈K → x + τv,

with xk ∈ PCk
(uk). Equivalently, there exist sequences

{xk}k∈K → x, {vk}k∈K → v

with xk ∈ PCk
(xk + τvk), which implies that vk is a proximal normal to Ck at xk, and

concludes the proof.

(c) The proof of this part is nearly a verbatim repetition of the proof of part (b) once we

focus on the outer limit sets lim supk→∞ Ci
k that contain x. Q.E.D.

We next characterize the polar of the normal cone. The estimate obtained in part (c)

of the following proposition is crucial for this purpose.
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Proposition 2.2.17 (Normals to Tangent Cones): Let C be a closed nonempty

subset of �n and let x ∈ C. Denote the tangent cone of C at x by T for notational

convenience.

(a) For any vector w ∈ T and scalar λ > 0,

TT (λw) = TT (w).

(b) NT (0) =
⋃

w∈T NT (w) ⊂ NC(x).

(c) For any vector w /∈ T , there is a vector v ∈ NC(x) with ‖v‖ = 1 such that

d(w, T ) = v′w, where d(w, T ) denotes the distance of the vector w to set T , i.e.,

d(w, T ) = miny∈T ‖y − w‖.

Proof:

(a) Let y be a vector in TT (w). By definition, this implies the existence of sequences

{wk} ⊂ T with wk → w, and αk ↓ 0 such that

wk − w

αk
→ y,

or equivalently for some λ > 0,
λwk − λw

αk
→ λy.

Since T is a cone, the sequence {λwk} ⊂ T with λwk → λw. This implies that λy ∈ TT (λw).

Because TT (λw) is also a cone and λ > 0, we also have y ∈ TT (λw).

Conversely, let y ∈ TT (λw) for some λ > 0. By definition, this implies the existence

of sequences {wk} ⊂ T with wk → λw, and αk ↓ 0 such that

wk − λw

αk
→ y,

or equivalently,
wk/λ − w

αk/λ
→ y.

66



Since T is a cone and λ > 0, the sequence
{wk

λ

}
⊂ T with wk

λ → w. Moreover, αk
λ ↓ 0,

implying together with the preceding relation that y ∈ TT (w) and concluding the proof.

(b) We first show that NT (0) =
⋃

w∈T NT (w). Clearly NT (0) ⊂
⋃

w∈T NT (w). Next, we

show that for all w ∈ T , NT (w) ⊂ NT (0). Let y ∈ NT (w). By definition, this implies that

there exist sequences {wk} ⊂ T with wk → w and yk → y with yk ∈ TT (wk)∗. Consider

next the sequence {λkwk} for an arbitrary sequence λk ↓ 0. Since T is a cone, it follows

that

{λkwk} ⊂ T, λkwk → 0.

We also have from part (a) that

TT (λkwk) = TT (wk), ∀ k.

Hence, there exist sequences {λkwk} ⊂ T with λkwk → 0 and yk → y with yk ∈ TT (λkwk)∗,

which by definition of a tangent implies that y ∈ NT (0), and thus proving that
⋃

w∈T NT (w) ⊂
NT (0).

Next, we show that NT (0) ⊂ NC(x). Consider any vector v ∈ NT (0). By definition,

the tangent cone can equivalently be represented as

T =
⋃ {

lim sup
k→∞

C − x

τk

∣
∣
∣ τk ↓ 0

}
,

i.e., the union is taken over all sequences τk ↓ 0. Hence, from Proposition 2.2.16, there

exists a sequence τk ↓ 0 along with points wk ∈ Tk = C−x
τk

and vectors vk ∈ NTk
(wk) such

that wk → 0 and vk → v. For each k, define

xk = x + τkwk.

We have that {xk} ⊂ C with xk → x. It also follows that NTk
(wk) = NC(xk). Hence, there

exist sequences {xk} ⊂ C with xk → x and vk → v with vk ∈ NC(xk). Using the definition

of the normal cone, this implies that v ∈ NC(x) and concludes the proof.

(c) Consider the set PT (w) = arg miny∈T ‖y−w‖, which is nonempty since T is closed. Let

w ∈ PT (w), and define

v =
w − w

‖w − w‖ ,
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which is a proximal normal to T at w and therefore, by Proposition 2.2.15, v ∈ NT (w),

which implies by part (a) that v ∈ NC(x). This establishes the first part of the assertion.

We now show that

d(w, T ) = ‖w − w‖ = v′w.

For this purpose, consider the function f(τ) = 1
2‖w − τw‖2. Since T is a closed cone, we

have τw ∈ T for all τ ≥ 0, and because w ∈ PT (w), the minimum of f(τ) over τ ≥ 0 is

attained at τ = 1. This implies

∇f(1) = −(w − w)′w = 0.

Hence, it follows that v′w = 0 and

v′(w − w) = ‖w − w‖ = v′w,

which is the desired result. Q.E.D.

Proposition 2.2.18 (Polar of the Normal Cone): Let C be a closed subset of

�n. A vector w ∈ �n belongs to NC(x)∗ if and only if for every sequence {xk} ⊂ C

with xk → x, there are vectors wk ∈ TC(xk) such that wk → w.

Proof: Let w be a vector such that for every sequence {xk} ⊂ C with xk → x, there

are vectors wk ∈ TC(xk) such that wk → w. Let v be an arbitrary vector that belongs to

NC(x). By definition of the normal cone, this implies that there exist sequences {xk} ⊂ C

with xk → x and vk → v with vk ∈ TC(xk)∗. Hence, for each k we have

v′kwk ≤ 0,

which taking the limit as k → ∞ yields

v′w ≤ 0.

Since v ∈ NC(x) is arbitrary, we have w ∈ NC(x)∗.
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Conversely, assume that w does not satisfy the condition given in this exercise, i.e.,

there exists a sequence {xk} ⊂ C with xk → x and ε > 0 such that d
(
w, TC(xk)

)
≥ ε. Using

Proposition 2.2.17(c), this implies that there exist vectors vk ∈ NC(xk) with ‖vk‖ = 1 and

v′kw = d
(
w, TC(xk)

)
≥ ε.

Any limit point v of the sequence {vk} belongs to NC(x), by definition of the normal cone,

and satisfies

v′w ≥ ε > 0,

thereby implying that w /∈ NC(x)∗, and proving the desired result. Q.E.D.

Proposition 2.2.19 (Alternative Characterization of Regularity): Assume

that C is closed. An equivalent definition of regularity at x (cf. Definition 2.2.4) is

TC(x) = NC(x)∗.

In particular, if C is regular at x, the cones TC(x) and NC(x) are convex.

Proof: Assume that NC(x) = TC(x)∗. Using the Polar Cone Theorem, this implies

NC(x)∗ =
(
TC(x)∗

)∗ = conv
(
TC(x)

)
.

From Proposition 2.2.18, it follows that NC(x)∗ ⊂ TC(x). Together with the preceding

relation, this implies that the cone TC(x) is convex and NC(x)∗ = TC(x).

Conversely, assume that NC(x)∗ = TC(x). Using the Polar Cone Theorem, this implies

TC(x)∗ =
(
NC(x)∗

)∗ = conv
(
NC(x)

)
.

By definition of the normal cone, it follows that TC(x)∗ ⊂ NC(x). Together with the pre-

ceding relation, this implies that the cone NC(x) is convex and TC(x)∗ = NC(x). Q.E.D.
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2.3. OPTIMALITY CONDITIONS

We have already seen in Chapter 1 necessary optimality conditions for optimizing arbitrary

cost functions over convex constraint sets. In this section we present classical optimality

conditions for different types of constrained optimization problems. Here, we do not assume

any structure on the constraint set C. For the proofs of these results, see [BNO02]. In

particular, we consider problems involving:

(a) A smooth cost function and an arbitrary constraint set.

(b) A convex (not necessarily smooth) cost function and a convex constraint set.

(c) A convex ( not necessarily smooth)cost function and an arbitrary constraint set.

When the constraint set is nonconvex, the tangent cone defined in the preceding section is

used as a suitable approximation to the constraint set, as illustrated in the following basic

necessary condition for local optimality.

Proposition 2.3.20: Let f : �n �→ � be a smooth function, and let x∗ be a local

minimum of f over a set C ⊂ �n. Then

∇f(x∗)′y ≥ 0, ∀ y ∈ TC(x∗).

If C is convex, this condition can be equivalently written as

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ C,

and in the case where C = �n, reduces to ∇f(x∗) = 0.

The necessary condition of Prop. 2.3.20 for a vector x∗ ∈ C to be a local minimum of

the function f over the set C can be written as

−∇f(x∗) ∈ TC(x∗)∗. (3.1)

An interesting converse was given by Gould and Tolle [GoT71], namely that every vector in

TC(x∗)∗ can be described as the negative of the gradient of a function having x∗ as a local
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minimum over C. The following version of this result was given by Rockafellar and Wets

([RoW98], p. 205).

Proposition 2.3.21: If x∗ is a vector in C, then for every z ∈ TC(x∗)∗, there is a

smooth function f with −∇f(x∗) = z, which achieves a strict global minimum over C

at x∗.

We will return to this result and to the subject of conical approximations when we

discuss Lagrange multipliers and conical approximations in Chapters 3 and 4.

Proposition 2.3.22: Let f : �n �→ � be a convex function. A vector x∗ minimizes

f over a convex set C ⊂ �n if and only if there exists a subgradient d ∈ ∂f(x∗) such

that

d′(x − x∗) ≥ 0, ∀ x ∈ C.

Equivalently, x∗ minimizes f over a convex set C ⊂ �n if and only if

0 ∈ ∂f(x∗) + TC(x∗)∗,

where TC(x∗)∗ is the polar of the tangent cone of C at x∗.

We finally extend the optimality conditions of Props. 2.3.20 and 2.3.22 to the case

where the cost function is convex (possibly nondifferentiable).

Proposition 2.3.23: Let x∗ be a local minimum of a function f : �n �→ � over a

subset C of �n. Assume that the tangent cone TC(x∗) is convex and f is convex. Then

−∂f1(x∗) ∈ TC(x∗)∗.
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CHAPTER 3

ENHANCED OPTIMALITY CONDITIONS AND DIFFERENT

TYPES OF LAGRANGE MULTIPLIERS

We focus on optimization problems of the form

minimize f(x)

subject to x ∈ C,
(0.1)

where the constraint set C consists of equality and inequality constraints as well as an

additional abstract set constraint X:

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
. (0.2)

We assume in Chapters 3 and 4 that f , hi, gj are continuously differentiable (smooth)

functions from �n to �, and X is a nonempty closed set. More succinctly, we can write

problem (0.1)-(0.2) as

minimize f(x)

subject to x ∈ X, h(x) = 0, g(x) ≤ 0,

where h : �n �→ �m and g : �n �→ �r are functions

h = (h1, . . . , hm), g = (g1, . . . , gr).

We have seen in Chapter 2 that a classical necessary condition for a vector x∗ ∈ C to

be a local minimum of f over C is

∇f(x∗)′y ≥ 0, ∀ y ∈ TC(x∗), (0.3)
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where TC(x∗) is the tangent cone of C at x∗. In this chapter, our objective is to develop

optimality conditions for problem (0.1) that take into account the specific representation of

set C in terms of constraint functions hi and gj . These optimality conditions are sharper

than the classical Karush-Kuhn-Tucker conditions in that they include extra conditions,

which may narrow down the set of candidate local minima. They are also more general

in that they apply when in addition to the equality and inequality constraints, there is an

additional abstract set constraint. For this purpose, we make use of the variational geometry

concepts that we have developed in Chapter 2. These optimality conditions motivate the

introduction of new types of Lagrange multipliers that differ in the amount of sensitivity

information they provide. In this chapter, we also investigate existence of such multipliers

and their relations.

3.1. CLASSICAL THEORY OF LAGRANGE MULTIPLIERS

Necessary optimality conditions for optimization problems with equality constraints have

been known for a long time, in fact since Euler and Lagrange. Lagrange multiplier theorems

for inequality constraints come considerably later. Important works in this area were done

by Karush [Kar39], and Kuhn and Tucker[KuT50], who essentially proved the same result

under different assumptions. The next proposition presents this result under a “regularity”

assumption (for the proof, see [Ber99]). For any feasible vector x, the set of active inequality

constraints is denoted by

A(x) =
{
j | gj(x) = 0

}
.

We say that a feasible vector of problem (0.1)-(0.2) is regular when X = �n, and the equality

constraint gradients ∇hi(x∗), i = 1, . . . , m, and the active inequality constraint gradients

∇gj(x∗), j ∈ A(x∗) are linearly independent.
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Proposition 3.1.1 (Karush-Kuhn-Tucker Necessary Optimality Conditions):

Let x∗ be a local minimum of problem (0.1)-(0.2), where X = �n, and assume that

x∗ is regular. Then there exist unique Lagrange multiplier vectors λ∗ = (λ∗
1, . . . , λ

∗
m),

µ∗ = (µ∗
1, . . . , µ

∗
r), such that

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗) = 0,

µ∗
j ≥ 0, j = 1, . . . , r,

µ∗
j = 0, ∀ j /∈ A(x∗).

The preceding is an important, widely-used result; however it is limited by the reg-

ularity assumption. Although this assumption is natural for equality constraints, it is

somewhat restrictive for inequality constraints. The reason is that in many types of prob-

lems; for instance linear programming problems, there may be many inequality constraints

that are satisfied as equalities at a local minimum, but the corresponding gradients are

linearly dependent because of inherent symmetries in the problem’s structure. Therefore,

we would like to have a development of the Lagrange multiplier theory that is not based on

regularity-type assumptions.

Moreover, the preceding proposition does not apply to the case where the constraint

set description includes an additional abstract set constraint X. We would like to build

up a theory that handles such constraint sets. With this motivation, we give the following

definition of Lagrange multipliers.

Definition 3.1.1: We say that the constraint set C, as represented by Eq. (0.2),

admits Lagrange multipliers at a point x∗ ∈ C if for every smooth cost function f for

which x∗ is a local minimum of problem (0.1) there exist vectors λ∗ = (λ∗
1, . . . , λ

∗
m)

and µ∗ = (µ∗
1, . . . , µ

∗
r) that satisfy the following conditions:
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∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗)





′

y ≥ 0, ∀ y ∈ TX(x∗), (1.1)

µ∗
j ≥ 0, ∀ j = 1, . . . , r, (1.2)

µ∗
j = 0, ∀ j /∈ A(x∗). (1.3)

A pair (λ∗, µ∗) satisfying Eqs. (1.1)-(1.3) is called a Lagrange multiplier vector corre-

sponding to f and x∗.

When there is no danger of confusion, we refer to (λ∗, µ∗) simply as a Lagrange multi-

plier vector or a Lagrange multiplier , without reference to the corresponding local minimum

x∗ and the function f . Figure 3.1.1 illustrates the definition of a Lagrange multiplier. Con-

dition (1.3) is referred to as the complementary slackness condition (CS for short). Note

that from Eq. (1.1), it follows that the set of Lagrange multiplier vectors corresponding

to a given f and x∗ is the intersection of a collection of closed half spaces [one for each

y ∈ TX(x∗)], so it is a (possibly empty or unbounded) closed and convex set.

The condition (1.1) can be viewed as the necessary condition for x∗ to be a local

minimum of the Lagrangian function

L(x, λ∗, µ∗) = f(x) +
m∑

i=1

λ∗
i hi(x) +

r∑

j=1

µ∗
jgj(x)

over x ∈ X (cf. Prop. 2.3.22). This is consistent with the traditional characteristic property

of Lagrange multipliers: rendering the Lagrangian function stationary at x∗. When X is a

convex set, Eq. (1.1) is equivalent to


∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗)





′

(x − x∗) ≥ 0, ∀ x ∈ X. (1.4)

This is because when X is convex, TX(x∗) is equal to the closure of the set of feasible

directions FX(x∗) (cf. Proposition 2.2.9), which is in turn equal to the set of vectors of the

form α(x − x∗), where α > 0 and x ∈ X. If X = �n, Eq. (1.4) becomes

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗) = 0,
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g(x) ≤ 0

X

∇g(x*)

∇f(x*)

TX(x*)

TX(x*)*

Figure 3.1.1. Illustration of a Lagrange multiplier for the case of a single

inequality constraint and the spherical set X shown in the figure. The tangent

cone TX(x∗) is a closed halfspace and its polar TX(x∗)∗ is the halfline shown

in the figure. There is a unique Lagrange multiplier µ∗, and it is such that

−
(
∇f(x∗) + µ∗∇g(x∗)

)
belongs to TX(x∗)∗.

which together with the nonnegativity condition (1.2) and the CS condition (1.3), comprise

the classical Karush-Kuhn-Tucker conditions (cf. Proposition 3.1.1).

3.2. ENHANCED FRITZ JOHN CONDITIONS

The analysis in this thesis is strongly motivated by an enhanced set of optimality conditions,

which will be the focus of this section. Weaker versions of these conditions were shown in a

largely overlooked analysis by Hestenes [Hes75] for the case where X = �n, and in [Ber99]

for the case where X is a closed convex set. They are strengthened here [cf. condition (iv)

of the following proposition] and further generalized for the case where X is a closed but

not necessarily convex set.

The following proposition presents these optimality conditions. It enhances the classi-

cal Fritz John optimality conditions by providing additional necessary conditions through a
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penalty function-based proof. These conditions will turn out to be crucial in our analysis in

the next chapter. They also form the basis for enhancing the classical Karush-Kuhn-Tucker

conditions. The proposition asserts that there exist multipliers corresponding to a local

minimum x∗, including a multiplier µ∗
0 for the cost function gradient. These multipliers

have standard properties [conditions (i)-(iii) below], but they also have a special nonstan-

dard property [condition (iv) below]. This condition asserts that by violating the constraints

corresponding to nonzero multipliers, we can improve the optimal cost (the remaining con-

straints, may also need to be violated, but the degree of their violation is arbitrarily small

relative to the other constraints).

Proposition 3.2.3: Let x∗ be a local minimum of problem (0.1)-(0.2). Then there

exist scalars µ∗
0, λ∗

1, . . . , λ
∗
m, and µ∗

1, . . . , µ
∗
r , satisfying the following conditions:

(i) −
(
µ∗

0∇f(x∗) +
∑m

i=1 λ∗
i∇hi(x∗) +

∑r
j=1 µ∗

j∇gj(x∗)
)
∈ NX(x∗).

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, λ

∗
1, . . . , λ

∗
m, µ∗

1, . . . , µ
∗
r are not all equal to 0.

(iv) If the index set I ∪ J is nonempty where

I = {i | λ∗
i �= 0}, J = {j �= 0 | µ∗

j > 0},

there exists a sequence {xk} ⊂ X that converges to x∗ and is such that for all k,

f(xk) < f(x∗), λ∗
i hi(xk) > 0, ∀ i ∈ I, µ∗

jgj(xk) > 0, ∀ j ∈ J, (2.1)

|hi(xk)| = o
(
w(xk)

)
, ∀ i /∈ I, g+

j (xk) = o
(
w(xk)

)
, ∀ j /∈ J, (2.2)

where we denote g+(x) = max
{
0, gj(x)

}
and

w(x) = min
{

min
i∈I

|hi(x)|, min
j∈J

g+
j (x)

}
. (2.3)
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Proof: We use a quadratic penalty function approach. For each k = 1, 2, . . ., consider the

“penalized” problem

minimize F k(x) ≡ f(x) +
k

2

m∑

i=1

(
hi(x)

)2 +
k

2

r∑

j=1

(
g+

j (x)
)2 +

1
2
||x − x∗||2

subject to x ∈ X ∩ S,

where we denote

S = {x | ||x − x∗|| ≤ ε},

and ε is positive and such that f(x∗) ≤ f(x) for all feasible x with x ∈ S. Since X ∩ S

is compact, by Weierstrass’ theorem, we can select an optimal solution xk of the above

problem. We have for all k, F k(xk) ≤ F k(x∗), which can be written as

f(xk) +
k

2

m∑

i=1

(
hi(xk)

)2 +
k

2

r∑

j=1

(
g+

j (xk)
)2 +

1
2
||xk − x∗||2 ≤ f(x∗). (2.4)

Since f(xk) is bounded over X ∩ S, we obtain

lim
k→∞

|hi(xk)| = 0, i = 1, . . . , m, lim
k→∞

g+
j (xk) = 0, j = 1, . . . , r;

otherwise the left-hand side of Eq. (2.4) would become unbounded from above as k → ∞.

Therefore, every limit point x of {xk} is feasible, i.e., x ∈ C. Furthermore, Eq. (2.4) yields

f(xk) + (1/2)||xk − x∗||2 ≤ f(x∗) for all k, so by taking the limit as k → ∞, we obtain

f(x) +
1
2
||x − x∗||2 ≤ f(x∗).

Since x ∈ S and x is feasible, we have f(x∗) ≤ f(x), which when combined with the

preceding inequality yields ||x−x∗|| = 0 so that x = x∗. Thus the sequence {xk} converges

to x∗, and it follows that xk is an interior point of the closed sphere S for all k greater than

some k.

For k ≥ k, we have the necessary optimality condition of Prop. 2.3.22: −∇F k(xk) ∈
TX(xk)∗, which [by using the formula ∇

(
g+

j (x)
)2 = 2g+

j (x)∇gj(x)] is written as

−



∇f(xk) +
m∑

i=1

ξk
i ∇hi(xk) +

r∑

j=1

ζk
j ∇gj(xk) + (xk − x∗)



 ∈ TX(xk)∗, (2.5)
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where

ξk
i = khi(xk), ζk

j = kg+
j (xk). (2.6)

Denote

δk =

√√
√
√1 +

m∑

i=1

(ξk
i )2 +

r∑

j=1

(ζk
j )2, (2.7)

µk
0 =

1
δk

, λk
i =

ξk
i

δk
, i = 1, . . . , m, µk

j =
ζk
j

δk
, j = 1, . . . , r. (2.8)

Then by dividing Eq. (2.5) with δk, we obtain

−



µk
0∇f(xk) +

m∑

i=1

λk
i ∇hi(xk) +

r∑

j=1

µk
j∇gj(xk) +

1
δk

(xk − x∗)



 ∈ TX(xk)∗ (2.9)

Since by construction we have

(µk
0)2 +

m∑

i=1

(λk
i )2 +

r∑

j=1

(µk
j )2 = 1, (2.10)

the sequence {µk
0 , λk

1 , . . . , λk
m, µk

1 , . . . , µk
r} is bounded and must contain a subsequence that

converges to some limit {µ∗
0, λ

∗
1, . . . , λ

∗
m, µ∗

1, . . . , µ
∗
r}.

From Eq. (2.9) and the defining property of the normal cone NX(x∗) [xk → x∗,

zk → z∗, and zk ∈ TX(xk)∗ for all k, imply that z∗ ∈ NX(x∗)], we see that µ∗
0, λ∗

i , and

µ∗
j must satisfy condition (i). From Eqs. (2.6) and (2.8), µ∗

0 and µ∗
j must satisfy condition

(ii), and from Eq. (2.10), µ∗
0, λ∗

i , and µ∗
j must satisfy condition (iii). Finally, to show that

condition (iv) is satisfied, assume that I ∪ J is nonempty, and note that for all sufficiently

large k within the index set K of the convergent subsequence, we must have λ∗
i λ

k
i > 0 for

all i ∈ I and µ∗
jµ

k
j > 0 for all j ∈ J . Therefore, for these k, from Eqs. (2.6) and (2.8),

we must have λ∗
i hi(xk) > 0 for all i ∈ I and µ∗

jgj(xk) > 0 for all j ∈ J , while from Eq.

(2.4), we have f(xk) < f(x∗) for k sufficiently large (the case where xk = x∗ for infinitely

many k is excluded by the assumption that I∪J is nonempty). Furthermore, the conditions

|hi(xk)| = o
(
w(xk)

)
for all i /∈ I, and g+

j (xk) ≤ o
(
w(xk)

)
for all j /∈ J are equivalent to

|λk
i | = o

(
min

{
min
i∈I

|λk
i |, min

j∈J
µk

j

})
, ∀ i /∈ I,
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and

µk
j ≤ o

(
min

{
min
i∈I

|λk
i |, min

j∈J
µk

j

})
, ∀ j /∈ J,

respectively, so they hold for k ∈ K. This proves condition (iv). Q.E.D.

Condition (iv) of Prop. 3.2.3 resembles the “complementary slackness” (CS) condition

(1.3) of Karush-Kuhn-Tucker optimality conditions. Recall that, this name derives from the

fact that for each j, whenever the constraint gj(x∗) ≤ 0 is slack [meaning that gj(x∗) < 0],

the constraint µ∗
j ≥ 0 must not be slack (meaning that µ∗

j = 0). In analogy with this

interpretation, we refer to condition (iv) as the complementary violation condition (CV for

short), signifying the fact that for all j, µ∗
j > 0 implies gj(x) > 0 for some x arbitrarily

close to x∗. This condition can be visualized in the examples of Fig. 3.2.2. It will turn out

to be of crucial significance in our development. The next proposition clarifies the relation

between CS and CV conditions.

Proposition 3.2.4: Let µ∗ be a vector that satisfies CV condition. Then µ∗ also

satisfies CS condition.

Proof: Let µ∗ be a vector that satisfies CV condition. This implies that, if µ∗
j > 0 for

some j, then the corresponding jth inequality constraint must be violated arbitrarily close

to x∗ [cf. Eq. (2.1)]. Hence, we must have gj(x∗) = 0, showing that µ∗ satisfies CS condition.

Q.E.D.

The following example shows that the converse of the preceding statement is not true.

Example 3.2.1:

Suppose that we convert the problem minh(x)=0 f(x), involving a single equality constraint,

to the inequality constrained problem

minimize f(x)

subject to h(x) ≤ 0, −h(x) ≤ 0.

Assume that ∇f(x∗) = ∇h(x∗) and consider the multipliers µ∗
1 = 1, µ∗

2 = 2 in Definition

3.1.1. These multipliers satisfy the Lagrangian stationary condition as well as the CS con-
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dition. However, they fail the CV condition, since both constraints have positive multipliers

and it is not possible to find a vector x ∈ �n that violates both constraints simultaneously.

g1(x) ≤ 0

g2(x) ≤ 0

x*

Level sets of f

∇f(x*)

∇g1(x*)

∇g2(x*)

xk

(a) (b)

X

g1(x) ≤ 0

g2(x) ≤ 0

∇g1(x*)

∇g2(x*)

TX(x*)

TX(x*)*

xk∇f(x*)

Level sets of f

Figure 3.2.2. Illustration of the CV condition. In the example of (a), where

X = �2, the multipliers that satisfy the enhanced Fritz John conditions are the

positive multiples of a unique vector of the form (1, µ∗
1, µ∗

2) where µ∗
1 > 0 and

µ∗
2 > 0. It is possible to violate both constraints simultaneously by approaching

x∗ along the sequence {xk} shown, which has a lower cost value than x∗. In the

example of (b) X is the shaded region shown rather than X = �2. Origin is the

only feasible solution, therefore is optimal for the cost function depicted in the

figure. An example of a multiplier that satisfy the enhanced Fritz John conditions

is the vector (0, µ∗
1, µ∗

2), where µ∗
1 > 0 and µ∗

2 > 0. It is possible to violate both

constraints simultaneously by approaching x∗ along the sequence {xk} shown.
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If X is regular at x∗, i.e., NX(x∗) = TX(x∗)∗, condition (i) of Prop. 3.2.3 becomes

−



µ∗
0∇f(x∗) +

m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗)



 ∈ TX(x∗)∗,

or equivalently


µ∗
0∇f(x∗) +

m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗)





′

y ≥ 0, ∀ y ∈ TX(x∗).

If in addition, the scalar µ∗
0 can be shown to be strictly positive, then by normalization we

can choose µ∗
0 = 1, and condition (i) of Prop. 3.2.3 becomes equivalent to the Lagrangian

stationarity condition (1.1). Thus, if X is regular at x∗ and we can guarantee that µ∗
0 = 1,

the vector (λ∗, µ∗) = {λ∗
1, . . . , λ

∗
m, µ∗

1, . . . , µ
∗
r} is a Lagrange multiplier vector, which satisfies

the stronger CV condition.

As an example, if there is no abstract set constraint (X = �n), and the gradients

∇hi(x∗), i = 1, . . . , m, and ∇gj(x∗), j ∈ A(x∗), are linearly independent, we cannot have

µ∗
0 = 0, since then condition (i) of Prop. 3.2.3 would be violated. It follows that there exists

a Lagrange multiplier vector, which in this case is unique in view of the linear independence

assumption. We thus obtain the Lagrange multiplier theorem presented in Proposition

3.1.1. This is a classical result, found in almost all nonlinear programming textbooks, but

it is obtained here through a simple argument and in a stronger form, since it includes the

assertion that the multipliers satisfy the stronger CV condition in place of the CS condition.

To illustrate the use of the generalized Fritz John conditions of Prop. 3.2.3 and the

CV condition in particular, consider the following example.

Example 3.2.2:

Consider the problem of Example 3.2.1 and let x∗ be a local minimum. The Fritz John

conditions, in their classical form, assert the existence of nonnegative µ∗
0, λ

+, λ−, not all

zero, such that

µ∗
0∇f(x∗) + λ+∇h(x∗) − λ−∇h(x∗) = 0. (2.11)

The candidate multipliers that satisfy the above condition as well as the CS condition

λ+h(x∗) = λ−h(x∗) = 0, include those of the form µ∗
0 = 0 and λ+ = λ− > 0, which provide
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no relevant information about the problem. However, these multipliers fail the stronger CV

condition of Prop. 3.2.3, showing that if µ∗
0 = 0, we must have either λ+ �= 0 and λ− = 0

or λ+ = 0 and λ− �= 0. Assuming ∇h(x∗) �= 0, this violates Eq. (2.11), so it follows that

µ∗
0 > 0. Thus, by dividing Eq. (2.11) by µ∗

0, we recover the familiar first order condition

∇f(x∗) + λ∗∇h(x∗) = 0 with λ∗ = (λ+ − λ−)/µ∗
0, under the assumption ∇h(x∗) �= 0. Note

that this deduction would not have been possible without the CV condition.

We will further explore the CV condition as a vehicle for characterizing Lagrange

multipliers in the next section.

3.3. DIFFERENT TYPES OF LAGRANGE MULTIPLIERS

Motivated by the complementary violation condition of the preceding section, we introduce

different types of Lagrange multipliers in this section, which carry different amount of

information about sensitivity to constraints of the problem, and investigate their relations.

3.3.1. Minimal Lagrange Multipliers

In some applications, it may be of analytical or computational interest to deal with Lagrange

multipliers that have a minimal number of nonzero components (a minimal support). We

call such Lagrange multiplier vectors minimal , and we define them as having support I ∪ J

that does not strictly contain the support of any other Lagrange multiplier vector.

In the next proposition, we will show that under some convexity assumptions regard-

ing the abstract set constraint X, every minimal Lagrange multiplier possesses significant

amount of sensitivity information. For this purpose, we first make the following definition.

In particular, let us say that a Lagrange multiplier (λ∗, µ∗) is strong if in addition to Eqs.

(1.1)-(1.3), it satisfies the condition

(iv′) If the set I ∪ J is nonempty, where I = {i | λ∗
i �= 0} and J = {j �= 0 | µ∗

j > 0}, there

exists a sequence {xk} ⊂ X that converges to x∗ and is such that for all k,

f(xk) < f(x∗), λ∗
i hi(xk) > 0, ∀ i ∈ I, µ∗

jgj(xk) > 0, ∀ j ∈ J. (3.1)
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Proposition 3.3.5: Let x∗ be a local minimum of problem (0.1)-(0.2). Assume

that the tangent cone TX(x∗) is convex and that the set of Lagrange multipliers is

nonempty. Then, each minimal Lagrange multiplier vector is strong.

Proof: We first show the following lemma, which is of independent interest.

Lemma 3.3.1: Let N be a closed convex cone in �n. Let a0, a1, . . . , ar be given

vectors in �n, and A be the cone generated by a1, . . . , ar:

A =






r∑

j=1

µjaj

∣
∣
∣ µj ≥ 0, j = 1, . . . , r





.

Assume that the sets −a0+A and N have nonempty intersection. Among index subsets

J ⊂ {1, . . . , r} such that, for some positive µj , j ∈ J , we have
(
−a0 +

∑
j∈J µjaj

)
∈ N ,

let J ⊂ {1, . . . , r} have a minimal number of elements. If the set J is nonempty, then

there exists a vector y ∈ N∗ such that

a′
jy < 0, ∀ j ∈ J ∪ {0}.

Proof: Consider the index set J defined in the Lemma, and let µj > 0, j ∈ J , be such

that 

−a0 +
∑

j∈J

µjaj



 ∈ N. (3.2)

Let A be the finitely generated cone

A =





y

∣
∣
∣ y =

∑

j∈J

µjaj , µj ≥ 0, j ∈ J





,

and its polar

A
∗

= {y | a′
jy ≤ 0, j ∈ J}.
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It can be seen that the vectors aj , j ∈ J , are linearly independent, since otherwise for some

λj , j ∈ J , all of which are not equal to 0, we would have

∑

j∈J

λjaj = 0.

Since N is a convex cone, this implies


−a0 +
∑

j∈J

(µj − γλj)aj



 ∈ N,

for all scalars γ, and an appropriate value of γ would yield an index subset J with


−a0 +
∑

j∈J

µjaj



 ∈ N,

µj > 0, j ∈ J , and a smaller number of elements than those of J . Thus, we can find a

vector y such that a′
jy < 0 for all j ∈ J , and it follows that the interior of A

∗
, given by

int
(
A

∗)
= {y | a′

jy < 0, j ∈ J},

is nonempty.

Let F be the cone generated by a0,

F =
{

µ0a0

∣
∣
∣ µ0 ≥ 0

}

We claim that int(A
∗ ∩ F ∗) is nonempty. Note that a0 cannot be represented as a non-

negative combination of vectors aj , j ∈ J ′, where J ′ is a strict subset of J , since this

would violate the minimal support assumption in Eq. (3.2). It is possible to have a0 =
∑

j∈J βjaj , βj > 0 for all j, in which case F ⊂ A, which implies by Proposition 2.1.2 of

Chapter 2 that A
∗ ⊂ F ∗. Hence, we have int(A

∗ ∩ F ∗) = int(A
∗
), which is nonempty.

Otherwise, the vectors a0, and aj , j ∈ J are all linearly independent and we can find a

vector y such that a′
0y < 0 and a′

jy < 0, for all j ∈ J . This implies that int(A
∗ ∩ F ∗) is

nonempty.

We next show that there exists a y ∈ N∗ ∩ int
(
A

∗ ∩ F ∗
)
. Assume, to arrive at a

contradiction, that N∗ and int
(
A

∗∩F ∗
)

are disjoint. These sets are nonempty [cf. preceding
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discussion] and convex (since the intersection of two convex sets is convex and the interior

of a convex set is convex). Hence, by the Separating Hyperplane Theorem, there exists a

nonzero vector p such that

p′x1 ≤ p′x2, ∀ x1 ∈ int
(
A

∗ ∩ F ∗
)
, ∀ x2 ∈ N∗.

Using the Line Segment Principle and the preceding relation, it can be seen that

p′x1 ≤ p′x2, ∀ x1 ∈
(
A

∗ ∩ F ∗
)
, ∀ x2 ∈ N∗. (3.3)

In particular, taking x1 = 0 in this equation, we obtain

0 ≤ p′x2, ∀ x2 ∈ N∗,

which implies, by the Polar Cone Theorem, that

−p ∈ (N∗)∗ = N.

Similarly, taking x2 = 0 in Eq. (3.3), we obtain

p′x1 ≤ 0, ∀ x1 ∈
(
A

∗ ∩ F ∗
)
,

which implies that

p ∈
(
A

∗ ∩ F ∗
)∗

.

Since both A and F are finitely generated cones, their polars are polyhedral cones (see

[BNO02]). Therefore, the set A
∗ ∩ F ∗ is polyhedral and closed, and it follows from Propo-

sition 2.1.2 that
(
A

∗ ∩ F ∗
)∗ = A + F,

Hence, the vector p belongs to A + F and can be expressed as

p = ξ0a0 +
∑

j∈J

ξjaj , ξj ≥ 0, ∀ j ∈ J ∪ {0}. (3.4)

Since −p ∈ N , we have from the preceding relation that

−ξ0a0 +
∑

j∈J

(−ξj)aj ∈ N,
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and therefore

−ξ0γa0 +
∑

j∈J

(−ξjγ)aj ∈ N,

for all γ ≥ 0. Together with Eq. (3.2), this implies that

−(1 + ξ0γ)a0 +
∑

j∈J

(µj − γξj)aj ∈ N, ∀ γ ≥ 0. (3.5)

Thus we can find γ > 0 such that µj − γξj ≥ 0, for all j and µj̄ − γξj̄ = 0 for at least one

index j̄ ∈ J . Since (1 + ξ0γ) > 0, we can divide Eq. (3.5) by (1 + ξ0γ) and the resulting

coefficient vector has less support than (µ1, . . . , µr). This contradicts the assumption that

the index set J has a minimal number of elements. Hence, there must exist a vector y that

is in both N∗ and int
(
A

∗ ∩ F ∗
)
, implying that a′

jy < 0 for all j ∈ J ∪ {0}. Q.E.D.

We now return to the proof of Proposition 3.3.5. For simplicity we assume that all

the constraints are inequalities that are active at x∗ (equality constraints can be handled

by conversion to two inequalities, and inactive inequality constraints are inconsequential in

the subsequent analysis). We apply Lemma 3.3.1 with the following identifications:

N = TX(x∗)∗, a0 = ∇f(x∗), aj = −∇gj(x∗), j = 1, . . . , r.

If −∇f(x∗) ∈ TX(x∗)∗, the scalars µj = 0, j = 1, . . . , r, form a strong Lagrange multiplier

vector, and we are done. So assume that −∇f(x∗) /∈ TX(x∗)∗. Then, since by assumption,

there exist Lagrange multipliers corresponding to x∗, the sets −a0+A and N have nonempty

intersection [cf. Eq. (1.1)], and by Lemma 3.3.1, there exists a nonempty set J ⊂ {1, . . . , r}
and positive scalars µj , j ∈ J , such that

−



∇f(x∗) +
∑

j∈J

µj∇gj(x∗)



 ∈ TX(x∗)∗,

and a vector y ∈
(
TX(x∗)∗

)∗ = TX(x∗) (by the Polar Cone Theorem, since by assumption

TX(x∗) is convex) such that

∇f(x∗)′y < 0, ∇gj(x∗)′y > 0, ∀ j ∈ J. (3.6)
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Let {xk} ⊂ X be a sequence such that xk �= x∗ for all k and

xk → x∗,
xk − x∗

‖xk − x∗‖ → y

‖y‖ .

Using Taylor’s Theorem for the cost function f , we have for some vector sequence ξk

converging to 0,

f(xk) = f(x∗) + ∇f(x∗)′(xk − x∗) + o(‖xk − x∗‖)

= ∇f(x∗)′
(

y

‖y‖ + ξk

)
‖xk − x∗‖ + o(‖xk − x∗‖)

= ‖xk − x∗‖
(
∇f(x∗)′

y

‖y‖ + ∇f(x∗)′ξk +
o(‖xk − x∗‖)
‖xk − x∗‖

)
,

From Eq. (3.6), we have ∇f(x∗)′y < 0, so we obtain f(xk) < f(x∗) for k sufficiently large.

Using also Taylor’s Theorem for the constraint functions gj , j ∈ J , we have, for some vector

sequence ξk converging to 0,

gj(xk) = gj(x∗) + ∇gj(x∗)′(xk − x∗) + o(‖xk − x∗‖)

= ∇gj(x∗)′
(

y

‖y‖ + ξk

)
‖xk − x∗‖ + o(‖xk − x∗‖)

= ‖xk − x∗‖
(
∇gj(x∗)′

y

‖y‖ + ∇gj(x∗)′ξk +
o(‖xk − x∗‖)
‖xk − x∗‖

)
,

from which it follows that for k sufficiently large, we have gj(xk) > 0. It follows that the

scalars µj , j ∈ J , together with the scalars µj = 0, j /∈ J , form a strong Lagrange multiplier

vector. Q.E.D.

The next example shows that the converse of the preceding result is not true, i.e.,

there may exist Lagrange multipliers that are strong but are not minimal.

Example 3.3.3:

Let the constraint set C be specified by two identical inequality constraints, g1(x) = g2(x) ≤
0, and consider the vector x∗. The tangent cone at x∗, TC(x∗) and its polar TC(x∗)∗ are

depicted in Fig. 3.3.3. Let f be a cost function that has a local minimum at x∗. By the

necessary condition for optimality, this implies that −∇f(x∗) ∈ TC(x∗)∗. The Lagrange

multipliers are determined from the requirement

∇f(x∗) + µ∗
1∇g1(x

∗) + µ∗
2∇g2(x

∗) = 0. (3.7)
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Note that by appropriate normalization, we can select µ∗
1 = µ∗

2 > 0. These multipliers are

strong. However, they are not minimal since we can set only one of the multipliers to be

positive and still satisfy Eq. (3.7).

∇f(x*)

x*

∇g1(x*) =  ∇g2(x*) 

TC(x*)

TC(x*)*

g1(x) = g2(x)

Figure 3.3.3. Constraint set of Example 3.3.5. The tangent cone of the

feasible set TC(x∗) and its polar TC(x∗)∗ are illustrated in the figure.

3.3.2. Informative Lagrange Multipliers

The Lagrange multipliers whose existence is guaranteed by Prop. 3.2.3 (assuming that µ∗
0 =

1) are special: they satisfy the stronger CV condition in place of the CS condition. These

multipliers provide a significant amount of sensitivity information by in effect indicating

which constraints to violate in order to effect a cost reduction. In view of this interpretation,

we refer to a Lagrange multiplier vector (λ∗, µ∗) that satisfies, in addition to Eqs. (1.1)-(1.3),

the CV condition [condition (iv) of Prop. 3.2.3] as being informative.

Since CV condition is stronger than condition (iv’) in the definition of a strong mul-

tiplier [cf. Eq. (3.1)], it follows that informative Lagrange multipliers are also strong. We

have seen in the previous section that minimal Lagrange multipliers are strong. However,

it is not true that minimal Lagrange multipliers are necessarily informative. For example,
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think of the case where some of the constraints are duplicates of others. Then in a minimal

Lagrange multiplier vector, at most one of each set of duplicate constraints can have a

nonzero multiplier, while in an informative Lagrange multiplier vector, either all or none of

these duplicate constraints will have a nonzero multiplier. The relations between different

types of Lagrange multipliers are illustrated in Fig. 3.3.4.

Lagrange multipliers

Strong

Informative Minimal

Figure 3.3.4. Relations of different types of Lagrange multipliers, assuming

that the tangent cone TX(x∗) is convex (which is true in particular if X is regular

at x∗).

The salient defining property of informative Lagrange multipliers is consistent with the

classical sensitivity interpretation of a Lagrange multiplier as the rate of cost improvement

when the corresponding constraint is violated. Here we are not making enough assumptions

for this stronger type of sensitivity interpretation to be valid. Yet it is remarkable that with

hardly any assumptions, at least one informative Lagrange multiplier vector exists if X is

regular and we can guarantee that we can take µ∗
0 = 1 in Prop. 3.2.3. In fact we will show

in the next proposition a stronger and more definitive property: if the tangent cone TX(x∗)

is convex (which is true if X is convex or regular, cf. Proposition 2.2.19 of Chapter 2) and

there exists at least one Lagrange multiplier vector, there exists one that is informative.
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Proposition 3.3.6: Let x∗ be a local minimum of problem (0.1)-(0.2). Assume

that the tangent cone TX(x∗) is convex and that the set of Lagrange multipliers is

nonempty. Then, the set of informative Lagrange multiplier vectors is nonempty, and

in fact the Lagrange multiplier vector that has minimum norm is informative.

Proof: We summarize the essence of the proof argument in the following lemma.

Lemma 3.3.2: Let N be a closed convex cone in �n, and let a0, . . . , ar be given

vectors in �n. Suppose that the closed and convex subset of �r given by

M =





µ ≥ 0

∣
∣
∣ −



a0 +
r∑

j=1

µjaj



 ∈ N






is nonempty. Then there exists a sequence {dk} ⊂ N∗ such that

a′
0d

k → −‖µ∗‖2, (3.8)

(a′
jd

k)+ → µ∗
j , j = 1, . . . , r, (3.9)

where µ∗ is the vector of minimum norm in M and we use the notation (a′
jd

k)+ =

max{0, a′
jd

k}. Furthermore, we have

−1
2
‖µ∗‖2 = inf

d∈N∗





a′
0d +

1
2

r∑

j=1

(
(a′

jd)+
)2






= lim
k→∞





a′
0d

k +
1
2

r∑

j=1

(
(a′

jd
k)+

)2





.

(3.10)

In addition, if the problem

minimize a′
0d +

1
2

r∑

j=1

(
(a′

jd)+
)2

subject to d ∈ N∗,

(3.11)

has an optimal solution, denoted d∗, we have
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a′
0d

∗ = −‖µ∗‖2, (a′
jd

∗)+ = µ∗
j , j = 1, . . . , r. (3.12)

Proof: We consider the function

L(d, µ) =



a0 +
r∑

j=1

µjaj





′

d − 1
2
‖µ‖2,

and we note that L is convex in d, and concave and coercive in µ. For any γ > 0, we

consider saddle points of L over d ∈ N∗ ∩ B(0, 1/γ) and µ ≥ 0, where B(0, 1/γ) denotes

the closed unit ball centered at 0 with radius 1/γ. From the Saddle Point Theorem, L has

a saddle point for each γ > 0, denoted by (dγ , µγ).

By making a change of variable d = y/γ and using the fact that N∗ is a cone (and

therefore N∗ = N∗/γ), we have

inf
d∈N∗∩B(0,1/γ)

L(d, µγ) = inf
y∈N∗∩B(0,1)

L

(
y

γ
, µγ

)

= inf
y∈N∗∩B(0,1)

−
(

sγ′
y

γ
+

1
2
‖µγ‖2

)
,

where

sγ = −



a0 +
r∑

j=1

µγ
j aj



 .

Hence, it follows that dγ = yγ/γ, where

yγ ∈ arg min
y∈N∗∩B(0,1)

−sγ′
y

γ
.

The necessary optimality condition for the above minimization problem yields

sγ′(y − yγ) ≤ 0, ∀ y ∈ N∗ ∩ B(0, 1), ∀ γ > 0. (3.13)

In particular, letting y = 0 in the preceding relation, we obtain

sγ′
yγ ≥ 0, ∀ γ > 0. (3.14)
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We now note that, for any µ ∈ M , we have by the definition of M ,



a0 +
r∑

j=1

µjaj





′

d ≥ 0, ∀ d ∈ N∗,

so that

inf
d∈N∗∩B(0,1/γ)

L(d, µ) = inf
d∈N∗∩B(0,1/γ)



a0 +
r∑

j=1

µjaj





′

d − 1
2
‖µ‖2 = −1

2
‖µ‖2.

Therefore,
L(dγ , µγ) = sup

µ≥0
inf

d∈N∗∩B(0,1/γ)
L(d, µ)

≥ sup
µ∈M

inf
d∈N∗∩B(0,1/γ)

L(d, µ)

= sup
µ∈M

(
−1

2
‖µ‖2

)

= −1
2
‖µ∗‖2.

It follows that

L(dγ , µγ) = L

(
yγ

γ
, µγ

)
= −sγ′

yγ

γ
− 1

2
‖µγ‖2 ≥ −1

2
‖µ∗‖2. (3.15)

Since sγ′
yγ ≥ 0 for all γ > 0 [cf. Eq. (3.14)], we see from the preceding relation that

lim
γ→0

sγ′
yγ = 0, (3.16)

and that ‖µγ‖ ≤ ‖µ∗‖, so that µγ remains bounded as γ → 0. Let µ be a limit point of

{µγ}. Taking the limit along the relevant subsequence in Eq. (3.13), and using Eq. (3.16),

we get

0 ≤ lim
γ→0

sγ′(y − yγ) = −



a0 +
r∑

j=1

µjaj





′

y, ∀ y ∈ N∗ ∩ B(0, 1).

This implies that −
(
a0 +

∑r
j=1 µjaj

)
∈

(
N∗ ∩ B(0, 1)

)∗ = N + B(0, 1)∗ = N . Hence

µ ∈ M , and since ‖µ‖ ≤ ‖µ∗‖ (in view of ‖µγ‖ ≤ ‖µ∗‖), by using the minimum norm

property of µ∗, we conclude that any limit point µ of µγ must be equal to µ∗. Thus

µγ → µ∗.

94



To show Eqs. (3.8) and (3.9), we note that since L is quadratic in µ, the supremum

in supµ≥0 L(d, µ) is attained at

µj = (a′
jd)+, j = 1, . . . , r, (3.17)

so that

sup
µ≥0

L(d, µ) = a′
0d +

1
2

r∑

j=1

(
(a′

jd)+
)2

, (3.18)

and

L(dγ , µγ) = sup
µ≥0

L(dγ , µ) = a′
0d

γ +
1
2
‖µγ‖2. (3.19)

From Eq. (3.15) and the facts µγ → µ∗ and sγ ′yγ ≥ 0 for all γ > 0, we obtain sγ ′yγ/γ → 0

and

lim
γ→0

L(dγ , µγ) = −1
2
‖µ∗‖2. (3.20)

Equations (3.17), (3.19), and (3.20), together with the fact µγ → µ∗, yield

a′
0d

γ → −‖µ∗‖2, (a′
jd

γ)+ → µ∗
j , j = 1, . . . , r.

To show Eq. (3.10), we note that we have

inf
d∈N∗

sup
µ≥0

L(d, µ) = inf
d∈N∗





a′
0d +

1
2

r∑

j=1

(
(a′

jd)+
)2





. (3.21)

We also have
inf

d∈N∗
sup
µ≥0

L(d, µ) = lim
γ→0

inf
d∈N∗∩B(0,1/γ)

sup
µ≥0

L(d, µ)

= lim
γ→0

inf
d∈N∗∩B(0,1/γ)

L(d, µγ)

= lim
γ→0

−1
2
‖µγ‖2

= −1
2
‖µ∗‖2.

Combining the last two equations, we obtain the desired relation

−1
2
‖µ∗‖2 = inf

d∈N∗





a′
0d +

1
2

r∑

j=1

(
(a′

jd)+
)2






= lim
γ→0





a′
0d

γ +
1
2

r∑

j=1

(
(a′

jd
γ)+

)2
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[cf. Eq. (3.10)].

Finally, if d∗ attains the infimum in the right-hand side above, it is seen that (d∗, µ∗)

is a saddle point of L over d ∈ N∗ and µ ≥ 0, and that

a′
0d

∗ = −‖µ∗‖2, (a′
jd

∗)+ = µ∗
j , j = 1, . . . , r.

Q.E.D.

We now return to the proof of Prop. 3.3.6(a). For simplicity we assume that all the

constraints are inequalities that are active at x∗ (equality constraints can be handled by

conversion to two inequalities, and inactive inequality constraints are inconsequential in the

subsequent analysis). We will use Lemma 3.3.2 with the following identifications:

N = TX(x∗)∗, a0 = ∇f(x∗), aj = ∇gj(x∗), j = 1, . . . , r,

M = set of Lagrange multipliers,

µ∗ = Lagrange multiplier of minimum norm.

If µ∗ = 0, then µ∗ is an informative Lagrange multiplier and we are done. If µ∗ �= 0, by

Lemma 3.3.2 [cf. (3.8) and (3.9)], for any ε > 0, there exists a d ∈ N∗ = TX(x∗) such that

a′
0d < 0, (3.22)

a′
jd > 0, ∀ j ∈ J∗, a′

jd ≤ ε min
l∈J∗

a′
ld, ∀ j /∈ J∗, (3.23)

where

J∗ = {j | µ∗
j > 0}.

By suitably scaling the vector d, we can assume that ‖d‖ = 1. Let {xk} ⊂ X be such that

xk �= x∗ for all k and

xk → x∗,
xk − x∗

‖xk − x∗‖ → d.

Using Taylor’s theorem for the cost function f , we have for some vector sequence ξk con-

verging to 0

f(xk) − f(x∗) = ∇f(x∗)′(xk − x∗) + o(‖xk − x∗‖)

= ∇f(x∗)′
(
d + ξk

)
‖xk − x∗‖ + o(‖xk − x∗‖)

= ‖xk − x∗‖
(
∇f(x∗)′d + ∇f(x∗)′ξk +

o(‖xk − x∗‖)
‖xk − x∗‖

)
.

(3.24)
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From Eq. (3.22), we have ∇f(x∗)′d < 0, so we obtain f(xk) < f(x∗) for k sufficiently

large. Using also Taylor’s theorem for the constraint functions gj , we have for some vector

sequence ξk converging to 0,

gj(xk) − gj(x∗) = ∇gj(x∗)′(xk − x∗) + o(‖xk − x∗‖)

= ∇gj(x∗)′
(
d + ξk

)
‖xk − x∗‖ + o(‖xk − x∗‖)

= ‖xk − x∗‖
(
∇gj(x∗)′d + ∇gj(x∗)′ξk +

o(‖xk − x∗‖)
‖xk − x∗‖

)
.

(3.25)

This, combined with Eq. (3.23), shows that for k sufficiently large, gj(xk) is bounded from

below by a positive constant times ‖xk−x∗‖ for all j ∈ J∗, and satisfies gj(xk) ≤ o(‖xk−x∗‖)
for all j /∈ J∗. Thus, the sequence {xk} can be used to establish the CV condition for µ∗,

and it follows that µ∗ is an informative Lagrange multiplier. Q.E.D.

Lemma 3.3.2 also provides an alternative proof for Proposition 3.3.5, as shown in the

following.

Alternative Proof for Proposition 3.3.5:

The essence of the proof argument can be summarized in the following lemma.

Lemma 3.3.3: Let N be a closed convex cone in �n, let a0, a1, . . . , ar be given

vectors in �n. Suppose that the closed and convex set M ⊂ �r given by

M =





µ ≥ 0

∣
∣
∣ −



a0 +
r∑

j=1

µjaj



 ∈ N






is nonempty. Among index subsets J ⊂ {1, . . . , r} such that for some µ ∈ M we have

J = {j | µj > 0}, let J ⊂ {1, . . . , r} have a minimal number of elements. Then if J is

nonempty, there exists a vector d ∈ N∗ such that

a′
0d < 0, a′

jd > 0, for all j ∈ J. (3.26)
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Proof: We apply Lemma 3.3.2 with the vectors a1, . . . , ar replaced by the vectors aj ,

j ∈ J . The subset of M given by

M =





µ ≥ 0

∣
∣
∣ −



a0 +
∑

j∈J

µjaj



 ∈ N, µj = 0, ∀ j /∈ J






is nonempty by assumption. Let µ be the vector of minimum norm on M . Since J has a

minimal number of indices, we must have µj > 0 for all j ∈ J . If J is nonempty, Lemma

3.3.2 implies that there exists a d ∈ N∗ such that Eq. (3.26) holds. Q.E.D.

Given Lemma 3.3.3, the proof is very similar to the corresponding part of the proof

of Proposition 3.3.5. Q.E.D.

3.3.3. Sensitivity

Let us consider now the special direction d∗ that appears in Lemma 3.3.2, and is a solution

of problem (3.11) (assuming this problem has an optimal solution). Let us note that this

problem is guaranteed to have at least one solution when N∗ is a polyhedral cone. This is

because problem (3.11) can be written as

minimize a′
0d +

1
2

r∑

j=1

z2
j

subject to d ∈ N∗, 0 ≤ zj , a′
jd ≤ zj , j = 1, . . . , r,

where the zj are auxiliary variables. Thus, if N∗ is polyhedral, then problem (3.11) is a

convex quadratic program with a cost function that is bounded below by Eq. (3.10), and

it has an optimal solution. An important context where this is relevant is when X = �n

in which case NX(x∗)∗ = TX(x∗) = �n, or more generally when X is polyhedral, in which

case TX(x∗) is polyhedral.

Assuming now that problem (3.11) has an optimal solution, the line of proof of Prop.

3.3.6(a) [combine Eqs. (3.24) and (3.25)] can be used to show that if the Lagrange multiplier

that has minimum norm, denoted by (λ∗, µ∗), is nonzero, there exists a sequence {xk} ⊂ X,
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corresponding to the vector d∗ ∈ TX(x∗) of Eq. (3.12), such that

f(xk) = f(x∗) −
m∑

i=1

λ∗
i hi(xk) −

r∑

j=1

µ∗
jgj(xk) + o(‖xk − x∗‖). (3.27)

Furthermore, the vector d∗ solves problem (3.11), from which it can be seen that d∗ solves

the problem

minimize ∇f(x∗)′d

subject to
m∑

i=1

(
∇hi(x∗)′d

)2 +
∑

j∈A(x∗)

(
∇gj(x∗)′d)+

)2 = β, d ∈ TX(x∗),

where β is given by

β =
m∑

i=1

(
∇hi(x∗)′d∗

)2 +
∑

j∈A(x∗)

((
∇gj(x∗)′d∗

)+)2
.

More generally, it can be seen that for any given positive scalar β, a positive multiple of d∗

solves the problem

minimize ∇f(x∗)′d

subject to
m∑

i=1

(
∇hi(x∗)′d

)2 +
∑

j∈A(x∗)

((
∇gj(x∗)′d

)+)2 = β, d ∈ TX(x∗).

Thus, d∗ is the tangent direction that maximizes the cost function improvement (calculated

up to first order) for a given value of the norm of the constraint violation (calculated up to

first order). From Eq. (3.27), this first order cost improvement is equal to
m∑

i=1

λ∗
i hi(xk) +

r∑

j=1

µ∗
jgj(xk).

Thus, the minimum norm multipliers λ∗
i and µ∗

j express the rate of improvement per unit

constraint violation, along the maximum improvement (or steepest descent) direction d∗.

This is consistent with the traditional sensitivity interpretation of Lagrange multipliers.

3.4. AN ALTERNATIVE DEFINITION OF LAGRANGE MULTIPLIERS

In this section, we make the connection with another treatment of Lagrange multipliers,

due to Rockafellar [Roc93]. Consider vectors λ∗ = (λ∗
1, . . . , λ

∗
m) and µ∗ = (µ∗

1, . . . , µ
∗
r) that
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satisfy the conditions

−



∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗)



 ∈ NX(x∗), (4.1)

µ∗
j ≥ 0, ∀ j = 1, . . . , r, µ∗

j = 0, ∀ j /∈ A(x∗). (4.2)

Such vectors are called “Lagrange multipliers” by Rockafellar, but here we will refer to

them as R-multipliers, to distinguish them from Lagrange multipliers as we have defined

them [cf. Eqs. (1.1)-(1.3)]. It can be seen that the set of R-multipliers is a closed set [since

NX(x∗) is closed], and is convex when NX(x∗) is convex [if NX(x∗) is not convex, the set

of R-multipliers need not be convex].

When X is regular at x∗, the sets of Lagrange multipliers and R-multipliers coincide.

In general, however, the set of Lagrange multipliers is a (possibly strict) subset of the set

of R-multipliers, since TX(x∗)∗ ⊂ NX(x∗) with inequality holding when X is not regular at

x∗. Note that multipliers satisfying the enhanced Fritz John conditions of Prop. 3.2.3 with

µ∗
0 = 1 are R-multipliers, and they still have the extra sensitivity-like property embodied in

the CV condition. Furthermore, Lemma 3.3.2 can be used to show that assuming NX(x∗)

is convex, if the set of R-multipliers is nonempty, it contains an R-multiplier with the

sensitivity-like property of the CV condition.

However, if X is not regular at x∗, an R-multiplier may be such that the Lagrangian

function can decrease along some tangent directions. This is in sharp contrast with Lagrange

multipliers, whose salient defining property is that they render the Lagrangian function

stationary at x∗. The following example illustrates this.

Example 3.4.4:

In this 2-dimensional example, there are two linear constraints a′
1x ≤ 0 and a′

2x ≤ 0 with

the vectors a1 and a2 linearly independent. The set X is the (nonconvex) cone

X = {x | (a′
1x)(a′

2x) = 0}.

Consider the vector x∗ = (0, 0). Here TX(x∗) = X and TX(x∗)∗ = {0}. However, it

can be seen that NX(x∗) consists of the two rays of vectors that are colinear to either a1 or

a2:

NX(x∗) = {γa1 | γ ∈ �} ∪ {γa2 | γ ∈ �}
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a1
a2NX(x*)

x* = 0

X = TX(x*)

Figure 3.4.5. Constraints of Example 3.4.4. We have

TX(x∗) = X =
{

x | (a′
1x)(a′

2x) = 0
}

and NX(x∗) is the nonconvex set consisting of the two rays of vectors that

are colinear to either a1 or a2.

(see Fig. 3.4.5).

Because NX(x∗) �= TX(x∗)∗, X is not regular at x∗. Furthermore, both TX(x∗) and

NX(x∗) are not convex. For any f for which x∗ is a local minimum, there exists a unique

Lagrange multiplier (µ∗
1, µ

∗
2) satisfying Eqs. (1.1)-(1.3). The scalars µ∗

1, µ∗
2 are determined

from the requirement

∇f(x∗) + µ∗
1a1 + µ∗

2a2 = 0. (4.3)

Except in the cases where ∇f(x∗) is equal to 0 or to −a1 or to −a2, we have µ∗
1 > 0 and

µ∗
2 > 0, but the Lagrange multiplier (µ∗

1, µ
∗
2) is neither informative nor strong, because there

is no x ∈ X that simultaneously violates both inequality constraints. The R-multipliers here

are the vectors (µ∗
1, µ

∗
2) such that ∇f(x∗) + µ∗

1a1 + µ∗
2a2 is either equal to a multiple of a1

or to a multiple of a2. Except for the Lagrange multipliers, which satisfy Eq. (4.3), all other

R-multipliers are such that the Lagrangian function has negative slope along some of the

feasible directions of X.

The existence of R-multipliers does not guarantee the existence of Lagrange multi-

pliers. Furthermore, as shown in the previous example, even if Lagrange multipliers exist,

none of them may be informative or strong, unless the tangent cone is convex (which is

guaranteed if the set X is regular, cf. Proposition 2.2.19 of Chapter 2). Thus regularity
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of X at the given local minimum is the property that separates problems that possess a

satisfactory Lagrange multiplier theory and problems that do not.

Example 3.4.5:

In this 2-dimensional example, there exists an R-multiplier for every smooth cost function f ,

but the constraint set does not admit Lagrange multipliers. Let X be the subset of �2 given

by

X =
{
(x1, x2) | (x2 − x1)(x2 + x1) = 0

}
,

and let there be a single equality constraint

h(x) = x2 = 0

(see Fig. 3.4.6). There is only one feasible point x∗ = (0, 0), which is optimal for any cost

function f . Here we have TX(x∗) = X and TX(x∗)∗ = {0}, so for λ∗ to be a Lagrange

multiplier, we must have

∇f(x∗) + λ∗(0, 1) = 0.

Thus, there exists a Lagrange multiplier if and only if ∂f(x∗)/∂x1 = 0. On the other hand,

it can be seen that we have

NX(x∗) = X,

and that there exists an R-multiplier for every smooth cost function f .

3.5. NECESSARY AND SUFFICIENT CONDITIONS FOR ADMITTANCE

OF LAGRANGE AND R-MULTIPLIERS

In this section, we provide necessary and sufficient conditions for the constraint set C of

Eq. (0.2) to admit Lagrange and R-multipliers. Conditions of this kind related to Lagrange

multipliers were dealt with in various forms by Gould and Tolle [GoT72], Guignard [Gui69],

and Rockafellar [Roc93]. To show this result, we make use of the extended result on the

gradient characterization of vectors in TC(x∗)∗, given in Proposition 2.3.21 in Chapter 2.
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X=TX(x*) = NX(x*)

h(x) = 0x*

∇h(x*)

Figure 3.4.6. Constraints of Example 3.4.5. Here,

X =
{

(x1, x2) | (x2 − x1)(x2 + x1) = 0
}

,

and X is not regular at x∗ = (0, 0), since we have TX(x∗) = X, TX(x∗)∗ = {0},
but NX(x∗) = X. For

h(x) = x2 = 0

the constraint set admits no Lagrange multipliers at x∗, yet there exist R-multipliers

for every smooth cost function f , since for any f , there exists a λ∗ such that

−
(
∇f(x∗) + λ∗∇h(x∗)

)
belongs to NX(x∗).

Proposition 3.5.7: Let x∗ be a feasible vector of problem (0.1)-(0.2). Then:

(a) The constraint set admits Lagrange multipliers at x∗ if and only if

TC(x∗)∗ = TX(x∗)∗ + V (x∗)∗.

(b) The constraint set admits R-multipliers at x∗ if and only if

TC(x∗)∗ ⊂ NX(x∗) + V (x∗)∗.
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Proof:

(a) Denote by D(x∗) the set of gradients of all smooth cost functions for which x∗ is a

local minimum of problem . We claim that −D(x∗) = TC(x∗)∗. Indeed by the necessary

condition for optimality, we have

−D(x∗) ⊂ TC(x∗)∗.

To show the reverse inclusion, let y ∈ TC(x∗)∗. By Proposition 2.3.21, there exists a smooth

function F with −∇F (x∗) = y, which achieves a strict global minimum over C at x. Thus,

y ∈ −D(x∗), showing that

−D(x∗) = TC(x∗)∗. (5.1)

We now note that by definition, the constraint set C admits Lagrange multipliers at x∗ if

and only if

−D(x∗) ⊂ TX(x∗)∗ + V (x∗)∗.

In view of Eq. (5.1), this implies that the constraint set C admits Lagrange multipliers at

x∗ if and only if

TC(x∗)∗ ⊂ TX(x∗)∗ + V (x∗)∗. (5.2)

We next show that

TC(x∗) ⊂ TX(x∗) ∩ V (x∗).

Since C ⊂ X, it can be seen by the definition of the tangent cone that

TC(x∗) ⊂ TX(x∗). (5.3)

Next, we show that TC(x∗) ⊂ V (x∗). Let y be a nonzero tangent of C at x∗. Then there

exist sequences {ξk} and {xk} ⊂ C such that xk �= x∗ for all k,

ξk → 0, xk → x∗,

and
xk − x∗

‖xk − x∗‖ =
y

‖y‖ + ξk.
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By the mean value theorem, we have for all j and k

0 ≥ gj(xk) = gj(x∗) + ∇gj(x̃k)′(xk − x∗) = ∇gj(x̃k)′(xk − x∗),

where x̃k is a vector that lies on the line segment joining xk and x∗ . This relation can be

written as
‖xk − x∗‖

‖y‖ ∇gj(x̃k)′yk ≤ 0,

where yk = y + ξk‖y‖, or equivalently

∇gj(x̃k)′yk ≤ 0, yk = y + ξk‖y‖.

Taking the limit as k → ∞, we obtain ∇gj(x∗)′y ≤ 0 for all j, thus proving that y ∈ V (x∗).

Hence, TC(x∗) ⊂ V (x∗). Together with Eq. (5.3), this shows that

TC(x∗) ⊂ TX(x∗) ∩ V (x∗). (5.4)

Using the properties of polar cones given in Proposition 2.1.2 of Chapter 2, this implies

TX(x∗)∗ + V (x∗)∗ ⊂
(
TX(x∗) ∩ V (x∗)

)∗ ⊂ TC(x∗)∗,

which combined with Eq. (5.2), yields the desired relation, and concludes the proof.

(b) By definition, the constraint set C admits R-multipliers at x∗ if and only if

−D(x∗) ⊂ NX(x∗) + V (x∗)∗.

In view of Eq. (5.1), this implies that the constraint set C admits R-multipliers at x∗ if and

only if

TC(x∗)∗ ⊂ NX(x∗) + V (x∗)∗.
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CHAPTER 4

PSEUDONORMALITY AND CONSTRAINT QUALIFICATIONS

In this chapter, our objective is to identify the structure of the constraint set that guarantees

the existence of Lagrange multipliers. We consider the problem

minimize f(x)

subject to x ∈ C,
(0.1)

where the constraint set C consists of equality and inequality constraints as well as an

additional abstract set constraint X:

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
. (0.2)

Our purpose is to find and analyze in depth conditions on the above problem that guarantee

the existence of Lagrange multipliers. Note that we are interested in conditions that are

independent of the cost function f , and are only properties of the constraint set; hence the

name constraint qualifications. Therefore, if the constraint qualification holds, the Lagrange

multiplier rules are valid for the same constraints and any other smooth cost function.

In the case where X = �n, a typical approach to asserting the admittance of Lagrange

multipliers is to assume structure in the constraint set, which guarantees that the tangent

cone TC(x∗) has the form

TC(x∗) = V (x∗),

where V (x∗) is the cone of first order feasible variations at x∗, given by

V (x∗) =
{
y | ∇hi(x∗)′y = 0, i = 1, . . . , m, ∇gj(x∗)′y ≤ 0, j ∈ A(x∗)

}
. (0.3)

In this case we say that x∗ is a quasiregular point or that quasiregularity holds at x∗ [other

terms used are x∗ “satisfies Abadie’s constraint qualification” (Abadie [Aba67], Bazaraa,
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Sherali, and Shetty [BSS93]), or “is a regular point” (Hestenes [Hes75])]. When there is no

abstract set constraint, it is well-known (see e.g., Bertsekas [Ber99], p. 332) that for a given

smooth f for which x∗ is a local minimum, there exist Lagrange multipliers if and only if

∇f(x∗)′y ≥ 0, ∀ y ∈ V (x∗).

This result, a direct consequence of Farkas’ Lemma, leads to the classical theorem that the

constraint set admits Lagrange multipliers at x∗ if x∗ is a quasiregular point. Therefore,

quasiregularity plays a central role in the classical line of development of Lagrange multi-

plier theory for the case X = �n. A common line of analysis is based on establishing various

conditions, also known as constraint qualifications, which imply quasiregularity, and there-

fore imply that the constraint set admits Lagrange multipliers. This line of analysis requires

fairly complicated proofs to show the relations of constraint qualifications to quasiregular-

ity. Some of the most useful constraint qualifications, for the case when X = �n are the

following:

CQ1: X = �n and x∗ is a regular point in the sense that the equality constraint gradients

∇hi(x∗), i = 1, . . . , m, and the active inequality constraint gradients ∇gj(x∗), j ∈
A(x∗), are linearly independent.

CQ2: X = �n, the equality constraint gradients ∇hi(x∗), i = 1, . . . , m, are linearly inde-

pendent, and there exists a y ∈ �n such that

∇hi(x∗)′y = 0, i = 1, . . . , m, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗).

For the case where there are no equality constraints, this is known as the Arrow-

Hurwitz-Uzawa constraint qualification, introduced in [AHU61]. In the more general

case where there are equality constraints, it is known as the Mangasarian-Fromovitz

constraint qualification, introduced in [MaF67].

CQ3: X = �n, the functions hi are linear and the functions gj are concave.

It is well-known that all of the above constraint qualifications imply the quasiregularity

condition TC(x∗) = V (x∗), and therefore imply that the constraint set admits Lagrange

multipliers (see e.g., [BNO02], or [BSS93]; a survey of constraint qualifications is given by
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Peterson [Pet73]). These results constitute the classical pathway to Lagrange multipliers

for the case where X = �n. Figure 4.0.1 summarizes the relationships discussed above for

the case X = �n.

Regularity
Mangasarian-Fromovitz
 Constraint Qualification

Linear/Concave
   Constraints

Quasiregularity

Admittance of Lagrange
           Multipliers

Figure 4.0.1. Characterizations of the constraint set C that imply admittance

of Lagrange multipliers in the case where X = �n.

Unfortunately, when X is a strict subset of �n, the situation changes significantly

because there does not appear to be a satisfactory extension of the notion of quasiregu-

larity, which implies admittance of Lagrange multipliers. We will focus on the relation of

quasiregularity and the existence of Lagrange multipliers later in this chapter. In the next

section, we introduce an alternative notion, and show that it forms the connecting link

between major constraint qualifications and the existence of Lagrange multipliers, even for

the case when X is a strict subset of �n.

4.1. PSEUDONORMALITY

The enhanced Fritz John conditions of Chapter 3 provides Lagrange multiplier-like con-

ditions that hold for the general optimization problem , which includes an abstract set

constraint, under no assumption on the constraint set structure. If X is regular, and if we
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can guarantee that the cost multiplier µ∗
0 is positive for some constraint set, then it auto-

matically follows that the constraint set admits Lagrange multipliers. This motivates us to

introduce the following general constraint qualification under which the cost multiplier µ∗
0

in Prop. 3.2.3 cannot be zero.

Definition 4.1.1: We say that a feasible vector x∗ of problem (0.1)-(0.2) is pseudonor-

mal if there are no scalars λ1, . . . , λm, µ1, . . . , µr, and a sequence {xk} ⊂ X such that:

(i) −
(∑m

i=1 λi∇hi(x∗) +
∑r

j=1 µj∇gj(x∗)
)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r, and µj = 0 for all j /∈ A(x∗), where

A(x∗) =
{
j | gj(x∗)

}
.

(iii) {xk} converges to x∗ and

m∑

i=1

λihi(xk) +
r∑

j=1

µjgj(xk) > 0, ∀ k. (1.1)

If x∗ is a pseudonormal local minimum, the enhanced Fritz John conditions of Prop.

3.2.3 cannot be satisfied with µ∗
0 = 0, so that µ∗

0 can be taken equal to 1. Then, if X is

regular at x∗, the vector (λ∗, µ∗) = (λ∗
1, . . . , λ

∗
m, µ∗

1, . . . , µ
∗
r) obtained from the enhanced

Fritz John conditions is an informative Lagrange multiplier.

4.1.1. Relation to Major Constraint Qualifications

We now focus on various constraint qualifications, which will be shown in this section

to imply pseudonormality of a feasible vector x∗ and hence also existence of informative

Lagrange multipliers (assuming also regularity of X at x∗).

The next constraint qualification applies to the case where X is a strict subset of �n.

A weaker version of this constraint qualification, for the case where X is a closed convex

set and none of the equality constraints is linear, was shown in [Ber99]. We refer to it as
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the generalized Mangasarian-Fromovitz constraint qualification (MFCQ for short), since it

reduces to CQ2 when X = �n and none of the equality constraints is linear.

MFCQ:

(a) The equality constraints with index above some m ≤ m:

hi(x) = 0, i = m + 1, . . . , m,

are linear.

(b) There does not exist a vector λ = (λ1, . . . , λm) such that

−
m∑

i=1

λi∇hi(x∗) ∈ NX(x∗) (1.2)

and at least one of the scalars λ1, . . . , λm is nonzero.

(c) The subspace

VL(x∗) =
{
y | ∇hi(x∗)′y = 0, i = m + 1, . . . , m

}

has a nonempty intersection with either the interior of NX(x∗)∗, or, in the case

where X is convex, with the relative interior of NX(x∗)∗.

(d) There exists a y ∈ NX(x∗)∗ such that

∇hi(x∗)′y = 0, i = 1, . . . , m, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗).

The following is an example where the above constraint qualification holds. Later in

this section, we will show that this constraint qualification implies pseudonormality, and

therefore guarantees existence of Lagrange multipliers.

Example 4.1.1:
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Let the constraint set be specified by

C =
{
x ∈ �2 | h1(x) = 0, h2(x) = 0, g(x) ≤ 0

}
,

where

h1(x) = x1, h2(x) = −x1, g(x) = x3
1 − x2,

(see Fig. 4.1.2). Consider the feasible vector x∗ = (0, 0). The vector [0, 1]′ satisfies condition

(d) of MFCQ. Hence, although none of CQ1-CQ3 holds at x∗, MFCQ holds at x∗.

g(x)

x*=(0,0)

∇g(x*)

∇h2(x*) ∇h1(x*)

x1

x2

Figure 4.1.2. Constraints of Example 4.1.1.

MFCQ has several special cases for constraint sets that have different representations

in terms of equalities and inequalities. For instance, if we assume that all the equality

constraints are nonlinear, we get the following special case of MFCQ.
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MFCQa:

(a) There does not exist a nonzero vector λ = (λ1, . . . , λm) such that

−
m∑

i=1

λi∇hi(x∗) ∈ NX(x∗).

(b) There exists a y ∈ NX(x∗)∗ such that

∇hi(x∗)′y = 0, i = 1, . . . , m, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗).

When there are no inequality constraints and no linear equality constraints, the fol-

lowing constraint qualification guarantees that assumption (b) of MFCQ holds.

MFCQb: There are no inequality constraints, the gradients ∇hi(x∗), i = 1, . . . , m,

are linearly independent, and the subspace

V (x∗) =
{
y | ∇hi(x∗)′y = 0, i = 1, . . . , m

}

contains a point in the interior of NX(x∗)∗.

To see why this condition implies assumption (b) of MFCQ, assume the contrary, i.e.,

there exists a nonzero vector λ = (λ1, . . . , λm) such that

−z = −
m∑

i=1

λi∇hi(x∗) ∈ NX(x∗).

The vector z cannot be equal to 0, since this would contradict the linear independence

assumption of the ∇hi(x∗). By the definition of the polar cone, the preceding relation

implies that

z′y ≥ 0, ∀ y ∈ NX(x∗)∗.

Let y be the vector of hypothesis in MFCQb, i.e., y ∈ V (x∗) ∩ int
(
NX(x∗)∗

)
. Since y ∈

int
(
NX(x∗)∗

)
, it follows that, for some sufficiently small positive α, the vector y − αz ∈
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NX(x∗)∗. Substituting this vector in the preceding relation, we obtain

z′y ≥ α‖z‖2 > 0,

where the strict inequality follows since z �= 0. But this contradicts the fact that y ∈ V (x∗),

which implies that z′y = 0, thus proving that MFCQb implies assumption (b) of MFCQ.

Note that the interior point of NX(x∗)∗ assumption of condition MFCQb cannot be replaced

by a relative interior point assumption.

Finally, we state another useful special case of MFCQ, which holds under convexity

assumptions.

MFCQc: X is convex, the functions hi, i = 1, . . . , m are linear, and the linear manifold

L =
{
x | hi(x) = 0, i = 1, . . . , m

}

contains a point in the relative interior of X. Furthermore, the functions gj are convex

and there exists a feasible vector x satisfying

gj(x) < 0, ∀ j ∈ A(x∗).

The convexity assumptions in MFCQc can be used to establish the corresponding

assumptions (c) and (d) of MFCQ. In particular, if X is convex, we have from Proposition

2.2.9 that

cl
(
FX(x∗)

)
= TX(x∗) = NX(x∗)∗,

which, using properties of relative interior, implies that

ri
(
FX(x∗)

)
= ri

(
NX(x∗)∗

)
. (1.3)

Let x̃ be the vector of hypothesis in condition MFCQc, i.e., x̃ ∈ L ∩ ri(X). Using the

Taylor’s theorem for affine constraint functions hi, we see that

0 = hi(x̃) = hi(x∗) + ∇hi(x∗)′(x̃ − x∗) = ∇hi(x∗)′(x̃ − x∗), ∀ i = 1, . . . , m,

which implies that the vector x̃ − x∗ ∈ VL(x∗). Since x̃ ∈ ri(X) and X is convex, the

vector x̃ − x∗ belongs to the set ri
(
FX(x∗)

)
, which in view of relation (1.3) implies that
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x̃ − x∗ ∈ ri
(
NX(x∗)∗

)
, hence showing that condition (c) of MFCQ holds. Similarly, the

feasible vector x given in MFCQc could be used in conjunction with the linearity of equality

constraints and the convexity of inequality constraints to construct the vector y that satisfies

the properties of condition (d) of MFCQ.

In the case where there are no equality constraints, MFCQc is a classical constraint

qualification, introduced by Slater [Sla50] and known as Slater’s condition.

The following constraint qualification is simpler to state than the preceding ones, and

it is immediately seen to imply pseudonormality. It is the constraint qualification introduced

by Rockafellar [Roc93], [RoW98], who used McShanes’s line of proof to derive Fritz John

conditions in their classical form where the CS condition replaces the CV condition, for

problems that involve an abstract set constraint.

RCQ: The set

W =
{
(λ, µ) | λ1, . . . , λm, µ1, . . . , µr satisfy conditions (i) and (ii)

of the definition of pseudonormality
} (1.4)

consists of just the vector 0.

It can be shown that the set W of Eq. (1.4) is the recession cone of the set of R-

multipliers, provided that the set of R-multipliers is a nonempty convex set (so that we can

talk about its recession cone; note that the set of R-multipliers is closed, cf. Chapter 3). To

see this, let (λ∗, µ∗) be any R-multiplier. For any (λ, µ) ∈ W , we have for all α ≥ 0,

−



∇f(x∗) +
m∑

i=1

(λ∗
i + αλi)∇hi(x∗) +

r∑

j=1

(µ∗
j + αµj)∇gj(x∗)



 ∈ NX(x∗),

since NX(x∗) is a cone. Thus (λ, µ) is a direction of recession. Conversely, if (λ, µ) is a

direction of recession, then for all R-multipliers (λ∗, µ∗), we have for all α > 0,

−
(

1
α
∇f(x∗) +

m∑

i=1

(
1
α

λ∗
i + λi

)
∇hi(x∗)

+
r∑

j=1

(
1
α

µ∗
j + µj

)
∇gj(x∗)

)

∈ NX(x∗).
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Taking the limit as α → 0 and using the closedness of NX(x∗), we see that (λ, µ) ∈ W .

Since compactness of a closed, convex set is equivalent to its recession cone consisting

of just the 0 vector, it follows that if the set of R-multipliers is nonempty, convex, and

compact, then RCQ holds. In view of Prop. 3.2.3, the reverse is also true, provided the set

of R-multipliers is guaranteed to be convex, which is true in particular if NX(x∗) is convex.

Thus, if NX(x∗) is convex, RCQ is equivalent to the set of R-multipliers being nonempty

and compact .

We will next show that if X is regular at x∗, then RCQ is equivalent to MFCQa. This

was shown by Rockafellar and Wets in the case where X = �n (see page 226 of [RoW98]).

1 We generalize it to the case where X is regular in the following proposition.

Proposition 4.1.1: If X is regular at x∗, the constraint qualifications MFCQa and

RCQ are equivalent.

Proof: We first show that MFCQa implies RCQ. Assume MFCQa holds:

(a) There does not exist a nonzero vector λ = (λ1, . . . , λm) such that

m∑

i=1

λi∇hi(x∗) ∈ NX(x∗).

(b) There exists a d ∈ NX(x∗)∗ = TX(x∗) (since X is regular at x∗) such that

∇hi(x∗)′d = 0, i = 1, . . . , m, ∇gj(x∗)′d < 0, ∀ j ∈ A(x∗).

To arrive at a contradiction, assume that RCQ does not hold, i.e., there are scalars

λ1, . . . , λm, µ1, . . . , µr, not all of them equal to zero, such that

(i)

−




m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗)



 ∈ NX(x∗).

1 In fact, it is well known that, for X = �n, MFCQa is equivalent to nonemptiness and

compactness of the set of Lagrange multipliers, this is a result of Gauvin [Gau77].

116



(ii) µj ≥ 0, for all j = 1, . . . , r, and µj = 0 for all j /∈ A(x∗).

In view of our assumption that X is regular at x∗, condition (i) can be written as

−




m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗)



 ∈ TX(x∗)∗,

or equivalently,



m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗)





′

y ≥ 0, ∀ y ∈ TX(x∗). (1.5)

Since not all the λi and µj are equal to 0, we conclude that µj > 0 for at least one j ∈ A(x∗);

otherwise condition (a) of MFCQa would be violated. Since µ∗
j ≥ 0 for all j, with µ∗

j = 0

for j /∈ A(x∗) and µ∗
j > 0 for at least one j, we obtain

m∑

i=1

λi∇hi(x∗)′d +
r∑

j=1

µj∇gj(x∗)′d < 0,

where d ∈ TX(x∗) is the vector in condition (b) of MFCQa. But this contradicts Eq. (1.5),

showing that RCQ holds.

Conversely, assume that RCQ holds. It can be seen that this implies condition (a) of

MFCQa. We next show that condition (b) of MFCQa holds. Let H denote the subspace

spanned by the vectors ∇h1(x∗), . . . ,∇hm(x∗), and let G denote the cone generated by the

vectors ∇gj(x∗), j ∈ A(x∗). Then, the orthogonal complement of H is given by

H⊥ =
{
y | ∇hi(x∗)′y = 0, ∀ i = 1, . . . , m

}
,

whereas the polar of G is given by

G∗ =
{
y | ∇gj(x∗)′y ≤ 0, ∀ j ∈ A(x∗)

}
.

The interior of G∗ is the set

int(G∗) =
{
y | ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗)

}
.

Assume, to arrive at a contradiction, that condition (b) of MFCQa does not hold. This

implies that

NX(x∗)∗ ∩
(
H⊥ ∩ int

(
G∗

))
= Ø.
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Since X is regular at x∗, the preceding is equivalent to

TX(x∗) ∩
(
H⊥ ∩ int

(
G∗

))
= Ø.

The regularity of X at x∗ implies that TX(x∗) is convex. Similarly, since the interior of a

convex set is convex and the intersection of two convex sets is convex, it follows that the set

H⊥ ∩ int
(
G∗

)
is convex. By the Separating Hyperplane Theorem, there exists some vector

a �= 0 such that

a′x ≤ a′y, ∀ x ∈ TX(x∗), ∀ y ∈
(
H⊥ ∩ int

(
G∗

))
,

or equivalently,

a′(x − y) ≤ 0, ∀ x ∈ TX(x∗), ∀ y ∈
(
H⊥ ∩ G∗

)
,

which implies that

a ∈
(
TX(x∗) − (H⊥ ∩ G∗)

)∗
.

Using the properties of cones given in Proposition 2.1.2 of Chapter 2, we have

(
TX(x∗) − (H⊥ ∩ G∗)

)∗= TX(x∗)∗ ∩ −(H⊥ ∩ G∗)∗

= TX(x∗)∗ ∩ −
(
cl(H + G)

)

= TX(x∗)∗ ∩ −(H + G)

= NX(x∗) ∩ −(H + G),

where the second equality follows since H⊥ and G∗ are closed and convex, and the third

equality follows since H and G are both polyhedral cones. Combining the preceding rela-

tions, it follows that there exists a nonzero vector a that belongs to the set

NX(x∗) ∩ −(H + G).

But this contradicts RCQ, thus completing our proof. Q.E.D.

Clearly RCQ implies pseudonormality, since the vectors in W are not required to

satisfy condition (iii) of the definition of pseudonormality. However, CQ3 and MFCQ do
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not preclude unboundedness of the set of Lagrange multipliers and hence do not imply RCQ.

Thus RCQ is not as effective in unifying various constraint qualifications as pseudonormality,

which is implied by all these constraint qualifications, as shown in the following proposition.

Proposition 4.1.2: A feasible point x∗ of problem (0.1)-(0.2) is pseudonormal if

any one of the constraint qualifications CQ1-CQ3, MFCQ, and RCQ is satisfied.

Proof: We will not consider CQ2 since it is a special case of MFCQ. It is also evident

that RCQ implies pseudonormality. Thus we will prove the result for the cases CQ1, CQ3,

and MFCQ in that order. In all cases, the method of proof is by contradiction, i.e., we

assume that there are scalars λi, i = 1, . . . , m, and µj , j = 1, . . . , r, which satisfy conditions

(i)-(iii) of the definition of pseudonormality. We then assume that each of the constraint

qualifications CQ1, CQ3 and MFCQ is in turn also satisfied, and in each case we arrive at

a contradiction.

CQ1 : Since X = �n, implying that NX(x∗) = {0}, and we also have µj = 0 for all

j /∈ A(x∗) by condition (ii), we can write condition (i) as

m∑

i=1

λi∇hi(x∗) +
∑

j∈A(x∗)

µj∇gj(x∗) = 0.

Linear independence of ∇hi(x∗), i = 1, . . . , m, and ∇gj(x∗), j ∈ A(x∗), implies that λi = 0

for all i and µj = 0 for all j ∈ A(x∗). This, together with the condition µj = 0 for all

j /∈ A(x∗), contradicts condition (iii).

CQ3 : By the linearity of hi and the concavity of gj , we have for all x ∈ �n,

hi(x) = hi(x∗) + ∇hi(x∗)′(x − x∗), i = 1, . . . , m,

gj(x) ≤ gj(x∗) + ∇gj(x∗)′(x − x∗), j = 1, . . . , r.

By multiplying these two relations with λi and µj , and by adding over i and j, respectively,
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we obtain
m∑

i=1

λihi(x) +
r∑

j=1

µjgj(x) ≤
m∑

i=1

λihi(x∗) +
r∑

j=1

µjgj(x∗)

+




m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗)





′

(x − x∗)

= 0,

(1.6)

where the last equality holds because we have λihi(x∗) = 0 for all i and µjgj(x∗) = 0 for

all j [by condition (ii)], and

m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗) = 0

[by condition (i)]. On the other hand, by condition (iii), there is an x satisfying
∑m

i=1 λihi(x)+
∑r

j=1 µjgj(x) > 0, which contradicts Eq. (1.6).

MFCQ : We first show by contradiction that at least one of the λ1, . . . , λm and µj , j ∈ A(x∗)

must be nonzero. If this were not so, then by using a translation argument we may assume

that x∗ is the origin, and the linear constraints have the form a′
ix = 0, i = m + 1, . . . , m.

Using condition (i) we have

−
m∑

i=m+1

λiai ∈ NX(x∗). (1.7)

Consider first the case where X is necessarily convex and there is an interior point y

of NX(x∗)∗ that satisfies a′
iy = 0 for all i = m+1, . . . , m. Let S be an open sphere centered

at the origin such that y + d ∈ NX(x∗)∗ for all d ∈ S. We have from Eq. (1.7),

m∑

i=m+1

λia′
id ≥ 0, ∀ d ∈ S,

from which we obtain
∑m

i=m+1 λiai = 0. This contradicts condition (iii), which requires

that for some x ∈ S ∩ X we have
∑m

i=m+1 λia′
ix > 0.

Consider now the alternative case where X is convex and there is a relative interior

point y of NX(x∗)∗ that satisfies a′
iy = 0 for all i = m + 1, . . . , m. Then, we have

m∑

i=m+1

λia′
iy = 0,
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while from Eq. (1.7), we have

m∑

i=m+1

λia′
iy ≥ 0, ∀ y ∈ NX(x∗)∗.

The convexity of X implies that X −{x∗} ⊂ T (x∗) = NX(x∗)∗ and that NX(x∗)∗ is convex

(cf. Proposition 2.2.19 of Chapter 2). Since the linear function
∑m

i=m+1 λia′
iy attains a

minimum over NX(x∗)∗ at the relative interior point y, it follows that this linear function is

constant over NX(x∗)∗. Thus, we have
∑m

i=m+1 λia′
iy = 0 for all y ∈ NX(x∗)∗, and hence

[since X − {x∗} ⊂ NX(x∗)∗ and λia′
ix

∗ = 0 for all i]

m∑

i=m+1

λia′
ix = 0, ∀ x ∈ X.

This contradicts condition (iii), which requires that for some x ∈ X we have
∑m

i=m+1 λia′
ix >

0. This completes the proof that at least one of the λ1, . . . , λm and µj , j ∈ A(x∗) must be

nonzero.

Next we show by contradiction that we cannot have µj = 0 for all j. If this were so,

by condition (i) there must exist a nonzero vector λ = (λ1, . . . , λm) such that

−
m∑

i=1

λi∇hi(x∗) ∈ NX(x∗). (1.8)

By what has been proved above, the multipliers λ1, . . . , λm of the nonlinear constraints

cannot be all zero, so Eq. (1.8) contradicts assumption (b) of MFCQ.

Hence we must have µj > 0 for at least one j, and since µj ≥ 0 for all j with µj = 0

for j /∈ A(x∗), we obtain

m∑

i=1

λi∇hi(x∗)′y +
r∑

j=1

µj∇gj(x∗)′y < 0,

for the vector y of NX(x∗)∗ that appears in assumption (d) of MFCQ. Thus,

−




m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗)



 /∈
(
NX(x∗)∗

)∗
.

Since NX(x∗) ⊂
(
NX(x∗)∗

)∗, this contradicts condition (i). Q.E.D.
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Note that the constraint qualifications MFCQ and RCQ guarantee pseudonormality, as

per the preceding proposition, but do not guarantee that the constraint set admits Lagrange

multipliers at a point x∗, unless X is regular at x∗. As an illustration, in Example 3.4.5,

x∗ satisfies MFCQ and RCQ, and is therefore pseudonormal. However, as we have seen,

in this example, the constraint set does not admit Lagrange multipliers, although there do

exist R-multipliers for every smooth cost function f , consistently with the pseudonormality

of x∗.

4.1.2. Quasinormality

A general constraint qualification, called quasinormality, was introduced for the special case

where X = �n by Hestenes in [Hes75]. Hestenes also showed that quasinormality implies

quasiregularity (see also Bertsekas [Ber99], Proposition 3.3.17). Since it is simple to show

that the major classical constraint qualifications imply quasinormality (see e.g. Bertsekas

[Ber99]), this provides an alternative line of proof that these constraint qualifications im-

ply quasiregularity for the case X = �n. In this section, we investigate the extension of

quasinormality to the case where X �= �n. We subsequently compare this notion with

pseudonormality in this section, and also with an extension of the notion of quasiregularity

in the next section.

Definition 4.1.2: We say that a feasible vector x∗ of problem (1.1)-(1.2) is quasi-

normal if there are no scalars λ1, . . . , λm, µ1, . . . , µr, and a sequence {xk} ⊂ X such

that:

(i) −
(∑m

i=1 λi∇hi(x∗) +
∑r

j=1 µj∇gj(x∗)
)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r.

(iii) λ1, . . . , λm, µ1, . . . , µr are not all equal to 0.

(iv) {xk} converges to x∗ and for all k, λihi(xk) > 0 for all i with λi �= 0 and

µjgj(xk) > 0 for all j with µj �= 0.
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If x∗ is a quasinormal local minimum, the enhanced Fritz John conditions of Prop. 3.2.3

cannot be satisfied with µ∗
0 = 0, so that µ∗

0 can be taken equal to 1. Then, if X is regular

at x∗, the vector (λ∗, µ∗) = (λ∗
1, . . . , λ

∗
m, µ∗

1, . . . , µ
∗
r) obtained from the enhanced Fritz John

conditions is an informative Lagrange multiplier. It can be seen that pseudonormality

implies quasinormality. The following example shows that the reverse is not true.

Example 4.1.2:

Let the constraint set be specified by

C = {x ∈ X | g1(x) ≤ 0, g2(x) ≤ 0, g3(x) ≤ 0} ,

where X = �2 and

g1(x) = x2
1 + (x2 − 1)2 − 1,

g2(x) =
(
x1 − cos(π/6)

)2
+

(
x2 + sin(π/6)

)2 − 1,

g3(x) =
(
x1 + cos(π/6)

)2
+

(
x2 + sin(π/6)

)2 − 1.

(see Fig. 4.1.3). Consider the feasible vector x∗ = (0, 0). Because there is no x that simulta-

neously violates all three constraints, quasinormality is satisfied. However, a straightforward

calculation shows that we have

∇g1(x
∗) + ∇g2(x

∗) + ∇g3(x
∗) = 0,

while

g1(x) + g2(x) + g3(x) = 3(x2
1 + x2

2) > 0, ∀ x �= x∗,

so by using µ = (1, 1, 1), the conditions for pseudonormality of x∗ are violated. Thus, even

when X = �n, quasinormality does not imply pseudonormality.

In the next proposition, we show that under the assumption that NX(x∗) is convex

(which is true in particular if X is regular at x∗), quasinormality is in fact equivalent to a

slightly weaker version of pseudonormality.
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g1(x) < 0

x* = 0

g2(x) < 0

x2

x1

g3(x) < 0

_

_ _

Figure 4.1.3. Constraints of Example 4.1.2.

Proposition 4.1.3 Let x∗ be a feasible vector of problem (1.1)-(1.2), and assume

that the normal cone NX(x∗) is convex. Then x∗ is quasinormal if and only if there

are no scalars λ1, . . . , λm, µ1, . . . , µr satisfying conditions (i)-(iii) of the definition of

quasinormality together with the following condition:

(iv′) {xk} converges to x∗ and for all k, λihi(xk) ≥ 0 for all i, µjgj(xk) ≥ 0 for all j,

and
m∑

i=1

λihi(xk) +
r∑

j=1

µjgj(xk) > 0.

Proof: For simplicity we assume that all the constraints are inequalities that are active at

x∗. First we note that if there are no scalars µ1, . . . , µr with the properties described in the

proposition, then there are no scalars µ1, . . . , µr satisfying the more restrictive conditions

(i)-(iv) in the definition of quasinormality, so x∗ is not quasinormal. To show the converse,

suppose that there exist scalars µ1, . . . , µr satisfying conditions (i)-(iii) of the definition of

quasinormality together with condition (iv′), i.e., there exist scalars µ1, . . . , µr such that:

(i) −
(∑r

j=1 µj∇gj(x∗)
)
∈ NX(x∗).
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(ii) µj ≥ 0, for all j = 1, . . . , r.

(iii) {xk} converges to x∗ and for all k, gj(xk) ≥ 0 for all j, and

r∑

j=1

µjgj(xk) > 0.

Condition (iii) implies that gj(xk) ≥ 0 for all j, and gj(xk) > 0 for some j such that

µj > 0. Without loss of generality, we can assume j = 1, so that we have g1(xk) > 0

for all k. Let aj = ∇gj(x∗), j = 1, . . . , r. Then by appropriate normalization, we can

assume that µ1 = 1, so that

−



a1 +
r∑

j=2

µjaj



 ∈ NX(x∗). (1.9)

If −a1 ∈ NX(x∗), the choice of scalars µ1 = 1 and µj = 0 for all j = 2, . . . , r, satisfies

conditions (i)-(iv) in the definition of quasinormality, hence x∗ is not quasinormal and

we are done. Assume that −a1 /∈ NX(x∗). The assumptions of Lemma 3.3.2 are

satisfied, so it follows that there exist scalars µ2, . . . , µr, not all 0, such that

−



a1 +
r∑

j=2

µjaj



 ∈ NX(x∗), (1.10)

and a vector d ∈ NX(x∗)∗ with a′
jd > 0, for all j = 2, . . . , r such that µj > 0. Thus

∇gj(x∗)′d > 0, ∀ j = 2, . . . , r with µj > 0, (1.11)

while by Eq. (1.10), the µj satisfy

−



∇g1(x∗) +
r∑

j=2

µj∇gj(x∗)



 ∈ NX(x∗). (1.12)

Next, we show that the scalars µ1 = 1 and µ2, . . . , µr satisfy condition (iv) in the def-

inition of quasinormality, completing the proof. We use Proposition 2.2.18 of Chapter

2 to argue that for the vector d ∈ NX(x∗)∗ and the sequence xk constructed above,

there is a sequence dk ∈ TX(xk) such that dk → d. Since xk → x∗ and dk → d, by Eq.

(1.11), we obtain for all sufficiently large k,

∇gj(xk)′dk > 0, ∀ j = 2, . . . , r with µj > 0.
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Since dk ∈ TX(xk), there exists a sequence {xk
ν} ⊂ X such that, for each k, we have

xk
ν �= xk for all ν and

xk
ν → xk,

xk
ν − xk

‖xk
ν − xk‖ → dk

‖dk‖ , as ν → ∞. (1.13)

For each j = 2, . . . , r such that µj > 0, we use Taylor’s theorem for the constraint

function gj . We have, for some vector sequence ξν converging to 0,

gj(xk
ν) = gj(xk) + ∇gj(xk)′(xk

ν − xk) + o(‖xk
ν − xk‖)

≥ ∇gj(xk)′
(

dk

‖dk‖ + ξν

)
‖xk

ν − xk‖ + o(‖xk
ν − xk‖)

= ‖xk
ν − xk‖

(
∇gj(xk)′

dk

‖dk‖ + ∇gj(xk)′ξν +
o(‖xk

ν − xk‖)
‖xk

ν − xk‖

)
,

where the inequality above follows from Eq. (1.13) and the assumption that gj(xk) ≥ 0,

for all j and xk. It follows that for ν and k sufficiently large, there exists xk
ν ∈ X

arbitrarily close to xk such that gj(xk
ν) > 0, for all j = 2, . . . , r with µj > 0. Since

g1(xk) > 0 and g1 is a continuous function, we have that g1(x̃) > 0 for all x̃ in some

neighborhood Vk of xk. Since xk → x∗ and xk
ν → xk for each k, by choosing ν and

k sufficiently large, we get gj(xk
ν) > 0 for j = 1 and each j = 2, . . . , r with µj > 0.

This together with Eq. (1.12), violates the quasinormality assumption of x∗, which

completes the proof. Q.E.D.

The following example shows that convexity of NX(x∗) is an essential assumption for

the conclusion of Prop. 4.1.3.

Example 4.1.3:

Here X is the subset of �2 given by

X =
{
x2 ≥ 0 |

(
(x1 + 1)2 + (x2 + 1)2 − 2

) (
(x1 − 1)2 + (x2 + 1)2 − 2

)
≤ 0

}

(see Fig. 4.1.4). The normal cone NX(x∗) consists of the three rays shown in Fig. 4.1.4, and

is not convex. Let there be two inequality constraints with

g1(x) = −(x1 + 1)2 − (x2)
2 + 1, g2(x) = −x2.
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x*=0

x2

x1

NX(x*)

X
C∇g2(x*) 

∇g1(x*) 

Figure 4.1.4. Constraints of Example 4.1.3.

In order to have −
∑

j
µj∇gj(x

∗) ∈ NX(x∗), we must have µ1 > 0 and µ2 > 0. There is no

x ∈ X such that g2(x) > 0, so x∗ is quasinormal. However, for −2 ≤ x1 ≤ 0 and x2 = 0,

we have x ∈ X, g1(x) > 0, and g2(x) = 0. Hence x∗ does not satisfy the weak form of

pseudonormality given in Prop. 4.1.3.

4.1.3. Quasiregularity

We will now provide an extension of the notion of quasiregularity, which also applies to the

case where X is a strict subset of �n. We will then develop the connection of this notion

with pseudonormality and quasinormality, and we explain the reasons why quasiregularity

is not a satisfactory vehicle for unification of Lagrange multiplier theory when X �= �n.

We recall that for the case where X = �n, a point x in the constraint set

C =
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}

is said to be a quasiregular point of C if

TC(x) = V (x), (1.14)

where V (x) is the cone of first order feasible variations

V (x) =
{
y | ∇hi(x)′y = 0, i = 1, . . . , m,∇gj(x)′y ≤ 0, j ∈ A(x)

}
, (1.15)
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where A(x) =
{
j | gj(x) = 0

}
.

A classical approach to showing existence of Lagrange multipliers for the case where

X = �n is to argue that at a local minimum x∗ of f over C, we have ∇f(x∗)′y ≥ 0 for all

y ∈ TC(x∗). Thus, if x∗ is quasiregular, we have

∇f(x∗)′y ≥ 0, ∀ y ∈ V (x∗).

By Farkas’ Lemma, it follows that we either have that ∇f(x∗) = 0 or else there exists a

nonzero Lagrange multiplier vector (λ∗, µ∗).

For the case where X �= �n, we say that a feasible vector x∗ of problem (0.1)-(0.2) is

quasiregular if

TC(x∗) = V (x∗) ∩ TX(x∗).

Our first aim is to show that under a regularity assumption on X, quasinormality implies

quasiregularity. Moreover, since pseudonormality implies quasinormality, it follows that

under the given assumption, pseudonormality also implies quasiregularity. This shows that

any constraint qualification that implies pseudonormality imply quasiregularity.

We first prove the following result that relates to the properties of the quasinormality

condition.

Proposition 4.1.4: If a vector x∗ ∈ C is quasinormal, then all feasible vectors in a

neighborhood of x∗ are quasinormal.

Proof: We assume for simplicity that all the constraints of problem (0.1)-(0.2) are inequal-

ities; equality constraints can be handled by conversion to inequality constraints. Assume

that the claim is not true. Then we can find a sequence {xk} ⊂ C such that xk �= x∗ for

all k, xk → x∗ and xk is not quasinormal for all k. This implies, for each k, the existence

of scalars ξk
1 , . . . , ξk

r , and a sequence {xk
l } ⊂ X such that:

(a)

−




r∑

j=1

ξk
j ∇gj(xk)



 ∈ NX(xk), (1.16)
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(b) ξk
j ≥ 0, for all j = 1, . . . , r, and ξk

1 , . . . , ξk
r are not all equal to 0.

(c) liml→∞ xk
l = xk, and for all l, ξk

j gj(xk
l ) > 0 for all j with ξk

j > 0.

For each k denote,

δk =

√√
√
√

r∑

j=1

(
ξk
j

)2
,

µk
j =

ξk
j

δk
, j = 1, . . . , r, ∀ k.

Since δk �= 0 and NX(xk) is a cone, conditions (a)-(c) for the scalars ξk
1 , . . . , ξk

r yield the

following set of conditions that hold for each k for the scalars µk
1 , . . . , µk

r :

(i)

−




r∑

j=1

µk
j∇gj(xk)



 ∈ NX(xk), (1.17)

(ii) µk
j ≥ 0, for all j = 1, . . . , r, and µk

1 , . . . , µk
r are not all equal to 0.

(iii) There exists a sequence {xk
l } ⊂ X such that liml→∞ xk

l = xk, and for all l, µk
j gj(xk

l ) >

0 for all j with µk
j > 0.

Since by construction we have
r∑

j=1

(
µk

j

)2 = 1, (1.18)

the sequence {µk
1 , . . . , µk

r} is bounded and must contain a subsequence that converges to

some nonzero limit {µ∗
1, . . . , µ

∗
r}. Assume without loss of generality that {µk

1 , . . . , µk
r} con-

verges to {µ∗
1, . . . , µ

∗
r}. Taking the limit in Eq. (1.17), and using the closedness of the normal

cone, we see that this limit must satisfy

−




r∑

j=1

µ∗
j∇gj(x∗)



 ∈ NX(x∗). (1.19)

Moreover, from condition (ii) and Eq. (1.18), it follows that µ∗
j ≥ 0, for all j = 1, . . . , r, and

µ∗
1, . . . , µ

∗
r are not all equal to 0. Finally, let

J = {j | µ∗
j > 0}.
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Then, there exists some k0 such that for all k ≥ k0, we must have µk
j > 0 for all j ∈ J .

From condition (iii), it follows that for each k ≥ k0, there exists a sequence {xk
l } ⊂ X with

lim
l→∞

xk
l = xk, gj(xk

l ) > 0, ∀ l, ∀ j ∈ J.

For each k ≥ k0, choose an index lk such that l1 < . . . < lk−1 < lk and

lim
k→∞

xk
lk

= x∗.

Consider the sequence {yk} defined by

yk = xk0+k−1
lk0+k−1

, k = 1, 2, . . . .

It follows from the preceding relations that {yk} ⊂ X and

lim
k→∞

yk = x∗, gj(yk) > 0, ∀ k, ∀ j ∈ J.

The existence of scalars µ∗
1, . . . , µ

∗
r that satisfy Eq. (1.19) and the sequence {yk} that sat-

isfies the preceding relation violates the quasinormality of x∗, thus completing the proof.

Q.E.D.

We next use Proposition 2.3.21 of Chapter 2, i.e., gradient characterization of vectors

in the polar of the tangent cone, to obtain a specific representation of a vector that belongs

to TC(x)∗ for some x ∈ C under a quasinormality condition. This result will be central in

showing the relation of quasinormality to quasiregularity.

Proposition 4.1.5: If x is a quasinormal vector of C, then any y ∈ TC(x)∗ can be

represented as

y = z +
r∑

j=1

µj∇gj(x),

where z ∈ NX(x), µj ≥ 0, for all j = 1, . . . , r. Furthermore, there exists a sequence

{xk} ⊂ X that converges to x and is such that µjgj(xk) > 0 for all k and all j with

µj > 0.
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Proof: We assume for simplicity that all the constraints are inequalities. Let y be a vector

that belongs to TC(x)∗. By Prop. 2.3.21, there exists a smooth function F that achieves a

strict global minimum over C at x with −∇F (x) = y. We use a quadratic penalty function

approach. For each k = 1, 2, . . ., choose an ε > 0 and consider the “penalized” problem

minimize F k(x)

subject to x ∈ X ∩ S,

where

F k(x) = F (x) +
k

2

r∑

j=1

(
g+

j (x)
)2

,

and S = {x | ||x − x|| ≤ ε}. Since X ∩ S is compact, by Weierstrass’ theorem, there exists

an optimal solution xk for the above problem. We have for all k

F (xk) +
k

2

r∑

j=1

(
g+

j (xk)
)2 = F k(xk) ≤ F k(x) = F (x) (1.20)

and since F (xk) is bounded over X ∩ S, we obtain

lim
k→∞

|g+
j (xk)| = 0, j = 1, . . . , r;

otherwise the left-hand side of Eq. (1.20) would become unbounded from above as k → ∞.

Therefore, every limit point x̃ of {xk} is feasible, i.e., x̃ ∈ C. Furthermore, Eq. (1.20) yields

F (xk) ≤ F (x) for all k, so by taking the limit along the relevant subsequence as k → ∞,

we obtain

F (x̃) ≤ F (x).

Since x̃ is feasible, we have F (x) < F (x̃) (since F achieves a strict global minimum over C

at x), unless x̃ = x, which when combined with the preceding inequality yields x̃ = x. Thus

the sequence {xk} converges to x, and it follows that xk is an interior point of the closed

sphere S for all k greater than some k.

For k ≥ k, we have the necessary optimality condition, ∇F k(xk)′y ≥ 0 for all y ∈
TX(xk), or equivalently −∇F k(xk) ∈ TX(xk)∗, which is written as

−



∇F (xk) +
r∑

j=1

ζk
j ∇gj(xk)



 ∈ TX(xk)∗, (1.21)
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where

ζk
j = kg+

j (xk). (1.22)

Denote,

δk =

√√
√
√1 +

r∑

j=1

(ζk
j )2, (1.23)

µk
0 =

1
δk

, µk
j =

ζk
j

δk
, j = 1, . . . , r. (1.24)

Then by dividing Eq. (1.21) with δk, we get

−



µk
0∇F (xk) +

r∑

j=1

µk
j∇gj(xk)



 ∈ TX(xk)∗. (1.25)

Since by construction the sequence {µk
0 , µk

1 , . . . , µk
r} is bounded, it must contain a subse-

quence that converges to some nonzero limit {µ0, µ1, . . . , µr}. From Eq. (1.25) and the

defining property of the normal cone NX(x) [xk → x, zk → z, and zk ∈ TX(xk)∗ for all k,

imply that z ∈ NX(x)], we see that µ0 and the µj must satisfy

−



µ0∇F (x) +
r∑

j=1

µj∇gj(x)



 ∈ NX(x). (1.26)

Furthermore, from Eq. (1.24), we have gj(xk) > 0 for all j such that µj > 0 and k sufficiently

large. By using the quasinormality of x, it follows that we cannot have µ0 = 0, and by

appropriately normalizing, we can take µ0 = 1 and obtain

−



∇F (x) +
r∑

j=1

µj∇gj(x)



 ∈ NX(x).

Since −∇F (x) = y , we see that

y = z +
r∑

j=1

µj∇gj(x),

where z ∈ NX(x), and the scalars µ1, . . . , µr and the sequence {xk} satisfy the desired

properties, thus completing the proof. Q.E.D.
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Next, we prove the main result of this section, namely that under a regularity assump-

tion on X, quasinormality implies quasiregularity.

Proposition 4.1.6: If x∗ is a quasinormal vector of C and X is regular at x∗, then

x∗ is quasiregular.

Proof: We assume for simplicity that all the constraints are inequalities. We must show

that TC(x∗) = TX(x∗)∩V (x∗), and to this end, we first show that TC(x∗) ⊂ TX(x∗)∩V (x∗).

Indeed, since C ⊂ X, using the definition of the tangent cone, we have

TC(x∗) ⊂ TX(x∗). (1.27)

To show that TC(x∗) ⊂ V (x∗), let y be a nonzero tangent of C at x∗. Then there exist

sequences {ξk} and {xk} ⊂ C such that xk �= x∗ for all k,

ξk → 0, xk → x∗,

and
xk − x∗

‖xk − x∗‖ =
y

‖y‖ + ξk.

By the mean value theorem, we have for all j and k

0 ≥ gj(xk) = gj(x∗) + ∇gj(x̃k)′(xk − x∗) = ∇gj(x̃k)′(xk − x∗),

where x̃k is a vector that lies on the line segment joining xk and x∗ . This relation can be

written as
‖xk − x∗‖

‖y‖ ∇gj(x̃k)′yk ≤ 0,

where yk = y + ξk‖y‖, or equivalently

∇gj(x̃k)′yk ≤ 0, yk = y + ξk‖y‖.

Taking the limit as k → ∞, we obtain ∇gj(x∗)′y ≤ 0 for all j, thus proving that y ∈ V (x∗).

Hence, TC(x∗) ⊂ V (x∗). Together with Eq. (1.27), this shows that

TC(x∗) ⊂ TX(x∗) ∩ V (x∗). (1.28)
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To show the reverse inclusion TX(x∗) ∩ V (x∗) ⊂ TC(x∗), we first show that

NC(x∗) ⊂ TX(x∗)∗ + V (x∗)∗.

Let y∗ be a vector that belongs to NC(x∗). By the definition of the normal cone, this

implies the existence of a sequence {xk} ⊂ C that converges to x∗ and a sequence {yk}
that converges to y∗, with yk ∈ TC(xk)∗ for all k. In view of the assumption that x∗ is

quasinormal, it follows from Prop. 4.1.4 that for all sufficiently large k, xk is quasinormal.

Then, by Prop. 4.1.5, for each sufficiently large k, there exists a vector zk ∈ NX(xk) and

nonnegative scalars µk
1 , . . . , µk

r such that

yk = zk +
r∑

j=1

µk
j∇gj(xk). (1.29)

Furthermore, there exists a sequence {xk
l } ⊂ X such that

lim
l→∞

xk
l = xk,

and for all l, µk
j gj(xk

l ) > 0 for all j with µk
j > 0.

We will show that the sequence {µk
1 , . . . , µk

r} is bounded. Suppose, to arrive at a

contradiction, that this sequence is unbounded, and assume without loss of generality, that

for each k, at least one of the µk
j is nonzero. For each k, denote

δk =
1

∑r
j=1(µ

k
j )2

,

and

ξk
j = δkµk

j , ∀ j = 1, . . . , r.

It follows that δk > 0 for all k and δk → 0 as k → ∞. Then, by multiplying Eq. (1.29) by

δk, we obtain

δkyk = δkzk +
r∑

j=1

ξk
j ∇gj(xk),

or equivalently, since zk ∈ NX(xk) and δk > 0, we have

δkzk =



δkyk −
r∑

j=1

ξk
j ∇gj(xk)



 ∈ NX(xk).
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Note that by construction, the sequence {ξk
1 , . . . , ξk

r } is bounded, and therefore has a nonzero

limit point {ξ∗1 , . . . , ξ∗r}. Taking the limit in the preceding relation along the relevant sub-

sequence and using the facts δk → 0, yk → y∗, and xk → x∗ together with the closedness

of the normal cone NX(x∗) (cf. Prop. 4.1.4), we see that δkzk converges to some vector z∗

in NX(x∗), where

z∗ = −




r∑

j=1

ξ∗j∇gj(x∗)



 .

Furthermore, by defining an index lk for each k such that l1 < · · · < lk−1 < lk and

lim
k→∞

xk
lk

= x∗,

we see that for all j with ξ∗j > 0, we have gj(xk
lk

) > 0 for all sufficiently large k. The existence

of such scalars ξ∗1 , . . . , ξ∗r violates the quasinormality of the vector x∗, thus showing that

the sequence {µk
1 , . . . , µk

r} is bounded.

Let {µ∗
1, . . . , µ

∗
r} be a limit point of the sequence {µk

1 , . . . , µk
r}, and assume without

loss of generality that {µk
1 , . . . , µk

r} converges to {µ∗
1, . . . , µ

∗
r}. Taking the limit as k → ∞

in Eq. (1.29), we see that zk converges to some z∗, where

z∗ = y∗ −




r∑

j=1

µ∗
j∇gj(x∗)



 . (1.30)

By closedness of the normal cone NX(x∗) and in view of the assumption that X is regular

at x∗, so that NX(x∗) = TX(x∗)∗ , we have that z∗ ∈ TX(x∗)∗. Furthermore, by defining

an index lk for each k such that l1 < · · · < lk−1 < lk and

lim
k→∞

xk
lk

= x∗,

we see that for all j with µ∗
j > 0, we have gj(xk

ik
) > 0 for all sufficiently large k, showing

that gj(x∗) = 0. Hence, it follows that µ∗
j = 0 for all j /∈ A(x∗), and using Eq. (1.30), we

can write y∗ as

y∗ = z∗ +




∑

j∈A(x∗)

µ∗
j∇gj(x∗)



 .
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By Farkas’ Lemma, V (x∗)∗ is the cone generated by ∇gj(x∗), j ∈ A(x∗). Hence, it follows

that y∗ ∈ TX(x∗)∗ + V (x∗)∗, and we conclude that

NC(x∗) ⊂ TX(x∗)∗ + V (x∗)∗. (1.31)

Finally, using the properties relating to cones and their polars and the fact that TX(x∗)

is convex (which follows by the regularity of X at x∗, cf. Proposition 2.2.19 of Chapter 2),

we obtain
(
TX(x∗)∗ + V (x∗)∗

)∗ = TX(x∗) ∩ V (x∗) ⊂ NC(x∗)∗. (1.32)

Using the relation NC(x∗)∗ ⊂ TC(x∗) (cf. Proposition 2.2.18 of Chapter 2), this shows that

TX(x∗) ∩ V (x∗) ⊂ TC(x∗), which together with Eq. (1.28) concludes the proof. Q.E.D.

Note that in the preceding proof, we showed

TC(x∗) ⊂ TX(x∗) ∩ V (x∗),

which implies that

TX(x∗)∗ + V (x∗)∗ ⊂ (TX(x∗) ∩ V (x∗))∗ ⊂ TC(x∗)∗. (1.33)

We also proved that if X is regular at x∗ and x∗ is quasinormal, we have

NC(x∗) ⊂ TX(x∗)∗ + V (x∗)∗,

[cf. Eq. (1.31)]. Combining the preceding two relations with the relation TC(x∗)∗ ⊂ NC(x∗),

we obtain

TC(x∗)∗ = NC(x∗),

thus showing that quasinormality of x∗ together with regularity of X at x∗ implies that C

is regular at x∗.

Note that contrary to the case where X = �n, quasiregularity is not sufficient to

guarantee the existence of a Lagrange multiplier. What is happening here is that the

constraint set admits Lagrange multipliers at x∗ if and only if

TC(x∗)∗ = TX(x∗)∗ + V (x∗)∗, (1.34)
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(cf. Chapter 3). Note that this condition is equivalent to the following two conditions1 :

(a) V (x∗) ∩ cl
(
conv

(
TX(x∗)

))
= cl

(
conv

(
TC(x∗)

))
,

(b) V (x∗)∗ + TX(x∗)∗ is a closed set.

Quasiregularity is a weaker condition, even under the assumption that X is regular,

since the vector sum V (x∗)∗ + TX(x∗)∗ need not be closed even if both of these cones

themselves are closed, as shown in the following example.

Example 4.1.4:

Consider the constraint set C ⊂ �3 specified by,

C =
{
x ∈ X | h(x) = 0

}
,

where

X =
{
(x1, x2, x3) | x2

1 + x2
2 ≤ x2

3, x3 ≤ 0
}
,

and

h(x) = x2 + x3.

Let x∗ denote the origin. Since X is closed and convex, we have that X = TX(x∗), and that

X is regular at x∗. The cone of first order feasible variations, V (x∗), is given by

V (x∗) =
{
(x1, x2, x3) | x2 + x3 = 0

}
.

It can be seen that the set V (x∗)∗ + TX(x∗)∗ is not closed, implying that C does not admit

Lagrange multipliers. On the other hand, we have

TC(x∗) = TX(x∗) ∩ V (x∗),

i.e., x∗ is quasiregular.

Hence, quasiregularity is not powerful enough to assert the existence of Lagrange

multipliers for the general case X �= �n, unless additional assumptions are imposed. It is

1 Note that this is exactly the same condition given by Guignard [Gui69] as a sufficient

condition for the constraint set to admit Lagrange multipliers at x∗.
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effective only for special cases, for instance, when TX(x∗) is a convex and polyhedral cone,

in which case the vector sum V (x∗)∗ + TX(x∗)∗ is closed, and quasiregularity implies the

admittance of Lagrange multipliers. Thus the importance of quasiregularity, the classical

pathway to Lagrange multipliers when X = �n, diminishes when X �= �n. By contrast,

pseudonormality provides satisfactory unification of the theory.

4.2. EXACT PENALTY FUNCTIONS

In this section, we relate the problem

minimize f(x)

subject to x ∈ C,
(2.1)

where

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
, (2.2)

with another problem that involves minimization over X of the cost function

Fc(x) = f(x) + c




m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)



 ,

where c is a positive scalar, and as earlier, we use the notation

g+
j (x) = max

{
0, gj(x)

}
.

Here the equality and inequality constraints are eliminated, and instead the cost is aug-

mented with a term that penalizes the violation of these constraints. The severity of the

penalty is controlled by c, which is called the penalty parameter , and determines the extent

to which the penalized problem approximates the original constrained problem. As c takes

higher values, the penalty approximation becomes increasingly accurate. In fact, it can

be shown that the optimal solution of the original constrained problem can be obtained by

solving a sequence of problems, where we minimize Fck over X, for some sequence {ck} that

goes to infinity (see [Ber99]). However, although the penalized problem is less constrained,
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it becomes seriously ill-conditioned as c goes to infinity. It turns out that, under some con-

ditions on the constraint set, the optimal solution of the original constrained problem can

be obtained by a single optimization problem, which minimizes the penalized cost function

Fc over X, for a finite value of the parameter c.

Definition 4.2.3: Let us say that the constraint set C admits an exact penalty

at the feasible point x∗ if for every smooth function f for which x∗ is a strict local

minimum of f over C, there is a scalar c > 0 such that x∗ is also a local minimum of

the function Fc over X.

Note that, like admittance of Lagrange multipliers, admittance of an exact penalty is

a property of the constraint set C, and does not depend on the cost function f of problem

(2.1).

Traditionally exact penalty functions have been viewed as useful computational devices

and they have not been fully integrated within the theory of constraint qualifications. There

has been research on finding conditions that guarantee that the constraint set admits an

exact penalty for optimization problems that do not have an abstract set constraint. In fact,

it was shown by Pietrzykowski [Pie69] that the constraint set admits an exact penalty if

CQ1 holds. Similarly, the fact that CQ2 implies admittance of an exact penalty was studied

by Zangwill [Zan67], Han and Mangasarian [HaM79], and Bazaraa and Goode [BaG82]. In

this work, we will clarify the relations of exact penalty functions, Lagrange multipliers, and

constraint qualifications. We show that pseudonormality is the key property that places all

these notions in one big picture. In the process we prove in a unified way that the constraint

set admits an exact penalty for a much larger variety of constraint qualifications than has

been known up to now.

Note that, in the absence of additional assumptions, it is essential for our analysis

to require that x∗ be a strict local minimum in the definition of admittance of an exact

penalty. This restriction may not be important in analytical studies, since we can replace a

cost function f(x) with the cost function f(x) + ‖x − x∗‖2 without affecting the problem’s

Lagrange multipliers. On the other hand if we allow functions f involving multiple local
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minima, it is hard to relate constraint qualifications such as the ones of the preceding

section, the admittance of an exact penalty, and the admittance of Lagrange multipliers.

This is illustrated in the following example.

Example 4.2.5:

Consider the 2-dimensional constraint set specified by

h1(x) =
x2

x2
1 + 1

= 0, x ∈ X = �2.

The feasible points are of the form x = (x1, 0) with x1 ∈ �, and at each of them the gradient

∇h1(x
∗) is nonzero, so x∗ is regular (CQ1 holds). If f(x) = x2, every feasible point is a local

minimum, yet for any c > 0, we have

inf
x∈�2

{
x2 + c

|x2|
x2

1 + 1

}
= −∞

(take x1 = x2 as x2 → −∞). Thus, the penalty function is not exact for any c > 0. It

follows that regularity of x∗ would not imply the admittance of an exact penalty if we were

to change the definition of the latter to allow cost functions with nonstrict local minima.

We will next show that pseudonormality implies that the constraint set admits an exact

penalty, which in turn, together with regularity of X at x∗, implies that the constraint set

admits Lagrange multipliers. We first use the generalized Mangasarian-Fromovitz constraint

qualification MFCQ to obtain a necessary condition for a local minimum of the exact penalty

function.
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Proposition 4.2.7: Let x∗ be a local minimum of

Fc(x) = f(x) + c




m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)





over X. Then there exist λ∗
1, . . . , λ

∗
m and µ∗

1, . . . , µ
∗
r such that

−



∇f(x∗) + c




m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗)







 ∈ NX(x∗),

λ∗
i = 1 if hi(x∗) > 0, λ∗

i = −1 if hi(x∗) < 0,

λ∗
i ∈ [−1, 1] if hi(x∗) = 0,

µ∗
j = 1 if gj(x∗) > 0, µ∗

j = 0 if gj(x∗) < 0,

µ∗
j ∈ [0, 1] if gj(x∗) = 0.

Proof: The problem of minimizing Fc(x) over x ∈ X can be converted to the problem

minimize f(x) + c




m∑

i=1

wi +
r∑

j=1

vj





subject to x ∈ X, hi(x) ≤ wi, −hi(x) ≤ wi, i = 1, . . . , m,

gj(x) ≤ vj , 0 ≤ vj , j = 1, . . . , r,

which involves the auxiliary variables wi and vj . It can be seen that at the local minimum of

this problem that corresponds to x∗, the constraint qualification MFCQ is satisfied. Thus,

by Prop. 4.1.2, this local minimum is pseudonormal, and hence there exist multipliers sat-

isfying the enhanced Fritz John conditions (Prop. 3.2.3) with µ∗
0 = 1. With straightforward

calculation, these conditions yield scalars λ∗
1, . . . , λ

∗
m and µ∗

1, . . . , µ
∗
r , satisfying the desired

conditions. Q.E.D.
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Proposition 4.2.8: If x∗ is a feasible vector of problem (2.1)-(2.2), which is pseudonor-

mal, the constraint set admits an exact penalty at x∗.

Proof: Assume the contrary, i.e., that there exists a smooth f such that x∗ is a strict

local minimum of f over the constraint set C, while x∗ is not a local minimum over x ∈ X

of the function

Fk(x) = f(x) + k




m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)





for all k = 1, 2, . . . Let ε > 0 be such that

f(x∗) < f(x), ∀ x ∈ C with x �= x∗ and ‖x − x∗‖ ≤ ε. (2.3)

Suppose that xk minimizes Fk(x) over the (compact) set of all x ∈ X satisfying ‖x−x∗‖ ≤ ε.

Then, since x∗ is not a local minimum of Fk over X, we must have that xk �= x∗, and that

xk is infeasible for problem (2.2), i.e.,

m∑

i=1

|hi(xk)| +
r∑

j=1

g+
j (xk) > 0. (2.4)

We have

Fk(xk) = f(xk) + k




m∑

i=1

|hi(xk)| +
r∑

j=1

g+
j (xk)



 ≤ f(x∗), (2.5)

so it follows that hi(xk) → 0 for all i and g+
j (xk) → 0 for all j. The sequence {xk} is

bounded and if x is any of its limit points, we have that x is feasible. From Eqs. (2.3) and

(2.5) it then follows that x = x∗. Thus {xk} converges to x∗ and we have ‖xk −x∗‖ < ε for

all sufficiently large k. This implies the following necessary condition for optimality of xk

(cf. Prop. 4.2.7):

−



1
k
∇f(xk) +

m∑

i=1

λk
i ∇hi(xk) +

r∑

j=1

µk
j∇gj(xk)



 ∈ NX(xk), (2.6)

where

λk
i = 1 if hi(xk) > 0, λk

i = −1 if hi(xk) < 0,
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λk
i ∈ [−1, 1] if hi(xk) = 0,

µk
j = 1 if gj(xk) > 0, µk

j = 0 if gj(xk) < 0,

µk
j ∈ [0, 1] if gj(xk) = 0.

In view of Eq. (2.4), we can find a subsequence {λk, µk}k∈K such that for some equality

constraint index i we have |λk
i | = 1 and hi(xk) �= 0 for all k ∈ K or for some inequality

constraint index j we have µk
j = 1 and gj(xk) > 0 for all k ∈ K. Let (λ, µ) be a limit point

of this subsequence. We then have (λ, µ) �= (0, 0), µ ≥ 0. Using the closure of the mapping

x �→ NX(x), Eq. (2.6) yields

−




m∑

i=1

λi∇hi(x∗) +
r∑

j=1

µj∇gj(x∗)



 ∈ NX(x∗). (2.7)

Finally, for all k ∈ K, we have λk
i hi(xk) ≥ 0 for all i, µk

j gj(xk) ≥ 0 for all j, so that,

for all k ∈ K, λihi(xk) ≥ 0 for all i, µjgj(xk) ≥ 0 for all j. Since by construction of the

subsequence {λk, µk}k∈K, we have for some i and all k ∈ K, |λk
i | = 1 and hi(xk) �= 0, or for

some j and all k ∈ K, µk
j = 1 and gj(xk) > 0, it follows that for all k ∈ K,

m∑

i=1

λihi(xk) +
r∑

j=1

µjgj(xk) > 0. (2.8)

Thus, Eqs. (2.7) and (2.8) violate the hypothesis that x∗ is pseudonormal. Q.E.D.

The following example shows that the converse of Prop. 4.2.8 does not hold. In partic-

ular, the admittance of an exact penalty function at a point x∗ does not imply pseudonor-

mality.

Example 4.2.6:

Here we show that even with X = �n, the admittance of an exact penalty function does not

imply quasiregularity and hence also pseudonormality. Let C =
{
x ∈ �2 | g1(x) ≤ 0, g2(x) ≤

0, g3(x) ≤ 0
}
, where

g1(x) = −(x1 + 1)2 − (x2)
2 + 1,

g2(x) = x2
1 + (x2 + 1)2 − 1,

g3(x) = −x2,
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(see Fig. 4.2.5). The only feasible solution is x∗ = (0, 0) and the constraint gradients are

given by

∇g1(x
∗) = (−2, 0), ∇g2(x

∗) = (0, 2), ∇g3(x
∗) = (0,−1).

At x∗ = (0, 0), the cone of first order feasible variations V (x∗) is equal to the nonnegative x1

axis and strictly contains T (x∗), which is equal to x∗ only. Therefore x∗ is not a quasiregular

point.

g1(x) = 0

x*=0=TX(x*)

g2(x) = 0

∇g2(x*) 

∇g1(x*) 

x2

x1

∇g3(x*) 

V(x*)

Figure 4.2.5. Constraints of Example 4.2.6. The only feasible point is

x∗ = (0, 0). The tangent cone T (x∗) and the cone of first order feasible

variations V (x∗) are also illustrated in the figure.

However, it can be seen that the directional derivative of the function P (x) =
∑3

j=1
g+

j (x)

at x∗ is positive in all directions. This implies that we can choose a sufficiently large penalty

parameter c, so that x∗ is a local minimum of the function Fc(x). Therefore, the constraint

set admits an exact penalty function at x∗.

The following proposition establishes the connection between admittance of an exact

penalty and admittance of Lagrange multipliers. Regularity of X is an important condition

for this connection.
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Proposition 4.2.9: Let x∗ be a feasible vector of problem (2.1)-(2.2), and let X be

regular at x∗. If the constraint set admits an exact penalty at x∗, it admits Lagrange

multipliers at x∗.

Proof: Suppose that a given smooth function f(x) has a local minimum at x∗. Then the

function f(x)+‖x−x∗‖2 has a strict local minimum at x∗. Since C admits an exact penalty

at x∗, there exist λ∗
i and µ∗

j satisfying the conditions of Prop. 4.2.7. (The term ‖x−x∗‖2 in

the cost function is inconsequential, since its gradient at x∗ is 0.) In view of the regularity

of X at x∗, the λ∗
i and µ∗

j are Lagrange multipliers. Q.E.D.

Note that because Prop. 4.2.7 does not require regularity of X, the proof of Prop.

4.2.9 can be used to establish that admittance of an exact penalty implies the admittance

of R-multipliers, as defined in Section 5.3. On the other hand, Example 3.4.5 shows that

the regularity assumption on X in Prop. 4.2.9 cannot be dispensed with. Indeed, in that

example, x∗ is pseudonormal, the constraint set admits an exact penalty at x∗ (consistently

with Prop. 4.2.8), but it does not admit Lagrange multipliers.

The relations shown thus far are summarized in Fig. 4.2.6, which illustrates the uni-

fying role of pseudonormality. In this figure, unless indicated otherwise, the implications

cannot be established in the opposite direction without additional assumptions (the exer-

cises provide the necessary additional examples and counterexamples).

4.3. USING THE EXTENDED REPRESENTATION

In practice, the set X can often be described in terms of smooth equality and inequality

constraints:

X =
{
x | hi(x) = 0, i = m + 1, . . . ,m, gj(x) ≤ 0, j = r + 1, . . . , r

}
.

145



X= Rn

Constraint Qualifications
          CQ1-CQ3

Pseudonormality

Admittance of Informative and
  Strong Lagrange Multipliers

Admittance of Lagrange
             Multipliers 
Admittance of Lagrange
             Multipliers 

Admittance of an Exact
             Penalty

Quasiregularity

X≠≠≠≠ Rn and Regular

Constraint Qualifications
          MFCQ, RCQ

Pseudonormality

Admittance of Informative and
  Strong Lagrange Multipliers

Admittance of Lagrange
             Multipliers 

Admittance of an Exact
             Penalty

Pseudonormality

Constraint Qualifications
          MFCQ, RCQ

Admittance of an Exact
             Penalty

Admittance of R-multipliers

X≠≠≠≠ Rn 

Figure 4.2.6. Relations between various conditions, which when satisfied at a

local minimum x∗, guarantee the admittance of an exact penalty and correspond-

ing multipliers. In the case where X is regular, the tangent and normal cones

are convex. Hence, by Prop. 3.3.6, the admittance of Lagrange multipliers im-

plies the admittance of an informative Lagrange multiplier, while by Prop. 4.2.5,

pseudonormality implies the admittance of an exact penalty.
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Then the constraint set C can alternatively be described without an abstract set constraint,

in terms of all of the constraint functions

hi(x) = 0, i = 1, . . . ,m, gj(x) ≤ 0, j = 1, . . . , r.

We call this the extended representation of C, to contrast it with the representation (2.2),

which we call the original representation. Issues relating to exact penalty functions and

Lagrange multipliers can be investigated for the extended representation and results can be

carried over to the original representation by using the following proposition.

Proposition 4.3.10:

(a) If the constraint set admits Lagrange multipliers in the extended representation,

it admits Lagrange multipliers in the original representation.

(b) If the constraint set admits an exact penalty in the extended representation, it

admits an exact penalty in the original representation.

Proof: (a) The hypothesis implies that for every smooth cost function f for which x∗ is

a local minimum there exist scalars λ∗
1, . . . , λ

∗
m and µ∗

1, . . . , µ
∗
r satisfying

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗) = 0, (3.1)

µ∗
j ≥ 0, ∀ j = 0, 1, . . . , r,

µ∗
j = 0, ∀ j /∈ A(x∗),

where

A(x∗) = {j | gj(x∗) = 0, j = 1, . . . , r}.

For y ∈ TX(x∗), we have ∇hi(x∗)′y = 0 for all i = m + 1, . . . ,m, and ∇gj(x∗)′y ≤ 0 for all

j = r + 1, . . . , r with j ∈ A(x∗). Hence Eq. (3.1) implies that



∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑

j=1

µ∗
j∇gj(x∗)





′

y ≥ 0, ∀ y ∈ TX(x∗),
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and it follows that λ∗
i , i = 1, . . . , m, and µ∗

j , j = 1, . . . , r, are Lagrange multipliers for the

original representation.

(b) Consider the exact penalty function for the extended representation:

F c(x) = f(x) + c




m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)



 .

We have Fc(x) = F c(x) for all x ∈ X. Hence if x∗ is an unconstrained local minimum of

F c(x), it is also a local minimum of Fc(x) over x ∈ X. Thus, for a given c > 0, if x∗ is

both a strict local minimum of f over C and an unconstrained local minimum of F c(x), it

is also a local minimum of Fc(x) over x ∈ X. Q.E.D.

Prop. 4.3.10 can be used in the case when all the constraints are linear and X is a

polyhedron. Here, the constraint set need not satisfy pseudonormality (as shown in the

following example). However, by Prop. 4.1.2, it satisfies pseudonormality in the extended

representation, so using Prop. 4.3.10, it admits Lagrange multipliers and an exact penalty

at any feasible point in the original representation.

Example 4.3.7:

Let

C =
{
x ∈ X | a′x ≤ 0, b′x ≤ 0

}
,

where a = (1,−1), b = (−1,−1), and X =
{
x ∈ �2 | a′x ≥ 0, b′x ≥ 0

}
. The constraint set

is depicted in Fig. 4.3.7.

The only feasible point is x∗ = (0, 0). By choosing µ = (1, 1), we get

− (a + b) ∈ TX(x∗)∗,

while in every neighborhood N of x∗ there is an x ∈ X ∩ N such that a′x > 0 and b′x > 0

simultaneously. Hence x∗ is not pseudonormal. This constraint set, however, admits Lagrange

multipliers at x∗ = (0, 0) with respect to its extended representation (cf. Prop. 4.3.10), and

hence it admits Lagrange multipliers at x∗ = (0, 0) with respect to the original representation.
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x*=0

x2

x1ab

X = TX(x*)

TX(x*)⊥

Figure 4.3.7. Constraints of Example 4.3.7. The only feasible point is x∗ =

(0, 0). The tangent cone TX(x∗) and its polar TX(x∗)∗ are shown in the figure.

Note that part (a) of Prop. 4.3.10 does not guarantee the existence of informative

Lagrange multipliers in the original representation, and indeed in the following example,

there exists an informative Lagrange multiplier in the extended representation, but there

exists none in the original representation. For this to happen, of course, the tangent cone

TX(x∗) must be nonconvex, for otherwise Proposition 3.3.6 applies.

Example 4.3.8:

Let the constraint set be represented in extended form without an abstract set constraint as

C =
{
x ∈ �2 | a′

1x ≤ 0, a′
2x ≤ 0, (a′

1x)(a′
2x) = 0

}
,

where a1 = (−1, 0) and a2 = (0,−1). Consider the vector x∗ = (0, 0). It can be verified that

this constraint set admits Lagrange multipliers in the extended representation. Since X = �2

in this representation, the constraint set also admits informative Lagrange multipliers, as

shown by Proposition 3.3.6.

Now let the same constraint set be specified by the two linear constraint functions

a′
1x ≤ 0 and a′

2x ≤ 0 together with the abstract constraint set

X =
{
x | (a′

1x)(a′
2x) = 0

}
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V(x*)
TC(x*)

TC(x*) ⊥ = V(x*)⊥

a1

a2

(a)

X = TX(x*)

TC(x*)

a1

a2

TC(x*) ⊥

(b)

-∇f(x*)

Figure 4.3.8. Constraints and relevant cones for different representations

of the problem in Example 4.3.8.

Here TX(x∗) = X and TX(x∗)∗ = {0}. The normal cone NX(x∗) consists of the coordinate

axes. Since NX(x∗) �= TX(x∗)∗, X is not regular at x∗. Furthermore, TX(x∗) is not convex,

so Prop. 3.3.6(a) cannot be used to guarantee the admittance of an informative Lagrange

multiplier. For any f for which x∗ is a local minimum, we must have −∇f(x∗) ∈ TC(x∗)∗

(see Fig. 4.3.8). The candidate multipliers are determined from the requirement that

−
(

∇f(x∗) +

2∑

j=1

µjaj

)

∈ TX(x∗)∗ = {0},

which uniquely determines µ1 and µ2. If ∇f(x∗) lies in the interior of the positive orthant,

we need to have µ1 > 0 and µ2 > 0. However, there exists no x ∈ X that violates both

constraints a′
1x ≤ 0 and a′

2x ≤ 0, so the multipliers do not qualify as informative. Thus, the

constraint set does not admit informative Lagrange multipliers in the original representation.

150



CHAPTER 5

MULTIPLIERS AND CONVEX PROGRAMMING

In this chapter, our objective is to extend the theory of the preceding chapters to problems

in which continuity/differentiability assumptions are replaced by convexity assumptions.

For this purpose, we adopt a different approach based on tools from convex analysis, such

as hyperplanes, convex set support/separation arguments, and saddle point theory. Because

of the geometric character of the analysis, the results and their proofs admit insightful vi-

sualization. Moreover, since this line of analysis does not depend on using gradients at

a specific local or global minimum, it allows us to analyze the global problem structure.

Thus, it becomes possible to develop a similar theory for optimization problems without

guaranteeing the existence of an optimal solution. This development motivates us to de-

fine an extended notion of pseudonormality, which is a property of the constraint set, as

opposed to being tied to a specific feasible vector of the constraint set. Through the notion

of pseudonormality, this development provides an alternative pathway to obtain strong du-

ality results of convex programming. Pseudonormality also admits an insightful geometric

visualization under convexity assumptions.

We first present a straightforward extension of the theory of the preceding chapters

to convex programming problems by using subgradients, instead of gradients, for convex

possibly nondifferentiable functions. For this purpose, we use generic optimality conditions

given in Chapter 2 for minimizing a convex function over a constraint set. However, us-

ing subgradients requires more stringent assumptions than necessary on the cost and the

constraint functions. Therefore, in Section 5.2, we use a different line of analysis based on

convexity and saddle point theory to derive optimality conditions for convex problems with

optimal solutions.

We next introduce a new notion of a multiplier vector, called geometric, that is not

tied to a specific local or global minimum and does not require differentiability or even

151



continuity of the cost and constraint functions. We show that, under convexity assump-

tions, these multipliers are related to Lagrange multipliers defined in Chapter 3. Then we

focus on problems that do not necessarily have optimal solutions and develop enhanced

Fritz John conditions for these problems. We consider special geometric multipliers that

carry sensitivity information regarding constraints of the problem (similar to ‘informative

Lagrange multipliers’), and investigate the conditions required for their existence. Finally,

we derive Fritz John optimality conditions for a dual optimization problem. Based on these

conditions, we define a special dual optimal solution that carries sensitivity information and

show its existence under general assumptions.

5.1. EXTENSIONS OF THE DIFFERENTIABLE CASE

We consider the problem
minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(1.1)

where g(x) =
(
g1(x), . . . , gr(x)

)
, under the following assumption:

Assumption 5.1.1: The set X is nonempty and closed, and the functions f and gj

are real-valued and convex over �n.

For simplicity, we assume no equality constraints. The extension of the following

analysis to cover equality constraints is straightforward.

The theory of the preceding chapters can be generalized by substituting the gradients

of convex but nondifferentiable functions with subgradients. In particular, we use the

necessary optimality condition given in Chapter 2 for the problem of minimizing a convex

function F (x) over X: if x∗ is a local minimum and the tangent cone TX(x∗) is convex,

then

0 ∈ ∂F (x∗) + TX(x∗)∗. (1.2)

We have the following proposition.
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Proposition 5.1.1: Let x∗ be a local minimum of problem (1.1). Let Assumption

5.1.1 hold, and assume that the tangent cone TX(x∗) is convex. Then, there exist

scalars µ∗
0, and µ∗

1, . . . , µ
∗
r , satisfying the following conditions:

(i) 0 ∈ µ∗
0∂f(x∗) +

∑r
j=1 µ∗

j∂gj(x∗) + NX(x∗).

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(iv) If the index set J = {j �= 0 | µ∗
j > 0} is nonempty, there exists a sequence

{xk} ⊂ X that converges to x∗ and is such that for all k,

f(xk) < f(x∗), µ∗
jgj(xk) > 0, ∀ j ∈ J,

g+
j (xk) = o

(
min
j∈J

gj(x)
)
, ∀ j /∈ J.

Proof: The proof is similar to the proof of Prop. 3.2.3, in that we use the condition

0 ∈ ∂F k(xk) + TX(xk)∗ in place of −∇F k(xk) ∈ TX(xk)∗, together with the closedness of

NX(x∗). Q.E.D.

The straightforward extensions for the definitions of Lagrange multiplier and pseudonor-

mality are as follows.

Definition 5.1.1: Consider problem (1.1), and let x∗ be a local minimum. A vector

µ∗ is called a Lagrange multiplier vector corresponding to f and x∗ if

0 ∈ ∂f(x∗) +
r∑

j=1

µ∗
j∂gj(x∗) + TX(x∗)∗, (1.3)

µ∗ ≥ 0, µ∗′g(x∗) = 0. (1.4)
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Definition 5.1.2: Consider problem (1.1) under Assumption 5.1.1. A feasible vector

x∗ is said to be pseudonormal if there do not exist any scalars µ1, . . . , µr, and any

sequence {xk} ⊂ X such that:

(i) 0 ∈
∑r

j=1 µj∂gj(x∗) + NX(x∗).

(ii) µ ≥ 0 and µ′g(x∗) = 0.

(iii) {xk} converges to x∗ and for all k,

r∑

j=1

µjgj(xk) > 0.

If a local minimum x∗ is pseudonormal and the tangent cone TX(x∗) is convex, by

Prop. 5.1.1, there exists a Lagrange multiplier vector, which also satisfies the extra condition

(iv) of that proposition, hence qualifies as an ‘informative’ Lagrange multiplier.

The theory of Chapter 4 can be extended to relate constraint qualifications to pseudonor-

mality. In particular, it can be seen that a feasible vector x∗ is pseudonormal under any of

the following conditions:

(1) Linearity criterion: X is a polyhedron and the constraint functions gj are affine.

(2) Slater criterion: X is closed and convex, the functions gj : �n �→ � are convex over

�n,1 and there exists a feasible vector x̄ such that

gj(x̄) < 0, j = 1, . . . , r.

Thus, under either any one of these criteria, a Lagrange multiplier vector, satisfying the

extra CV condition (iv) of Prop. 5.1.1, is guaranteed to exist.

1 The assumptions that X is closed and the functions gj are convex over �n can be

relaxed using the proposition given in the next section.
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5.2. OPTIMALITY CONDITIONS FOR CONVEX PROGRAMMING PROBLEMS

We now consider the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(2.1)

where g(x) =
(
g1(x), . . . , gr(x)

)
, under weaker convexity assumptions. [The extension of

the analysis to the case where there are affine equality constraints is straightforward: we

replace each equality constraint with two affine inequality constraints.] In particular, we

assume the following:

Assumption 5.2.2: The set X is nonempty and convex, and the functions f : X �→
� and gj : X �→ � are closed and convex.

Since in this section we do not require convexity of the cost and constraint functions

over the entire space �n, the line of analysis using subgradients breaks down. In the next

proposition, we use a different line of proof that does not rely on gradients and subgradients,

and is based instead on the saddle point theory.

Proposition 5.2.2: (Enhanced Fritz John Conditions for Convex Problems

with an Optimal Solution) Consider problem (2.1) under Assumption 5.2.2,

and let x∗ be a global minimum. Then there exists a scalar µ∗
0 and a vector µ∗ =

(µ∗
1, . . . , µ

∗
r), satisfying the following conditions:

(i) µ∗
0f(x∗) = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}
.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.
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(iv) If the index set J = {j �= 0 | µ∗
j > 0} is nonempty, there exists a sequence

{xk} ⊂ X that converges to x∗ and is such that for all k,

f(xk) < f(x∗), µ∗
jgj(xk) > 0, ∀ j ∈ J, (2.2)

g+
j (xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J. (2.3)

Proof: For each positive integer k and m, we consider the function

Lk,m(x, ξ) = f(x) +
1
k3

‖x − x∗‖2 + ξ′g(x) − ‖ξ‖2

2m
,

For each k, we consider the set

Xk = X ∩
{
x | ‖x − x∗‖ ≤ k)

}
.

Since the functions f and the gj are closed and convex over X, they are closed and convex

over Xk, which implies that, for each ξ ≥ 0, Lk,m(·, ξ) is closed and convex over Xk.

Similarly, for each x ∈ �n, Lk,m(x, ·) is closed, convex, and coercive in ξ. Since Xk is also

bounded, we use the saddle point theorem given in Chapter 2 to assert that Lk,m has a

saddle point over x ∈ Xk and ξ ≥ 0, which we denote by (xk,m, ξk,m).

Since (xk,m, ξk,m) is a saddle point of Lk,m over x ∈ Xk and ξ ≥ 0, the infimum of

Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
1
k3

‖xk,m − x∗‖2 + ξk,m′
g(xk,m)= inf

x∈Xk

{
f(x) +

1
k3

‖x − x∗‖2 + ξk,m′
g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1
k3

‖x − x∗‖2 + ξk,m′
g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1
k3

‖x − x∗‖2

}

= f(x∗).
(2.4)
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Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
1
k3

‖xk,m − x∗‖2 + ξk,m′
g(xk,m) − 1

2m
‖ξk,m‖2

≤ f(xk,m) +
1
k3

‖xk,m − x∗‖2 + ξk,m′
g(xk,m)

≤ f(x∗).

(2.5)

Since Lk,m is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is attained at

ξk,m
j = kg+

j (xk,m), j = 1, . . . , r. (2.6)

This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
1
k3

‖xk,m − x∗‖2 +
m

2
‖g+(xk,m)‖2

≥ f(xk,m) +
1
k3

‖xk,m − x∗‖2

≥ f(xk,m).

(2.7)

From Eqs. (2.5) and (2.7), we see that the sequence {xk,m} belongs to the set
{
x ∈

Xk | f(x) ≤ f(x∗)
}
, which is compact. Hence, {xk,m} has a limit point (as m → ∞),

denoted by xk, which belongs to
{
x ∈ Xk | f(x) ≤ f(x∗)

}
. By passing to a subsequence if

necessary, we can assume without loss of generality that {xk,m} converges to xk as m → ∞.

For each k, the sequence f(xk,m) is bounded from below by infx∈Xk f(x), which is finite by

Weierstrass’ Theorem since f is closed and coercive over Xk. Also, for each k, Lk,m(xk, ξk)

is bounded from above by f(x∗) [cf. Eq. (2.5)], therefore, Eq. (2.7) implies that

lim sup
m→∞

g(xk,m) ≤ 0, (2.8)

from which, by using the lower semicontinuity of gj , we obtain g(xk) ≤ 0, implying that

xk is a feasible point of problem (2.1), so that f(xk) ≥ f(x∗). Using Eqs. (2.5) and (2.7)

together with the lower semicontinuity of f , we also have

f(xk) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(x∗),

hence showing that for each k,

lim
m→∞

f(xk,m) = f(x∗). (2.9)
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Together with Eq. (2.7), this also implies that for each k,

lim
m→∞

xk,m = x∗.

Combining the preceding relations with Eqs. (2.5) and (2.7), for each k, we obtain

lim
m→∞

(
f(xk,m) − f(x∗) + ξk,m′

g(xk,m)
)

= 0. (2.10)

Denote

δk,m =

√√
√
√1 +

r∑

j=1

(ξk,m
j )2,

µk,m
0 =

1
δk,m

, µk,m
j =

ξk,m
j

δk,m
, j = 1, . . . , r. (2.11)

Since δk,m is bounded from below, Eq. (2.10) yields

lim
k→∞

µk,m
0

(
f(xk,m) − f(x∗)

)
+

r∑

j=1

µk,m
j gj(xk,m) = 0. (2.12)

Dividing both sides of the first relation in Eq. (2.4) by δk,m, we get

µk,m
0 f(xk,m)+

1
k3δk,m

‖xk,m−x∗‖2 +
r∑

j=1

µk,m
j gj(xk,m) ≤ µk,m

0 f(x)+
r∑

j=1

µk,m
j gj(x)+

1
kδk,m

,

∀ x ∈ Xk.

Since the sequence {µk,m
0 , µk,m

1 , . . . , µk,m
r } is bounded, it has a limit point (as k → ∞ and

m → ∞), denoted by {µ∗
0, µ

∗
1, . . . , µ

∗
r}. Taking the limit along the relevant subsequences in

the preceding relation together with Eq. (2.12) yields

µ∗
0f(x∗) ≤ µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x), ∀ x ∈ X,

which implies that

µ∗
0f

∗ ≤ inf
x∈X

{
µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)

}

≤ inf
x∈X, gj(x)≤0,

{
µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)

}

≤ inf
x∈X, gj(x)≤0

µ∗
0f(x)

=µ∗
0f

∗.
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Thus, equality holds throughout, and we have

µ∗
0f(x∗) = inf

x∈X

{
µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)

}
,

showing that µ∗
0, . . . , µ

∗
r satisfy conditions (i), (ii), and (iii) of the proposition.

For each k, choose an index mk such that

0 < ‖xk,mk − x∗‖ ≤ 1
k

, |f(xk,mk) − f(x∗)| ≤ 1
k

, ‖g+(xk,mk)‖ ≤ 1
k

,

|µk,mk
j − µ∗

j | ≤
1
k

, j = 1, . . . , r.

Dividing both sides of Eq. (2.6) by δk,mk , and using Eq. (2.11), we obtain

lim
m→∞

mkg+
j (xk,mk)
δk,mk

= µ∗
j , j = 1, . . . , r.

From Eq. (2.7), we also have

f(xk,mk) < f(x∗),

for all k sufficiently large (the case where xk,mk = x∗ for infinitely many k is excluded by

the assumption that the set J is nonempty). Hence the sequence {xk,mk} satisfies condition

(iv) of the proposition as well, concluding the proof. Q.E.D.

We next provide a geometric interpretation for the proof of the preceding proposition.

Consider the function Lk,m, introduced in the proof of the proposition,

Lk,m(x, ξ) = f(x) +
1
k3

‖x − x∗‖2 + ξ′g(x) − ‖ξ‖2

2m
.

Note that the term (1/k3)‖x−x∗‖2 is introduced to ensure that x∗ is a strict local minimum

of the function f(x) + (1/k3)‖x − x∗‖2. In the following discussion, let us assume without

loss of generality that f is strictly convex, so that this term can be ommitted from the

definition of Lk,m.

For any nonnegative vector u ∈ �r, we consider the following perturbed version of the

original problem
minimize f(x)

subject to g(x) ≤ u,

x ∈ Xk = X ∩
{
x

∣
∣ ‖x − x∗‖ ≤ k

}
,

(2.13)
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where u is a nonnegative vector in �r. In this problem, the abstract set constraint is

replaced by the bounded set Xk, which has the property that any x ∈ X belongs to Xk

for all k sufficiently large. We denote the optimal value of problem (2.13) by pk(u). For

each k and m, the saddle point of the function Lk,m(x, ξ), denoted by (xk,m, ξk,m), can be

characterized in terms of pk(u) as follows.

Because of the quadratic nature of Lk,m, the maximization of Lk,m(x, ξ) over ξ ≥ 0

for any fixed x ∈ Xk yields

ξj = mg+
j (x), j = 1, . . . , r, (2.14)

so that we have

Lk,m(xk,m, ξk,m) = inf
x∈Xk

sup
ξ≥0

{
f(x) + ξ′g(x) − ‖ξ‖2

2m

}

= inf
x∈Xk

{
f(x) +

m

2
‖g+(x)‖2

}
.

This minimization can be written as

Lk,m(xk,m, ξk,m) = inf
u∈�r

inf
x∈Xk, g(x)≤u

{
f(x) +

m

2
‖g+(x)‖2

}

= inf
u∈�r

{
pk(u) +

m

2
‖u+‖2

}
.

(2.15)

The vector uk,m = g(xk,m) attains the infimum in the preceding relation. This minimization

can be visualized geometrically as in Fig. 5.2.1. The point of contact of the functions pk(u)

and Lk,m(xk,m, ξk,m)−m/2‖u+‖2 corresponds to the vector uk,m that attains the infimum

in Eq. (2.15).

We can also interpret ξk,m in terms of the function pk. In particular, the infimum of

Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) + ξk,m′
g(xk,m) = inf

x∈Xk

{
f(x) + ξk,m′

g(x)
}

= inf
u∈�r

{
pk(u) + ξk,m′

u
}
.

Replacing uk,m = g(xk,m) in the preceding, and using the fact that xk,m is feasible for

problem (2.13) with u = uk,m, we obtain

pk(uk,m) ≤ f(xk,m) = inf
u∈�r

{
pk(u) + ξk,m′(u − uk,m)

}
.
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0 u

pk(u)

uk,m = g(x k,m)

slope = - ξk,m

Lk,m(xk,m, ξk,m)

 - m/2 ||u+||2Lk,m(xk,m, ξk,m)

Figure 5.2.1. Illustration of the saddle points of the function Lk,m(x, ξ) over

x ∈ Xk and ξ ≥ 0 in terms of the function pk(u), which is the optimal value of

problem (2.13) as a function of u.

Thus, we see that

pk(uk,m) ≤ pk(u) + ξk,m′(u − uk,m), ∀ u ∈ �r,

which, by the definition of the subgradient of a function, implies that

−ξk,m ∈ ∂pk(uk,m),

(cf. Fig. 5.2.1). It can be seen from this interpretation that, the limit of Lk,m(xk,m, ξk,m)

as m → ∞ is equal to pk(0), which is equal to f(x∗) for each k. The limit of the normalized

sequence {
(1, ξk,m)

√
1 + ‖ξk,m‖2

}
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as k → ∞ and m → ∞ yields the Fritz John multipliers that satisfy conditions (i)-(iii) of

the proposition, and the sequence {xk,m} is used to construct the sequence that satisfies

condition (iv) of the proposition.

The next example demonstrates the saddle points of the function Lk,m(x, ξ) and the

effect of using a bounded approximation of the abstract set constraint [cf. problem (2.13)]

on the original problem.

Example 5.2.1:

Consider the two-dimensional problem

minimize f(x)

subject to x1 ≤ 0, x ∈ X = {x | x ≥ 0},

where

f(x) = e−
√

x1x2 , ∀ x ∈ X.

It can be seen that f is convex and closed. Since for feasibility, we must have x1 = 0, we see

that f(x∗) = 1. Consider the following perturbed version of the problem

minimize f(x)

subject to x1 ≤ u, x ∈ X = {x | x ≥ 0}.

The optimal value of this problem, which we denote by p(u), is given by

p(u) = inf
x∈X

sup
µ≥0

{
e−

√
x1x2 + µ(x1 − u)

}
=






∞ if u < 0,

1 if u = 0,

0 if u > 0,

(cf. Fig. 5.2.2). Thus, even though p(0) is finite, p is not lower semicontinuous at 0. We also

consider the following problem,

minimize f(x)

subject to x1 ≤ u, x ∈ Xk = {x | x ≥ 0, ‖x‖ ≤ k},

where the abstract set constraint is approximated by a compact set Xk around x∗ = (0, 0).

The approximation is parameterized by the nonnegative scalar k and becomes increasingly

accurate as k → ∞. The optimal value of this problem, denoted by pk(u), is given by

pk(u) = inf
x∈Xk

sup
µ≥0

{
e−

√
x1x2 + µ(x1 − u)

}
=

{∞ if u < 0,

e−(u2k2−u4)
1
4 if u ≥ 0.
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f(x*) =1

0 u

p(u)

epi(p)

Figure 5.2.2. The function p for Example 5.2.1:

p(u) =






∞ if u < 0,

1 if u = 0,

0 if u > 0.

Here p is not lower semicontinuous at 0.

Note that pk is lower semicontinuous at 0. Hence, the compactification has the effect of

regularizing the function p(u) around u = 0 by using the approximation pk(u), which is lower

semicontinuous at 0.

Figure 5.2.3 illustrates the function pk(u) and the quadratic term −m/2‖u+‖2 for

different values of k and m. For each fixed k, it can be seen that Lk,m(xk,m, ξk,m) → f(x∗),

g(xk,m) = xk,m
1 → 0 and f(xk,m) → f(x∗) as m → ∞.

5.3 GEOMETRIC MULTIPLIERS AND DUALITY

We consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(3.1)

where f : �n �→ �, gj : �n �→ �, j = 1, . . . , r, are given functions, and X is a nonempty

subset of �n, and we use the notation

g(x) =
(
g1(x), . . . , gr(x)

)
,

163



pk(u)
pk(u)

u u0 0

(a) (b)

Lk,m(xk,m, ξk,m)

Lk,m(xk,m, ξk,m)

f(x*) f(x*)

Figure 5.2.3. Illustration of the function pk(u) and the quadratic term −m/2‖u+‖2

for different values of k and m. The figure in (a) corresponds to the case where

k = 2, and m = 1, 10, whereas the figure in (b) corresponds to the case where

k = 50, and m = 1, 10.

for the constraint functions. We denote the optimal value of problem (3.1) by f∗, and

assume throughout this section that −∞ < f∗ < ∞, i.e., the problem is feasible and the cost

function is bounded from below over the constraint set. Again, for clarity and simplicity

of presentation, we only consider inequality constraints and note that the extension to

problems with equality constraints is straightforward.

We have the following notion of a multiplier vector, that is not tied to a specific

optimal solution, and does not require any differentiability assumptions on the cost and

constraint functions.

Definition 5.3.3: We say that there exists a geometric multiplier vector (or simply

a geometric multiplier) for problem (3.1) if there exists a vector µ∗ = (µ∗
1, . . . , µ

∗
r) ≥ 0

that satisfies

f∗ = inf
x∈X

L(x, µ∗), (3.2)

where L(x, µ∗) = f(x) + µ∗′g(x) denotes the Lagrangian function.
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To get the intuition behind the preceding definition, assume that problem (3.1) has an

optimal solution x∗, and the functions f and the gj are smooth. Then, by using the necessary

optimality condition given in Chapter 2 and the definition of a geometric multiplier, we

obtain

−



∇f(x∗) +
r∑

j=1

µ∗
j∇gj(x∗)



 ∈ TX(x∗)∗,

µ∗
jgj(x∗) = 0, ∀ j = 1, . . . , r.

Hence, the geometric multiplier is the vector that renders the Lagrangian function stationary

and satisfies the complementary slackness condition, hence is the Lagrange multiplier for

problem (3.1) under these assumptions.

The geometric multiplier can be visualized using hyperplanes in the constraint-cost

space. In particular, it can be seen that geometric multipliers correspond to slopes of

nonvertical hyperplanes that support the set of constraint-cost pairs as x ranges over the

set X, denoted by S,

S =
{(

g(x), f(x)
) ∣

∣ x ∈ X
}

,

(cf. Fig. 5.3.4).

However, it may not always be possible to find a vector µ∗ that satisfies Eq. (3.2).

Figure 5.3.5 shows some examples where there exist no geometric multipliers. Therefore, a

natural question is to find conditions under which problem (3.1) has at least one geometric

multiplier. One of our goals in this chapter is to develop an approach that addresses this

question under convexity assumptions, through using Fritz John-type optimality conditions.

5.3.1. Relation between Geometric and Lagrange Multipliers

As indicated in the previous section, there is a strong connection between geometric and

Lagrange multipliers for problems with a convex structure. Consider the following assump-

tion:

Assumption 5.3.3: The set X is nonempty closed and convex, and the functions

f and gj are real-valued and convex over �n.
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S={(g(x),f(x)) | x ∈X}

(0,f*)

(µ∗,1)

u

w

Figure 5.3.4. Geometrical interpretation of a geometric multiplier in terms of

hyperplanes supporting the set

S =

{(
g(x), f(x)

) ∣
∣ x ∈ X

}
.

S
(0,f*) S(0,f*)

(a) (b)

Figure 5.3.5. Examples where there are no geometric multipliers.

Before presenting the connection between geometric and Lagrange multipliers, we

recall the definition of Lagrange multipliers, given in Section 5.1.

166



Definition 5.3.4: Consider problem (3.1), and let x∗ be a global minimum. A

vector µ∗ is called a Lagrange multiplier vector if

0 ∈ ∂f(x∗) +
r∑

j=1

µ∗
j∂gj(x∗) + TX(x∗)∗, (3.3)

µ∗ ≥ 0, µ∗′g(x∗) = 0. (3.4)

Proposition 5.3.3: Consider problem (3.1) under Assumption 5.3.3. Assume fur-

ther that problem (3.1) has at least one optimal solution x∗. Then, the set of Lagrange

multipliers associated with x∗ is the same as the set of geometric multipliers.

Proof: If µ∗ is a geometric multiplier, we have µ∗ ≥ 0. By definition (3.2), we have

f(x∗) ≤ f(x) + µ∗′g(x), ∀ x ∈ X,

which, since x∗ ∈ X and g(x∗) ≤ 0, implies that

f(x∗) ≤ f(x∗) + µ∗′g(x∗) ≤ f(x∗),

form which we obtain µ∗′g(x∗) = 0, i.e., CS condition holds. The preceding also implies

that x∗ minimizes L(x, µ∗) over X, so by using the necessary conditions of Chapter 2, we

get

0 ∈ ∂f(x∗) +
r∑

j=1

µ∗
j∂gj(x∗) + TX(x∗)∗.

Thus all the conditions of Definition 5.3.4 are satisfied and µ∗ is a Lagrange multiplier.

Conversely, if µ∗ is a Lagrange multiplier, Definition 5.3.4 and the convexity assump-

tions imply that x∗ minimizes L(x, µ∗) over X, so using also the CS condition [µ∗′g(x∗) = 0],

we have

f∗ = f(x∗) = f(x∗) + µ∗′g(x∗) = L(x∗, µ∗) = min
x∈X

L(x, µ∗).

Since µ∗ ≥ 0 as well, it follows that µ∗ is a geometric multiplier. Q.E.D.
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Prop. 5.3.3 implies that for a convex problem that has multiple optimal solutions, all

the optimal solutions have the same set of Lagrange multipliers, which is the same as the set

of geometric multipliers. However, even for convex problems, the notions of geometric and

Lagrange multipliers are different. In particular, there may exist geometric multipliers, but

no optimal solution and hence no Lagrange multipliers. As an example, consider the one-

dimensional convex problem of minimizing e−x subject to the single inequality constraint

x ≥ 0; it has the optimal value f∗ = 0 and the geometric multiplier µ∗ = 0, but it has no

optimal solution, and therefore no Lagrange multipliers.

Note that if problem (3.1) has at least one optimal solution that is pseudonormal, then

a Lagrange multiplier is guaranteed to exist by the theory of Chapter 4. Under Assumption

5.3.3, this Lagrange multiplier is geometric by Prop. 5.3.3. Recall from Section 5.1 two

criteria that relate to pseudonormality in the convex case and guarantee the existence of at

least one Lagrange multiplier.

(a) Linearity criterion: X is a polyhedron, and the functions gj are affine.

(b) Slater criterion: X is convex, the functions gj : X �→ � are convex, and there exists

a feasible vector x̄ such that

gj(x̄) < 0, j = 1, . . . , r.

Thus using Prop. 5.3.3, we obtain the following proposition.

Proposition 5.3.4: Consider problem (3.1) under Assumption 5.3.3. Assume fur-

ther that problem (3.1) has at least one optimal solution x∗. Then under either the

linearity criterion or the Slater criterion there exists at least one geometric multiplier.

In Section 5.4, we will derive conditions on the constraint set that guarantee existence

of a geometric multiplier, without requiring that the problem has an optimal solution.

5.3.2. Dual Optimization Problem

In this section, we show that conditions related to existence of geometric multipliers give
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information about a ‘dual optimization problem’. We consider problem (3.1) and introduce

the related optimization problem

maximize q(µ)

subject to µ ≥ 0,
(3.5)

where

q(µ) = inf
x inX

{
f(x) + µ′g(x)

}
.

We call problem (3.5) the dual problem and denote its optimal value by q∗. It is well-known

that regardless of the structure of the original problem (3.1), the dual problem has nice

convexity properties, given in the following proposition. (For the proof, see [BNO02].)

Proposition 5.3.5: The function q is concave and upper semicontinuous over �r.

The optimal values of the dual problem and problem (3.1) satisfy the following relation:

Proposition 5.3.6: (Weak Duality Theorem) We always have

q∗ ≤ f∗.

If q∗ = f∗, we say that there is no duality gap, or that strong duality holds. The next

proposition shows that the existence of a geometric multiplier is related to the no duality

gap condition. (For the proof, see [Ber99].)

Proposition 5.3.7: Assume that −∞ < f∗ < ∞. There exists a geometric mul-

tiplier if and only if there is no duality gap and the dual problem has an optimal

solution.

169



5.4 OPTIMALITY CONDITIONS FOR PROBLEMS WITH

NO OPTIMAL SOLUTION

In this section, we consider the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(4.1)

where g(x) =
(
g1(x), . . . , gr(x)

)
, under various convexity assumptions, and we focus on

Fritz John-type of optimality conditions. For simplicity, we assume no equality constraints.

The following analysis extends to the case where we have affine equality constraints, by

replacing each equality constraint by two affine (and hence convex) inequality constraints.

We denote the optimal value of problem (4.1) by f∗, and we assume that −∞ < f∗ < ∞,

i.e., the problem is feasible and the cost function is bounded from below over the constraint

set.

We have already derived in Section 5.2 Fritz John conditions in the case where there

exists an optimal solution x∗. These conditions were shown in their enhanced form, which

includes the CV condition and relates to the notion of pseudonormality.

Our goal in this section is to derive Fritz John optimality conditions without being tied

to a specific optimal solution. In fact we allow problem (4.1) to have no optimal solution

at all. The next proposition presents Fritz John conditions in their classical form, i.e.,

the corresponding Fritz John multipliers satisfy the CS condition as opposed to CV-type

conditions. (We include the proof of this proposition here for the sake of completeness of

the analysis.)
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Proposition 5.4.8: (Fritz John Conditions in Classical Form) Consider prob-

lem (4.1), and assume that X is convex, the functions f and gj are convex over X,

and −∞ < f∗ < ∞. Then there exists a scalar µ∗
0 and a vector µ∗ = (µ∗

1, . . . , µ
∗
r),

satisfying the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}
.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

Proof: Consider the subset of �r+1 given by

M =
{
(u1, . . . , ur, w) | there exists x ∈ X such that

gj(x) ≤ uj , j = 1, . . . , r, f(x) ≤ w
}
,

(cf. Fig. 5.4.6). We first show that M is convex. To this end, we consider vectors (u, w) ∈ M

and (ũ, w̃) ∈ M , and we show that their convex combinations lie in M . The definition of

M implies that for some x ∈ X and x̃ ∈ X, we have

f(x) ≤ w, gj(x) ≤ uj , j = 1, . . . , r,

f(x̃) ≤ w̃, gj(x̃) ≤ ũj , j = 1, . . . , r.

For any α ∈ [0, 1], we multiply these relations with α and 1 − α, respectively, and add. By

using the convexity of f and gj , we obtain

f
(
αx + (1 − α)x̃

)
≤ αf(x) + (1 − α)f(x̃) ≤ αw + (1 − α)w̃,

gj

(
αx + (1 − α)x̃

)
≤ αgj(x) + (1 − α)gj(x̃) ≤ αuj + (1 − α)ũj , j = 1, . . . , r.

In view of the convexity of X, we have αx + (1 − α)x̃ ∈ X, so these equations imply that

the convex combination of (u, w) and (ũ, w̃), i.e.,
(
αu + (1 − α)ũ, αw + (1 − α)w̃

)
, belongs

to M , proving the convexity of M .

We next note that (0, f∗) is not an interior point of M ; otherwise, for some ε > 0,

the point (0, f∗ − ε) would belong to M , contradicting the definition of f∗ as the optimal
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M={ (u,w) | there exists x∈X such that  g(x)≤u, f(x) ≤w}

S={(g(x),f(x)) | x ∈X}

(0,f*)

(µ∗,1)

u

w

Figure 5.4.6. Illustration of the set

S =
{(

g(x), f(x)
)
| x ∈ X

}

and the set

M =
{

(u1, . . . , ur, w) | there exists x ∈ X such that

gj(x) ≤ uj , j = 1, . . . , r, f(x) ≤ w
}

,

used in the proof of Prop. 5.4.8. The idea of the proof is to show that M is

convex and that (0, f∗) is not an interior point of M . A hyperplane passing

through (0, f∗) and supporting M is used to define the Fritz John multipliers.

value of problem (4.1). Therefore, by the supporting hyperplane theorem (cf. Section 2.1),

there exists a hyperplane passing through (0, f∗) and containing M in one of the two

corresponding closed halfspaces. In particular, there exists a vector (µ∗, µ∗
0) �= (0, 0) such

that

µ∗
0f

∗ ≤ µ∗
0w + µ∗′u, ∀ (u, w) ∈ M. (4.2)

This equation implies that

µ∗
0 ≥ 0, µ∗

j ≥ 0, ∀ j = 1, . . . , r,
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since for each (u, w) ∈ M , we have that (u, w + γ) ∈ M and (u1, . . . , uj + γ, . . . , ur, w) ∈ M

for all γ > 0 and j = 1, . . . , r.

Finally, since for all x ∈ X, we have
(
g(x), f(x)

)
∈ M , Eq. (4.2) implies that

µ∗
0f

∗ ≤ µ∗
0f(x) + µ∗′g(x), ∀ x ∈ X.

Taking the infimum over all x ∈ X, it follows that

µ∗
0f

∗ ≤ inf
x∈X

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

µ∗
0f(x)

=µ∗
0f

∗

Hence, equality holds throughout above, proving the desired result. Q.E.D.

Note that, in the above proposition, if it can be guaranteed that the scalar µ∗
0 can be

taken to be nonzero (and without loss of generality equal to 1), then the remaining scalars

µ∗
1, . . . , µ

∗
r constitute a geometric multiplier.

We next prove a stronger Fritz John theorem for problems with linear constraints,

i.e., the constraint functions gj are affine. Our ultimate goal is to use the preceding propo-

sition (Fritz John conditions in their classical form) and the next proposition (Fritz John

conditions for linear constraints) to show the existence of geometric multipliers under var-

ious constraint qualifications without requiring that the problem has an optimal solution.

Using Prop. 5.3.7, this also provides conditions under which there is no duality gap and the

dual problem has an optimal solution. Hence, this line of analysis provides an alternative

pathway to obtain the strong duality results of convex programming.
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Proposition 5.4.9: (Fritz John Conditions for Linear Constraints) Consider

the problem
minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(4.3)

where X is a nonempty convex set, the function f : X �→ � is convex and the functions

gj : X �→ � are affine, and −∞ < f∗ < ∞. Then there exists a scalar µ∗
0 and a vector

µ∗ = (µ∗
1, . . . , µ

∗
r), satisfying the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}
.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(iv) If the index set J = {j �= 0 | µ∗
j > 0} is nonempty, there exists a vector x ∈ X

such that

µ∗′g(x) > 0.

Proof: If f∗ = infx∈X f(x), then set µ∗
0 = 1, and µ∗ = 0, and we are done. Hence, assume

that there exists some x ∈ X with f(x) < f∗. Consider the convex sets defined by

C1 =
{
(x, w) | there is a vector x ∈ X, f(x) < w

}
,

C2 =
{
(x, f∗) | g(x) ≤ 0

}
.

The set C2 is polyhedral. Also C1 and C2 are disjoint. To see this, note that if (x, f∗) ∈
C1∩C2, then by the definition of C2, this would imply that x ∈ X, g(x) ≤ 0, and f(x) < f∗,

contradicting the fact that f∗ is the optimal value of problem (4.3).

Hence, by the polyhedral proper separation theorem (cf. Section 2.1), there exists a

hyperplane that separates C1 and C2 and does not contain C1, i.e., a vector (ξ, µ∗
0) such

that

µ∗
0f

∗ + ξ′z ≤ µ∗
0w + ξ′x, ∀ x ∈ X with f(x) < w, g(z) ≤ 0, (4.4)

inf
(x,w)∈C1

{µ∗
0w + ξ′x} < sup

(x,w)∈C1

{µ∗
0w + ξ′x}.
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The preceding two relations also imply that

µ∗
0f

∗ + sup
g(z)≤0

ξ′z < sup
(x,w)∈C1

{µ∗
0w + ξ′x}. (4.5)

Note that Eq. (4.4) imply that µ∗
0 ≥ 0, otherwise it would be possible to increase w to ∞

and break the inequality.

Next, we focus on the linear program

maximize ξ′z

subject to g(z) ≤ 0,

where g(z) = Az − b. By Eq. (4.4), this linear program is bounded (since the set C1 is

nonempty), and therefore has an optimal solution, which we denote by z∗. The dual of this

program is
maximize − b′µ

subject to ξ = A′µ, µ ≥ 0.

By linear programming duality, it follows that this problem has a dual optimal solution

µ∗ ≥ 0, and satisfies

ξ′z∗ = µ∗′b, A′µ∗ = ξ, (4.6)

which implies that

µ∗′Az∗ = µ∗′b.

From Eq. (4.4), we have

µ∗
0f

∗ + sup
g(z)≤0

ξ′z ≤ µ∗
0w + ξ′x, ∀ x ∈ X with f(x) < w,

which by using the preceding relations imply that

µ∗
0f

∗ ≤ µ∗
0w + µ∗′(Ax − b), ∀ x ∈ X with f(x) < w.

In particular, we have

µ∗
0f

∗ ≤ µ∗
0f(x) + µ∗′(Ax − b). ∀ x ∈ X,
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from which we get

µ∗
0f

∗ ≤ inf
x∈X





µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)






≤ inf
x∈X, g(x)≤0





µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)






≤ inf
x∈X, g(x)≤0

µ∗
0f(x)

=µ∗
0f

∗

Hence, equality holds throughout above, which proves condition (i) of the proposition.

Substituting the relations in (4.6) in Eq. (4.5) yields

µ∗
0f

∗ < sup
x∈X,f(x)<w

{
µ∗

0w + µ∗′g(x)
}
.

If µ∗
0 = 0, we obtain

0 < sup
x∈X, f(x)<w

µ∗′g(x),

thus showing condition (iv). Assume that µ∗
0 > 0. We claim that

µ∗
0f

∗ < sup
x∈X, f(x)<w≤f∗

{
µ∗

0w + µ∗′g(x)
}
. (4.7)

To show this, assume to arrive at a contradiction that

µ∗
0f

∗ ≥ sup
x∈X, f(x)<w≤f∗

{
µ∗

0w + µ∗′g(x)
}
. (4.8)

From Eq. (4.4), we have

µ∗
0f

∗ + sup
g(z)≤0

ξ′z ≤ µ∗
0w + ξ′x, ∀ x ∈ X, f(x) < w,

Substituting the relations in (4.6) in the preceding relation, we obtain

µ∗
0f

∗ ≤ µ∗
0w + µ∗′g(x), ∀ x ∈ X, f(x) < w.

In particular, this implies that

µ∗
0f

∗ ≤ µ∗
0w + µ∗′g(x), ∀ x ∈ X, f(x) < w ≤ f∗.
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Combining with Eq. (4.8), it follows that

µ∗
0w + µ∗′g(x) = µ∗

0f
∗, ∀ x ∈ X, ∀ w such that f(x) < w ≤ f∗. (4.9)

By assumption, there exists some x ∈ X with f(x) < f∗. Let ε = f∗ − f(x) > 0, and

w = f(x) + ε/4. Then, from Eq. (4.9), we have

µ∗
0f

∗ = µ∗
0

(
f(x) + ε/4

)
+ µ∗′g(x).

Since f(x) + ε/2 ≤ f∗, we have, combining Eqs. (4.9) and the preceding relation, that

µ∗
0f

∗ = µ∗
0f

∗ + µ0ε/4,

which is a contradiction, showing that Eq. (4.8) holds. Hence, there exists some x ∈ C, and

w with f(x) < w ≤ f∗ such that

µ∗
0f

∗ < µ∗
0w + µ∗′g(x),

which implies that

0 ≤ µ∗′
0

(
f∗ − w

)
< µ∗′g(x),

thus showing condition (iv), and concluding the proof. Q.E.D.

Note that the proof of the preceding proposition relies on a special type of separation

result for polyhedral sets. We will see in the next section that these separation arguments

form the basis for bringing out the structure in the constraint set that guarantees the

existence of geometric multipliers.

5.4.1 Existence of Geometric Multipliers

In this section, we use the Fritz John Theorems of Propositions 5.4.8 and 5.4.9 to assert

the existence of geometric multipliers under some conditions. This development parallels

our analysis of the relation of the constraint qualifications and the existence of Lagrange

multipliers of Chapter 4. However, here we do not require that the problem has an optimal

solution.
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Before, we present these conditions, we show the following result, related to extended

representations of the constraint set, which is analogous to Prop. 4.3.10 of Chapter 4. In

particular, consider problem (4.1), and assume that the set X is partially described in terms

of inequality constraints:

X =
{
x ∈ X̃ | gj(x) ≤ 0, j = r + 1, . . . , r

}
.

Then the constraint set can alternatively be described as:

{
x ∈ X̃ | gj(x) ≤ 0, j = 1, . . . , r, r + 1, . . . , r

}
.

We call this the extended representation of the constraint set (cf. Section 4.3), whereas we

call the representation given in problem (4.1), the original representation. We have the

following result, which relates issues about existence of geometric multipliers between the

two representations.

Proposition 5.4.10: If there exist geometric multipliers in the extended represen-

tation, there exist geometric multipliers in the original representation.

Proof: The hypothesis implies that there exist nonnegative scalars µ∗
1, . . . , µ

∗
r , µ∗

r+1, . . . , µ
∗
r

such that

f∗ = inf
x∈X̃





f(x) +

r∑

j=1

µ∗
jgj(x)





.

Since X ⊂ X̃, this implies that

f∗ ≤ f(x) +
r∑

j=1

µ∗
jgj(x), ∀ x ∈ X.

For any x ∈ X, we have gj(x) ≤ 0, for all j = r + 1, . . . , r, so that µ∗
jgj(x) ≤ 0, for all

j = r + 1, . . . , r. Therefore, it follows from the preceding relation that

f∗ ≤ f(x) +
r∑

j=1

µ∗
jgj(x), ∀ x ∈ X.
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Taking the infimum over all x ∈ X, it follows that

f∗ ≤ inf
x∈X

{
f(x) +

r∑

j=1

µ∗
jgj(x)

}

≤ inf
x∈X, gj(x)≤0

{
f(x) +

r∑

j=1

µ∗
jgj(x)

}

≤ inf
x∈X, gj(x)≤0

f(x)

=f∗

Hence, equality holds throughout above, showing that µ∗
1 . . . , µ∗

r constitute a geometric

multiplier for the original representation. Q.E.D.

We will use this result when we are examining a problem with affine constraint func-

tions and a polyhedral set constraint.

5.4.1.1 Convex Constraints

We consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(4.10)

under the following assumption:

Assumption 5.4.4: (Slater Condition) The optimal value f∗ of problem (4.10)

is finite, the set X is convex, and the functions f : X �→ � and gj : X �→ � are convex.

Furthermore, there exists a vector x ∈ X such that gj(x) < 0 for all j = 1, . . . , r.

We have the following proposition.

Proposition 5.4.11: (Strong Duality Theorem - Convex Constraints) Let

Assumption 5.4.4 hold for problem (4.10). Then, there exists a geometric multiplier.
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Proof: Under the given assumptions, it follows from Prop. 5.4.8 that there exist nonneg-

ative scalars µ∗
0, µ

∗
1, . . . , µ

∗
r , not all of which are zero, such that

µ∗
0f

∗ = inf
x∈X

{
µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)

}
.

We will show that under Slater Condition, µ∗
0 can not be zero. Assume to arrive at a

contradiction that µ∗
0 is equal to zero. then it follows from the preceding relation that

0 ≤
r∑

j=1

µ∗
jgj(x), ∀ x ∈ X. (4.11)

By assumption, µ∗
j ≥ 0 for all j = 1, . . . , r, and at least one of them is nonzero. Therefore,

in view of the assumption that there exists some x ∈ X such that gj(x) < 0, for all j, we

obtain
r∑

j=1

µ∗
jgj(x) < 0,

thus contradicting Eq. (4.11), and showing that µ∗
0 > 0. Without loss of generality, we

can assume that µ∗
0 = 1, and the remaining µ∗

1, . . . , µ
∗
r constitute a geometric multiplier.

Q.E.D.

5.4.1.2 Linear Constraints

We consider the linearly-constrained problem

minimize f(x)

subject to x ∈ X, a′
jx − bj ≤ 0, j = 1, . . . , r.

(4.12)

Without loss of generality, we assume that there are no equality constraints (each equal-

ity constraint can be converted into two inequality constraints). We have the following

assumption:
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Assumption 5.4.5: (Linear Constraints) The optimal value f∗ of problem (4.12)

is finite, and the following hold:

(1) The set X is the intersection of a polyhedral set P and a convex set C.

(2) The cost function f : �n �→ � is convex over C.

(3) There exists a feasible solution of the problem that belongs to the relative interior

of C.

Proposition 5.4.12: (Strong Duality Theorem - Linear Constraints) Let

Assumption 5.4.5 hold for problem (4.12). Then, there exists a geometric multiplier.

Proof: Let X = P∩C, where P is a polyhedral set expressed in terms of linear inequalities

as

P = {x | a′
jx − bj ≤ 0, j = r + 1, . . . , p},

for some integer p > r. We consider the following extended representation of the constraint

set,

{x ∈ C | a′
jx − bj ≤ 0, j = 1, . . . , p}.

By Prop. 5.4.9, there exist nonnegative scalars µ∗
0, µ

∗
1, . . . , µ

∗
p, not all of which are zero, such

that

µ∗
0f

∗ = inf
x∈C





µ∗

0f(x) +
p∑

j=1

µ∗
j (a

′
jx − bj)





. (4.13)

Furthermore, if the index set J = {j �= 0 | µ∗
j > 0} is nonempty, there exists a vector x ∈ C

such that
p∑

j=1

µ∗
j (a

′
jx − bj) > 0. (4.14)
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We will show that under Assumption 5.4.5, µ∗
0 can not be zero. Assume to arrive at

a contradiction that µ∗
0 is equal to zero. Then it follows from Eq. (4.13) that

0 ≤
p∑

j=1

µ∗
j (a

′
jx − bj), ∀ x ∈ C. (4.15)

By assumption, there exists some x̃ ∈ ri(C), that satisfies a′
j x̃− bj ≤ 0, for all j = 1, . . . , p.

Combining with the preceding relation, we obtain

0 ≤
p∑

j=1

µ∗
j (a

′
j x̃ − bj) ≤ 0.

Hence, the function
∑p

j=1 µ∗
j (a

′
jx − bj) attains its minimum over x ∈ C at some relative

interior point of C, implying that
p∑

j=1

µ∗
j (a

′
jx − bj) = 0, ∀ x ∈ C.

But this contradicts Eq. (4.14), showing that µ∗
0 > 0, and therefore, the scalars µ∗

1, . . . , µ
∗
p

constitute a geometric multiplier for the extended representation of problem (4.12). By

Prop. 5.4.10, this implies that there exists a geometric multiplier in the original represen-

tation of problem (4.12) as well. Q.E.D.

5.4.2. Enhanced Primal Fritz John Conditions

The Fritz John conditions of Propositions 5.4.8 and 5.4.9 are weaker than the ones that we

have encountered in the preceding sections in that they do not include conditions analogous

to the CV condition, which formed the basis for the notion of pseudonormality and our

analysis of Chapter 4. A natural form of this condition would assert the existence of a

sequence {xk} ⊂ X such that

lim
k→∞

f(xk) = f∗, lim sup
k→∞

g(xk) ≤ 0, (4.16)

and for all k,

f(xk) < f∗, gj(xk) > 0, ∀ j with µ∗
j > 0, (4.17)

g+
j (xk) = o

(
min
j∈J

g+
j (xk)

)
, ∀ j with µ∗

j = 0, (4.18)

(assuming that µ∗ �= 0). Unfortunately, such a condition does not hold in the absence of

additional assumptions, as can be seen in the following example.
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Example 5.4.2

Consider the one-dimensional problem

minimize f(x)

subject to g(x) = x ≤ 0, x ∈ X = {x | x ≥ 0},

where

f(x) =






−1 if x > 0,

0 if x = 0,

1 if x < 0.

Then f is convex over X and the assumptions of Prop. 5.4.8 are satisfied. Indeed the Fritz

John multipliers that satisfy conditions (i)-(iii) of Prop. 5.4.8 must have the form µ∗
0 = 0 and

µ∗ > 0 (cf. Fig. 5.4.7). However, here we have f∗ = 0, and for all x with g(x) > 0, we have

x > 0 and f(x) = −1. Thus, there is no sequence {xk} ⊂ X satisfying conditions (4.16) and

(4.17) simultaneously.

M = {(u,w) |  there exists  x ∈ X           
                    such that  g(x) ≤ u, f(x) ≤ w}

S={(g(x),f(x)) | x  ∈ X}

f*

Figure 5.4.7. Illustration of the set

S =
{(

g(x), f(x)
)
| x ∈ X

}

and the set
M =

{
(u, w) | there exists x ∈ X such that

g(x) ≤ u, f(x) ≤ w
}

,

for Example 5.4.2.

The following proposition imposes slightly stronger assumptions in order to derive an

enhanced set of Fritz John conditions. In particular we assume the following:
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Assumption 5.4.6: The set X is nonempty and convex, and the functions f and gj ,

viewed as functions from X to �, are closed and convex. Furthermore, −∞ < f∗ < ∞.

We have the following proposition.

Proposition 5.4.13: (Enhanced Fritz John Conditions) Consider problem

(4.1) under Assumption 5.4.6. Then there exists a scalar µ∗
0 and a vector µ∗ =

(µ∗
1, . . . , µ

∗
r), satisfying the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}
.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(iv) If the index set J = {j �= 0 | µ∗
j > 0} is nonempty, there exists a sequence

{xk} ⊂ X such that

lim
k→∞

f(xk) = f∗, lim sup
k→∞

g(xk) ≤ 0, (4.19)

and for all k,

µ∗
jgj(xk) > 0, ∀ j ∈ J, (4.20)

g+
j (xk) = o

(
min
j∈J

g+
j (xk)

)
, ∀ j /∈ J. (4.21)

Proof: If f(x) ≥ f∗ for all x ∈ X, then we set µ∗
0 = 1 and µ∗ = 0, and we are done. We

will thus assume that there exists some x ∈ X such that f(x) < f∗. Consider the problem

minimize f(x)

subject to g(x) ≤ 0, x ∈ Xk,
(4.22)

where

Xk = X ∩
{

x
∣
∣
∣ ‖x‖ ≤ k

}
.
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We assume without loss of generality that for all k ≥ 1, the constraint set is nonempty.

Since the constraint set of this problem,
{
x ∈ X | g(x) ≤ 0

}
∩{x | ‖x‖ ≤ k} is compact, and

f is lower semicontinuous over X, this problem has an optimal solution, which we denote

by xk. Since this is a more constrained problem than the original, we have f∗ ≤ f(xk) and

f(xk) ↓ f∗ as k → ∞. Let γk = f(xk)− f∗. Note that if γk = 0 for some k, then it follows

that xk is an optimal solution for problem (4.1), and the result follows by the enhanced Fritz

John conditions for convex problems with an optimal solution (cf. Prop. 5.2.2). Therefore,

we assume that γk > 0 for all k.

For positive integers k and positive scalars m, we consider the function

Lk,m(x, ξ) = f(x) +
(γk)2

4k2
‖x − xk‖2 + ξ′g(x) − ‖ξ‖2

2m
,

and we note that Lk,m is convex in x, and concave and coercive in ξ. Since f and gj are

closed and convex, they are closed, convex, and coercive when restricted to Xk. Hence, we

can use the saddle point theorem to assert that Lk,m has a saddle point over x ∈ Xk and

ξ ≥ 0, which we denote by (xk,m, ξk,m).

The infimum of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m′g(xk,m)

= inf
x∈Xk

{
f(x) +

(γk)2

4k2
‖x − xk‖2 + ξk,m′g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x − xk‖2 + ξk,m′g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x − xk‖2

}

= f(xk).

(4.23)

Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m′g(xk,m) − 1

2m
‖ξk,m‖2

≤ f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m′g(xk,m)

≤ f(xk).

(4.24)

Since Lk,m is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is attained at

ξk,m
j = mg+

j (xk,m), j = 1, . . . , r, (4.25)
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This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 +

m

2
‖g+(xk,m)‖2

≥ f(xk,m).
(4.26)

For any sequence m → ∞, consider the corresponding sequence {xk,m}. From Eqs.

(4.24) and (4.26), we see that the sequence {xk,m} belongs to the set
{
x ∈ Xk | f(x) ≤

f(xk)
}
, which is compact, since f is closed. Hence, {xk,m} has a limit point, denoted by x̂k,

which belongs to
{
x ∈ Xk | f(x) ≤ f(xk)

}
. By passing to a subsequence if necessary, we

can assume without loss of generality that {xk,m} converges to x̂k. For each k, the sequence
{
f(xk,m)

}
is bounded from below by infx∈Xk f(x), which is finite by Weierstrass’ Theorem

since f is closed and coercive when restricted to Xk. Also, for each k, Lk,m(xk,m, ξk,m) is

bounded from above by f(xk) [cf. Eq. (4.24)], so Eq. (4.26) implies that

lim sup
m→∞

g(xk,m) ≤ 0.

Therefore, by using the lower semicontinuity of the gj , we obtain g(x̂k) ≤ 0, implying that

x̂k is a feasible point of problem (4.22), so that f(x̂k) ≥ f(xk). Using Eqs. (4.24) and (4.26)

together with the closedness of f , we also have

f(x̂k) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(xk),

thereby showing that for each k,

lim
m→∞

f(xk,m) = f(xk) = f∗ + γk. (4.27)

Let γ = f∗ − f(x). For sufficiently large k, we have x ∈ Xk and γk < γ. Consider the

vector

zk =
(

1 − 2γk

γk + γ

)
xk +

2γk

γk + γ
x,

which belongs to Xk for sufficiently large k [by the convexity of Xk and the fact that

(2γk/γk + γ) < 1]. By the convexity of f , we have

f(zk) ≤
(

1 − 2γk

γk + γ

)
f(xk) +

2γk

γk + γ
f(x)

=
(

1 − 2γk

γk + γ

)
(f∗ + γk) +

2γk

γk + γ
(f∗ − γ)

= f∗ − γk.

(4.28)
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Similarly, by the convexity of the gj , we have

gj(zk) ≤
(

1 − 2γk

γk + γ

)
gj(xk) +

2γk

γk + γ
gj(x)

≤ 2γk

γk + γ
gj(x)

≤ o(
√

γk).

(4.29)

Using Eqs. (4.24) and (4.25), we obtain

f(xk,m) ≤ f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 +

m

2
‖g+(xk,m)‖2

≤ f(x) + (γk)2 +
m

2
‖g+(x)‖2, ∀ x ∈ Xk.

Substituting x = zk in the preceding relation, and using Eqs. (4.28) and (4.29), we see that

for large k,

f(xk,m) ≤ f∗ − γk + (γk)2 + mo(γk).

Since γk → 0, this implies that for sufficiently large k and for all scalars m ≤ 1/
√

γk, we

have

f(xk,m) ≤ f∗ − γk

2
. (4.30)

We next show that for sufficiently large k, there exists some scalar mk ≥ 1/
√

γk such

that

f(xk,mk) = f∗ − γk

2
. (4.31)

For this purpose, we first show that Lk,m(xk,m, ξk,m) changes continuously with m, i.e, for

all m > 0, we have Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m → m. [By this we mean,

for every sequence {mt} that converges to m, we have that the corresponding sequence

Lk,mt(xk,mt
, ξk,mt) converges to Lk,m(xk,m, ξk,m).] Denote

f(xk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2.

Note that for all m ≥ m, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
m

2
‖g+(xk,m)‖2

≤ f(xk,m) +
m

2
‖g+(xk,m)‖2

≤ f(xk,m) +
m

2
‖g+(xk,m)‖2

≤ f(xk,m) +
m

2
‖g+(xk,m)‖2,
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showing that Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m ↓ m. Similarly, we have for all

m ≤ m,

f(xk,m) +
m

2
‖g+(xk,m)‖2 ≤ f(xk,m) +

m

2
‖g+(xk,m)‖2

≤ f(xk,m) +
m

2
‖g+(xk,m)‖2

= f(xk,m) +
m

2
‖g+(xk,m)‖2 +

m − m

2
‖g+(xk,m)‖2

≤ f(xk,m) +
m

2
‖g+(xk,m)‖2 +

m − m

2
‖g+(xk,m)‖2.

For each k, the sequence gj(xk,m) is bounded from below by infx∈Xk gj(x), which is finite

by Weierstrass’ Theorem since gj is closed and coercive when restricted to Xk. Therefore,

we have from the preceding that Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m ↑ m, which

shows that Lk,m(xk,m, ξk,m) changes continuously with m.

Next, we show that xk,m → xk,m as m → m. Since, for each k, the sequence xk,m

belongs to a compact set, it has a limit point as m → m. Let x̂ be a limit point of xk,m.

Using the continuity of Lk,m and the closedness of f and the gj , we obtain

Lk,m(xk,m, ξk,m) = lim inf
m→m

f(xk,m) +
m

2
‖g+(xk,m)‖2

≥ f(x̂) +
m

2
‖g+(x̂)‖2

≥ inf
x∈Xk

{
f(x) +

m

2
‖g+(x)‖2

}

= Lk,m(xk,m, ξk,m).

This shows that x̂ attains the infimum of f(x)+ m
2 ‖g+(x)‖2 over x ∈ Xk. Since this function

is strictly convex, it has a unique optimal solution, showing that x̂ = xk,m.

Finally, we show that f(xk,m) → f(xk,m) as m → m. Assume that f(xk,m) <

lim supm→m f(xk,m). Using the continuity of Lk,m and the fact that xk,m → xk,m as

m → m, we have

f(xk,m) + lim inf
m→m

‖g+(xk,m)‖2 < lim sup
m→m

Lk,m(xk,m, ξk,m)

= Lk,m(xk,m, ξk,m)

= f(xk,m) + ‖g+(xk,m)‖2.

But this contradicts the lower semicontinuity of the gj , hence showing that f(xk,m) ≥
lim supm→m f(xk,m), which together with the lower semicontinuity of f yields the desired

result.
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Eqs. (4.30), (4.27), and the continuity of f(xk,m) in m imply the existence of some

scalar mk ≥ 1/
√

γk such that

f(xk,mk) = f∗ − γk

2
. (4.32)

Combining the preceding relation with Eqs. (4.24) and (4.26) (for m = mk), together

with the facts that f(xk) → f∗ and γk → 0 as k → ∞, we obtain

lim
k→∞

(
f(xk,mk) − f∗ +

(γk)2

4k2
‖xk,mk − xk‖2 + ξk,m′

kg(xk,mk)
)

= 0. (4.33)

Denote

δk =

√√
√
√1 +

r∑

j=1

(ξk,mk
j )2,

µk
0 =

1
δk

, µk
j =

ξ
k,mk
j

δk
, j = 1, . . . , r. (4.34)

Since δk is bounded from below, Eq. (4.33) yields

lim
k→∞



µk
0f(xk,mk) − µk

0f∗ +
(γk)2

4k2δk
‖xk,mk − xk‖2 +

r∑

j=1

µk
j gj(xk,mk)



 = 0. (4.35)

Substituting m = mk in Eq. (4.23) and dividing both sides of the first relation by δk,

we get

µk
0f(xk,mk) +

(γk)2

4k2δk
‖xk,mk − xk‖2 +

r∑

j=1

µk
j gj(xk,mk)

≤ µk
0f(x) +

r∑

j=1

µk
j gj(x) +

(γk)2

δk
, ∀ x ∈ Xk.

Since the sequence {µk
0 , µk

1 , . . . , µk
r} is bounded, it has a limit point, denoted by {µ∗

0, µ
∗
1, . . . , µ

∗
r}.

Taking the limit along the relevant subsequences in the preceding relation together with

Eq. (4.35) yields

µ∗
0f

∗ ≤ µ∗
0f(x) + µ∗′g(x), ∀ x ∈ X,

which implies that
µ∗

0f
∗ ≤ inf

x∈X

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

µ∗
0f(x)

= µ∗
0f

∗.

189



Thus we have

µ∗
0f

∗ = inf
x∈X

{
µ∗

0f(x) + µ∗′g(x)
}
,

so that µ∗
0, µ

∗
1, . . . , µ

∗
r satisfy conditions (i), (ii), and (iii) of the proposition.

Finally, dividing both sides of Eq. (4.25) by δk, and using Eq. (4.34) and the fact that

µk
j → µ∗

j , as k → ∞, we obtain

lim
k→∞

mkg+
j (xk,mk)
δk

= µ∗
j , j = 1, . . . , r.

Since, we also have from Eq. (4.32) that

f(xk,mk) < f∗, lim
k→∞

f(xk,mk) = f∗,

it follows that the sequence {xk,mk} satisfies condition (iv) of the proposition, thereby

completing the proof. Q.E.D.

The preceding proposition motivates a definition of pseudonormality that is not tied

to a specific optimal primal solution.

Definition 5.4.5: Consider problem (4.1), under Assumption 5.4.6. The constraint

set of problem (4.1) is said to be pseudonormal if there do not exist a vector µ =

(µ1, . . . , µr) ≥ 0, and a sequence {xk} ⊂ X such that:

(i) 0 = infx∈X µ′g(x).

(ii) lim supk→∞ g(xk) ≤ 0 and µ′g(xk) > 0 for all k.

Figure 5.4.8 provides a geometric interpretation of pseudonormality. As an example,

it is easily seen with the aid of Fig. 5.4.8 that if f is convex over �n, the functions gj are

affine, and X = �n, then the constraint set is pseudonormal.

In view of Prop. 5.4.13, if problem (P) has a closed and convex cost function f and a

pseudonormal constraint set, there exists a geometric multiplier and there is no duality gap.

This geometric multiplier satisfies in addition the special condition (iv) of Prop. 5.4.13.
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G = {g(x) | x ∈  X}

0

µ
Η

 not pseudonormal

pseudonormal (Slater Condition)

G = {g(x) | x ∈  X}

Η

µ

0

  pseudonormal (Linear Constraints)

G = {g(x) | x ∈  X}

µ

Η

0

X = Rn

(b) (c)

(a)

g(xk)

Figure 5.4.8. Geometric interpretation of pseudonormality, assuming for sim-

plicity that there are no equality constraints. Consider the set

G =
{

g(x) | x ∈ X
}

.

For feasibility, G should intersect the nonpositive orthant {z | z ≤ 0}. The first

condition in the definition of pseudonormality means that there is a hyperplane

with normal µ, which simultaneously supports G and passes through 0 [note that,

as illustrated in figure (b), this cannot happen if G intersects the interior of the

nonpositive orthant; cf. the Slater criterion]. The second and third conditions

in the definition of pseudonormality mean that the negative orthant can be ap-

proached by a sequence
{

g(xk)
}

⊂ G∩ int(H), where H is the positive halfspace

defined by the hyperplane,

H = {z | µ′z ≥ 0};

[cf. figure (a)]. Pseudonormality means that there is no µ ≥ 0 and {xk} ⊂ X

satisfying both of these conditions.
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5.4.3. Enhanced Dual Fritz John Conditions

The Fritz John multipliers of Props. 5.4.8-5.4.13 define a hyperplane with normal (µ∗, µ∗
0)

that supports the set of constraint-cost pairs (i.e., the set M of Fig. 5.4.6) at (0, f∗). On

the other hand, it is possible to construct a hyperplane that supports the set M at the point

(0, q∗), where q∗ is the optimal dual value

q∗ = sup
µ≥0

q(µ) = sup
µ≥0

inf
x∈X

{
f(x) + µ′g(x)

}
,

while asserting the existence of a sequence that satisfies a condition analogous to the CV

condition. The next proposition addresses this question.

Proposition 5.4.14: (Enhanced Dual Fritz John Conditions) Consider prob-

lem (4.1) under assumption 5.4.6. We also assume that

q∗ > −∞.

Then there exists a scalar µ∗
0 and a vector µ∗ = (µ∗

1, . . . , µ
∗
r), satisfying the following

conditions:

(i) µ∗
0q

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}
.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.
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(iv) If the index set J = {j �= 0 | µ∗
j > 0} is nonempty, there exists a sequence

{xk} ⊂ X such that

lim
k→∞

f(xk) = q∗, lim sup
k→∞

g(xk) ≤ 0, (4.36)

and for all k,

f(xk) < q∗, µ∗
jgj(xk) > 0, ∀ j ∈ J, (4.37)

g+
j (xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J. (4.38)

Proof: First we prove the following lemma.

Lemma 5.4.1: Consider problem (4.1), and assume that X is convex, the functions

f and the gj are convex over X, and −∞ < f∗ < ∞. For each δ > 0, let

rδ = inf
x∈X

g(x)≤δe

f(x), (4.39)

where e ∈ �r is a vector, whose components are all equal to 1. Then rδ ≤ q∗ for all

δ > 0 and

q∗ = lim
δ↓0

rδ.

Proof: Since f∗ is finite, there exists some x ∈ X such that g(x) ≤ 0. Hence, for each

δ > 0 such that rδ > −∞, the Slater condition is satisfied for problem (4.39), and therefore,

by Prop. 5.4.11, this problem has a geometric multiplier, i.e., there exists a nonnegative

vector µδ such that

rδ = inf
x∈X

{
f(x) + µδ′

(
g(x) − δe

)}

≤ inf
x∈X

{
f(x) + µδ′g(x)

}

= q(µδ)

≤ q∗.
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For each δ > 0 such that rδ = −∞, we also have rδ ≤ q∗, so that

rδ ≤ q∗, ∀ δ > 0.

Taking the limit as δ ↓ 0, we obtain

lim
δ↓0

rδ ≤ q∗.

To show the converse, for each δ > 0, choose xδ ∈ X such that gj(xδ) ≤ δ for all j

and f(xδ) ≤ rδ + δ. Then, for any µ ≥ 0,

q(µ) = inf
x∈X

{
f(x) + µ′g(x)

}
≤ f(xδ) + µ′g(xδ) ≤ rδ + δ + δ

r∑

j=1

µj .

Taking the limit as δ ↓ 0, we obtain

q(µ) ≤ lim
δ↓0

rδ,

so that q∗ ≤ limδ↓0 rδ. Q.E.D.

We now return to the proof of the proposition. Consider the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 1
k4

e.

By the previous lemma, for each k, the optimal value of this problem is less than or equal

to q∗. For each k, let x̃k ∈ X be a vector that satisfies

f(x̃k) ≤ q∗ +
1
k2

, g(x̃k) ≤ 1
k4

e.

Consider also the problem

minimize f(x)

subject to g(x) ≤ 1
k4

e,

x ∈ X̃k = X ∩
{

x
∣
∣ ‖x‖ ≤ k

(
max
1≤i≤k

‖x̃i‖ + 1
)
}

.

(4.40)
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Since
{
x | g(x) ≤ (1/k4)e

}
∩ Xk is the intersection of the closed set

{
x ∈ X | g(x) ≤

(1/k4)e
}

and the compact set
{

x
∣
∣
∣ ‖x‖ ≤ ‖x̃k‖ + k

}
, we see that the constraint set of the

preceding problem is compact. Since f is closed, and therefore lower semicontinuous over

Xk, by Weierstrass’ Theorem, the preceding minimization problem has an optimal solution,

which we denote by xk. Note that since x̃k belongs to the feasible set of this problem, we

have

f(xk) ≤ f(x̃k) ≤ q∗ +
1
k2

. (4.41)

We consider the function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k
,

and we note that Lk is convex in x, and concave and coercive in ξ. For each k, we consider

the saddle points of Lk over x in

Xk = X̃k ∩
{
x | g(x) ≤ ke

}
(4.42)

and ξ ≥ 0. Note that Xk =
{

x
∣
∣
∣ ‖x‖ ≤ k (max1≤i≤k ‖x̃i‖ + 1)

}
∩

{
x ∈ X | gj(x) ≤ k, j =

1, . . . , r
}
, from which using the closedness of the gj , we see that Xk is compact. Therefore,

we can use the saddle point theorem to assert that Lk has a saddle point over x ∈ Xk and

ξ ≥ 0, denoted by (xk, ξk).

Since Lk is quadratic in ξ, the supremum of Lk(xk, ξ) over ξ ≥ 0 is attained at

ξk
j = kg+

j (xk), j = 1, . . . , r. (4.43)

Similarly, the infimum of Lk(x, ξk) over x ∈ Xk is attained at xk, implying that

f(xk) + ξk′
g(xk)= inf

x∈Xk

{
f(x) + ξk′

g(x)
}

= inf
x∈Xk

{
f(x) + kg+(xk)′g(x)

}

≤ inf
x∈Xk, g(x)≤ 1

k4

{
f(x) + kg+(xk)′g(x)

}

≤ inf
x∈Xk, g(x)≤ 1

k4

f(x) +
r

k2

= f(xk) +
r

k2

≤ q∗ +
r + 1
k2

,

(4.44)
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where the last inequality follows from Eq. (4.41).

We also have

Lk(xk, ξk)= sup
ξ≥0

inf
x∈Xk

Lk(x, ξ)

≥ sup
ξ≥0

inf
x∈X

Lk(x, ξ)

= sup
ξ≥0

{
inf

x∈X

(
f(x) + ξ′g(x)

)
− ‖ξ‖2

2k

}

= sup
ξ≥0

{
q(ξ) − ‖ξ‖2

2k

}

≥ q(λk) − ‖λk‖2

2k
,

(4.45)

for each k, where {λk} is a nonnegative sequence such that

q(λk) → q∗,
‖λk‖2

2k
→ 0 (4.46)

as k → ∞.

Combining Eqs. (4.45) and (4.44), we obtain

q(λk) − ‖λk‖2

2k
≤ Lk(xk, ξk) = f(xk) + ξk′

g(xk) − 1
2k

‖ξk‖2

≤ f(xk) + ξk′
g(xk)

≤ q∗ +
r + 1
k2

.

(4.47)

Taking the limit in the preceding relation, and using Eq. (4.46), we have

lim
k→∞

(
f(xk) − q∗ + ξk′

g(xk)
)

= 0. (4.48)

Denote

δk =

√√
√
√1 +

r∑

j=1

(ξk
j )2,

µk
0 =

1
δk

, µk
j =

ξk
j

δk
, j = 1, . . . , r. (4.49)

Since δk is bounded from below, Eq. (4.48) yields

lim
k→∞

µk
0

(
f(xk) − q∗

)
+

r∑

j=1

µk
j gj(xk) = 0. (4.50)
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Dividing both sides of the first relation in Eq. (4.44) by δk, we get

µk
0f(xk) +

r∑

j=1

µk
j gj(xk) ≤ µk

0f(x) +
r∑

j=1

µk
j gj(x), ∀ x ∈ Xk.

Since the sequence {µk
0 , µk

1 , . . . , µk
r} is bounded, it has a limit point, denoted by {µ∗

0, µ
∗
1, . . . , µ

∗
r}.

Taking the limit along the relevant subsequence in the preceding relation together with Eq.

(4.50) yields

µ∗
0q

∗ ≤ inf
x∈X

{
µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)

}
.

If µ∗
0 > 0, we obtain from the preceding relation

q∗ ≤ inf
x∈X





f(x) +

r∑

j=1

µ∗
j

µ∗
0

gj(x)





= q

(
µ∗

µ∗
0

)
≤ q∗.

Similarly, if µ∗
0 = 0, it can be seen that 0 = infx∈X µ∗′g(x). Hence, in both cases, we have

µ∗
0q

∗ = inf
x∈X





µ∗

0f(x) +
r∑

j=1

µ∗
jgj(x)





,

thus showing that µ∗
0, . . . , µ

∗
r satisfy conditions (i)-(iii) of the proposition.

Let J = {j �= 0 | µ∗
j > 0}, and assume that J is nonempty. Dividing both sides of Eq.

(4.43) by δk, and using Eq. (4.49) and the fact that µk
j → µ∗

j , for all j = 1, . . . , r, we obtain

lim
k→∞

kg+
j (xk)
δk

= µ∗
j , j = 1, . . . , r.

This implies that for all sufficiently large k,

gj(xk) > 0, ∀ j ∈ J,

and

gj(xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J.

Note also that, for all k, we have from Eq. (4.47) that

k
(
f(xk) − q∗

)
+ ξk′

kg(xk) ≤ r + 1
k

.
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Using Eq. (4.43), this yields

k
(
f(xk) − q∗

)
+

r∑

j=1

(ξk
j )2 ≤ r + 1

k
.

Dividing by (δk)2 and taking the limit, we get

lim sup
k→∞

k
(
f(xk) − q∗

)

(δk)2
≤ −

r∑

j=1

(µ∗
j )2, (4.51)

implying that f(xk) < q∗ for all sufficiently large k, since the index set J is nonempty.

We finally show that f(xk) → q∗ and lim supk→∞ g(xk) ≤ 0. By Eq. (4.47), we have

lim sup
k→∞

‖ξk‖2

2k
≤ 0,

which implies that

lim
k→∞

‖ξk‖2

2k
= 0. (4.52)

Similarly, combining Eqs. (4.47) and (4.43), we obtain

lim
k→∞

(
f(xk) − q∗

)
+

‖ξk‖2

2k
= 0,

which together with Eq. (4.52) shows that f(xk) → q∗. Moreover, Eqs. (4.52) and (4.43)

imply that

lim
k→∞

k

r∑

j=1

(
g+

j (xk)
)2 = 0,

showing that lim supk→∞ g(xk) ≤ 0. Therefore, the sequence {xk} satisfies condition (iv)

of the proposition, completing the proof. Q.E.D.

In the preceding proposition, if we can guarantee that µ∗
0 > 0, then there exists a dual

optimal solution, which satisfies the special condition (iv) of Prop. 5.4.14.

The proof of this proposition is similar to the proof of Prop. 5.2.2. Essentially, the

proof generates saddle points of the function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k
,
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over x in the compact set Xk [cf. Eq. (4.42)] and ξ ≥ 0. It can be shown that

Lk(x, ξ) = inf
u∈�r

{
pk(u) +

k

2
‖u+‖2

}
,

where pk(u) is the optimal value of the problem

minimize f(x)

subject to g(x) ≤ u, x ∈ Xk,
(4.53)

(see the discussion following the proof of Prop. 5.2.2). For each k, the value Lk(xk, ξk) can

be visualized geometrically as in Fig. 5.2.1.

Note that pk(u) is the primal function corresponding to the problem where the set

constraint X in the original problem is replaced by Xk. Using a compact set approximation

of the abstract set constraint X has the effect of approximating the original problem with

one that has no duality gap. Hence, the corresponding primal function pk(u) is lower

semicontinuous at 0 and approximates the primal function p(u) with greater accuracy as

k → ∞. In this proof, the rate at which Xk approaches X is chosen high enough so that

Lk(xk, ξk) converges to q∗ as k → ∞ [cf. Eq. (4.47)], and not to f∗, as in the proof of Prop.

5.2.2.

5.4.4. Informative Geometric Multipliers and Dual Optimal Solutions

In this section, we focus on geometric multipliers and dual optimal solutions, which are

special in that they satisfy conditions analogous to the CV condition. Consistent with our

analysis in Chapter 4, we refer to geometric multipliers that satisfy these conditions as

being informative, since they provide sensitivity information by indicating the constraints

to violate in order to effect a cost reduction.
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Definition 5.4.6: A vector µ∗ ≥ 0 is said to be an informative geometric multiplier

if the following two conditions hold:

(i) f∗ = infx∈X

{
f(x) + µ∗′g(x)

}
.

(ii) If the index set J = {j | µ∗
j > 0} is nonempty, there exists a sequence {xk} ⊂ X

such that

lim
k→∞

f(xk) = f∗, lim sup
k→∞

g(xk) ≤ 0,

and for all k,

f(xk) < f∗, µ∗
jgj(xk) > 0, ∀ j ∈ J,

g+
j (xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J.

In the next proposition, we show the existence of an informative geometric multiplier

under very general assumptions.

Proposition 5.4.15: (Existence of Informative Geometric Multipliers) Con-

sider problem (4.1) under Assumption 5.4.6. We assume that the set of geometric

multipliers, denoted by

M =
{

µ ≥ 0 | f∗ = inf
x∈X

{
f(x) + µ′g(x)

}}
,

is nonempty. Then the vector of minimum norm in M is informative.

Proof: Let x̃k be a feasible sequence for problem (4.1) such that f(x̃k) → f∗ and

f(x̃k) ≤ f∗ +
1
k2

, k = 1, 2, . . .
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Consider the problem

minimize f(x)

subject to g(x) ≤ 0,

x ∈ Xk = X ∩
{

x
∣
∣ ‖x‖ ≤ k max

1≤i≤k
‖x̃i‖

}
.

Since
{
x | g(x) ≤ 0

}
∩ Xk is the intersection of the closed set

{
x ∈ X | g(x) ≤ 0

}
and the

compact set
{

x
∣
∣
∣ ‖x‖ ≤ ‖x̃k‖ + k

}
, we see that the constraint set of the preceding problem

is compact. Since f is closed, and therefore lower semicontinuous over Xk, by Weierstrass’

Theorem, the preceding minimization problem has an optimal solution, which we denote

by xk. Note that since x̃k belongs to the feasible set of this problem, we have

f(xk) ≤ f(x̃k) ≤ f∗ +
1
k2

. (4.54)

We consider the function

Lk(x, µ) = kf(x) + µ′kg(x) − ‖µ‖2

2
,

and we note that Lk is convex in x, and concave and coercive in µ. For each k, we consider

the saddle points of Lk over x ∈ Xk and µ ≥ 0. Since Xk is bounded, we use the saddle

point theorem to assert that Lk has a saddle point for each k, denoted by (xk, µk).

Let µ∗ be the vector of minimum norm in M . If µ∗ = 0, then µ∗ is an informative

geometric multiplier and we are done, so assume that µ∗ �= 0. For any µ ∈ M , we have by

the definition of M ,

inf
x∈X

{
f(x) + µ′g(x)

}
= f∗,

so that

inf
x∈Xk

Lk(x, µ) ≥ inf
x∈X

Lk(x, µ) = kf∗ − 1
2
‖µ‖2.

Therefore,
Lk(xk, µk) = sup

µ≥0
inf

x∈Xk
Lk(x, µ)

≥ sup
µ∈M

inf
x∈Xk

Lk(x, µ)

≥ sup
µ∈M

(
kf∗ − 1

2
‖µ‖2

)

= kf∗ − 1
2
‖µ∗‖2,

(4.55)
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where µ∗ denotes the vector of minimum norm in the set M . Since (xk, µk) is a saddle

point of Lk over x ∈ Xk and µ ≥ 0, the minimum in the left hand side of

inf
x∈Xk

Lk(x, µk) = inf
x∈Xk

k
{
f(x) + µk′

g(x)
}
− ‖µk‖2

2
,

is attained at xk, implying that

f(xk) + µk′
g(xk)= inf

x∈Xk

{
f(x) + µk′

g(x)
}

≤ inf
x∈Xk, g(x)≤0

{
f(x) + µk′

g(x)
}

≤ inf
x∈Xk, g(x)≤0

f(x)

= f(xk)

≤ f∗ +
1
k2

,

(4.56)

where the last inequality follows from Eq. (4.54). Combining Eqs. (4.55) and (4.56), we

obtain

f∗ − 1
2
‖µ∗‖2 ≤ Lk(xk, µk) = k

{
f(xk) + µk′

g(xk)
}
− 1

2
‖µk‖2

≤ kf∗ +
1
k
− 1

2
‖µk‖2.

(4.57)

It follows from the preceding relation that ‖µk‖ remains bounded as k → ∞. Let µ be a

limit point of {µk}. We also have from the preceding relation that

lim
k→∞

(
f(xk) − f∗

)
+ µk′

g(xk) = 0.

Hence, taking the limit along the relevant subsequence in the first relation in Eq. (4.56)

yields

f∗ ≤ inf
x∈X

{
f(x) + µ′g(x)

}
= q(µ) ≤ f∗,

where the last inequality follows from weak duality. Hence µ belongs to set M , and since

‖µ‖ ≤ ‖µ∗‖ [which follows by taking the limit in Eq. (4.57)], by using the minimum norm

property of µ∗, we conclude that any limit point µ of µk must be equal to µ∗. Thus µk → µ∗,

and using Eq. (4.57), we obtain

lim
k→∞

(
Lk(xk, µk) − kf∗

)
= −1

2
‖µ∗‖2. (4.58)
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Since Lk is quadratic in µ, the supremum of Lk(xk, µ) over µ ≥ 0 is attained at

µk
j = kgj(xk)+, j = 1, . . . , r, (4.59)

so that

Lk(xk, µk) = sup
µ≥0

Lk(xk, µ) = kf(xk) +
1
2
‖µk‖2,

which combined with Eq. (4.58) yields

lim
k→∞

k
(
f(xk) − f∗

)
= −‖µ∗‖2,

implying that f(xk) < f∗ for all sufficiently large k, since µ∗ �= 0. Since, µk → µ∗, Eq.

(4.59) also implies

lim
k→∞

kg+
j (xk) = µ∗

j , j = 1, . . . , r.

Thus the sequence {xk} fulfills condition (ii) of the definition of an informative geometric

multiplier, thereby completing the proof. Q.E.D.

When there is a duality gap, there exists no geometric multipliers, even if there is a

dual optimal solution. In this case, we are motivated to investigate the existence of a special

dual optimal solution, which satisfies condition (iv) of Proposition 5.4.14,

(iv) If the index set J = {j | µ∗
j > 0} is nonempty, there exists a sequence {xk} ⊂ X such

that

lim
k→∞

f(xk) = q∗, lim sup
k→∞

g(xk) ≤ 0,

and for all k,

f(xk) < q∗, µ∗
jgj(xk) > 0, ∀ j ∈ J,

g+
j (xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J.

We call such a dual optimal solution informative, since it provides information by

indicating the constraints to violate to result in a cost reduction by an amount which is

strictly greater than the size of the duality gap, i.e., f∗ − q∗.

We have the following result, which is analogous to the preceding proposition.
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Proposition 5.4.16: (Existence of Informative Dual Optimal Solutions) Con-

sider problem (4.1) under Assumption 5.4.6. Assume further that q∗ is finite and that

there exists a dual optimal solution, i.e., there exists a nonnegative vector µ such that

q(µ) = q∗. Then the dual optimal solution with minimum norm is informative.

Proof: Let µ∗ be the dual optimal solution of minimum norm. If µ∗ = 0, then µ∗ is an

informative dual optimal solution and we are done, so assume that µ∗ �= 0. Consider the

problem
minimize f(x)

subject to x ∈ X, g(x) ≤ 1
k4

e.

By Lemma 5.4.1, for each k, the optimal value of this problem is less than or equal to q∗.

For each k, let x̃k ∈ X be a vector that satisfies

f(x̃k) ≤ q∗ +
1
k2

, g(x̃k) ≤ 1
k4

e.

Consider also the problem

minimize f(x)

subject to g(x) ≤ 1
k4

e,

x ∈ X̃k = X ∩
{

x
∣
∣ ‖x‖ ≤ k

(
max
1≤i≤k

‖x̃i‖ + 1
)
}

.

Since
{
x | g(x) ≤ 0

}
∩ Xk is the intersection of the closed set

{
x ∈ X | g(x) ≤ 0

}
and the

compact set
{

x
∣
∣
∣ ‖x‖ ≤ ‖x̃k‖ + k

}
, we see that the constraint set of the preceding problem

is compact. Since f is closed, and therefore lower semicontinuous over Xk, by Weierstrass’

Theorem, the preceding minimization problem has an optimal solution, which we denote

by xk. Note that since x̃k belongs to the feasible set of this problem, we have

f(xk) ≤ f(x̃k) ≤ q∗ +
1
k2

. (4.60)

We consider the function

Lk(x, µ) = kf(x) + µ′kg(x) − ‖µ‖2

2
,
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and we note that Lk is convex in x, and concave and coercive in µ. For each k, we consider

the saddle points of Lk over x in

Xk = X̃k ∩
{
x | g(x) ≤ ke

}

and µ ≥ 0. Since Xk is bounded, Lk has a saddle point for each k, denoted by (xk, µk).

Since Lk is quadratic in µ, the supremum of Lk(xk, µ) over µ ≥ 0 is attained at

µk
j = kg+

j (xk), j = 1, . . . , r. (4.61)

Similarly, the infimum of Lk(x, µk) over x ∈ Xk is attained at xk, implying that

f(xk) + µk′
g(xk)= inf

x∈Xk

{
f(x) + µk′

g(x)
}

= inf
x∈Xk

{
f(x) + kg+

j (xk)g(x)
}

≤ inf
x∈Xk, g(x)≤ 1

k4 e

{
f(x) + kg+

j (xk)g(x)
}

≤ inf
x∈Xk, g(x)≤ 1

k4 e
f(x) +

r

k2

= f(xk) +
r

k2

≤ q∗ +
r + 1
k2

,

(4.62)

where the last inequality follows from Eq. (4.60).

We also have

Lk(xk, µk)= sup
µ≥0

inf
x∈Xk

Lk(x, µ)

≥ sup
µ≥0

inf
x∈X

Lk(x, µ)

= sup
µ≥0

{
inf

x∈X

(
kf(x) + µ′kg(x)

)
− ‖µ‖2

2

}

= sup
µ≥0

{
kq(µ) − ‖µ‖2

2

}

≥ kq(µ∗) − ‖µ∗‖2

2
,

= kq∗ − ‖µ∗‖2

2
,

(4.63)

where µ∗ is the dual optimal solution with the minimum norm.
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Combining Eqs. (4.63) and (4.62), we obtain

kq∗ − 1
2
‖µ∗‖2 ≤ Lk(xk, µk) = k

{
f(xk) + µk′

g(xk)
}
− 1

2
‖µk‖2

≤ kq∗ +
2
k
− 1

2
‖µk‖2.

(4.64)

It follows from the preceding relation that ‖µk‖ remains bounded as k → ∞. Let µ be a

limit point of {µk}. We also have from the preceding relation that

lim
k→∞

(
f(xk) − q∗

)
+ µk′

g(xk) = 0.

Hence, taking the limit along the relevant subsequence in the first relation in Eq. (4.62)

yields

q∗ ≤ inf
x∈X

{
f(x) + µ′g(x)

}
= q(µ) ≤ q∗.

Hence µ is a dual optimal solution, and since ‖µ‖ ≤ ‖µ∗‖ [which follows by taking the limit

in Eq. (4.64)], by using the minimum norm property of µ∗, we conclude that any limit point

µ of µk must be equal to µ∗. Thus µk → µ∗, and using Eq. (4.64), we obtain

lim
k→∞

(
Lk(xk, µk) − kq∗

)
= −1

2
‖µ∗‖2. (4.65)

Using Eq. (4.61), it follows that

Lk(xk, µk) = sup
µ≥0

Lk(xk, µ) = kf(xk) +
1
2
‖µk‖2,

which combined with Eq. (4.65) yields

lim
k→∞

k
(
f(xk) − q∗

)
= −‖µ∗‖2.

implying that f(xk) < q∗ for all sufficiently large k, since µ∗ �= 0. Since, µk → µ∗, Eq.

(4.61) also implies

lim
k→∞

kg+
j (xk) = µ∗

j , j = 1, . . . , r,

thus completing the proof. Q.E.D.
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CHAPTER 6

CONCLUSIONS

In this thesis, we present a new development of Lagrange multiplier theory that significantly

differs from the classical treatments. Our objective is to generalize, unify, and streamline the

theory of constraint qualifications, which are conditions on the constraint set that guarantee

existence of Lagrange multipliers.

Our analysis is motivated by an enhanced set of necessary optimality conditions of

the Fritz John-type, which are stronger than the classical Karush-Kuhn-Tucker conditions

(they include extra conditions, which may narrow down the set of candidate optima). They

are also more general in that they apply even when there is a possibly nonconvex abstract

set constraint, in addition to smooth equality and inequality constraints. For this purpose,

we use concepts from nonsmooth analysis to analyze the local structure of the abstract set

constraint. We show that the notion of ‘regularity of constraint sets’ is a crucial property

in identifying problems that have satisfactory Lagrange multiplier theory.

A Lagrange multiplier theory should determine the fundamental constraint set struc-

ture that guarantees the existence of Lagrange multipliers. Without an abstract set con-

straint, this structure is identified by the notion of quasiregularity. The classical line of

analysis has been either to relate constraint qualifications to quasiregularity, or to show

existence of Lagrange multipliers under each constraint qualification separately, using a

different and complicated proof. In the presence of an abstract set constraint, quasiregu-

larity fails as a central unification concept, as we have shown in our work. Based on the

enhanced Fritz John conditions, we introduce a new general constraint qualification, called

pseudonormality. Pseudonormality unifies and expands the major constraint qualifications,

and simplifies the proofs of Lagrange multiplier theorems.

Fritz John conditions also motivate us to introduce a taxonomy of different types

of Lagrange multipliers. In particular, under mild convexity assumptions, we show that

there exists a special Lagrange multiplier, called informative. The nonzero components of
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informative Lagrange multipliers identify the constraints that need to be violated in order

to improve the optimal cost function value.

A notion that is related to pseudonormality, called quasinormality, is given by Hestenes

[Hes75] (for the case where X = �n). In this thesis, we extend this notion to the case where

X is a closed set and we discuss the relation between pseudonormality and quasinormality.

We show that pseudonormality is better suited as a unifying vehicle for Lagrange multiplier

theory. Quasinormality serves almost the same purpose as pseudonormality when X is

regular, but fails to provide the desired theoretical unification when X is not regular. For

this reason, it appears that pseudonormality is a theoretically more interesting characteristic

than quasinormality.

In this thesis, we also examine the connection between Lagrange multiplier theory

and exact penalty functions. In particular, we show that pseudonormality implies the

admittance of an exact penalty function. This provides in a unified way a much larger set

of constraint qualifications under which we can guarantee that the constraint set admits an

exact penalty.

Using a different line of analysis that does not involve gradients or subgradients, we

extend the theory we developed regarding Fritz John conditions and pseudonormality to

nonsmooth problems under convexity assumptions. Finally, we consider problems that

do not necessarily have an optimal solution. We introduce a new notion of a multiplier,

called geometric, that is not tied to a specific optimal solution. We develop Fritz John

optimality conditions for such problems under different sets of assumptions. In particular,

under convexity assumptions, we derive Fritz John conditions, which provides an alterna-

tive approach to obtain strong duality results of convex programming. Under additional

closedness assumptions, we develop Fritz John conditions that involve conditions analogous

to the complementary violation condition. This motivates us to introduce special types

of geometric multipliers, called informative (consistent with informative Lagrange multi-

pliers), that carry significant amount of sensitivity information regarding the constraints

of the problem. We show that if the set of geometric multipliers is nonempty, then there

exists an informative geometric multiplier. We also consider a dual optimization problem

associated with the original problem, and we derive Fritz John-type optimality conditions
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for the dual problem. When there is no duality gap, the set of geometric multipliers and the

set of optimal solutions of the dual problem coincide. When there is a duality gap, there

exists no geometric multiplier; however the dual problem may still have an optimal solution.

Based on dual Fritz John optimality conditions, we introduce special types of dual opti-

mal solutions, called informative (similar to informative geometric multipliers), that carries

sensitivity information. We show that an informative dual optimal solution always exists

when the dual problem has an optimal solution. An interesting research direction for the

future is to use the sensitivity information provided by the informative multipliers that we

have defined in this thesis in various computational methods.
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