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Abstract

In this work, we design simple and e�cient iterative auctions for selling multiple items in

settings where bidders’ valuations belong to a special class (tree valuations) that can exhibit

both value complementarity and substitutability. Our first contribution is to provide a compact

linear programming formulation of the e�cient allocation problem and use it to establish the

existence of a Walrasian equilibrium for tree valuations that satisfy an additional technical

condition. This result reveals a new class of valuations for which a Walrasian equilibrium exists

in the presence of value complementarities. We then provide an iterative algorithm that can

be used for the solution of this linear programming formulation. Complementing the algorithm

with an appropriate payment rule, we obtain an iterative auction which implements the e�cient

outcome (at an ex-post perfect equilibrium). This auction relies on a simple pricing rule, compact

demand reports, and uses a novel (interleaved) price update structure to assign final payments

to bidders that guarantee truthful bidding.

Keywords: Auction design, e�cient auctions, iterative auctions, graphical valuations, Wal-

rasian equilibrium, primal-dual algorithms.

1 Introduction

Iterative auctions are a class of mechanisms that are commonly employed in practice. In these

auctions, the auctioneer sets prices for the items she is selling, bidders report which items they are

interested in at the given prices, and in response to these reports the auctioneer updates the prices.

This process terminates when the auctioneer determines a final allocation of items to bidders.
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Examples of iterative auctions include the auctions used for selling electricity, natural resources,

bus routes, spectrum, art, antiquities, wine, jewelry, and some auctions used for procurement.

The well-known English and Dutch auctions can be viewed as examples of single-item iterative

auctions. When bidders have independent private values, these auctions allocate the item e�ciently,

i.e., the bidder with the highest value receives the item. On the other hand, in more general multi-

item settings (such as spectrum or procurement auctions) the iterative auctions that are present

in the literature do not always have e�ciency guarantees. More precisely, they either implement

the e�cient outcome under restrictive assumptions (such as the gross substitutes assumption, Gul

and Stacchetti (2000); Ausubel (2006)), or they require complex pricing structures that involve a

di↵erent price for each bundle of items (Ausubel and Milgrom, 2002; Bikhchandani and Ostroy,

2002; Vohra, 2011). The auctions in the first category do not allow for value complementarity

between di↵erent items, which is observed in various auction environments. Those in the second

category may not be practical, since they require the number of di↵erent prices that are reported

to the bidders at each stage of the auction to be exponential in the number of items.

Motivated by these considerations, in this paper we develop novel and simple iterative auctions

for multi-item settings. We obtain our results by focusing on a special class of bidder valuations,

called graphical valuations, for which the value of a bundle of items is given by the sum of individual

values of items and values for pairs of items that capture the complementarity or substituability

between these items. This valuation class can naturally be represented in terms of a weighted

undirected graph, where the nodes correspond to items and edges link pairs of items that exhibit

complementarity/substitutability. In this paper, we further restrict attention to graphical valua-

tions, where the underlying graph is a tree (i.e., has no cycles) and satisfies an additional technical

condition (sign-consistency) which involves all bidders to view a given pair of items either as sub-

stitutes or as complements. While the tree valuations are a special case, they are fundamental for

understanding the iterative auction design problem, and the results we obtain for this case extend

to more general graphical valuations. For sign-consistent tree valuations, we design e�cient itera-

tive auctions that rely on the anonymous item pricing rule and terminate when a natural market

clearance condition holds (i.e., a Walrasian equilibrium is reached).1

Our auction design approach has three main steps. First, we establish that a Walrasian equi-

librium exists for sign-consistent tree valuations, and provide a compact linear programming (LP)

formulation of the e�cient allocation problem whose optimal primal and dual solutions respectively

correspond to the Walrasian equilibrium allocations and prices. Second, we provide a primal-dual

algorithm that solves this LP by iteratively updating the dual variables according to bidders’ val-

uations (Figure 1a), and converges to a Walrasian equilibrium. We then interpret a subset of the

dual variables as anonymous item prices, and show that it is possible to identify the dual update

direction and the step size in this algorithm without the explicit knowledge of bidders’ valuations,

when bidders compactly report their demand in response to price updates. This allows us to slightly

1In our companion paper Candogan et al. (2013), we study general graphical valuations and show that the e�cient
outcome can be implemented using auctions that rely on slightly more complex pricing rules than item pricing. In
particular, these pricing rules involve both item prices and discounts/markups for pairs of items.
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alter the algorithm in Figure 1a, and obtain an alternative algorithm that relies only on the de-

mand information (Figure 1b). The third step involves obtaining a novel interleaved tree auction

(Figure 1c) by modifying the second algorithm and complementing it with an appropriate payment

scheme which guarantees that bidders truthfully reveal their demand (and the e�cient outcome is

implemented) at an (ex-post perfect) equilibrium. In particular, the modified algorithm identifies

the Walrasian equilibria for markets that involve all bidders, as well as all bidders but one, by

interleaving the demand queries associated with di↵erent markets. These Walrasian equilibria are

then used to determine and assign the VCG payments (i.e. the externality bidders create on each

other). These payments guarantee that at equilibrium bidders truthfully report their demand, and

the e�cient outcome is implemented.

Walrasian(eq.(valua.ons( Primal/Dual(algorithm(
for(compact'LP'

(a) A primal-dual algorithm for obtaining Walrasian equilibria.

Walrasian(eq.(
Concise(dual(updates(&(
Incremental(step(size((
selec7on(

Compact(demand(
reports(

Item(prices(

(b) A demand-based algorithm for obtaining Walrasian equilibria.

Walrasian(eq.(&(
VCG$payments$

Incen/ve(compa/bility(:$
Interleaving$for$$
mul6ple$markets$

Concise(dual(updates(&(
Incremental(step(size((
selec/on(

Compact(demand(
reports(

Item(prices(

(c) An e�cient iterative auction.

Figure 1: In order to obtain our auction, we first provide a primal-dual algorithm that solves the LP
formulation of the e�cient allocation problem and converges to a Walrasian equilibrium (a). This
algorithm assumes the knowledge of bidders’ valuations. We then provide a slight modification of
this algorithm that relies only on the demand information (b). Finally, by modifying this algorithm
to identify Walrasian equilibria for multiple markets (that consist of all bidders and all bidders but
one), we obtain an iterative auction (c).

In the rest of this section, we explain our auction design approach and main contributions in

more detail, and discuss the related literature.

Existence of Walrasian equilibrium: Anonymous item pricing rule associates a price with

each item, and this price is the same for all bidders. Walrasian equilibrium provides a natural

termination condition for auctions that rely on this pricing rule, since at this outcome all bidders

demand disjoint sets of items, and hence no bidder needs to compete with the remaining bidders

to acquire the set of items that she demands. In Section 3, we show that for sign-consistent

tree valuations a Walrasian equilibrium exists. This result identifies a new class of valuations,

for which a Walrasian equilibrium exists even in the presence of complementarities. Additionally,

the result is tight, in the sense that if the sign-consistency or the tree assumption is relaxed (and

more general graphical valuations are allowed), then a Walrasian equilibrium need not exist. In

3

Page 3 of 65 Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Section 3, we also provide a compact LP formulation of the e�cient allocation problem, which (i)

involves polynomially many (in number of items and bidders) variables and constraints, and (ii)

identifies the Walrasian equilibria at optimal primal-dual solutions. The existence of such an LP

formulation implies that for sign-consistent tree valuations a Walrasian equilibrium can be obtained

in a computationally e�cient manner (through the solution of the LP).

A demand-based iterative algorithm: In Section 4, we provide a primal-dual algorithm that

terminates with the e�cient allocation and Walrasian equilibrium prices in finite time. This algo-

rithm starts with a dual feasible solution (of the LP formulation of the e�cient allocation problem),

and at each iteration updates it in an improvement direction obtained using information on the

active constraints (in the dual LP). The step size associated with these updates is equal to the

largest step in the update direction that preserves feasibility. The algorithm (Figure 1a) uses the

knowledge of bidders’ valuation both for obtaining an update direction and choosing the step size,

and terminates with the primal-dual optimal solutions of the LP formulation (and the Walrasian

equilibria). A subset of these dual variables can be interpreted as the anonymous prices that are

associated with the items. We can write down the dual update direction concisely in terms of these

variables, when information on bidders’ demand (at these prices) is available. In particular, given

the prices, the active constraints in the underlying LP can be determined from bidders’ demand

information, which in turn provides an update direction. Additionally, we show that updating the

prices in this direction incrementally until a bidder starts demanding a new bundle, guarantees that

the largest update in the given direction that preserves feasibility is made, thus determining the

stepsize of our algorithm. This structure allows for running the algorithm by only relying on bid-

ders’ demand reports (Figure 1b), and suggests a natural iterative auction that updates the prices

according to these reports, and converges to the Walrasian equilibria (and the e�cient outcome)

when bidders are truthful. Moreover, by exploiting the structure of sign-consistent tree valuations

we show that the demand reports take the compact form that involves specifying the items that

belong to every (or no) demanded bundle, and pairs of items where at least (at most) one of the

items is demanded.

An incentive compatible auction: We establish in Section 5 that when final payments of

bidders are equal to the sum of the prices of items a bidder receives at the end of the algorithm

in Figure 1b, bidders may have incentive to misreport their demand. However, we also show

that this algorithm can be modified in a way that guarantees that bidders truthfully report their

demand. The high-level idea behind our approach is to use the aforementioned algorithm to identify

Walrasian equilibria for the markets that consist of (i) all bidders, and (ii) all bidders but one.

An important and novel feature of our approach is the interleaved price update structure that

avoids running a separate auction for these markets, and instead allows for finding these Walrasian

equilibria jointly by updating the prices greedily giving priority to markets that are “closer” to a

Walrasian equilibrium. We establish that the price/surplus di↵erence between these equilibria can

be used to identify the VCG payments of bidders, which align bidders’ utilities with the goal of
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e�ciency. For such final payments, we prove that it is an ex-post perfect equilibrium for bidders to

truthfully reveal their demand. That is, no bidder has incentive to misreport her demand after any

(bidding) history, for any valuations of her opponents. Thus, with the aforementioned modification

of our algorithm (Figure 1c), we obtain an iterative auction that implements the e�cient outcome

for sign-consistent tree valuations.

Our auction relies on a simple (anonymous item) pricing rule, compact demand reports, and

uses the interleaved structure to guarantee truthful bidding. The results of this paper indicate that

when valuations of bidders can be represented using a simple graphical model, the auctioneer can

systematically exploit this structure to implement the e�cient outcome by iterative auctions that

rely on simple pricing rules. This suggests that it is possible to develop practical iterative auctions

with provable e�ciency guarantees by better understanding and exploiting the structure of bidders’

valuations.

Related literature: In standard multi-item auction settings, the VCG mechanism can be used

to implement the e�cient outcome in dominant strategy equilibria. Despite this desirable strategic

feature, VCG mechanisms are rarely used in practice. On the other hand, iterative auctions which

share similar equilibrium properties to VCG mechanisms are prevalent (see for instance Ausubel and

Milgrom (2006); Rothkopf et al. (1990); Engelbrecht-Wiggans and Kahn (1991)), and have found

applications in spectrum auctions, electricity auctions, online markets (such as eBay) (McAfee et al.,

2010; Ausubel and Cramton, 2004; Ausubel, 2004), as well as procurement settings (Hohner et al.,

2003; Cramton et al., 2006). This has stimulated significant interest in recent literature, and led

to development of a number of novel multi-item iterative auctions. Examples include the package

bidding auction (Ausubel and Milgrom, 2002), iBundle auction (Parkes, 1999), clinching auction

and its variants (Ausubel, 2004, 2006), auctions that rely on universally competitive equilibria

(UCE) (Mishra and Parkes, 2007, 2009), and the best response auction (Nisan et al., 2011).

The standard approach (Vohra, 2011) for developing iterative auctions involves three main

steps. E�cient iterative auctions implicitly solve an optimization problem, and find the welfare

maximizing allocation. The first step involves providing a linear programming formulation of the

e�cient allocation problem. Then, iterative algorithms for solutions of this optimization prob-

lem are developed. Finally, complementing these iterative algorithms with appropriate payment

schemes that guarantee truthful demand revelation at equilibrium, iterative auctions are obtained.

A number of works employ such iterative solutions of the e�cient allocation problem for the design

of iterative auctions (Bikhchandani et al., 2002; De Vries and Vohra, 2003; Parkes, 2006; De Vries

et al., 2007; Vohra, 2011; Mishra and Parkes, 2007). On the other hand, the iterative algorithms

(and the corresponding iterative auctions) present in the literature often rely on using exponen-

tially many prices at each step (a price for every bundle of items), as the underlying valuations are

general and the corresponding LP formulations do not admit a simple structure. In this paper, we

follow a similar approach, but by exploiting the special structure of graphical valuations, we obtain

provably e�cient auctions that rely on simple pricing rules.
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Many of the existing iterative auctions that implement the e�cient outcome by relying on a sim-

ple pricing rule are applicable only in settings where a Walrasian equilibium exists. Bikhchandani

and Mamer (1997) provide a linear programming characterization of the existence of a Walrasian

equilibrium (which we discuss in more detail in Section 2). A notable class of valuations where a

Walrasian equilibrium exists and simple iterative auctions guarantee e�ciency, is the class of gross

substitutes (GS) (Kelso and Crawford, 1982; Gul and Stacchetti, 1999). The GS property, on the

other hand, does not allow for any value complementarity between di↵erent items. A generalization

of this class which allows for a very specific value complementarity structure is the class of gross

substitutes and complements (GSC), see Sun and Yang (2006, 2009). The GSC structure suggests

that items can be grouped into two sets so that all items in a given set are gross substitutes, and

items that belong to di↵erent sets are complements. It is possible to establish the existence of a

Walrasian equilibrium and provide simple iterative auctions (Sun and Yang, 2006, 2009) for such

valuations. However, these results are limited to the particular complementarity structure imposed

by the GSC valuations, and do not overlap with our contributions (see Appendix A). Baldwin and

Klemperer (2012) extends the existence result for GSC and identifies more general demand struc-

tures for which a Walrasian equilibrium exists. However, the results of this paper are not directly

comparable to ours since while our characterization is in terms of the conditions on the valuation

functions, the aforementioned result is in terms of bidders’ demand.2

The idea of using simple pricing rules for implementing the e�cient outcome is also explored in

Mishra and Parkes (2009); Bikhchandani et al. (2011); Lahaie (2009, 2011). The first paper focuses

on settings, where each bidder has unit demand (i.e., never demands more than a single item) or

items are homogeneous (i.e., valuations are only a function of number of items acquired by the

bidders). The second work provides an auction that employs only a single price, and guarantees

e�ciency in settings with an additional combinatorial structure (a matroid structure) is present. We

note that these auctions are not directly applicable in our setting, since the valuations we consider

do not exhibit the structures imposed in these papers. The last two papers use kernel methods

from machine learning for obtaining iterative algorithms that solve for the e�cient allocation. These

algorithms rely on pricing rules that (potentially) become progressively more complex over time

in order to identify (nonlinear) market clearing prices, but do not lead to an incentive compatible

auction that implements the e�cient outcome. In our setting, it is not necessary to rely on pricing

rules that are more complex than anonymous item pricing, and our objective is to provide an

auction that implements the e�cient outcome at an ex-post perfect equilibrium.

The idea of identifying Walrasian equilibria for markets with all bidders, and all bidders but one,

and using these for the computation of VCG payments (and auction design) was also employed in

Ausubel (2006). This paper focuses on gross substitutes, and identifies such Walrasian equilibria by

running a separate auction for each market. In our setting, despite the fact that the gross substitutes

assumption does not hold, we are able to compute the VCG payments and implement the e�cient

2Consequently, it is possible to obtain examples where bidders’ valuations are sign-consistent tree valuations (hence
a Walrasian equilibrium exists), but these valuations are associated with a demand structure for which a Walrasian
equilibrium does not always exist.
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outcome. Additionally, we obtain our result without explicitly running separate auctions, but by

using a novel interleaved price update structure (as explained in Section 5).

The problem of finding the e�cient outcome in a general combinatorial setting is hard both

from a computational complexity and a communication complexity point of view (Lehmann et al.,

2006; Nisan and Segal, 2006; Cramton et al., 2006; Blumrosen and Nisan, 2010). This motivates

considering classes of value functions with additional structure (Blumrosen and Nisan, 2010; Cram-

ton et al., 2006). Recently, Conitzer et al. (2005); Sandholm and Boutilier (2006); Zhou et al.

(2009); Abraham et al. (2012) considered graphical valuation structures that are similar to those

that we consider in this paper (referred to as k-wise valuations in the first two works), characterized

the computational complexity of the e�cient auction design problem, and provided approximately

e�cient direct mechanisms. Additionally, the first two works studied the problem of eliciting pref-

erences for this class of valuations, and established that bidders’ preferences can be elicited using

polynomially many “value queries”. In our paper, we adopt a similar valuation model, but fo-

cus on developing iterative auctions that implement the e�cient outcome at an ex-post perfect

equilibrium, by relying on natural demand queries and a simple anonymous item pricing rule.

2 Model and Preliminaries

In this section, we introduce our graphical valuation model (Section 2.1). We also discuss structural

properties (e.g. pricing rules, termination conditions) of iterative auctions, and introduce the

Walrasian equilibrium concept that plays a key role in the design of such auctions (Section 2.2).

2.1 Graphical Valuations

We consider settings where an auctioneer sells N (heterogeneous) items to M bidders. We denote

the set of items by N and the set of bidders by M. For each bidder m 2 M, the value function

vm : 2N ! R+, captures the value vm(S) this bidder has for any set S ✓ N of items. In the

auction setup we consider, we assume that bidders’ value functions are private, i.e., each bidder

knows her own value function, but not the value functions of other bidders. We make two standard

assumptions about the value functions:

Assumption 2.1. Bidders have value zero for not receiving any items, i.e., vm(;) = 0. Moreover,

the value functions are monotone, i.e., vm(S1)  vm(S2) if S1 ✓ S2.

In the multi-item setting considered here, the value functions may not be additive, i.e., the value

a bidder has for a set S need not be equal to the sum of the values of items that are contained

in this set (vm(S) 6=
P

i2S vm({i})). If for any bidder m items i and j satisfy vm({i, j}) �
vm({i}) + vm({j}), we say that these items are (pairwise) complements. On the other hand, if

i and j are such that vm({i, j})  vm({i}) + vm({j}) for all m, we refer to them as (pairwise)

substitutes.3

3In this work we are mainly interested in pairwise complementarity/substitutability, and unless noted otherwise,
we refer to these simply as complementarity/substitutability.
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We next introduce the graphical valuation model that we focus on in this paper.

Definition 2.1 (Graphical Valuations). Let G = (N , E) be a graph such that the set of nodes

corresponds to the set of items N and there are edges between nodes (items) that may exhibit value

complementarity or substitutability. We refer to G as a value graph for set of items N .

We say that the value function v : 2N ! R+ is graphical (with respect to G) if it satisfies

v(S) =
P

i2S w
i

+
P

(i,j)2E|i,j2S w
ij

for all S ⇢ N , where {w
i

}
i2N represent the nonnegative weights

associated with nodes, and {w
ij

}(i,j)2E represent the weights associated with the edges.

This definition implies that a value function is graphical if there exist node weights and edge

weights associated with the underlying value graph, such that the value of any bundle S is given

by the sum of the weights of nodes and edges contained in an induced subgraph of G with set of

nodes S.4 See Figure 2 for an example.

b

a

c

S={a,b,c}

Figure 2: For a graphical valuation v, the value of bundle S = {a, b, c} can be given as v(S) =
w
a

+ w
b

+ w
c

+ w
ab

+ w
ac

+ w
bc

.

A value function associates a value with each bundle of items, and hence can be thought of as a

vector of length 2N . On the other hand, the definition of graphical valuations suggests that these

value functions can be uniquely defined by specifying N node weights and at most N2 edge weights.

This implies that the set of graphical valuations has smaller dimension than the set of general value

functions, and hence is not fully general. Despite not being fully general, graphical valuations can

naturally represent pairwise complementarity and substitutability. For instance, assume that i and

j are two items such that for graphical valuation v, we have w
ij

� 0. Then it can be seen that

v({i}) + v({j}) = w
i

+ w
j

 w
i

+ w
j

+ w
ij

= v({i, j}), and hence i, j are pairwise complements.

Conversely, if w
ij

 0, then v({i}) + v({j}) = w
i

+ w
j

� w
i

+ w
j

+ w
ij

= v({i, j}) and i, j are

pairwise substitutes.

In this work, we assume that all bidders have graphical valuations with respect to a common

graph G = (N , E). Additionally, in order to simplify the notation we allow for variables wm

ij

for

(i, j) /2 E, and follow the convention wm

ij

= 0 for such variables.

4We provide a discussion of the di↵erences between graphical valuations and other related special valuation classes
such as gross substitutes, gross substitutes and complements (Kelso and Crawford, 1982; Gul and Stacchetti, 1999;
Sun and Yang, 2006); sub/superadditive valuations, and sub/supermodular valuations (Blumrosen and Nisan, 2010)
in Appendix A.

8

Page 8 of 65Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Assumption 2.2. There exists a value graph G = (N , E) such that the value function of each

bidder is a graphical valuation with respect to G, i.e., for each bidder m 2 M, there exist weights

{wm

i

} and {wm

ij

} such that vm(S) =
P

i2S wm

i

+
P

(i,j)2E|i,j2S wm

ij

=
P

i2S wm

i

+
P

i,j2S wm

ij

for all

S ⇢ N .

Graphical valuations satisfying Assumption 2.2 capture the value complementarity/substitutability

in many practical auction settings including spectrum auctions, truck route auctions, and real es-

tate auctions. In these settings, the items that are auctioned correspond to di↵erent geographical

regions, and there are value complementarities and substitutabilities between neighboring regions.

For instance, in spectrum auctions, complementarities between adjacent geographical regions are

present due to roaming and interference (Cramton et al., 1997; Moreton and Spiller, 1998). Simi-

larly, di↵erent bands in the same geographical region can be viewed as substitutes as bidders may

only have limited demand for spectrum in each geographical region. Such complementarities and

substitutabilities exhibit a similar structure for all bidders, and can naturally be captured by graph-

ical valuations by associating a node with each spectrum band - geographical region pair, and an

edge with pairs of spectrum bands in adjacent (or the same) geographical regions (see Figure 3).5

Band%A%

Band%B%

Geographical%Regions%

Figure 3: Consider a spectrum auction where two bands (A & B), over one central and four
peripheral geographical regions are sold. Agents view the bands in neighboring geographical regions
as complements, while they view di↵erent bands in the same geographical region as substitutes.
This can be captured using the graphical model in the above figure, and assigning positive weights
to the solid lines, and negative weights to the dashed ones.

2.2 E�cient Iterative Auctions and Walrasian Equilibrium

In this paper our objective is to design e�cient auctions for graphical valuations. Given bundles

of items Sm ⇢ N for all m 2 M, we say that {Sm}
m2M is a feasible allocation if (i) each bidder

5Graphical valuations can be generalized to capture multilateral complementarities and substitutabilities among
multiple items. In particular, we can associate a weight with each clique of the value graph with cardinality at most
r 2 {1, . . . , N}, and represent the value a bidder has for a bundle S by the sum of the weights of all such cliques
contained in this bundle. It can be seen that graphical valuations correspond to the case of r = 2. A discussion of
this generalization and its applications in the context of iterative auction design can be found in Candogan (2013).
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m 2 M receives a bundle of items Sm ⇢ N , (ii) each item is assigned to at most one bidder, i.e.,

Sm\Sl = ; for m, l 2 M with m 6= l. An e�cient allocation is a feasible allocation {Sm}
m2M that

maximizes the welfare or total value, i.e.,
P

m

vm(Sm) = max{{Zm}m|Zm\Zl=;}
P

m

vm(Zm). An

auction that terminates with an e�cient allocation for any value functions is an e�cient auction.

We focus on designing e�cient auctions that have an iterative structure. In these auctions, the

auctioneer sells items to bidders through a dynamic process, whereby she posts prices, and collects

responses from bidders for demanded bundles of items. She uses this information to update the

prices until a final allocation of bundles to bidders is determined. We refer to such auctions as

iterative auctions.

Since final allocations are in terms of bundles, a natural structure for iterative auctions involves

a di↵erent price for every bundle. However, due to the presence of exponentially many bundles

(in the number of items) this pricing rule is informationally intensive. This motivates focusing on

simpler pricing rules for iterative auction design. In the literature such a pricing rule, anonymous

item pricing, has been employed for e�cient iterative auction design in settings where valuations do

not exhibit complementarities (Ausubel, 2004, 2006; Gul and Stacchetti, 1999, 2000). This pricing

rule suggests o↵ering a price p
i

for item i 2 N to all bidders, and it compactly captures the price

of every bundle as a summation of prices of items contained in it. In this work, we design iterative

auctions that rely on anonymous item pricing and guarantee e�ciency for subclasses of graphical

valuations which exhibit complementarity (in particular tree valuations, see Section 3).

At given anonymous item prices, we refer to the quantity vm(S)�
P

i2S p
i

as the surplus bidder

m associates with bundle S. We say that a bundle S⇤ is demanded by bidder m, if maximum

surplus is achieved for this bundle, i.e., vm(S⇤) �
P

i2S⇤ p
i

= max
S

vm(S) �
P

i2S p
i

. We denote

the set of bundles bidder m demands by Dm, i.e., Dm = argmax
S

vm(S)�
P

i2S p
i

.

Auctions that rely on anonymous item prices can be terminated when bidders demand disjoint

bundles of items. Observe that this is a natural termination point for the auction, since bidders

do not compete with each other for the items that they demand. This outcome coincides with the

classical Walrasian equilibrium concept from microeconomic theory (Mas-Collel et al., 1995):

Definition 2.2 (Walrasian equilibrium). Consider prices {p
i

}
i2N , and allocation {Sm}

m

where

Sm ⇢ N for every m. The tuple ({p
i

}
i

, {Sm}
m

) is a Walrasian equilibrium if

(i) p
i

� 0, for i 2 N ,

(ii) {Sm}
m2M is a feasible allocation, i.e., Sk \ Sm = ;, for k 6= m,

(iii) Sm is demanded by bidder m for all m 2 M, i.e., vm(Sm)�
P

i2Sm p
i

� vm(S)�
P

i2S p
i

for

any S ⇢ N , and m 2 M,

(iv) p
i

= 0 if i /2 [
m

Sm.

Observe that conditions (ii) and (iii) suggest that bidders demand disjoint bundles of items.

Conditions (i) and (iv) guarantee that prices are nonnegative, and the price of an item that is not
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demanded is equal to zero. It can be shown (by aggregating inequality (ii) over all bidders) that the

allocation {Sm} associated with a Walrasian equilibrium is e�cient. This suggests that auctions

that terminate when a Walrasian equilibrium is reached can implement the e�cient outcome. In

this work we focus on such iterative auctions.

A Walrasian equilibrium need not exist for all classes of valuations. Hence, a prerequisite for the

design of auctions that terminate at a Walrasian equilibrium is establishing its existence. A neces-

sary and su�cient condition for the existence of a Walrasian equilibrium is given in Bikhchandani

and Mamer (1997). They consider the following linear programming formulation of the e�cient

allocation problem (LP1) and its dual (DLP1):

(LP1)

max
X

m

X

S

xm(S)vm(S)

s.t.
X

S

xm(S)  1 8m

X

m

X

S|i2S

xm(S)  1 8i

xm(S) � 0.

(DLP1)

min
X

i

p
i

+
X

m

⇡m

s.t. ⇡m � vm(S)�
X

i2S
p
i

8 S,m

p
i

,⇡m � 0.

At integral feasible solutions of LP1, xm(S) takes value 1 if bundle S is assigned to bidder m.

The first two constraints respectively ensure that each bidder m receives at most one bundle, and

each item i can be present in at most one bidder’s bundle. The objective function is the total value

generated by an allocation of items according to {xm(S)}
m

. In DLP1, we have a variable p
i

for

each item i, which can be interpreted as the price of the relevant item. At optimal solutions of

DLP1 it can be seen that ⇡m is equal to the maximum surplus of bidder m at prices {p
i

}, i.e.,
⇡m = max

S

vm(S)�
P

i2S p
i

.

Bikhchandani and Mamer (1997) show that a Walrasian equilibrium exists if and only if LP1

has an optimal solution that is integral. This result follows by establishing that at integral feasible

solutions of LP1 the complementary slackness conditions in LP1/DLP1 are identical to the Wal-

rasian equilibrium conditions in Definition 2.2. Moreover, when LP1 has optimal solutions that

are integral, the allocation {Sm}
m

with bundles Sm satisfying xm(Sm) = 1, together with optimal

prices {p
i

}
i

constitute a Walrasian equilibrium. We employ these results in the next section to

characterize the existence of a Walrasian equilibrium for graphical valuations. Subsequently, we

use this characterization to develop e�cient iterative auctions that terminate at this equilibrium.

3 Tree Valuations and Walrasian Equilibrium

In the rest of this paper, we focus on the special setting where the value functions satisfy the

following assumptions:6

6We study the e�cient allocation problem for general graphical valuations in our companion paper (Candogan
et al., 2013).
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Assumption 3.1 (Tree valuation). Let G = (N , E) be the value graph associated with the graphical

valuations of bidders. We assume that G is a tree graph, i.e., it contains no cycles.

Assumption 3.2 (Sign-consistency). For some (i, j) 2 E and m 2 M, if wm

ij

> 0, then wk

ij

� 0

for all k 2 M, and similarly if wm

ij

< 0, then wk

ij

 0 for all k 2 M.

The tree graph assumption imposes a natural hierarchy in the complementarity/substitutability

structure: each node (item) can exhibit pairwise complementarity/substitutability only with its

parent/children in the underlying tree.7 The sign-consistency requirement, on the other hand,

suggests that two items i and j are either substitutes or complements for all bidders. Note that

this assumption still allows for the presence of both complementary and substitutable items in the

set of items, but it prevents having two items as substitutes for some bidders and complements

for the remaining ones. As an example of valuations that satisfy these assumptions, consider the

spectrum auction in Figure 3, and assume that the auctioneer sells only a single spectrum band

(band A) in multiple regions. In this case, the valuations can be represented using a tree graph

(where nodes correspond to di↵erent geographical regions, and there is a natural hierarchy between

the central node and the peripheral ones). Moreover, if spectra in the neighboring regions are

complementary for a bidder (due to reduced interference), we expect them to be complementary

for the remaining bidders as well. Thus, the sign-consistency assumption also holds.

In this section, we establish that a Walrasian equilibrium exists for sign-consistent tree valua-

tions (Section 3.1). We also provide a compact LP formulation (that involves polynomially many

variables and constraints in the number of items and bidders) of the e�cient allocation problem,

and show that Walrasian equilibria can be obtained through the solution of this LP and its dual. In

Section 3.2, we show that the sign-consistency and tree graph assumptions are indispensable for the

existence of a Walrasian equilibrium. For ease of exposition, we delegate the proofs to Appendix B.

The compact LP formulation that we provide in this section plays a key role in subsequent sections

for the design of e�cient iterative auctions that terminate at a Walrasian equilibrium.

3.1 A Compact LP Formulation for Walrasian equilibria

In this section, we establish the existence of a Walrasian equilibrium for sign-consistent tree val-

uations. In order to obtain the existence result, we first provide a compact linear programming

formulation (LP2) of the e�cient allocation problem that exploits the graphical structure of bid-

ders’ valuations. We then establish that for sign-consistent tree valuations, this formulation has

integral optimal solutions. This result allows for showing that LP1 (introduced in Section 2.2)

also has integral optimal solutions, and implies the existence of a Walrasian equilibrium for sign-

consistent tree valuations (Theorem 3.1). We conclude the section by showing that the compact

LP formulation and its dual can be used to find the Walrasian equilibrium allocation and prices

(Theorem 3.2).

7We note that the results presented in this paper still hold when the underlying graph is a forest, i.e., a collection
of disjoint trees.
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Before we provide the compact LP formulation of the e�cient allocation problem, we state a

related integer programming formulation (recall that wm

ij

= 0 for (i, j) /2 E):

(IP )

max
X

m

X

i

xm
i

wm

i

+
X

m

X

i,j

ym
ij

wm

ij

s.t.
X

m

xm
i

 1, 8i

ym
ij

 xm
i

, xm
j

, 8m, i, j

xm
i

+ xm
j

� 1  ym
ij

, 8m, i, j

xm
i

2 {0, 1}, ym
ij

2 {0, 1}, 8m, i, j.

In this formulation, the variable xm
i

takes the value 1 if item i is allocated to bidder m. The first

constraint guarantees that each item is assigned to at most one bidder. The second and third

constraints jointly imply that ym
ij

= xm
i

xm
j

, i.e., ym
ij

= 1 if and only if both i and j are assigned to

bidder m. It can be immediately seen that every feasible solution {xm
i

, ym
ij

} of this integer program

corresponds to a feasible allocation {Sm}, where Sm = {i|xm
i

= 1} (and vice versa). Moreover, since

ym
ij

= 1 if and only if xm
i

= xm
j

= 1, for graphical valuations the associated objective value is the

welfare generated by this allocation, i.e.,
P

m

vm(Sm). Since every feasible solution corresponds

to a feasible allocation (and vice versa) and the e�cient allocations are defined as the feasible

allocations that maximize welfare, it immediately follows that the optimal solutions of this integer

program correspond to e�cient allocations.

The LP relaxation of this integer program (obtained by replacing the constraints xm
i

2 {0, 1}, ym
ij

2
{0, 1} with xm

i

2 [0, 1], ym
ij

2 [0, 1]), leads to a linear programming formulation of the e�cient allo-

cation problem (hereafter referred to as LP2):

(LP2)

max
X

m

X

i

xm
i

wm

i

+
X

m

X

i,j

ym
ij

wm

ij

s.t.
X

m

xm
i

 1, 8i

ym
ij

 xm
i

, xm
j

8m, i, j

xm
i

+ xm
j

� 1  ym
ij

, 8m, i, j

xm
i

 1, 8m, i

0  xm
i

, ym
ij

8m, i, j.

In this formulation the constraint ym
ij

 1 is implied by the second and fourth constraints and hence

is omitted.8 Since integral solutions of this LP are also solutions of IP, it follows that these solutions

correspond to feasible allocations, and their objective value is the associated welfare. Observe that

8In fact, the fourth constraint is also redundant, as it is implied by the first constraint and nonnegativity of xm
i .

This constraint is not omitted in order to ensure consistency with a related LP formulation (LP � Dm) that we
discuss in Section 4, where this constraint is necessary.
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LP2 uses the graphical structure of the valuations (and employs decision variables xm
i

, ym
ij

that can

be associated with the nodes and edges of the underlying graph) to obtain a compact formulation

of the e�cient allocation problem, i.e., it involves polynomially many variables and constraints (in

the number of bidders and items).

In general this LP relaxation is not exact, i.e., the relaxation may have non-integer solutions

that lead to a higher objective value than the optimal objective value of IP (in fact this is the case

even for tree valuations that are not sign-consistent, see Section 3.2 for examples). Interestingly,

we show in the following theorem that for sign-consistent tree valuations LP2 has optimal solutions

that are integral. Moreover, this result has interesting consequences. In particular, it allows

for establishing the existence of integral optimal solutions to LP1, and hence the existence of a

Walrasian equilibium.

Theorem 3.1. (i) For sign-consistent tree valuations LP2 has integral optimal solutions.

(ii) If LP2 has integral optimal solutions, then so does LP1.

(iii) For sign-consistent tree valuations LP1 has integral optimal solutions, and a Walrasian equi-

librium exists.

The first part of this result is established by exploiting the tree structure to obtain an alternative

linear programming formulation of the e�cient allocation problem, whose optimal objective value

is equal to the welfare associated with the e�cient allocation. This formulation relies on the fact

that for trees the e�cient allocation can be constructed recursively (by first identifying the e�cient

allocations in subtrees rooted at the children of a given node, and then using the allocations

associated with subtrees to construct a solution to the e�cient allocation problem for the tree

that consists of all nodes), and has a similar structure to linear programs that can be used for

solving dynamic programs (see Bertsekas (1996)). Under the sign-consistency assumption, we show

that the optimal solutions of LP2 can be mapped to feasible solutions of this LP with the same

objective value. These results imply that the objective value of LP2 is bounded from above by the

welfare associated with the e�cient allocation. Theorem 3.1(i) follows since IP, and hence LP2,

have feasible integral solutions that correspond to the e�cient allocation and have objective value

equal to the associated welfare.

Note that while LP1 is applicable for all valuations, LP2 makes use of the graphical structure

and is applicable only for graphical valuations. The second part of Theorem 3.1 suggests that these

formulations are closely related, and the existence of integral solutions in the latter formulation

implies the existence of such solutions in the former. The main idea behind the proof is to establish

that for any feasible solution of LP1 it is possible to construct a feasible solution of LP2 with

the same objective value, and conversely for any feasible integer solution of LP2 it is possible to

construct a feasible integer solution of LP1, again with the same objective value (see Figure 4).

These two facts immediately imply that when LP2 has an optimal solution that is integral, this

solution leads to a (weakly) larger objective value than all feasible solutions of LP1. Moreover,
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there exists a feasible integer solution of LP1 with the same objective value. Thus, this solution is

optimal in LP1.

Feasible set of LP1

Feasible 

set of LP2

Integer 

extreme 

point of 

LP2

Integer extreme point of 

LP1

Figure 4: A feasible solution {xm
i

, ym
ij

} to LP2 can be constructed from a feasible solution {xm(S)}
of LP1 (by setting xm

i

=
P

S|i2S xm(S), ym
ij

=
P

S|ij2S xm(S)). These solutions have the same
objective values in the corresponding optimization problems. Additionally, any feasible integer
point {x̂m

i

, ŷm
ij

} of LP2 corresponds to a feasible integer point {x̂m(S)} of LP1 (where x̂m(S) = 1
only for S = {i|x̂m

i

= 1}). Thus, if LP2 admits an optimal solution that is integral, then so
does LP1.

Finally, the last part of Theorem 3.1 immediately follows from parts (i) and (ii), since a Wal-

rasian equilibrium exists if and only if LP1 has integral optimal solutions (see Section 2). In the

literature, the existence of a Walrasian equilibrium is established mainly in settings with no value

complementarities (e.g., Gul and Stacchetti (1999)). Interestingly, our result implies that despite

the fact that tree valuations exhibit both value complementarity and substitutability, when all

bidders have sign-consistent tree valuations a Walrasian equilibrium always exists.9

We next focus on obtaining the Walrasian equilibrium allocation and prices using LP2. We

start by presenting the dual of LP2:

(DLP2)

min
X

m,i

⇡m

i

+
X

m,i,j

pm
ij

+
X

i

p
i

s.t. ⇡m

i

� wm

i

� p
i

+
X

j|j 6=i

qm,i

ij

�
X

j|j 6=i

pm
ij

8m, i

qm,i

ij

+ qm,j

ij

� pm
ij

� wm

ij

8m, i, j

qm,i

ij

, pm
ij

,⇡m

i

, p
i

� 0 8m, i, j.

In this formulation, the variables p
i

, qm,i

ij

, pm
ij

,⇡m

i

respectively correspond to the constraints
P

m

xm
i


1, ym

ij

 xm
i

, xm
i

+xm
j

�1  ym
ij

, and xm
i

 1 of LP2. The variable p
i

can be interpreted as the price

of item i. Note that since both LP1 and LP2 have integral optimal solutions for sign-consistent tree

9A Walrasian equilibrium also exists for the class of gross substitutes, and its generalization gross substitutes and
complements (see Gul and Stacchetti (1999) and Sun and Yang (2006)). We show in Appendix A that the class
of graphical valuations that satisfy Assumptions 3.1 and 3.2 is not contained in these classes. Moreover, graphical
valuations that also belong to these classes constitute a small subset of tree valuations, where the underlying graph
consists of connected components of size at most two. Thus, our result here establishes the existence of a Walrasian
equilibrium for a distinct and broad class of valuations.
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valuations (by Theorem 3.1), the optimal objective values of DLP1 and DLP2 are both equal to

the welfare associated with the e�cient allocation. Since the objective of DLP2 can be expressed

as
P

m

(
P

i

⇡m

i

+
P

i,j

pm
ij

)+
P

i

p
i

, comparing the objective value of DLP2 with that of DLP1 (given

by
P

m

⇡m+
P

i

p
i

), it follows that the quantity
P

i

⇡m

i

+
P

i,j

pm
ij

can be interpreted as the surplus

of bidder m (i.e., corresponds to ⇡m in DLP1). Intuitively, DLP2 associates variables with the

nodes and edges of the underlying graph to capture bidders’ surplus.

We next establish that the prices {p
i

} at an optimal solution of DLP2 and the allocation

suggested by an integral optimal solution of LP2 constitute a Walrasian equilibrium. Since these

LP formulations have polynomially many variables and constraints in the number of items and

bidders, our result also implies that by solving these LP formulations a Walrasian equilibrium can

be obtained in a computationally e�cient way.

Theorem 3.2. Assume that bidders have sign-consistent tree valuations.

(i) Let {p
i

} be the prices that appear at an optimal solution of DLP2, and allocation {Sm} be

such that Sm = {i|xm
i

= 1} for an integral optimal solution {xm
i

, ym
ij

} of LP2. The prices {p
i

}
and allocation {Sm} constitute a Walrasian equilibrium.

(ii) If the node and edge weights are integral, then a Walrasian equilibrium can be obtained in

time polynomial in the number of bidders and items.

The proof of the first part of this theorem follows by showing that complementary slackness

between the integral optimal solutions of LP2 and optimal solutions of DLP2 imply the Walrasian

equilibirum conditions given in Definition 2.2 for the aforementioned allocation and prices. The

second part relies on the observation that LP2/DLP2 are LP formulations with polynomially many

constraints and variables. Since such LP formulations can be e�ciently solved (e.g., using the

ellipsoid algorithm), the result follows from the first part of the theorem.

Remark: As explained in Section 2, the allocation-price pair that constitutes a Walrasian equilib-

rium can be obtained through the optimal solutions of LP1 and DLP1 as well. However, these prob-

lems have exponentially many variables/constraints (in the number of items), and unlike LP2/DLP2

in general they cannot be solved in a computationally e�cient way.

3.2 Nonexistence of a Walrasian Equilibrium

In this section, we show that the characterization provided in the previous section is tight, in the

sense that if Assumption 3.1 or Assumption 3.2 is relaxed, then a Walrasian equilibrium need not

exist for graphical valuations. In particular, we provide examples in which only the tree (Example

3.1) or the sign-consistency assumption (Example 3.2) holds, and establish that in these examples

a Walrasian equilibrium does not exist.

Example 3.1. Consider a setting with bidders m, k and items i, j. Assume that the valuations of

bidders are represented with the tree valuation in Figure 5, which is not sign-consistent.
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1 1 1

3 3-3

wm=

wk=

i j

Figure 5: The weights for bidder m (k) is given above (below) the nodes/edges.

The optimal integer solutions of LP1 result in a total welfare of 4 (this can be obtained by

choosing xm({i}) = xk({j}) = 1 and xl(S) = 0, for remaining S and l 2 {m, k}). On the other

hand, consider the following solution of LP1: xm({i, j}) = xm(;) = 1/2, xk({i}) = xk({j}) = 1/2,

and xm({i}) = xm({j}) = xk({i, j}) = xk(;) = 0. Feasibility of this solution in LP1 can be

immediately checked, and the corresponding objective value is given by:

xm({i, j})vm({i, j}) + xm(;)vm(;) + xk({i})vk({i})+xk({j})vk({j}) = 3 + 0 + 3 + 3

2
= 4.5.

Note that the objective value associated with this solution is larger than the objective of the optimal

integer solution of LP1. Hence, LP1 does not have integral optimal solutions. Since a Walrasian

equilibrium exists if and only if LP1 has integral optimal solutions, it follows that a Walrasian

equilibrium does not exist for this example.

Example 3.2. We next focus on the 3-cycle example in Figure 6, which satisfies the sign-consistency

assumption but not the tree assumption.10 For this example, it can be seen that the optimal integer

solution of LP1 results in an objective value of 1. On the other hand, x1({AB}) = x2({BC}) =

x3({CA}) = 1/2 and x1(;) = x2(;) = x3(;) = 1/2, is a feasible solution of LP1 with objective value
3
2 . Hence, LP1 does not have an optimal solution that is integral, and a Walrasian equilibrium does

not exist.

A

CB

1,0,0

1

0,0,1

0,1,0

1

A

B

A

C

CB

Player 1 = (1/2) Player 2 = (1/2)

Player 3 = (1/2)

Figure 6: A value graph for three items is given on the left. We assume that there are three bidders,
and node weights are equal to zero for all bidders. The labels associated with the edges designate
the edge weights for di↵erent bidders. A feasible (fractional) solution to LP1 with larger objective
value than any feasible integer solution of LP1 is given on right.

10This example generalizes to any graph containing a k-cycle (and any k > 2). See Candogan (2013) for details.
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These examples suggest that both the tree and the sign-consistency assumptions are indispens-

able for the existence of a Walrasian equilibrium. Hence, it is not possible to design iterative

auctions that terminate at this outcome for more general graphical valuations. This implies that

di↵erent termination conditions or pricing rules are needed for such valuations. We discuss iterative

auction design using more general pricing rules in our companion paper Candogan et al. (2013).

4 An Iterative Algorithm for Obtaining a Walrasian Equilibrium

In this section, we obtain an iterative algorithm for the solution of LP2/DLP2, which for sign-

consistent tree valuations terminates with a Walrasian equilibrium in finite time. This algorithm is

based on primal-dual algorithms, and relies on setting prices for di↵erent items and updating them

according to bidders’ demand at the given prices. In Section 5, we use this algorithm for iterative

auction design, and establish (after complementing the algorithm with an appropriate payment

rule) that it is an equilibrium for bidders to truthfully report their demand in these auctions.

We start this section by providing an overview of primal-dual algorithms (Section 4.1). In

Section 4.2, we show how they can be applied to the solution of the e�cient allocation problem

LP2, and provide intuition for the associated dual variable updates. In particular, we establish

that the algorithm increases the prices (i.e., variables {p
i

} in DLP2) of overdemanded items, and

decreases those of underdemanded ones at each update. This algorithm uses the parameters of

LP2/DLP2 (such as node and edge weights) in dual variable updates. In Section 4.3 we show that

it is possible to slightly modify the algorithm and run it relying solely on bidders’ demand reports

(and not on the node/edge weights). Moreover, the resulting algorithm converges to a Walrasian

equilibrium in finite time. We exploit this structure in the next section for the design of iterative

auctions. The proofs of the results of this section are delegated to Appendix C.

4.1 Primal-dual Algorithm

In this section, we provide an overview of primal-dual algorithms, and introduce a slight general-

ization of these algorithms which we subsequently use for iterative auction design. The results of

this section follow immediately from the existing literature on primal-dual algorithms (for instance

Papadimitriou and Steiglitz (1998); Bertsimas and Tsitsiklis (1997); Bazaraa et al. (2011); Vohra

(2011)), and are presented without proofs.

We start by focusing on a generic primal linear program (left) and its dual (right):

max
y

dT y

s.t. Ay  a

By  b

y � 0,

min
�,µ

aT�+ bTµ

s.t. AT�+BTµ � d

�, µ � 0.
(1)
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In these formulations, a 2 Rm1 , b 2 Rm2 , d 2 Rn and A 2 Rm1⇥n, B 2 Rm2⇥n are given, and

y 2 Rn and � 2 Rm1 , µ 2 Rm2 are respectively the decision variables for the primal and the dual.

We denote the element in the ith row and jth column of matrix A by A
ij

, and the ith element

of a given vector y by y
i

(similarly for other vectors and matrices). The feasible primal-dual pair

(y⇤, [�⇤, µ⇤]) is optimal if and only if it satisfies the complementary slackness (hereafter referred to

as CS) conditions (Bertsimas and Tsitsiklis, 1997):

�⇤
i

> 0 !
X

j

A
ij

y⇤
j

= a
i

, µ⇤
i

> 0 !
X

j

B
ij

y⇤
j

= b
i

,

y⇤
j

> 0 !
X

i

A
ij

�⇤
i

+
X

i

B
ij

µ⇤
i

= d
j

.
(2)

The high-level idea behind primal-dual algorithms is to start with a dual feasible solution [�⇤, µ⇤],

and check if there exists a primal feasible solution that satisfies the CS condition with the given

dual solution. If this is the case, optimal solutions to both problems are found and the algorithm

terminates. Otherwise [�⇤, µ⇤] is not optimal, and the primal-dual algorithm iteratively updates

the dual solution to a dual feasible solution with improved objective value.

The CS conditions can be checked using the restricted primal/dual problems (hereafter RP/RD):

(RP) (RD)

min
�,h,y

X

i

�
i

+
X

i

h
i

s.t.
X

j

A
ij

y
j

+ �
i

� h
i

= a
i

8i| �⇤
i

> 0

X

j

A
ij

y
j

+ �
i

� h
i

 a
i

8i| �⇤
i

= 0

X

j

B
ij

y
j

= b
i

8i| µ⇤
i

> 0

X

j

B
ij

y
j

 b
i

8i| µ⇤
i

= 0

y
j

= 0 8j|
P

i

A
ij

�⇤
i

+
P

i

B
ij

µ⇤
i

> d
j

y, �, h � 0.

max
�̄,µ̄

� aT �̄� bT µ̄

s.t.
X

i

A
ij

�̄
i

+
X

i

B
ij

µ̄
i

� 0

8j|
P

i

A
ij

�⇤
i

+
P

i

B
ij

µ⇤
i

= d
j

� 1  �̄
j

 1 8j

�̄
i

� 0 8i| �⇤
i

= 0

µ̄
i

� 0 8i| µ⇤
i

= 0.

RD is the dual of the optimization problem obtained after omitting the variables in RP that are

set equal to zero (i.e. variables that appear in the fifth constraint of RP). For � = h = 0, the first

and third constraints of RP correspond to the CS conditions in (2), while the remaining constraints

guarantee that the component y of the solution of RP is feasible in the original primal problem. The

variables �, h capture the deviation from the CS conditions (associated with the first constraint of

the original LP), and the objective of RP is to minimize the aggregate deviation.11 In the standard

version of primal-dual algorithms (e.g., Papadimitriou and Steiglitz (1998)), such variables are

11RP can equivalently be formulated by replacing the objective with min
P

i |zi|, where zi = �i � hi.
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introduced for all constraints of the original LP (i.e., m2 = 0), and this guarantees that RP is

always feasible.12 On the other hand, we allow for introducing such variables only for a subset

of the constraints, since this structure allows for obtaining simpler formulations of RP/RD (with

fewer variables/constraints), and plays an important role in our iterative auction design approach

(as discussed in the next section).

It can be seen that for a given dual feasible solution [�⇤, µ⇤] the optimal objective of RP is

zero if and only if the optimal solution (y⇤, �⇤, h⇤) of RP is such that �⇤ = h⇤ = 0. Moreover,

in this case feasibility in RP implies that (y⇤, [�⇤, µ⇤]) satisfy the CS conditions in (2), and hence

are optimal in the original primal/dual problems (1). On the other hand, if the optimal objective

of RP is strictly positive, then the optimal solution [�̄, µ̄] of RD is an improvement direction, i.e.,

aT�⇤ + bTµ⇤ > aT (�⇤ + ✏�̄) + bT (µ⇤ + ✏µ̄) and [(�⇤ + ✏�̄), (µ⇤ + ✏µ̄)] is feasible in the original dual

problem for su�ciently small ✏ > 0. This follows since by strong duality we have aT �̄+bT µ̄ < 0, and

the (first, third, and fourth) constraints of RD (which are satisfied by [�̄, µ̄]) guarantee feasibility

of [(�⇤ + ✏�̄), (µ⇤ + ✏µ̄)] for su�ciently small ✏. Thus, we conclude that by solving RP/RD the CS

conditions can be tested, and either an optimal solution to the original primal/dual problems, or

an improvement direction can be obtained.

Given the improvement direction, the dual solution [�⇤, µ⇤] is updated to [�⇤ + ✓⇤�̄, µ⇤ + ✓⇤µ̄]

using the primal-dual stepsize of ✓⇤ , max{✓ � 0|[�⇤ + ✓⇤�̄, µ⇤ + ✓⇤µ̄] is feasible in the dual}. In

other words, the dual is updated by taking the largest step in the improvement direction that

preserves feasibility. The algorithm terminates when the dual feasible solution [�⇤, µ⇤] is such that

the corresponding formulation of RP has an optimal solution (y⇤, �⇤, h⇤) with objective value zero,

and returns (y⇤, [�⇤, µ⇤]) at termination. The improvement direction and stepsize defined here

guarantee that termination occurs in finite time and (y⇤, [�⇤, µ⇤]) are optimal respectively in the

original primal-dual problems in (1):

Proposition 4.1. If RP is feasible after each dual update, then the primal-dual algorithm termi-

nates in finite time with optimal solutions of the optimization problems in (1).

The proof follows by examination of the finite-convergence proofs of primal-dual algorithms

given in Papadimitriou and Steiglitz (1998); Bazaraa et al. (2011), and is omitted.13 The key step

in the proof is to show that after dual updates the optimal solution of RP corresponds to a di↵erent

extreme point of the polytope obtained by replacing the equality constraints in RP with inequality

constraints. Hence, the extreme point corresponding to an optimal solution of the original primal

problem is found in finitely many updates.

Applications of primal-dual algorithms to auction design can be found in the literature (Bikhchan-

dani et al., 2002; Parkes, 2006; Mishra and Parkes, 2007; De Vries et al., 2007; Vohra, 2011). How-

12In the standard version of primal-dual algorithms it is also assumed that the original primal problem (1) is in
standard form (i.e., consists of equality and nonnegativity constraints), and a, b � 0. Consequently, restricted primal
can be formulated using only �i variables (i.e., setting hi = 0). Here we allow for inequality constraints in the original
primal, as LP2 involves such constraints, and provide a more general RP.

13In these works, the �i, hi variables are associated with all constraints of the original LP, and hence RP is
always feasible. Their analysis immediately extends to the case where such variables are associated with only some
constraints, provided that RP remains feasible after each dual update.
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ever, the existing auction formats either disallow complementarities or rely on complex bundle

pricing rules. In subsequent sections, we use primal-dual algorithms with LP2/DLP2, and develop

simple e�cient iterative auction formats that are applicable when complementarities are present.

4.2 A Primal-Dual Algorithm for the E�cient Allocation Problem

In this section, we discuss how the primal-dual algorithm can be used for the solution of the

e�cient allocation problem LP2, and characterize the corresponding dual update direction and the

stepsize. In particular, we show that the algorithm increases (decreases) the prices of overdemanded

(underdemanded) items, and chooses the smallest stepsize which causes a bidder to demand a new

bundle. Throughout this section, we use the shorthand notations ⇡ = {⇡m

i

}
m2M,i2N , p = {p

i

}
i2N ,

p
E

= {pm
ij

}
m2M;i,j2N , q

E

= {qm,i

ij

}
m2M;i,j2N to compactly represent the solutions of DLP2.

Formulating RP/RD and Obtaining an Improvement Direction: We start by providing

the CS conditions (in LP2/DLP2) associated with a given feasible solution (p,⇡, p
E

, q
E

) of DLP2:

X

m

xm
i

= 1 8i | p
i

> 0, and Cm 8m, (3)

where for all m 2 M, Cm represents the following set of constraints:

Cm

8
>>>>>>>>><

>>>>>>>>>:

ym
ij

= xm
i

8i, j | qm,i

ij

> 0

xm
i

+ xm
j

� 1 = ym
ij

8i, j | pm
ij

> 0

xm
i

= 1 8i | ⇡m

i

> 0

ym
ij

= 0 8i, j | qm,i

ij

+ qm,j

ij

� pm
ij

> wm

ij

xm
i

= 0 8i | ⇡m

i

> wm

i

� p
i

+
P

j

qm,i

ij

�
P

j

pm
ij

.

Similarly we use the shorthand notation Fm to represent the feasibility constraints other than
P

i

xm
i

 1 (in LP2) that are not implied by the CS conditions:

Fm

8
>>>>>>>>><

>>>>>>>>>:

ym
ij

 xm
i

8i, j | qm,i

ij

= 0

xm
i

+ xm
j

� 1  ym
ij

8i, j | pm
ij

= 0

xm
i

 1 8i | ⇡m

i

= 0

ym
ij

� 0 8i, j | qm,i

ij

+ qm,j

ij

� pm
ij

= wm

ij

xm
i

� 0 8i | ⇡m

i

= wm

i

� p
i

+
P

j

qm,i

ij

�
P

j

pm
ij

.

With slight abuse of notation, we denote by Fm(k) the set of (i, j) (only i in the case of the third

constraint) for which the kth constraint is present in Fm, e.g., Fm(1) = {(i, j)|qm,i

ij

= 0}, and
Fm(2) = {(i, j)|pm

ij

= 0}.
Using this notation we next formulate RP/RD that can be used to check the CS conditions (3).
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(RP) (RD)

min
{xm

i ,y

m
ij ,�i,hi}

X

i

�
i

+
X

i

h
i

s.t.
X

m

xm
i

+ �
i

� h
i

= 1 8i|p
i

> 0

X

m

xm
i

+ �
i

� h
i

 1 8i|p
i

= 0

Cm, Fm 8m 2 M

�
i

, h
i

� 0 8i.

max
p̄,⇡̄,p̄E ,q̄E

�
X

i

p̄
i

�
X

m,i,j

p̄m
ij

�
X

m,i

⇡̄m

i

s.t. ⇡̄m

i

� �p̄
i

+
X

j

q̄m,i

ij

�
X

j

p̄m
ij

8m, i, j|(i, j) 2 Fm(5)

q̄m,i

ij

+ q̄m,j

ij

� p̄m
ij

� 0 8m, i, j|(i, j) 2 Fm(4)

⇡̄m

i

� 0 8m, i|i 2 Fm(3)

p̄m
ij

� 0 8m, i, j|(i, j) 2 Fm(2)

q̄m,i

ij

� 0 8m, i, j|(i, j) 2 Fm(1)

p̄
i

� 0 8i|p
i

= 0

� 1  p̄
i

 1 8i.

In this formulation, following the approach in Section 4.1, we associate �
i

, h
i

variables only with

the first constraint of LP2 (hence they appear only in the first two constraints in RP), while we

impose the remaining CS and feasiblity constraints Cm, Fm. We next introduce a special property

(Property 4.1) of the solutions of DLP2, and establish (Lemma 4.1) that when this property is

satisfied the RP/RD given above are feasible, and they can be used to check the CS conditions and

identify an improvement direction.

Property 4.1 (Acceptable dual solutions). The dual feasible solution (p,⇡, p
E

, q
E

) of DLP2 is

acceptable if there exists a primal solution to LP2 that satisfies the constraints Cm, Fm for all m.

Lemma 4.1. Assume that an acceptable dual solution (p,⇡, p
E

, q
E

) of DLP2 is given. Then, the

following are true:

(i) RP has feasible solutions.

(ii) If the optimal objective value of RP is zero, then (p,⇡, p
E

, q
E

) is optimal in DLP2, and the

restriction of the optimal solutions of RP to {xm
i

, ym
ij

}
m,i,j

gives optimal solutions of LP2.

(iii) If the optimal objective value of RP is not zero, then no feasible solution of LP2 satisfies the

CS conditions, and the optimal solutions of RD are dual improvement directions in DLP2.

The proof of the first part immediately follows since Property 4.1 implies that solutions to RP

that satisfy Cm, Fm always exist, and choosing �
i

, h
i

appropriately the remaining constraints of

RP can be satisfied. The second and third part follow by noting that the optimal objective value of

RP is zero only for � = h = 0, and such optimal solutions of RP satisfy the CS conditions (3), i.e.,

both the conditions in Cm, and the CS condition
P

m

xm
i

= 1 for p
i

> 0. This observation implies

that RP has objective value zero if and only if a feasible solution of LP2 satisfies CS conditions

with (p,⇡, p
E

, q
E

), and � = h = 0 together with this solution of LP2 constitute an optimal solution

to RP. When the objective value of RP is strictly positive, by strong duality the optimal solution

of RD suggests a direction that improves the dual objective in DLP2, moreover the constraints
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of RD suggest that this is a feasible update direction. The details are omitted since they follow

immediately from Property 4.1 and the CS conditions in LP2/DLP2.

Stepsize Selection and the Primal-Dual Algorithm: We next focus on the stepsize associ-

ated with a dual update direction obtained from an optimal solution of RD, and establish that this

stepsize leads to updated dual solutions that are acceptable in DLP2. Additionally, we show that

the updated solution and stepsize can be characterized in terms of bidders’ demand, and complete

the description of our primal-dual algorithm.

We begin by providing a linear programming formulation that can be used to identify the

demanded bundles, and subsequently exploit it for characterizing the stepsize and properties of dual

updates. Recall that a bundle S⇤ is demanded by bidder m if vm(S⇤)�
P

i2S⇤ p
i

= max
S

vm(S)�
P

i2S p
i

. Given prices {p
i

}, the following primal/dual problems (that have a similar structure to

LP2/DLP2) can be used for identifying such bundles:

(LP �Dm) (DLP �Dm)

max
{xm

i ,y

m
ij }

X

i

xm
i

(wm

i

� p
i

) +
X

i,j

ym
ij

wm

ij

s.t. ym
ij

 xm
i

, xm
j

8i, j

xm
i

+ xm
j

� 1  ym
ij

, 8i, j

xm
i

 1 8i

0  xm
i

, ym
ij

8i, j.

min
{⇡m

i ,p

m
ij ,q

m,i
ij }i,j

X

i

⇡m

i

+
X

ij

pm
ij

s.t. ⇡m

i

� (wm

i

� p
i

) +
X

j|j 6=i

qm,i

ij

�
X

j|j 6=i

pm
ij

8i

qm,i

ij

+ qm,j

ij

� pm
ij

� wm

ij

8 i, j

qm,i

ij

, pm
ij

,⇡m

i

� 0 8 i, j.

In these optimization problems bidder m and prices {p
i

} are fixed. The decision variables in

LP � Dm are {xm
i

, ym
ij

}
i,j

, and those in DLP � Dm are {⇡m

i

, pm
ij

, qm,i

ij

}
i,j

(note that the decision

variables are present only for bidder m). Given any bundle S, a feasible solution to LP � Dm

can be constructed by setting xm
i

= ym
ij

= 1 for i, j 2 S (and setting remaining variables equal

to zero). Moreover, it can be checked that the corresponding objective value is the surplus of the

aforementioned bundle, i.e., vm(S)�
P

i2S p
i

.

LP �Dm can be viewed as a special case of LP2, with only a single bidder m, and node/edge

weights {wm

i

� p
i

, wm

ij

}
i,j

. This observation implies that for sign-consistent tree valuations, this

optimization problem has optimal solutions that are integral (see Theorem 3.1). Consider an

integral optimal solution of LP�Dm, and let Sm = {i|xm
i

= 1}. Primal feasibility implies that ym
ij

=

1 if and only if i, j 2 Sm. Observe that the objective value associated with this solution is equal to

the surplus of bidder m for bundle Sm, i.e.,
P

i2Sm(wm

i

� p
i

)+
P

i,j2Sm wm

ij

= vm(Sm)�
P

i2Sm p
i

.

Since LP �Dm has a feasible solution associated with any bundle and the corresponding objective

value is the surplus of this bundle, it follows that the bundle Sm associated with an optimal solution

of LP �Dm maximizes bidder m’s surplus. That is, the integral optimal solutions of LP �Dm are

associated with the set of items bidder m demands.

Optimal solutions of LP �Dm are closely related to those of RP. Let a dual feasible solution

(p,⇡, p
E

, q
E

) of DLP2, and the corresponding optimal solution {�
i

, h
i

, xm
i

, ym
ij

}
m,i,j

of RP be given.
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Consider the restriction of these solutions respectively to {⇡m

i

, pm
ij

, qm,i

ij

}
i,j

and {xm
i

, ym
ij

}
i,j

. Since

RP is constructed by imposing Cm for all m, it follows that the optimal solution of RP satisfies

these constraints. It can be checked from LP �Dm/DLP �Dm that the CS conditions the optimal

solutions of these problem satisfy are identical to the aforementioned constraints, i.e., they are

captured by Cm. Thus, it follows that the solutions {xm
i

, ym
ij

}
i,j

and {⇡m

i

, pm
ij

, qm,i

ij

}
i,j

are optimal

respectively in LP � Dm/DLP � Dm. Since optimal solutions of LP � Dm identify the bundles

bidder m demands, this suggests that the optimal solution of RP (which has {xm
i

, ym
ij

}
i,j

as one

of its components) aggregates the demand information from all bidders. Moreover, the objective

value of RP is equal to the violation of the first constraint when {xm
i

, ym
ij

}
i,j

captures the demand

of each bidder m.

We show in Lemma 4.2 that the relation between RP and LP � Dm generalizes to the duals

of these optimization problems. In particular, optimal solutions of RD (or dual update directions)

can be obtained in terms of those of DLP �Dm. Moreover, this relation can be further exploited

to characterize the corresponding stepsize for dual updates in terms of bidders’ demand.14

Lemma 4.2. Let (p,⇡, p
E

, q
E

) denote an acceptable solution of DLP2, and Dm denote the set

of bundles bidder m 2 M demands at price vector p. Assume that an optimal solution of RD

associated with this dual feasible solution is (p̄, ⇡̄, p̄
E

, q̄
E

), and the corresponding objective value is

nonzero. Define ✓⇤ = min{✓1, ✓2}, where

✓1 = min{✓ � 0| S /2 Dm enters the demand set of some bidder m at prices p+ ✓p̄}, and

✓2 = min{✓ � 0|p
i

+ ✓p̄
i

= 0 for some i such that p̄
i

< 0}.

Then the following are true:

(i) ✓⇤ is nonzero and bounded, i.e., 0 < ✓⇤ < 1.

(ii) For every bidder m consider an optimal solution (⇡̃m, p̃m
E

, q̃m
E

) of DLP � Dm at the price

vector p + ✓⇤p̄. Let ⇡̃ = {⇡̃m}
m

, p̃
E

= {p̃m
E

}
m

, and q̃
E

= {q̃m
E

}
m

. The tuple (p̄, ⇡̂, p̂
E

, q̂
E

),

where (⇡̂, p̂
E

, q̂
E

) = ((⇡̃, p̃
E

, q̃
E

)� (⇡, p
E

, q
E

)) /✓⇤, is an optimal solution of RD.

(iii) ✓⇤ is the primal-dual stepsize associated with this solution.

(iv) The updated solution (p,⇡, p
E

, q
E

) + ✓⇤(p̄, ⇡̂, p̂
E

, q̂
E

) is acceptable in DLP2.

This lemma implies that a dual update can be made by first obtaining an optimal solution

(p̄, ⇡̄, p̄
E

, q̄
E

) to RD. Then, the primal-dual stepsize ✓⇤ can be chosen as the smallest update step,

where a bidder starts demanding a new bundle (or the price of an item becomes zero), when prices

are updated in the p̄ direction. Observe that this choice of the stepsize relies only on p̄ and not on

the remaining components of the dual optimal solution (p̄, ⇡̄, p̄
E

, q̄
E

). Moreover, the lemma suggests

14The relation between LP �Dm/DLP �Dm and RP/RD is a consequence of associating the �i, hi variables with
only the first constraint of LP2 in the formulation of RP, and leads to the stepsize/dual update direction provided in
Lemma 4.2.
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that there exists an optimal solution (p̄, ⇡̂, p̂
E

, q̂
E

) of RD (potentially di↵erent from (p̄, ⇡̄, p̄
E

, q̄
E

))

such that ✓⇤ together with this optimal solution constitute a valid dual improvement direction and

a primal-dual stepsize (at dual feasible solution (p,⇡, p
E

, q
E

)). Part (iv) of the lemma implies that

the dual updates defined by this lemma are acceptable in DLP2. Thus, Lemma 4.1 holds and

RP/RD can be used to check the CS conditions and identify an improvement direction after each

dual update. This observation leads to a primal-dual algorithm (see Algorithm 1) that uses the

update direction/stepsize given in Lemma 4.2 for dual updates.

Algorithm 1 A centralized algorithm for the solution of LP2/DLP2

S0 (Initialize): Start with an acceptable solution (p,⇡, p
E

, q
E

).

S1 (Find Improvement Direction): Formulate RP/RD. Solving RD identify an update direction
(p̄, ⇡̄, p̄

E

, q̄
E

).

If the objective value of this problem is equal to zero, then go to Step S3. Otherwise go to
Step S2.

S2 (Update Dual): Compute ✓⇤ given in Lemma 4.2. For all m 2 M, solve DLP � Dm at
price vector p + ✓⇤p̄. Denote the optimal solution of DLP � Dm by (⇡̃m, p̃m

E

, q̃m
E

), and let
(⇡̂m, p̂m

E

, q̂m
E

) = ((⇡̃m, p̃m
E

, q̃m
E

)� (⇡m, pm
E

, qm
E

))/✓⇤.

Update the dual solution to (p,⇡, p
E

, q
E

) + ✓⇤(p̄, ⇡̂, p̂
E

, q̂
E

). Go to Step S1.

S3 (Terminate): Terminate returning the current dual solution (p,⇡, p
E

, q
E

), and the component
{xm

i

, ym
ij

}
m,i,j

of an integral optimal solution of RP.

Step S3 is reached and Algorithm 1 terminates, when in Step S1 RP has objective value zero.

Thus, Lemma 4.1 implies that at termination {xm
i

, ym
ij

}
m,i,j

and (p,⇡, p
E

, q
E

) are respectively opti-

mal in LP2/DLP2. To see that RP has an integral optimal solution at Step S3, note that LP2 has

an integral optimal solution for sign-consistent tree valuations (Theorem 3.1) and RP has a corre-

sponding optimal solution (obtained by choosing {xm
i

, ym
ij

}
m,i,j

as in the optimal solution of LP2,

and � = h = 0).15 Moreover, the allocation suggested by this solution (given by Sm = {i|xm
i

= 1}
for all m) and the price vector p (which is also obtained at Step S3, and is a component of an

optimal solution of DLP2) constitute a Walrasian equilibrium (Theorem 3.2). Since primal-dual

algorithms converge in finite time and Algorithm 1 employs the primal-dual update direction and

stepsize (as established in Lemma 4.2) for the solution of LP2/DLP2, it immediately follows from

Proposition 4.1 that Algorithm 1 terminates in finite time with optimal solutions of LP2 and DLP2

and identifies Walrasian equilibrium allocation/prices. Observe that this algorithm relies on the

knowledge of bidders valuations (to formulate the sets of constraints Cm, Fm and optimization

problems RP/RD), and corresponds to the algorithm outlined in Figure 1a.

15Feasibility of this solution in RP is immediate since optimal solutions of LP2 and DLP2 satisfy the CS conditions,
and hence the aforementioned solution satisfies all constraints of RP with � = h = 0.
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Intuition on price updates: We conclude this section by providing intuition on the price up-

dates employed in our primal-dual algorithm. If at an optimal solution of RP, h
i

> 0, then the first

two constraints of RP imply that
P

m

xm
i

> 1. Since, optimal solutions of RP correspond to optimal

solutions of LP � Dm for all m (as explained before Lemma 4.2) and the solution {xm
i

, ym
ij

}
i,j

of

the latter characterizes demanded bundles, it follows that if h
i

> 0 then item i belongs to demand

sets of multiple bidders. In this case we say that item i is overdemanded. Similarly, if at an optimal

solution �
i

> 0, then we say that i is underdemanded. Note that RP may have multiple optimal

solutions, but it is never the case that for some item i, h
i

> 0 in some optimal solutions, and �
i

> 0

in the others. This is because, when h
i

> 0 at an optimal solution, the complementary slackness

conditions suggest that in the optimal solutions of RD the constraint p̄
i

 1 is active. Conversely if

�
i

> 0 at an optimal solution, then the constraint p̄
i

� �1 is active. Since at a given dual optimal

solution at most one of these inequalities can be active, an item can be either overdemanded or

underdemanded but not both. These observations immediately imply the following lemma:

Lemma 4.3. Let (p,⇡, p
E

, q
E

) be a feasible solution of DLP2 that is not optimal, and (p̄, ⇡̄, p̄
E

, q̄
E

)

be a corresponding optimal solution of RD. The following are true:

(i) An item cannot be overdemanded with respect to one optimal solution of RP and underde-

manded with respect to another one.

(ii) If i is overdemanded, then p̄
i

= 1.

(iii) If i is underdemanded, then p̄
i

= �1.

This lemma suggests that Algorithm 1 updates the prices in an intuitive way: At each stage

the prices of overdemanded items are increased, and those of underdemanded items are decreased.

Moreover, it can be seen from the algorithm that the price update at a given direction continues

until a bidder starts demanding a new bundle, or the price of an item decreases to zero.

4.3 Distributed Implementation of the Primal-Dual Algorithm

Algorithm 1 relies on finding an improvement direction through a solution of RD (Step S1), and

computing the primal-dual stepsize ✓⇤ (Step S2). In the auction design setup we consider, the

value function (or node/edge weights) of a bidder is private information. This observation has

two important implications for Algorithm 1 (when the weight information is not readily available):

(i) RP/RD cannot be formulated as the weights are required for the construction of constraints

Cm, Fm, (ii) the stepsize ✓⇤ cannot be obtained as its computation requires knowing when bidders’

demand sets change (see Lemma 4.2), which in turn relies on the knowledge of weights.

In this section, we establish that despite these issues, the auctioneer can solve LP2 by appropri-

ately modifying Algorithm 1. In particular, we show in Section 4.3.1 that after each dual update

Cm, Fm can be constructed through bidders’ demand sets, which in turn allows for formulating

RP/RD and obtaining an improvement direction. In Section 4.3.2, we show that using su�ciently

small update steps the auctioneer can identify when demand sets of bidders change (for a given
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price update direction). Hence, the stepsize ✓⇤ can also be obtained by using only the demand

information. We modify Algorithm 1 using the update direction and stepsize described in Sections

4.3.1 and 4.3.2, and provide a new algorithm in Section 4.3.3. This algorithm does not require the

knowledge of weights or valuations, and instead runs by setting prices for items and adjusting them

according to bidders’ demand at the given prices. Moreover, it terminates in finite time with Wal-

rasian equilibrium allocation and prices (and corresponds to the algorithm outlined in Figure 1b).

We present our results in this section under an additional assumption: Value functions of bidders

are integer-valued.16 The results of this section are subsequently used in Section 5 to obtain an

e�cient iterative auction.

4.3.1 Finding an Improvement Direction

In this section, we show that the dual update direction given in Step S1 of Algorithm 1 can be iden-

tified by using bidders’ demand information even when information about their valuations/weights

is not available. In the algorithm, the update direction is obtained by solving RP/RD. Thus, in

order to obtain this update direction the first step is to formulate these optimization problems.

Formulating RP/RD: It can be seen from RP/RD that for a given dual feasible solution of

DLP2, in order to formulate these problems it is necessary and su�cient to construct the constraints

Cm and Fm for everym 2 M. Note that Fm involves inequality constraints that are imposed for the

active constraints in the dual feasible solution of DLP2, while Cm imposes equality constraints for

inactive ones. Hence, it follows that these constraints can be specified using the active constraints of

the feasible solution of DLP2. Algorithm 1 and Lemma 4.2 suggest that the updated dual solution

of DLP2 coincides with the optimal solution of DLP � Dm (for all m) at the updated prices. It

can be checked that DLP � Dm and DLP2 share the same set of constraints (for a given price

vector p and bidder m), and hence it follows that after each update the active constraints of the

new feasible solution of DLP2 can be identified in terms of those of DLP �Dm. These observations

imply that in order to formulate RP/RD, it su�ces to have each bidder m solve DLP �Dm, and

report to the auctioneer the constraints that are active in this solution.

Interpretation in terms of demand: Let a price vector p be given, and {⇡m

i

, pm
ij

, qm,i

ij

}
i,j

denote

a corresponding optimal solution of DLP �Dm. Using the active constraints in this solution, the

16This assumption is commonly made in the context of iterative auction design for establishing convergence of
iterative auctions in finite time. See for instance, (De Vries and Vohra, 2003; Ausubel, 2004; Mishra and Parkes,
2007; Bikhchandani et al., 2011; Vohra, 2011).
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CS conditions (in LP �Dm/DLP �Dm) can be stated as follows:

(i) ⇡m

i

> wm

i

� p
i

+
X

j

qm,i

ij

�
X

j

pm
ij

! xm
i

= 0

(ii) qm,i

ij

+ qm,j

ij

� pm
ij

> wm

ij

! ym
ij

= 0

(iii) ⇡m

i

> 0 ! xm
i

= 1

(iv) qm,i

ij

> 0 ! xm
i

= ym
ij

(v) pm
ij

> 0 ! xm
i

+ xm
j

� 1 = ym
ij

(4)

Since {⇡m

i

, pm
ij

, qm,i

ij

}
i,j

is an optimal solution of DLP �Dm, complementary slackness implies that

these conditions provide an alternative characterization of the optimal solutions of LP � Dm:

A solution of LP � Dm is optimal if an only if it is feasible (which can be checked without the

knowledge of weights), and satisfies the conditions (i)-(v). Moreover, since optimal integral solutions

of LP�Dm correspond to demanded bundles (see Section 4.2), this characterization also constitutes

an alternative representation of all demanded bundles. In particular, the first constraint in (4)

suggests that item i never belongs to a bundle bidder m demands, whereas the third one suggests

that it always does. The second constraint suggests that at most one of items i and j can belong

to the demand set (since if xm
i

= xm
j

= 1 primal feasibility requires ym
ij

= 1), whereas the fifth one

suggests that at least one of items i and j can belong to the demand set (since if xm
i

= xm
j

= 0, the

equality in the fifth constraint cannot hold). Finally, the fourth constraint suggests that if item i

belongs to the demand set then so does item j. Since at full generality the number of bundles a

bidder can demand is exponential in the number of items N (for instance consider the case where

all prices and valuations are equal to zero), whereas these bundles can be reported through O(N2)

constraints of the type (i)-(v), specifying the latter allows for compactly stating demand. Hence,

we refer to the collection of such constrains as a compact representation of demand, and say that a

bidder compactly reports her demand if she reports this collection to the auctioneer.

We conclude that the auctioneer can identify an update direction by first asking bidders to

compute their demand at the given prices (or solve LP �Dm/DLP �Dm), and report it compactly

(by specifying which of the constraints (i)-(v) hold). Then, she can use this information to formulate

and solve RP/RD and obtain an update direction.17

Remark: Note that the compact representation of demand sets given above also corresponds to

a natural logical expression for identifying such sets. Let a
i

be the logical symbol that is equal to

one if item i belongs to the demand set, aC
i

denote the complement of a
i

, and ^,_, =) denote

respectively the “and”, “or”, and “implies” operators. The logical expressions corresponding to each

of the CS conditions in (4) can be given as follows: (i) aC
i

, (ii) (a
i

^ a
j

)C , (iii) a
i

, (iv) a
i

=) a
j

,

17Alternatively, bidders can report all bundles that they demand (i.e., potentially exponentially many bundles).
This allows for identifying all optimal solutions of LP � Dm. Strict complementary slackness guarantees that the
equalities at the right hand side of (i)-(v) hold for all such solutions if and only if there exists a dual optimal solution
where the corresponding inequalities are strict. Thus, it is possible to characterize all constraints that are active at
a dual optimal solution of DLP �Dm by using the set of all demanded bundles.
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(v) a
i

_ a
j

. A given set is demanded if and only if it satisfies all such expressions derived from the

CS conditions (or the expression obtained from combining all of the aforementioned expressions

with “and” operators). This suggests that the set of all demanded bundles can be characterized

using the logical expressions stated above.

4.3.2 Choosing the Stepsize

For a given price update direction, Algorithm 1 chooses the stepsize such that either a new bundle

is demanded by a bidder, or the price of an item decreases to zero as a result of the update with

this stepsize (see Lemma 4.2). While the auctioneer can check how large of a stepsize can be taken

until the price of an item decreases to zero, the same is not true for the change in demand sets

if the valuations of bidders are not available. In this section, we establish that when valuations

are integral, it is possible to discover the stepsize where a bidder starts demanding a new bundle

(without explicitly knowing the valuations), and use this for running the primal-dual algorithm.

We start by providing a subroutine, which given a price vector p and a price update direction

p̄, returns a stepsize ✓ and bidders’ demands at the updated price vector p + ✓p̄. We establish

subsequently in Lemma 4.4 that when p̄ is chosen with respect to the improvement direction

obtained from an optimal solution of RD, the subroutine terminates in finite time with the primal-

dual stepsize ✓⇤, i.e., the stepsize ✓ at termination guarantees that at prices p+ ✓p̄, either a bidder

starts demanding a new bundle, or the price of an item decreases to zero.

In this subroutine, initially ✓ is increased by 1/N (S1) provided that such an update does not

lead to negative prices for some items (the definition of ✓2 and minimization in S1 imply that if such

updates lead to a negative price, then a smaller stepsize is used). After this update, bidders’ demand

sets {D̂m} at price vector p+ ✓p̄ are obtained. If a bidder demands none of the bundles (Dm) she

demanded at the original price vector p (S1a), then (as established in the proof of Lemma 4.4) ✓ is

greater than the primal-dual stepsize ✓⇤ (✓ > ✓⇤). In this case, the subroutine corrects the prices

by “stepping back” by an amount of ✓̂, using the update direction p̄ (S2). On the other hand, if

S1a does not hold, and S1b or S1c holds the subroutine terminates. In the former case, a bidder

starts demanding a new bundle (in addition to some of the previously demanded bundles). In the

latter case, either ✓ = ✓2 and the price of an item decreases to zero, or the subroutine only modifies

(increases) the prices of items (in set I) that are not demanded by any bidder. Lemma 4.4 shows

that when these termination conditions are met, ✓ is equal to the primal-dual stepsize ✓⇤. Finally,

if S1d holds, then ✓ < ✓⇤ and ✓ is increased repeating Step S1, until a termination condition is met.

Lemma 4.4. (i) Consider a price vector p, and update direction p̄ such that |p̄
i

|  1. Assume

that prices are updated from p to p+ ✓p̄ by using a stepsize ✓  1/N . Let S1, S2 respectively

denote the sets bidder m demands before and after the price update (where S1 = S2 = S if

some bundle S is demanded both before and after the price update), and ⇡1,⇡2 denote the
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Subroutine Stepsize computation subroutine.

S0 (Initialize): Let p � 0 denote the initial price vector, Dm denote the associated demand sets
for bidders m 2 M, and p̄ denote the price update direction. Set ✓2 = min{✓ � 0|p

i

+ ✓p̄
i

=
0 for some i such that p̄

i

< 0}, and I = {i|p
i

> 0}.

S1 (Price/Demand update): Let ✓ := min{✓+1/N, ✓2}, and ask each bidder m the set of bundles
D̂m that she demands at price vector p+ ✓p̄.

S1a (Stepsize too large?): If D̂m \Dm = ; for some m, then go to Step S2.

S1b (New bundle demanded?): Else if D̂m �Dm 6= ; for some m, then go to Step S3.

S1c (Price zero / Unbounded increase ?): Else if ✓ = ✓2, or ✓2 = 1 and S \ I = ; for all m,
S 2 D̂m, then go to Step S3.

S1d (Stepsize too small?): Otherwise, go to Step S1.

S2 (Stepping back): Let S1 = argmin
S2Dm

P
i2S p̄

i

, and S2 = argmax
S2D̂m

P
i2S p̄

i

. Define
� =

P
i2S1

p̄
i

�
P

i2S2
p̄
i

, and set

✓̂ =

�P
i2S1

(p
i

+ ✓p̄
i

)�
P

i2S2
(p

i

+ ✓p̄
i

)
�
� b

P
i2S1

(p
i

+ ✓p̄
i

)�
P

i2S2
(p

i

+ ✓p̄
i

)c
�

.

Update ✓ to ✓ := ✓ � ✓̂. If ✓  0, then set ✓ = 0, update the price vector to p, and go to
Step S3. Otherwise go to Step S1.

S3 (Terminate): Terminate returning ✓, and D̂m for all m.

associated maximum surplus. Then,

⇡2 � ⇡1 =

0

@
X

i2S1

p
i

�
X

i2S2

(p
i

+ ✓p̄
i

)

1

A�

6664
X

i2S1

(p
i

+ ✓p̄
i

)�
X

i2S2

(p
i

+ ✓p̄
i

)

7775 .

(ii) Assume that a dual feasible solution of DLP2 with price vector p is given, and let (p̄, ⇡̄, p̄
E

, q̄
E

)

denote an associated optimal solution of RD. The subroutine (initialized with p and p̄) termi-

nates with the primal-dual stepsize ✓⇤ (given in Lemma 4.2) after finitely many iterations.

The first part of this lemma is established by using the integrality of valuations to show that

for su�ciently small price updates, the change in the surplus of bidders can be tracked. In order

to prove the second part of the lemma, we first establish that the termination condition in Step

S2 (i.e., ✓  0) and the condition ✓2 = 1 and S \ I = for all S 2 D̂m in Step S1c never hold

if bidders’ true demand information is available (these conditions are present to guarantee finite

termination in settings where bidders can misreport their demand). Then, we exploit the result

of the first part of the lemma to show that the update in Step S2 of the algorithm makes bidder

m indi↵erent between a bundle she originally demanded, and another one she starts demanding

after the price update in Step S1. Hence, after Step S2 is completed, the algorithm satisfies the
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condition of S1b and terminates. If Step S2 is not reached, then ✓ increases until either the price

of an item decreases to zero (the termination condition ✓ = ✓2 in Step S1c), or a bidder starts

demanding a new bundle (S1b). In both cases the subroutine terminates, and Lemma 4.2 implies

that the primal-dual stepsize ✓⇤ is returned.

Observe that in the subroutine price updates are only a function of bidders’ demand sets, the

current price vector p, and the price update direction p̄. Lemma 4.4 implies that using only these

quantities, the auctioneer can update the prices as suggested by Lemma 4.2. That is, after finitely

many price/demand updates suggested by the subroutine, the prices that emerge are identical to

those that are employed by the primal-dual algorithm (as shown in Lemma 4.2).

4.3.3 Convergence to a Walrasian Equilibrium

We conclude this section by providing a new algorithm (Algorithm 2), and establishing in Theo-

rem 4.1 that for sign-consistent tree valuations it converges to the e�cient outcome and Walrasian

equilibrium prices. This algorithm is almost identical to Algorithm 1, but it does not rely on dual

Algorithm 2 A distributed algorithm for the solution of LP2/DLP2

S0 (Initialize): Start with p = 0.

S1 (Find Improvement Direction): Compute a compact representation of the set of bundles Dm

each bidder m demands at prices p. Using this formulate RP/RD. Solving RD identify an
update direction (p̄, ⇡̄, p̄

E

, q̄
E

).

If the objective value of this problem is equal to zero, then go to Step S3. Otherwise go to
Step S2.

S2 (Update Prices): Update prices/demanded bundles using the stepsize computation subroutine
(initialized with the price vector p and update direction p̄). Go to Step S1.

S3 (Terminate): Terminate returning the prices p, and an allocation suggested by an integral
optimal solution of RP, i.e., an allocation {Sm} such that Sm = {i|xm

i

= 1}.

variables other than the price vector p. Moreover, it chooses the improvement direction and stepsize

as presented in Sections 4.3.1 and 4.3.2. In particular, it uses the stepsize computation subroutine

for updating the prices. Consequently, it solves LP2/DLP2 by setting prices, and adjusting them

according to bidders’ demand at the given prices, but without using any other information about

bidders’ valuations. Moreover, this algorithm terminates with a Walrasian equilibrium since (as es-

tablished in Section 3) the prices and allocation suggested by optimal solutions of these optimization

problems correspond to Walrasian equilibria.

Theorem 4.1. Assume bidders have sign-consistent tree valuations. Then, Algorithm 2 terminates

with an e�cient outcome and Walrasian equilibrium prices in finite time.

The proof of this theorem follows by showing that the price updates in Algorithm 2 coincide with

those in Algorithm 1 (i.e., an application of the primal-dual algorithm to a solution of LP2/DLP2).
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This allows for establishing that Algorithm 2 terminates in finite time, and the allocation/prices

obtained at termination coincide with the allocation suggested by an integral optimal solution of

LP2 and the prices suggested by an optimal solution of DLP2 (since this is the case for Algorithm 1).

On the other hand, Theorem 3.2 suggests that such optimal solutions of LP2/DLP2 correspond

to Walrasian equilibrium allocation/prices, and hence the claim of Theorem 4.1 follows. Our

result implies that when bidders truthfully reveal their demand (and have sign-consistent tree

valuations), the auctioneer can use Algorithm 2 to update prices and ensure convergence to a

Walrasian equilibrium even when she does not know the bidders’ valuations.

5 An Iterative Auction for Tree Valuations

It was established in the previous section that when bidders truthfully reveal their demand and

have sign-consistent tree valuations, the auctioneer can use Algorithm 2 to implement the e�cient

outcome. In this section, we consider implementing the e�cient allocation with strategic bidders

(who can misreport their demand) through a dynamic iterative auction.

We start this section by introducing the solution concept (ex-post perfect equilibrium) that we

use for analyzing the outcome of iterative auctions (Section 5.1). We establish that if the auctioneer

charges payments to bidders according to the prices that emerge at the end of Algorithm 2, then it

is not an ex-post perfect equilibrium for bidders to truthfully report their demand in this algorithm.

In Section 5.2, by slightly modifying the price updates of Algorithm 2, and complementing them

with appropriate final payment rules, we provide a new iterative auction format (“interleaved

tree auction”). In this auction the final payments of bidders correspond to their VCG payments

(defined in Section 5.1), and these payments are computed by identifying the Walrasian equilibria

for markets that consist of all bidders, and all bidders but one. This auction uses a novel price

update structure that interleaves the demand queries for di↵erent markets to obtain such Walrasian

equilibria. Moreover, we establish that for sign-consistent tree valuations it implements the e�cient

allocation at an ex-post perfect equilibrium where bidders truthfully report their demand. The

auction relies on a simple pricing rule (anonymous item pricing), and allows bidders to report

their demand in a compact way. These desirable features suggest that even in settings with value

complementarities it is possible to implement the e�cient outcome using a simple auction format.

As in the previous section, we obtain our results under the assumption that the value functions of

bidders are integer-valued, and delegate the proofs to Appendix D.

5.1 Ex-post Perfect Equilibrium

In an iterative auction, bidders participate in a multi-stage incomplete information game, where

bidders do not know their opponents’ valuations. We denote the history of bids revealed until step

t of the auction by H
t

. Consider a bidder m, whose valuation is vm. The strategy of this bidder

assigns an action to each history H
t

from the set of allowable actions, ⌃m(H
t

), bidder m can use

after this history. We denote this strategy by sm(vm), and the action associated with history H
t
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by sm(H
t

, vm) 2 ⌃m(H
t

).

For a realization of valuations of bidders {vk}
k

, the payo↵ bidder m receives at the end of the

auction game is denoted by um(sm(vm), s�m(v�m)|vm), where s�m(v�m) denotes the strategies of

all bidders but m. Similarly, we denote by um(sm(vm), s�m(v�m)|H
t

, vm), the payo↵ bidder m,

who is of type vm, receives by using strategy sm(vm) after history H
t

, given that her opponents use

strategies s�m(v�m). Using this notation, we next introduce a solution concept that is employed

in the literature for the analysis of iterative auctions (e.g., see Ausubel (2004, 2006)):

Definition 5.1 (Ex-post perfect equilibrium). A strategy profile s = {sk} is an ex-post perfect

equilibrium, if after any history H
t

, it satisfies

um(sm(vm), s�m(v�m)|H
t

, vm) � um(zm, s�m(v�m)|H
t

, vm), (5)

for any valuations {vk} of bidders, bidder m, and strategy zm.

This definition suggests that a strategy profile is an ex-post perfect equilibrium, if for any

valuations of her opponents and after any history, given strategies of her opponents, no agent has

incentive to deviate from her strategy. In other words, after any realization of the history (H
t

) and

valuations (v�m), the given strategy profile remains a Nash equilibrium of the induced subgame,

where types of agents are public knowledge.18

A natural payment rule for iterative auctions involves charging bidders the total prices of the

items that they acquire at the end of the auction. As discussed in Section 2, in this paper we focus

on iterative auctions that terminate when a Walrasian equilibrium is reached. We next illustrate

that truthful demand revelation may not be an ex-post perfect equilibrium, if bidders are charged

the Walrasian equilibrium prices associated with the items that they acquire in such auctions.

Example 5.1. Consider a two bidder auction where there are two items {i, j} and bidders have

sign-consistent tree valuations with the following weights:

w
i

w
j

w
ij

Bidder m 6 4 -4

Bidder k 5 5 0

18This solution concept is closely related to the well-known solution concepts perfect Bayesian equilibrium (PBE)
and dominant strategy equilibrium. The former solution concept involves a belief system that determines the posterior
probability for each agent’s valuation (given the history), and after any history requires agents to best respond to
their opponents with respect to these beliefs. It can be seen that the ex-post perfect equilibrium concept is stronger
than PBE in that it requires the actions bidders choose after any history to be a best response to others’ actions with
respect to the true valuations. In this sense, this equilibrium concept is similar to the dominant strategy equilibrium,
which does not involve beliefs, but requires the strategy of an agent to be a best response to any strategy profile that
can be chosen by her opponents. The dominant strategy equilibrium concept, on the other hand, is usually defined
for single-shot games, and does not involve a perfection step. A natural analogue of ex-post perfect equilibrium for
such settings is the ex-post equilibrium concept, which imposes the requirements of Definition 5.1 only at H0, i.e.,
the starting point of the auction. Dominant strategy equilibrium is more restrictive than this solution concept in
that it requires an agent’s strategy to be a best response to any strategy of her opponents (not just the equilibrium
strategy). Hence, if a strategy profile is a dominant strategy equilibrium then it is an ex-post equilibrium as well.
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At the e�cient outcome, item i is assigned to bidder m, and item j is assigned to bidder k. Hence, at

Walrasian equilibria bidder m demands item i and bidder k demands item j. Walrasian equilibrium

price of item i is at least 5 units (as otherwise this item also belongs to the demand set of bidder

k). This suggests that the price of item j is at least 3 units (as otherwise this item belongs to the

demand set of bidder m). Thus, if bidders bid truthfully, and the final payments are given by the

Walrasian equilibrium prices, the payo↵ of bidder k is at most 2 units.

Assume that instead of her true valuation, bidder k (starting from time 0) bids with respect to

the following value function (wk

i

, wk

j

, wk

ij

) = (1, 1, 0). It can be seen that in this case the e�cient

allocation (and Walrasian equilibrium allocation) is exactly the same as before. However, at the

associated Walrasian equilibrium the price of item j is at most 1 units, in order to ensure that

bidder k demands this item. However, by acquiring item j at price 1, bidder k guarantees a payo↵

of 4 units. Thus, we conclude that by not bidding according to her true valuations (and misreporting

her demand in the auction), bidder k can improve her payo↵s.

This example suggests that a di↵erent payment rule is necessary for ensure that bidders truth-

fully report their demand in iterative auctions. We conclude this section by providing such a

payment rule, which we subsequently use in Section 5.2 to obtain an iterative auction that imple-

ments the e�cient outcome at an ex-post perfect equilibrium.

Definition 5.2 (VCG Mechanism). Consider a collection of value functions {vm}. A mechanism

(mapping from types/valuations to allocations and payments) is called a VCG (Vickrey - Clarke -

Groves) mechanism if it

• chooses an e�cient allocation, i.e., {Sm} 2 argmax{Zm}|Zm⇢N ,Z

k\Zl=;
P

m

vm(Zm)

• assigns each agent m a payment �m({Sk}, {vk}
k 6=m

) = hm(v�m) �
P

k 6=m

vk(Sk), where hm

is any real-valued function.

If hm is such that hm(v�m) = max{Zk}|Zk\Zl=;
P

k 6=m

vk(Zk), then we say that payments

of bidders (�m({Sk}, {vk}
k 6=m

) = max{Zk}|Zk\Zl=;
P

k 6=m

vk(Zk) �
P

k 6=m

vk(Sk)) are VCG pay-

ments with the Clarke pivot rule. Observe that since {Sk} is e�cient we have
P

k 6=m

vk(Sk) =

max{Zk}|Zk\Zl=Z

k\Sm=;
P

k 6=m

vk(Zk). Intuitively, this suggests that the VCG payments capture

the opportunity cost a given agent m creates on the rest of the system by acquiring bundle Sm,

i.e., the di↵erence between the maximum welfare that can be achieved by the remaining agents and

the welfare those agents have when bidder m receives bundle Sm. In this paper, we only employ

VCG payments with the Clarke pivot rule, and for simplicity refer to these payments as VCG pay-

ments. Additionally, for any bundle S we refer to the quantity max{Zk}|Zk\Zl=;
P

k 6=m

vk(Zk) �
max{Zk}|Zk\Zl=Z

k\S=;
P

k 6=m

vk(Zk) as the VCG payment of agent m associated with bundle S.

In multi-item sealed-bid auctions (which are single-shot games), charging VCG payments to

bidders guarantees that the e�cient outcome can be implemented at a dominant strategy equi-

librium (Nisan et al., 2007; Krishna, 2009). In the next section, we provide an iterative auction

that assigns these payments to bidders at termination, and prove that it implements the e�cient
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outcome at an ex-post perfect equilibrium. Note that there is a major di�culty in using these

payments in iterative auction design: obtaining them requires the computation of a function of

valuations, which are privately known to the bidders (Definition 5.2). Our iterative auction over-

comes this di�culty by using a novel price update structure that allows for determining the VCG

payments.

5.2 Interleaved Tree Auction

In this section, we provide an iterative auction format, which we refer to as the interleaved tree

auction. This auction implements the e�cient outcome at an ex-post perfect equilibrium for sign-

consistent tree valuations. It accomplishes this by following a novel (interleaved) price update

structure which converges to a Walrasian equilibrium (see Figure 1c) and ensures that bidders’

final payments correspond to the VCG payments (that guarantee that bidders have no incentive

to misreport their demand). Moreover, the auction relies on a simple pricing rule, and compact

demand responses.

Finding VCG payments requires computing a nontrivial function of bidders’ valuations (Defi-

nition 5.2). On the other hand, bidders’ valuations are private information, and hence our auction

needs to “learn” the relevant information for computing these payments. In this section, we first

establish that using Walrasian equilibria for sets of bidders M, as well as M� {m} for all m 2 M
the VCG payments can be computed (see Lemma 5.1). Then, we obtain the interleaved tree auction

by providing a modification of Algorithm 2 that identifies such Walrasian equilibria and uses them

for the computation of VCG payments.

We say that the market clears for bidders M̂ ⇢ M, if the given prices and bundles {Sm}
m2M̂

demanded by bidders m 2 M̂ constitute a Walrasian equilibrium (i.e., satisfy the conditions of

Definition 2.2 for bidders m 2 M̂). We denote the market that consist of bidders M� {m} by E
m

,

and the one that consists of bidders M by E;. Our next result establishes that the VCG payments

can be obtained in terms of the prices and bidders’ surplus at such market clearance points.

Lemma 5.1. Assume that markets E
m

and E; clear respectively at prices p1 and p2. Let {Sk

1}k2M�{m}

and {Sk

2}k2M denote the corresponding market clearing allocations, and ⇡k

1 and ⇡k

2 denote the max-

imum surplus of bidder k 2 M at these prices. The VCG payment of bidder m associated with

bundle Sm

2 is equal to
P

k 6=m

⇣
⇡k

1 +
P

i2Sk
1
p1
i

⌘
�
P

k 6=m

⇣
⇡k

2 +
P

i2Sk
2
p2
i

⌘
.

Observe that by definition surplus satisfies ⇡k

j

= vk(Sk

j

) �
P

i2Sk
j
pj
i

, and hence vk(Sk

j

) = ⇡k

j

+
P

i2Sk
j
pj
i

for j 2 {1, 2}. Since Walrasian equilibrium allocations are e�cient we also have that

{Sk

1}k2M�{m} and {Sk

2}k2M respectively maximize welfare for markets E
m

and E;, and the claim

immediately follows from the definition of VCG payments.

We next provide the interleaved tree auction (Algorithm 3) that clears markets {E
m

}
m

[ {E;}
and implements the e�cient outcome for sign-consistent tree valuations by keeping track of the

change in bidders’ surplus, and using it for charging VCG payments to bidders.
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Algorithm 3 Interleaved Tree Auction

S0 (Initialize): Start with p = 0, and S = {E
m

}
m2M. Set q = 0, and zm = 0 for all m 2 M.

S1 (Find Improvement Direction): Ask each bidder m to compactly report the set of bundles Dm

she demands at price vector p. Using this formulate and solve RP/RD for each market E 2 S,
and denote the objective value associated with market E by e(E). Update S := S�{E|e(E) =
0}, and zm := zm +

P
i

p
i

if E
m

is removed from S.

S1a (All markets cleared): If S = ;, then go to step S3.

S1b (Some markets not cleared): Otherwise, let E
m

⇤ 2 S be the market for which e(E) > 0
is the smallest (break ties lexicographically), and (p̄, ⇡̄, p̄

E

, q̄
E

) denote the associated
update direction (obtained solving RD). Go to step S2.

S2 (Update Prices): Update prices/demanded bundles using the stepsize computation subroutine
(initialized with market E

m

⇤ , price vector p, and update direction p̄). At each update of the
price vector from p(t) to p(t+1) in the subroutine (i.e., in Steps S1 and S2 of the subroutine):

– (Charge payments) Charge each bidder m 2 M a payment of
P

i

|p
i

(t+ 1)� p
i

(t)|, and
update q := q +

P
i

|p
i

(t+ 1)� p
i

(t)|.
– (Compute rebate) Let �⇡k denote the change in surplus of bidder k as a result of the

price update, given by Lemma 4.4 (i.e., equal to ⇡2 � ⇡1 in the lemma). For all m such
that E

m

/2 S update zm := zm �
P

k 6=m

�⇡k.

Update p := p+ ✓p̄, and go to Step S1.

S3 (Repeat for market E;): Set S = {E;}, and repeat Steps S1-S2. When the condition of Step
S1a holds again denote the allocation suggested by an integral optimal solution of RP by
{Sm}, and set zm := zm �

P
i/2Sm p

i

for all m 2 M. Go to Step S4.

S4 (Terminate): Terminate assigning bidder m 2 M bundle Sm, and a rebate of q � zm.

Steps S1-S2 of this auction focus on clearing the markets {E
m

}
m

. The prices and the set of

markets that are not cleared at a given iteration are respectively denoted by p and S. Given the

prices, the auctioneer first collects compact demand responses (following (4)) from the bidders and

solves the corresponding RP/RD for markets in S (S1). The set of uncleared markets S is updated

if for some markets the objective value of these optimization problems is equal to zero (and hence a

Walrasian equilibrium can be identified). The optimal solution of RD, or the dual update direction,

may be di↵erent for di↵erent markets in S. The auctioneer identifies an uncleared market E
m

⇤ for

which the objective value of RP/RD (denoted by e(E) for market E) is the smallest, and chooses

the update direction accordingly (Step S1b). Intuitively, the objective value of RP/RD captures

how close a market is to clearance (or the violation of CS conditions in the associated LP2/DLP2

as explained in Section 4), and Algorithm 3 updates the prices greedily using the direction obtained

from the market that is closest to clearance.

The prices are updated in Step S2 according to the update direction given in Step S1, by using
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the stepsize computation subroutine. Updates in this direction rely on a stepsize smaller than 1/N

(as described in Step S1 of the subroutine), and continue until either the prices of some items

decrease to zero, or some bidder in market E
m

⇤ starts demanding a new bundle.19 Steps S1-S2

terminate by identifying the market clearance points of all markets in {E
m

}
m

since choosing the

update direction according to the market whose RP has the lowest objective value (e(E)), ensures
that after each update this objective value decreases. Consequently, after each update the lowest

objective value of RP for an uncleared market decreases. Since this quantity cannot decrease

indefinitely (objective value of RP is lower bounded by zero), it follows that these steps eventually

terminate by clearing markets {E
m

}
m

.

After steps S1-S2 are completed, similar steps are repeated to clear the market E; (step S3),

starting with the price vector at which the last market in {E
m

}
m

clears. It is possible to merge

steps S1-S2 with step S3, and clear E; together with the remaining markets. However, handling this

market separately ensures that the auction terminates at the Walrasian equilibrium of E; (hence the
e�cient allocation), by assigning each bidder a bundle that she demands at the final prices. Note

that bidders receive their items only after the last step is completed and the auction terminates.

Whenever prices are updated from a price vector p(t) to p(t + 1) by (Step S1 or S2 of) the

stepsize computation subroutine, the auction charges all bidders a payment
P

i

|p
i

(t + 1) � p
i

(t)|
(Step S2). Charging bidders such payments ensure that they do not adopt a strategy that prevents

the termination of the auction indefinitely. The quantity q captures the sum of all such payments

made by a bidder throughout the auction. The parameter zm, on the other hand, is initially

updated to the sum of the prices at which market E
m

clears (Step S1). After this market clears, the

auctioneer adjusts the zm parameter according to the change in the total surplus of all the bidders

in E
m

whenever the prices are updated (Step S2). Note that since the subroutine uses price updates

that are smaller than 1/N , the associated change in the surplus of bidders can be computed as in

Lemma 4.4. Finally, when market E; clears, zm is adjusted by subtracting the total price of all

items that do not belong to the bundle of bidder m at the associated allocation (Step S3). At the

end of the auction, each bidder m receives a rebate that is equal to her total payment so far minus

the change in the total surplus/prices for the market she is not present at, i.e., a rebate of q�zm.20

Observe that this suggests that the total payment of bidder m is given by zm provided that the

auction terminates. The updates of the zm variable ensure that this variable captures the change

in the total surplus of all bidders but m between time instants where markets E
m

and E; clear.

Thus, this variable has the payment structure in Lemma 5.1, and is equal to the VCG payment of

19Here the stepsize computation subroutine allows for identifying the stepsize at which a bidder in market Em⇤

starts demanding a new bundle, or the price of an item decreases to zero (if no bidder demands a new bundle). Note
that this step is modular and any other procedure for identifying such a stepsize (e.g., explicitly asking bidders how
large of an update in the given update direction is necessary for demanding a new bundle) could be used for the
design of the auction. This subroutine, on the other hand, suggests an update structure similar to the one employed
in the English auction (e.g., see Krishna (2009)), in the sense that a single price-related parameter (✓) is increased,
until bidders’ demand sets change.

20Any payment bounded away from zero could be used in Step S2 to ensure termination of the auction. We
establish in the proof of Theorem 5.1 that a payment of

P
i |pi(t+1)� pi(t)| guarantees that the final rebate q� zm

is nonnegative.
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agent m when the auction terminates.

Observe that the price update structure employed by our auction closely follows the one in

Algorithm 2. The key di↵erence is that while Algorithm 2 focuses on finding the market clearing

allocation (and Walrasian equilibrium) for only one market, our auction finds these allocations for

all markets {E
m

}
m

[ {E;}. It accomplishes this by first focusing on markets {E
m

}
m

, and updating

the prices greedily with respect to the market that is closest to being cleared. Once these markets

are cleared, it terminates by clearing E;. We refer to this auction as the “interleaved” tree auction,

since as opposed to running a separate auction for all markets {E
m

}
m

, we interleave the demand

queries for these markets, and update the prices according to the market that is closest to being

cleared (S1b). After each price update we check market clearance for all these markets, and

potentially jointly clear multiple markets (S1). This structure avoids restarting the auction from

the initial price vector p = 0 after each market clearance point, and repeatedly asking the same

queries to bidders (e.g., their demand at p = 0), thereby potentially leading to faster termination.

In the literature, there are iterative auction formats that implement the e�cient outcome by using

the Walrasian equilibria for markets {E
m

}
m

[ {E;} to compute and assign the VCG payments to

bidders (e.g., see Ausubel (2006)). On the other hand, these auction formats are restricted to the

gross substitutes setting (i.e., do not allow for complementarities), and involve running a separate

auction (in parallel or series) for each of these markets. Importantly, unlike the existing literature,

thanks to the interleaved structure, we do not explicitly run multiple auctions for all the markets.

In Theorem 5.1, we establish that when bidders truthfully reveal their demand, our auction

terminates in finite time by implementing the e�cient allocation. Moreover, we formally show that

the final rebate is nonnegative, and ensures that the total payment of each bidder is equal to her

VCG payment. Exploiting this observation, we establish that bidders have no incentive to deviate

from the truthful bidding strategy after any history. Hence, in our auction it is an ex-post perfect

equilibrium to bid truthfully, and this equilibrium implements the e�cient outcome.

Theorem 5.1. Assume that bidders have sign-consistent tree valuations, and interleaved tree auc-

tion is used. The following are true:

(i) After any history H
t

, if all bidders reveal their demand truthfully, then all markets S [ {E;}
clear in finite time. Moreover, the associated allocations are e�cient.

(ii) When bidders are truthful, the total payment of every bidder m is given by zm, and is equal

to the VCG payment associated with bundle Sm assigned to her at the end of the auction.

Moreover, at termination all bidders receive a nonnegative rebate, i.e., q � zm.

(iii) It is an ex-post perfect equilibrium for bidders to truthfully reveal their demand in this auction.

Additionally, this equilibrium implements the e�cient allocation and VCG payments.

Remarks: The special structure of sign-consistent tree valuations leads to three desirable prop-

erties of our auction.
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• Anonymous item pricing: Our auction can implement the e�cient outcome in settings where

valuations exhibit complementarity (provided that they are sign-consistent tree valuations,

see Example 5.2). In doing so, unlike some auction formats in the literature (e.g., Ausubel

and Milgrom (2002); Parkes (2006)), it does not require o↵ering a price for each bundle of

items (or specifying exponentially many prices at each stage). Instead, it relies on a simple

anonymous item pricing rule (i.e., o↵ers a price p
i

for each item i), thereby making our

auction format practically appealing. Our auction is able to implement the e�cient outcome

by relying on anonymous item prices, since for sign-consistent tree valuations it is always

possible to clear markets using this pricing rule (Theorem 3.2).

• Compact demand queries: At full generality there can be exponentially many bundles a

bidder can demand at the given prices (requiring bidders to report all such bundles, in fact

is a drawback of some of the existing iterative auctions. See e.g. Ausubel (2006); Parkes

(2006)). On the other hand, as we establish in Section 4 and employ in our auction format, by

exploiting the graphical structure (and using LP�Dm/DLP�Dm) it is possible to compactly

describe the set of all bundles that are demanded by a bidder. This allows our iterative

auction to converge to the e�cient outcome by relying on polynomially many (as opposed

to exponentially many) messages that describe the demand sets of bidders. We believe that

these desirable communication requirements also make our auction format interesting from

a practical point of view. This property relies on the existence of integral optimal solutions

to LP � Dm, which corresponds to bundles demanded by bidders. Such optimal solutions

always exists for sign-consistent tree valuations (since LP �Dm coincides with a formulation

of LP2 for a single bidder who has node weights {wm

i

�p
i

}, and the latter problem has integral

optimal solutions for such valuations by Theorem 3.1).

• Interleaved structure for computing VCG payments: Our auction clears markets {E
m

}
m

jointly

by interleaving the demand queries associated with these markets, and employs the market

clearance points in the computation of VCG payments. This result is made possible by the

fact that for all these markets anonymous item pricing can be used for market clearance,

which is a consequence of having sign-consistent tree valuations.

We conclude this section with an example that illustrates how our iterative auction format

clears di↵erent markets and implements the e�cient outcome:

Example 5.2. Assume that there are three bidders and three items a, b, c. The underlying graph

is a tree with edges (a, b) and (b, c). The weights bidders associate with the underlying nodes/edges

are given as follows:

w
a

w
b

w
c

w
ab

w
bc

Bidder 1 4 2 2 1 -1

Bidder 2 2 4 2 1 -1

Bidder 3 2 2 4 1 -1
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In this example all bidders view items a and b as complements, and b and c as substitutes. The

auctioneer starts the auction with price vector (p
a

, p
b

, p
c

) = (0, 0, 0), and updates the prices as sug-

gested by Algorithm 3. The resulting price updates are given in Figure 7. In the figure, the clearance

round of each market E
k

is denoted by M
k

, and that of market E; is denoted by M
all

. Initially, in all
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Figure 7: Price updates in the auction.

markets {E
m

}
m

RP/RD have the same objective value, and all items are overdemanded. Breaking

the tie lexicographically, prices are updated with respect to market E1, and prices of all items are

increased. When the price of all items reach to 1, in market E1, item c is no longer overdemanded

(only bidder 3 demands it), and hence its price stops increasing. At round 6 markets E1 and E2
jointly clear, and between rounds 6 and 9 prices are updated using the update direction suggested

by the solution of RD in E3. In this market, item a is overdemanded, until its price increases to 3,

and at this point E3 clears as well. In rounds 9 � 12, the prices are updated using the solution of

RD in E;. At the end of the 12th round, the auction reaches a Walrasian equilibrium for E; with

prices (p
a

, p
b

, p
c

) = (3, 3, 2) and the e�cient allocation (that involves assigning a to the first bidder,

b to the second one, and c to the last one). The total payments of bidders are the corresponding

VCG payments, i.e., 3, 3, and 2 units respectively for bidders 1� 3.

This example suggests that in the interleaved tree auction, the auctioneer can implement the

e�cient outcome without running a separate auction for each market in {E
m

}
m

[ {E;}. Instead,

due to the interleaved structure, she can clear multiple markets in one round, and continue running

the auction without restarting the auction (at price vector zero). Another property of the auction

is that the prices need not always increase, and can decrease over the course of the auction. Finally,

updating the prices using the update direction suggested by the market that is closest to clearance

(as in Steps S1-S2 of Algorithm 3) leads to termination of the auction in finitely many steps.
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6 Conclusions

In this paper, we focus on a special class of graphical valuations, where the underlying value graph

is a tree, and edge weights satisfy a sign-consistency condition. We establish that for this class of

valuations the e�cient allocation can be identified by solving a linear optimization problem, which

involves a bidder-specific variable for each item, and pair of items. This result allows for showing

that for sign-consistent tree valuations even when items exhibit (pairwise) complementarity, a

Walrasian equilibrium exists, and the Walrasian equilibrium allocation and prices can be obtained

through the solution of the aforementioned LP and its dual. Conversely, we demonstrate that if

the tree or the sign-consistency assumptions are relaxed, then a Walrasian equilibrium need not

exist, and the LP formulation that we provide may not find the e�cient outcome. We use iterative

solutions of our LP formulation with primal-dual algorithms to obtain a new iterative auction

format. We establish that for sign-consistent tree valuations this auction implements the e�cient

allocation at an ex-post perfect equilibrium. Importantly, our auction accomplishes this by relying

on a simple anonymous item pricing rule, and allowing bidders to compactly report their demand.

Additionally, it employs an interleaved price update structure which guarantees that the final

payments of bidders are the VCG payments, and these payments lead to truthful demand reports

in the auction. Our results suggest that in multi-item settings (with value complementarities) by

exploiting the special structure of bidders’ valuations, simple e�cient iterative auction formats can

be obtained.

Our companion paper (Candogan et al., 2013) extends the approach and results of this paper to

more general graphical valuations, and provides similar iterative auction formats. As established in

Section 3, for such valuations a Walrasian equilibrium need not exist. This motivates using more

general pricing rules than anonymous item pricing, and employing generalizations of Walrasian

equilibrium for the design of such auctions. In particular, we provide auctions that rely on simple

pricing rules that are bidder-specific and involve pairwise discounts/markups for pairs of items, and

the corresponding generalizations of Walrasian equilibrium. These auctions also allow bidders to

compactly report their demand, clear multiple markets jointly using an interleaved structure, and

guarantee e�ciency (at an ex-post perfect equilibrium) for all graphical valuations. This work and

the current paper open up a number of interesting future directions, including the design of simple

mechanisms by exploiting more general special value structures, and the maximization of revenue

and e�ciency in markets with multiple bidders/sellers through the use of such mechanisms.
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A Graphical Valuations and Other Special Valuations

In this section, we explain how graphical valuations and tree valuations are di↵erent from other

special classes of valuations studied in the literature. In particular, we focus on the classes of

gross substitutes and complements, gross substitutes, sub/superadditive, sub/supermodular value

functions, and compare them with graphical valuations.

It was established in Section 3 that when the underlying value graph has a tree structure, and

the valuations satisfy sign-consistency, a Walrasian equilibrium exists. This result allows us to

identify a class of value functions which exhibit both value complementarity and substitutability,

and for which a Walrasian equilibrium exists. Gross substitutes and complements (Sun and Yang,

2006, 2009), defined below, is another class of value functions that satisfies a similar property.

Definition A.1 (Gross Substitutes and Complements (GSC)). Assume that the set of items is

partitioned into two sets S1, S2 such that S1 \ S2 = ;, S1 [ S2 = N . Consider the value function

v : N ! R. Denote by e(k) the kth unit vector, and D(p) the demand function associated with

price vector p 2 RN , i.e., D(p) , argmax
S⇢N v(S)�

P
i2S p

i

.

We say that v has the gross substitutes and complements property if for j 2 {1, 2}, any price

vector p 2 RN , k 2 S
j

, � � 0, and D1 2 D(p), there exists D2 2 D(p + �e(k)) such that (a)

[D1 \ S
j

]� {k} ⇢ D2 and (b) Dc

1 \ Sc

j

⇢ Dc

2.

Intuitively, this definition suggests that the items in sets S1 and S2 are substitutes among

themselves (in the sense that if the price of a demanded item in one of these sets increases, the

demand for the other demanded items in the same set does not decrease, [D1 \ S
j

] � {k} ⇢ D2).
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Additionally items are complements across S1 and S2 (in the sense that if the price of a demanded

item in set S1 increases, then fewer items are demanded in set S2, Dc

1 \ Sc

j

⇢ Dc

2).

We next illustrate that tree (and hence graphical) valuations need not satisfy the GSC property.

Example A.1. Consider the tree valuation provided in Figure 8. Assume that this valuation

satisfies the GSC property. There are three di↵erent ways of choosing sets S1 and S2 (due to

symmetry all other cases follow from the analysis here): (i) S1 = {A,B,C}, S2 = ;, (ii) S1 = {A},
S2 = {B,C}, (iii) S1 = {A,C}, S2 = {B}.

A B C

wBC=-1wAB=-1

wA=1 wB=2 wC=1

Figure 8: A tree valuation that violates the GSC property.

We will show that the GSC property fails in all of these cases, and hence the value function

given in Figure 8 does not exhibit the GSC property for any choice of {S
j

}. Assume that

• Initially, the prices are p1(A) = 0.1, p1(B) = 0.5, p1(C) = 0.1, and the corresponding demand

is D(p1) = {A,C}.

• Then, the price of the first item is increased, and the new prices are p2(A) = 1, p2(B) = 0.5,

p2(C) = 0.1. It follows that the demand is D(p2) = {B}.

This implies that the GSC property fails whenever A and C belong to the same S
j

(note that by

choosing D1 = {A,C}, D2 = {B}, k = A, the condition [D1\S
j

]�{k} ⇢ D2 fails). Thus, to check

the GSC property it is su�cient to focus on case (ii). On the other hand, if S1 = {A}, S2 = {B,C}
then the condition Dc

1\Sc

j

⇢ Dc

2 fails (this can be seen by choosing j = 1, D1 = {A,C}, D2 = {B},
k = A). This implies that the GSC property fails in case (ii) as well. Hence, we conclude that for

any choice of the {S
j

} sets, the GSC property fails for the value function in Figure 8.

This example shows that tree valuations are not contained in the class of GSC valuations. GSC

generalizes the well-known gross substitutes class (Gul and Stacchetti, 1999), where Definition A.1

holds with S2 = ;. Thus, our results also imply that tree valuations do not necessarily satisfy the

gross substitutes property.

We next investigate the additional structural assumptions under which graphical valuations

exhibit the GSC property. Assume that the underlying value graph consists of connected compo-

nents of size at most two. Note that in this case, valuations are additive over di↵erent connected

components, and hence in order to test the GSC condition it su�ces to restrict attention to subsets

of the demand set that are contained in a given connected component of the graph.

Consider a pair of nodes (i, j) connected with an edge. Assume that wm

ij

 0 and at a given

price vector p item j belongs to a demand set D1. We claim that if the price of item i increases, then

the demand for item j cannot decrease. The claim is immediate if i /2 D1, i.e., i is not demanded
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at the original prices. Assume that i 2 D1. Observe that this implies that wm

j

+wm

ij

� p
j

� 0, since

otherwise bidder m can improve her payo↵ by not receiving item j at the price vector p, and hence

j /2 D1. On the other hand, since wm

ij

 0, it follows that wm

j

� p
j

� wm

j

+ wm

ij

� p
j

� 0. Thus, at

the updated prices bidder m still maximizes her surplus by either receiving item j together with i

or in isolation. Hence, item j belongs to a demand set after the price update, and condition (a) of

Definition A.1 holds by assigning items (i, j) to the same set S1 or S2.

Conversely, assume that wm

ij

� 0 and at price vector p, item j does not belong to a demand set

D1. We claim that if the price of item i increases, then the demand for item j cannot increase. As

before, the claim is immediate if i /2 D1. If i 2 D1, and j /2 D1, then it should be the case that

wm

j

+wm

ij

� p
j

 0. Moreover, since wm

ij

� 0, this implies that wm

j

� p
j

 wm

j

+wm

ij

� p
j

 0. Note

that after the price update this inequality continues to hold. Thus, it should be the case that there

is a demand set to which item j does not belong after the price update. Hence, condition (b) of

Definition A.1 holds, by assigning items (i, j) to di↵erent sets S1 and S2.

These observations imply that if the underlying graph consists of components of size at most

two, the GSC condition holds, by assigning items that are connected with a positive weight to

di↵erent sets S1 and S2 (see Definition A.1), and items that are connected with a negative edge to

the same set.

On the other hand, Example A.1 implies that when a connected component has at least three

nodes the GSC property may not hold. Moreover, this conclusion still holds, if edge weights are not

restricted to be negative as in the example, and allowed to be positive or negative; see (Candogan,

2013). Thus, unless further restriction on the weights is made, graphical valuations satisfy the

GSC property only when the underlying graph consists of connected components of size two. This

implies that GSC property holds for only a very restrictive subclass of graphical valuations.21

We conclude this section by discussing the relation of graphical valuations to subadditive/superadditive

and submodular/supermodular valuations. A value function is subadditive if for any sets A,B ⇢ N ,

it satisfies v(A [ B)  v(A) + v(B), and superadditive, if for disjoint A,B it satisfies v(A [
B) � v(A) + v(B). Similarly a value function is submodular if for any sets A,B it satisfies

v(A [ B) + v(A \ B)  v(A) + v(B), and supermodular if v(A [ B) + v(A \ B) � v(A) + v(B).

These inequalities imply that for nonnegative value functions, submodularity implies subadditivity.

It can be easily checked that if all edge weights are positive (negative), graphical valuations

are superadditive and supermodular (subadditive and submodular). On the other hand, if there

is an edge with negative (positive) weight, the supermodularity/superadditivity (submodular-

ity/subadditivity) condition cannot hold (consider A,B as singletons corresponding to the end

points of this edge). Since the weights of di↵erent edges in our model can be positive or negative,

it follows that even for the case of trees, graphical valuations are not contained in these classes.

21A similar conclusion holds for gross substitute valuations: a graphical valuation satisfies the gross substitutes
condition, if the graph consists of connected components of size at most two, and the edge weights are negative.
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B Proofs of Section 3

Proof of Theorem 3.1(i). Let W ⇤ denote the welfare (total value) associated with an e�cient allo-

cation, and h(i) denote the bidder who receives item i at this allocation. In order to establish the

result, we first construct another LP formulation of the e�cient allocation problem, and show that

the optimal objective value of this LP is equal to W ⇤. We then show that optimal solutions of LP2

can be mapped to feasible solutions of this LP with the same objective value. This implies that

optimal objective value of LP2 is bounded by W ⇤. On the other hand, LP2 has feasible integral

solutions associated with the e�cient allocation that have objective value W ⇤. Hence, it follows

that such integral solutions are optimal in LP2.

We start by introducing some notation, and stating the alternative LP formulation of the

e�cient allocation problem. Given the underlying graphical (tree) valuation, choose a node r as

the root of the tree. For any given node i in this tree, denote the set of children of node i by C(i).

Similarly, denote the unique parent of node i by P (i). We use the convention C(i) = ; if i is a leaf

node, and P (i) = ; if i = r. Consider the following LP formulation:

(DLP � rec)

min z⇤

s.t. zm
i

� wk

i

+
X

j2C(i)

zk
j

for all i 6= r, and m, k 6= m (xm!k

i

)

zm
i

� wm

i

+ wm

iP (i) +
X

j2C(i)

zm
j

for all i 6= r, and m (xm!m

i

)

z⇤ � wm

r

+
X

j2C(r)

zm
j

for all m (x⇤!m

r

).

(6)

In DLP-rec we express the dual variable corresponding to each constraint in parenthesis. Using

these variables, we next state the dual of DLP-rec (henceforth referred to as LP-rec):

(LP � rec)

max
X

m

x?!m

r

wm

r

+
X

i 6=r

X

m,k 6=m

xk!m

i

wm

i

+
X

i 6=r

X

m

xm!m

i

(wm

i

+ wm

iP (i))

s.t.
X

k

xk!m

P (i) =
X

k

xm!k

i

for all i 6= r, m, (zm
i

)

X

m

x?!m

r

= 1 (z⇤)

xk!m

i

, x?!m

i

� 0.

(7)

The variables of DLP-rec corresponding to the constraints of LP-rec are stated in parenthesis in

the above formulation.

In DLP-rec, we interpret zm
i

as the maximum welfare that can be obtained from the assignment

of node i and her children, given that the parent of node i is assigned to bidder m (later we will

prove that at an optimal solution this interpretation is precise). The first two constraints use the

tree structure to recursively express this quantity. In particular, the first constraint suggests that

this quantity is at least the sum of the value obtained from the assignment of node i to some
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bidder k 6= m (wk

i

) and the welfare obtained from each of the subtrees rooted at the children of i

(
P

j2C(i) z
k

j

), i.e., zm
i

� wk

i

+
P

j2C(i) z
k

j

. The second quantity, similarly, implies that this quantity

is weakly larger than the sum of the value obtained from the assignment of node i to bidder m

(wm

i

+ wm

iP (i)), and the total welfare obtained from the subtrees (
P

j2C(i) z
k

j

). Note that the right

hand side of this constraint includes an additional term wm

iP (i), since it captures the case where both

node i and its parent are assigned to bidder m, and hence generate an additional value of wm

iP (i).

The final constraint suggests that the maximum welfare that can be obtained from the assignment

of all nodes is at least the sum of the value obtained from the assignment of the root node to bidder

m, and the welfare obtained from the assignment of the subtrees rooted at the children of this

node.22

Note that at feasible solutions of DLP-rec where constraints 1-2 are strict, the zm
i

variable can

be decreased to obtain another feasible solution, with the same objective value. This implies that

DLP-rec has an optimal solution where for all m 2 M, and i 6= r, we have

zm
i

= max

8
<

:wm

i

+ wm

iP (i) +
X

j2C(i)

zm
j

, max
k 6=m

{wk

i

+
X

j2C(i)

zk
j

}

9
=

; . (8)

Similarly, it can be checked from DLP-rec that at all optimal solutions we have

z⇤ = max
m

{wm

r

+
X

j2C(r)

zm
j

}. (9)

Consider an optimal solution where (8) and (9) hold. We claim that at this solution any node

i 6= r satisfies the following property (or the interpretation for zm
i

stated earlier): zm
i

is equal to

the maximum welfare obtained by the assignment of i and her children when the parent of this

node is assigned to bidder m. It can be seen that (8) immediately implies this property for the

leaf nodes, since for these nodes zm
i

= max{wm

i

+ wm

iP (i),max
k 6=m

wk

i

}. Assume that this property

holds for any node i 6= r such that the shortest path that connects i to a leaf node (that does not

include r) has length at most k. It follows from (8) that zm
i

satisfies this property for any node

whose children are a part of a path that has length at most k. Equivalently, the property holds

for any node i 6= r that belongs to a path of length at most k + 1. Hence, by induction the claim

follows for all {zm
i

}. On the other hand, since z⇤ = max
m

{wm

r

+
P

j2C(r) z
m

j

}, the claim implies

that z⇤ is equal to the maximum value that can be obtained by the assignment of all nodes, i.e.,

W ⇤. This suggests that the optimal objective value of DLP-rec is weakly lower than W ⇤.

Similarly, consider the following solution to LP-rec: x?!m

r

= 1 if h(r) = m, and x?!m

r

= 0

otherwise, and xk!m

i

= 1 if h(i) = m and h(P (i)) = k and xk!m

i

= 0 otherwise. It can be

immediately verified in LP-rec that this solution is feasible and the corresponding welfare is equal

to W ⇤. Thus, the objective value of LP-rec is at least W ⇤. Since the optimal objective value

of DLP-rec is bounded by W ⇤, it follows that the optimal objective values of both LP-rec, and

22This LP essentially describes a recursion that can be used for the solution of the welfare maximization problem.
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DLP-rec are equal to W ⇤. Moreover, the solutions constructed above are optimal in the respective

optimization problems.

We next establish that for sign-consistent tree valuations LP2 has optimal solutions that can

be mapped to feasible solutions of LP-rec, with the same objective value. Let E+ denote the set

of edges with positive weights, and E� denote the set of edges with negative weights (recall that

by Assumption 3.2 all bidders have same-sign weights for a given edge). Observe that LP2 has

optimal solutions where we have:

A1: ym
ij

= min{xm
i

, xm
j

} for all m 2 M, ij 2 E+,

A2: ym
ij

= max{0, xm
i

+ xm
j

� 1} for all m 2 M, ij 2 E�,

A3:
P

m

xm
i

= 1 for all i.

Here, the first two conditions hold as given a solution where they do not hold increasing (for A1) or

decreasing (for A2) ym
ij

a new solution with improved objective can be obtained (due to the signs

of the corresponding edges). The last condition is a byproduct of Assumption 2.1.

Consider an optimal solution of LP2 satisfying A1-3. In Lemma B.1 we show that for such an

optimal solution {xm
i

, ym
ij

} of LP2, a feasible solution {xk!m

⇤ } to LP-rec with the same objective

value exists. Moreover, in this solution of LP-rec, we have:

B1: xm
i

=
P

k

xk!m

i

for all m, i 6= r (and xm
i

= x⇤!m

i

for i = r),

B2: ym
ij

= xm!m

i

for all m, i, j, where j = P (i) in the tree rooted at r.

B3:
P

m

P
k

xk!m

i

= 1 for all i 6= r (and
P

m

x?!m

i

= 1 for i = r).

The proof of this lemma is given at the end of this proof.

Lemma B.1. Assume that an optimal solution {xm
i

, ym
ij

} of LP2 satisfying A1-3 is given. There

exists a corresponding feasible solution {xk!m

i

, x?!m

i

} of LP-rec satisfying B1-3. Moreover, these

solutions have the same objective values in the respective optimization problems.

Since optimal value of LP-rec is W ⇤, this Lemma implies that the objective value of LP2 is

bounded by this quantity as well. On the other hand, there is an integral feasible solution of LP2

associated with the e�cient allocation, which achieves this objective value. In particular, consider

the solution where xm
i

= 1 if h(i) = m, ym
ij

= 1, if h(i) = h(j) = m, and xm
i

= ym
ij

= 0 otherwise.

It can be verified from LP2 that this solution is feasible, and the associated objective value is W ⇤.

Thus, it follows that this solution is an optimal solution of LP2 that is integral, and the claim

follows.

Proof of Lemma B.1. We establish the result by constructing a feasible solution to LP-rec, and

establishing that this solution satisfies B1-B2. The condition B3, on the other hand, trivially holds

for any feasible solution of LP-rec. For the root node, this condition simply is the second constraint

of LP-rec. For the remaining nodes summing the first constraint of LP-rec over m it can be seen
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that if B3 holds for the parent of a node, it holds for the node itself as well. Thus, for all nodes,

this condition follows from the feasibility of the solution we construct for LP-rec, and for the proof

it su�ces to focus on B1-B2.

In order to construct a solution to LP-rec, we first set x?!m

r

= xm
r

for all m. Consider any node

i 6= r, and its parent j = P (i). We construct the {xk!m

i

}
k,m

variables that satisfy conditions B1

and B2 (for all i and m) by solving a max-flow problem (see Figure 9). In this problem we maximize

!"

#"

$%&" $'&"

$%(" $'("

%)&" ')&"

%)(" ')("

*%(&" *'(&"

+$%&,*
%
(&-
." +$'&,*

'
(&-
."

Figure 9: The max-flow problem used for constructing a solution to LP-rec.

the flow between nodes s and t. The labels associated with edges denote their capacities, and edges

without labels have unlimited capacity. We associate nodes (m, j) and (m, i) with each bidder

m. The (m, j) nodes have an incoming edge from s (with capacity xm
j

), and (m, i) nodes have an

outgoing edge to t (with capacity xm
i

). For each (m, j) node there is an associated (m, j)+ node

(which is left unlabeled in the figure for simplicity). Each (m, j) has an outgoing edge connected to

(m, i) node (with capacity ym
ij

), and the associated (m, j)+ node (with capacity (xm
j

� ym
ij

)+). The

(m, j)+ node, on the other hand, has outgoing edges (with unlimited capacity) connected to (k, i)

nodes for k 6= m. Given an optimal solution of this flow problem, we will construct {xk!m

i

}
k,m

, by

setting xm!m

i

equal to the flow between (m, j) and (m, i). Similarly, we will set xm!k

i

equal to the

flow between (m, j)+ and (k, i).

We first characterize the optimal solution of the max-flow problem. Since max-flow equals min-

cut, the solution of this flow problem can be identified by focusing on the cuts (weighted by edge

capacities) in the underlying graph. Since the edges between (m, j)+ and (k, i) have unlimited

capacity, the min-cut either involves none of the edges between the (m, j) and (m, i) nodes (for any

m), or it involves both the edge (m, j)� (m, i) and (m, j)� (m, j)+. Since ym
ij

+(xm
j

� ym
ij

)+ � xm
j

,

the cut value is minimized by cutting edge s � (m, j) instead of the edges (m, j) � (m, i) and

(m, j)� (m, j)+. This suggests that a minimum cut in this problem is obtained by not cutting any

50

Page 50 of 65Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

of the (m, j) � (m, i) edges. Thus, the minimum cut value is equal to either
P

m

xm
j

or
P

m

xm
i

.

By A3 both of these quantities, hence min-cut/max-flow, is equal to 1. Note that for the total flow

to be equal to
P

m

xm
j

=
P

m

xm
i

= 1, all edges adjacent to s and t nodes carry flow equal to their

capacity. Given such an optimal solution of the flow problem, construct {xk!m

i

}
k,m

, by setting

xm!m

i

equal to the flow between (m, j) and (m, i), and xm!k

i

equal to the flow between (m, j)+

and (k, i). Since, the capacity of edge (m, i) � t is equal to xm
i

, and the edges adjacent to node

(m, i) are associated with variables {xk!m

i

}
k

, it follows that
P

k

xk!m

i

= xm
i

. Consequently, B1

holds for the constructed solution.

Assume that ij 2 E+, hence A1 holds, i.e., ym
ij

= min{xm
i

, xm
j

}. In this case, since the max-flow

solution necessarily sends xm
j

amount of flow on the edge s � (m, j), it follows that ym
ij

units of

flow is sent on edge (m, j)� (m, i), and (xm
j

� ym
ij

) units on (m, j)� (m, j)+. This implies that the

constructed solution also satisfies B2. Thus, when ij 2 E+, by solving the constructed max-flow

problem, we obtain {xk!m

i

}
k,m

that satisfy B2.

Assume that ij 2 E�, hence A2 holds, i.e., ym
ij

= max{0, xm
i

+xm
j

�1}. If ym
ij

= 0, then on edge

(m, j)� (m, i) zero (or ym
ij

) units of flow is sent. On the other hand, if ym
ij

= xm
i

+xm
j

� 1 > 0, then

xm
j

= 1 � xm
i

+ ym
ij

� ym
ij

. Since, xm
j

units of flow is sent on the edge s � (m, j) (at all max-flow

solutions), we conclude that ym
ij

units of flow is sent on edge (m, j) � (m, i), and (xm
j

� ym
ij

) units

of flow is sent on (m, j) � (m, j)+. This implies that the constructed solution satisfies B2 when

ij 2 E� as well.

Consider the solution of LP-rec obtained by solving the flow problems associated with all edges

of the underlying tree (and setting x?!m

r

= xm
r

for all m). To complete the proof, it su�ces

to establish that this solution is feasible in LP-rec and establish that the objective values of the

solutions we have for LP-rec and LP2 are identical.

Note that our construction trivially satisfies the second (since
P

m

x?!m

r

=
P

m

xm
r

= 1, where

the last equality follows from A3) and third (since flows are always nonnegative) constraints of

LP-rec. Thus, we focus on the first constraint. Observe that since in the optimal flow solution

edges s�(m, j) and (m, i)�t respectively carry xm
j

and xm
i

units of flow, it follows that the solution

we construct for LP-rec satisfies
P

k

xm!k

i

= xm
j

= xm
P (i) and

P
k

xk!m

i

= xm
i

. This implies that
P

k

xm!k

i

= xm
P (i) =

P
k

xk!m

P (i) . Hence, the first constraint of LP-rec is always satisfied. Therefore,

we conclude that the constructed solution is also feasible in LP-rec.

We conclude the proof by showing that these solutions have the same objective value in the

respective optimization problems. Note that using B1-B3 the objective value of LP-rec can be

expressed as follows:

X

m

x?!m

r

wm

r

+
X

i 6=r

X

m,k 6=m

xk!m

i

wm

i

+
X

i 6=r

X

m

xm!m

i

(wm

i

+ wm

iP (i))

=
X

m

x?!m

r

wm

r

+
X

i 6=r

X

m,k

xk!m

i

wm

i

+
X

i 6=r

X

m

xm!m

i

wm

iP (i)

=
X

m

xm
r

wm

r

+
X

i 6=r

X

m

xm
i

wm

i

+
X

i 6=r

X

m

ym
iP (i)w

m

iP (i),

(10)
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where the first equality is obtained by rearranging terms, and the second one is obtained using B1

and B2. On the other hand, the quantity in the last line of (10) is equal to the objective value of

LP2, since wm

ij

= 0 unless the edge (i, j) is present in the underlying tree. Thus, the solutions we

construct lead to the same objective value for the associated optimization problems, and the claim

follows.

Proof of Theorem 3.1(ii). Denote the objective value at an optimal solution of LP1 by OP1, and

the value at an optimal integer solution of LP1 by OPI1. Similarly, denote by OP2 and OPI2 the

objective values of an optimal solution of LP2 and an optimal integer solution of LP2. If LP2

has an optimal solution that is integral, we know that OP2 = OPI2. Also, since the optimal

objective value cannot be larger after imposing the integrality constraint, we have OP1 � OPI1.

We next show that OP1  OP2 and OPI2  OPI1 to establish that OP1 = OPI1. Note that

this immediately implies that LP1 has an optimal solution that is integral.

OP1  OP2: Consider a feasible solution {xm(S)} of LP1. We will show that it is possible to

construct a feasible solution of LP2 with the same objective value.

In particular, let xm
i

=
P

S|i2S xm(S), and ym
ij

=
P

S|i,j2S xm(S) for all m 2 M, i 2 N ,

and (i, j) 2 E. Since feasible solutions of LP1 satisfy
P

m

P
S|i2S xm(S)  1, we have

P
m

xm
i

=
P

m

P
S|i2S xm(S)  1.Additionally, since xm(S) � 0, we obtain ym

ij

=
P

S|i,j2S xm(S) 
P

S|i2S xm(S) 
xm
i

. Thus, it follows that the constructed solution also satisfies ym
ij

 xm
i

, xm
j

. Finally, for any ij 2 E

we have

xm
i

+ xm
j

� ym
ij

=
X

S|i2S

xm(S) +
X

S|j2S

xm(S)�
X

S|i,j2S

xm(S)

=
X

S|i2S

xm(S) +
X

S|j2S,i/2S

xm(S) 
X

S|i2S

xm(S) +
X

S|i/2S

xm(S)  1,

where the last inequality follows since
P

S

xm(S)  1.

Summarizing, we established that the constructed xm
i

, ym
ij

is such that it satisfies: (i)
P

m

xm
i


1, (ii) ym

ij

 xm
i

, xm
j

, (iii) xm
i

+ xm
j

� ym
ij

 1. Additionally, since xm(S) � 0, we have xm
i

, ym
ij

� 0.

Finally, since
P

m

xm
i

 1 and xm
i

� 0, we have xm
i

 1, and since ym
ij

 xm
i

we have ym
ij

 1. These

together imply that {xm
i

, ym
ij

} is a feasible solution of LP2.

Observe that
P

m,S

xm(S)vm(S), the objective value of LP1 corresponding to {xm(S)}, satisfies

X

m,S

xm(S)vm(S) =
X

m,S

xm(S)
�X

i2S
wm

i

+
X

i,j2S|ij2E

wm

ij

�

=
X

m

�X

i

wm

i

X

S|i2S

xm(S) +
X

ij2E
wm

ij

X

S|i,j2S

xm(S)
�
=

X

m

0

@
X

i

wm

i

xm
i

+
X

ij2E
wm

ij

ym
ij

1

A .

That is it is equal to the objective value of LP2 corresponding to {xm
i

, ym
ij

}. Hence, given a feasible

solution of LP1, there exists a corresponding feasible solution of LP2, with the same objective

value. Since this is true for the optimal solution of LP1 as well, we conclude OP1  OP2.
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OPI2  OPI1 : Consider a feasible integer solution {xm
i

, ym
ij

} of LP2. Let Sm = {i|xm
i

= 1}.
Since

P
m

xm
i

 1, it follows that if xm
i

= 1 then xk
i

= 0 for k 6= m. Hence, Sm \Sk = ; for k 6= m.

Define {xm(S)} such that for all m, xm(Sm) = 1, and xm(S) = 0 for S 6= Sm. Observe that

such a solution satisfies
P

S

xm(S)  1, and
P

m

P
S|i2S xm(S)  1 (since Sm \ Sk = ;). Thus, it

follows that {xm(S)} is a feasible integer solution to LP1.

Note that feasibility of {xm
i

, ym
ij

} in LP2 implies that if xm
i

, xm
j

2 {0, 1}, then ym
ij

2 {0, 1}. More

precisely for ij 2 E, if xm
i

= xm
j

= 1 then ym
ij

= 1 (since xm
i

+ xm
j

� 1  ym
ij

). Similarly, if xm
i

= 0

then ym
ij

= 0 (since ym
ij

 xm
i

). This implies that ym
ij

= 1 if and only if xm
i

= xm
j

= 1.

Observe that the construction of {xm(S)} implies that xm
i

=
P

S|i2S xm(S). This is because,

if xm
i

= 0, then xm(S) = 0 for all S containing i, and if xm(i), there exists exactly one S (de-

noted by Sm) for which i 2 Sm and xm(Sm) = 1. Similarly, our construction implies that

ym
ij

=
P

S|ij2S xm(S). To see this, note that xm
i

= xm
j

= 1 if and only if
P

S|i,j2S xm(S) = 1

(as before if xm
i

= 0, then xm(S) = 0 for all i 2 S, and if xm
i

= xm
j

= 1 then there exists exactly

one S, denoted by Sm such that i, j 2 Sm and xm(Sm) = 1). On the other hand, it was estab-

lished before that for ij 2 E, we have ym
ij

= 1 if and only if xm
i

= xm
j

= 1. These imply that

ym
ij

=
P

S|ij2S xm(S).

Using xm
i

=
P

S|i2S xm(S) and ym
ij

=
P

S|ij2S xm(S), the objective value corresponding to

{xm
i

, ym
ij

} in LP2 (given by
P

m

⇣P
i

wm

i

xm
i

+
P

ij2E wm

ij

ym
ij

⌘
) and that corresponding to {xm(S)}

in LP1 (given by
P

m,S

xm(S)vm(S)) can be shown to be equal:

X

m

0

@
X

i

wm

i

xm
i

+
X

ij2E
wm

ij

ym
ij

1

A =
X

m

0

@
X

i

wm

i

X

S|i2S

xm(S) +
X

ij2E
wm

ij

X

S|i,j2S

xm(S)

1

A

=
X

m

0

@
X

S

xm(S)
X

i2S
wm

i

+
X

S

xm
S

X

ij2E
wm

ij

S)

1

A =
X

m,S

xm(S)vm(S).

Thus, we conclude that given a feasible integer solution of LP2, there exists a corresponding feasible

integer solution of LP1, with the same objective value. Since this is true for the optimal integer

solution of LP2 as well, we conclude OPI2  OPI1.

Summarizing, we have OP1  OP2, and OPI2  OPI1. Additionally, optimal value is weakly

higher without the integrality requirement (i.e., OPI2  OP2, OPI1  OP1) and if LP2 has an

optimal integer solution, then OP2 = OPI2. These imply that OP1  OP2 = OPI2  OPI1 
OP1, and hence OPI1 = OP1. That is, when LP2 has an optimal solution that is integral, then

so does LP1.

Proof of Theorem 3.1(iii). Theorem 3.1(i) and (ii) immediately imply that for sign-consistent tree

valuations LP1 has integral optimal solutions. On the other hand, LP1 has such solutions if and only

if a Walrasian equilibrium exists (Bikhchandani and Mamer, 1997). Hence, the claim follows.

Proof of Theorem 3.2. (i) Consider the optimal solution {⇡m

i

, p
i

, pm
ij

, qm,i

ij

} of DLP2 and integral

optimal solution {xm
i

, ym
ij

} of LP2. Let Sm = {i|xm
i

= 1} be defined as in the theorem statement.
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The complementary slackness (CS) conditions in LP2/DLP2 imply that:

C1: ⇡m

i

= wm

i

� p
i

+
P

j|j 6=i

qm,i

ij

�
P

j|j 6=i

pm
ij

for i 2 Sm,

C2: qm,i

ij

+ qm,j

ij

� pm
ij

= wm

ij

for i, j 2 Sm,

C3: qm,i

ij

= 0 if i 2 Sm, j /2 Sm,

C4: pm
ij

= 0 if i, j /2 Sm,

C5: ⇡m

i

= 0 if i /2 Sm.

C6: p
i

= 0 if i /2 [
m

Sm.

Observe that the feasibility of the integral optimal solution {xm
i

, ym
ij

} in LP2 implies that ym
ij

= 1

if and only if xm
i

= xm
j

= 1. This observation and the fact that Sm = {i|xm
i

= 1} can be used to

see the relation between the CS conditions and C1-C6. In particular, C1 corresponds to the CS

condition associated with xm
i

= 1 at the optimal solution of LP2, and C2 captures the CS condition

associated with ym
ij

= 1. C3 is relevant when the inequality xm
i

� ym
ij

is strict at the optimal solution

of LP2, whereas C4 and C5 respectively capture strict inequalities xm
i

+ xm
j

� 1  ym
ij

and xm
i

 1.

Finally, C6 corresponds to the case, where xm
i

= 0 for all i, and hence the inequality
P

m

xm
i

 1

is strict. These inequalities imply that

X

i2Sm

⇡m

i

=
X

i2Sm

0

@wm

i

� p
i

+
X

j|j 6=i

qm,i

ij

�
X

j|j 6=i

pm
ij

1

A

=
X

i2Sm

(wm

i

� p
i

) +
X

i,j2Sm|i 6=j

⇣
qm,i

ij

+ qm,j

ij

� 2pm
ij

⌘
+

X

i2Sm
,j /2Sm

⇣
qm,i

ij

� pm
ij

⌘

=
X

i2Sm

(wm

i

� p
i

) +
X

i,j2Sm|i 6=j

wm

ij

�
X

i,j2Sm|i 6=j

pm
ij

�
X

i2Sm
,j /2Sm

pm
ij

.

(11)

Here, the first equality follows from C1, the second one is obtained by rearranging terms, and the

third one follows from C2, and C3. Rearranging terms (and observing that vm(Sm) =
P

i2Sm wm

i

+
P

i,j2Sm wm

ij

), this implies that

X

i2Sm

⇡m

i

+
X

i,j2Sm|i 6=j

pm
ij

+
X

i2Sm
,j /2Sm

pm
ij

= vm(Sm)�
X

i2Sm

p
i

. (12)

Consider an arbitrary bundle S of items. Using dual feasibility of the given optimal solution
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we can obtain:

X

i2S
⇡m

i

�
X

i2S

0

@wm

i

� p
i

+
X

j|j 6=i

qm,i

ij

�
X

j|j 6=i

pm
ij

1

A

=
X

i2S
(wm

i

� p
i

) +
X

i,j2S|i 6=j

⇣
qm,i

ij

+ qm,j

ij

� 2pm
ij

⌘
+

X

i2S,j /2S

⇣
qm,i

ij

� pm
ij

⌘

�
X

i2S
(wm

i

� p
i

) +
X

i,j2S|i 6=j

wm

ij

�
X

i,j2S|i 6=j

pm
ij

�
X

i2S,j /2S

pm
ij

.

(13)

Here, the equality is obtained rearranging the terms, whereas, both inequalities follow from feasi-

bility in DLP2. Rearranging terms, it follows from (13) that

X

i2S
⇡m

i

+
X

i,j2S|i 6=j

pm
ij

+
X

i2S,j /2S

pm
ij

� vm(S)�
X

i2S
p
i

. (14)

Since ⇡m

i

= 0 if i /2 Sm, pm
ij

= 0 if i, j /2 Sm (C4 and C5), and the dual variables of DLP2 are

nonnegative we also have

X

i2Sm

⇡m

i

+
X

i,j2Sm

pm
ij

+
X

i2Sm
,j /2Sm

pm
ij

�
X

i2S
⇡m

i

+
X

i,j2S
pm
ij

+
X

i2S,j /2S

pm
ij

.

Using this together with (12) and (14), we conclude that vm(Sm)�
P

i2Sm p
i

� vm(S)�
P

i2S p
i

.

This implies that the third condition of the Walrasian equilibrium definition (Definition 2.2)

holds for the given {p
i

} and {Sm}. Condition (i) and (ii) immediately hold by construction. The

last condition follows from C6. Therefore, {p
i

} and {Sm} constitute a Walrasian equilibrium.

(ii) Note that LP2 and DLP2 have polynomially many variables and constraints in the number

of bidders and items. Thus, when the problem data (i.e., weights) are integral, they can be solved in

polynomial-time in the number of bidders and items using an algorithm such as ellipsoid (Bertsimas

and Tsitsiklis, 1997). The result follows since as established in part (i) the optimal solutions of

these problems lead to a Walrasian equilibrium.

C Proofs of Section 4

Proof of Lemma 4.2. We first establish (i). Then, we focus on the case ✓⇤ = ✓1 and prove (ii)-(iv).

Finally, we establish that the proof of (ii)-(iv) carries over to the case where ✓⇤ = ✓2 with minor

modifications.

(i) We prove the claim by contradiction. First assume that ✓⇤ = 0. Observe that ✓1 is defined

as the minimum ✓ � 0 such that a bidder demands a bundle at price vector p+ ✓p̄, which she does

not demand at price vector p. This immediately implies that ✓1 > 0, and hence ✓2 = ✓⇤ = 0. On

the other hand, ✓2 = 0 implies that an arbitrarily small update of the dual solution (⇡, p, p
E

, q
E

)

in the (⇡̄, p̄, p̄
E

, q̄
E

) direction is infeasible in DLP2. This implies that (⇡̄, p̄, p̄
E

, q̄
E

) cannot be
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an improvement direction (or an optimal solution of RD). Thus, we obtain a contradiction, and

conclude that ✓⇤ 6= 0.

Next assume that ✓⇤ = 1. Since ✓⇤ = min{✓1, ✓2}, it follows that this case requires having

✓1 = ✓2 = 1. Definition of ✓2 suggests that if ✓2 = 1, then p̄ � 0. If p̄ = 0, it can be checked

from RD that the multiplication of the optimal solution (p̄, ⇡̄, p̄
E

, q̄
E

) with a constant larger than

one leads to another feasible solution for RD. Moreover, since the objective value of this problem

is nonzero, this implies that either this solution has strictly lower objective value, or the optimal

objective value of RD is �1. The former case contradicts with the optimality of (p̄, ⇡̄, p̄
E

, q̄
E

) in

RD. The latter implies that RP is infeasible. However, this contradicts with the assumption that

the given dual solution (⇡, p, p
E

, q
E

) satisfies Property 4.1, as this property implies that a feasible

solution of RP (with appropriate choice of �, h) always exists (Lemma 4.1). Thus, we conclude that

p̄ 6= 0, and it should be the case that p̄ � 0, and p̄
i

> 0 for some i.

Since ✓1 = 1 it follows that for any ✓ > 0, at prices p + ✓p̄, every bidder m demands some

bundle S 2 Dm that is also demanded at price vector p. This implies that as ✓ increases the

maximum surplus of bidder m does not change. This can be seen by noting that the maximum

surplus of every bidder is weakly decreasing in ✓ since p̄ � 0. If the surplus is initially equal to zero,

this implies that it cannot change as ✓ increases. If instead it is initially positive, and the maximum

surplus strictly decreases with ✓, eventually the empty bundle (which has surplus equal to zero)

enters the demand set. Since this case contradicts with ✓1 = 1, it follows that the maximum

surplus of any bidder m does not change with ✓.

Consider an optimal solution (�, h, x, y) of RP. The feasibility of this solution in RP requires

satisfying Cm (i.e., a subset of the CS conditions in LP2/DLP2 (3)) for all m. On the other

hand, it can be checked that Cm also coincides with the CS conditions in a formulation of LP �
Dm/DLP�Dm at price vector p. Thus, we conclude that the component (⇡m, pm

E

, qm
E

) of the original

dual solution (of DLP2), together with the restriction of the optimal solution of RP to {xm
i

, ym
ij

}
i,j

satisfy the complementary slackness conditions in a formulation of LP �Dm/DLP �Dm at price

vector p. Moreover, since these solutions are derived from feasible solutions of DLP2 and RP, it

can be checked that they are also feasible in DLP �Dm/LP �Dm. These observations imply that

(⇡m, pm
E

, qm
E

) is an optimal solution of DLP � Dm at price vector p. Since the optimal objective

of LP � Dm is the maximum surplus of agent m at price vector p, strong duality implies that
P

i

⇡m

i

+
P

i,j

pm
i,j

is the maximum surplus of this agent. This suggests that the objective value of

DLP2 associated with dual solution (p,⇡, p
E

, q
E

) is the sum of the prices p and bidder surpluses

at these prices.

Since (p̄, ⇡̄, p̄
E

, q̄
E

) is an optimal solution of RD, for su�ciently small ✏ > 0, (p,⇡, p
E

, q
E

) +

✏(p̄, ⇡̄, p̄
E

, q̄
E

) is a feasible solution of DLP2 with strictly lower objective value than the original

dual feasible solution (p,⇡, p
E

, q
E

). Consider the price vector p + ✏p̄. Let (⇡̃m, p̃m
E

, q̃m
E

) denote

an optimal solution of DLP � Dm at this price vector, and (⇡̃, p̃
E

, q̃
E

) be the collection of such

solutions for all m. Since DLP � Dm (for all m) and DLP2 share the same set of constraints,

it follows that (p + ✏p̄, ⇡̃, p̃
E

, q̃
E

) is a feasible solution of DLP2. Moreover, since (⇡̃m, p̃m
E

, q̃m
E

)
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is optimal in DLP � Dm for all m (and the objective of DLP2 is sum of prices and objectives

of DLP � Dm for all m), it follows that (p + ✏p̄, ⇡̃, p̃
E

, q̃
E

) has weakly lower objective value in

DLP2 than (p,⇡, p
E

, q
E

) + ✏(p̄, ⇡̄, p̄
E

, q̄
E

). On the other hand, since the surplus of bidders at price

vector p + ✓p̄ does not change with ✓ (as established above), it follows that the objective value of

DLP � Dm is the same for price vectors p and p + ✏p̄. This implies that the objective value of

(p+✏p̄, ⇡̃, p̃
E

, q̃
E

) is equal to that of the potentially infeasible solution (p+✏p̄,⇡, p
E

, q
E

). Since, p̄ � 0

and p
i

> 0 for some i, this implies that (p + ✏p̄,⇡, p
E

, q
E

) has strictly higher objective value than

(p,⇡, p
E

, q
E

) . Since the objective value of the former solution is equal to that of (p+ ✏p̄, ⇡̃, p̃
E

, q̃
E

),

which has objective value weakly lower than that of (p,⇡, p
E

, q
E

) + ✏(p̄, ⇡̄, p̄
E

, q̄
E

), it follows that

(p,⇡, p
E

, q
E

)+✏(p̄, ⇡̄, p̄
E

, q̄
E

) has strictly higher objective value than (p,⇡, p
E

, q
E

). This contradicts

with the fact that (p̄, ⇡̄, p̄
E

, q̄
E

) is an improvement direction, and the claim (i) follows.

We next assume that ✓⇤ = ✓1 and prove (ii)-(iv). Subsequently, we also extend this proof to the

case of ✓⇤ = ✓2.

(ii) Consider the tuple (p̄, ⇡̂, p̂
E

, q̂
E

) specified in the lemma. Since (⇡̃m, p̃m
E

, q̃m
E

) is constructed

fromDLP�Dm (at price vector p+✓⇤p̄) and this problem shares identical constraints with DLP2, it

immediately follows that (p+✓⇤p̄, ⇡̃, p̃
E

, q̃
E

) = (p,⇡, p
E

, q
E

)+✓⇤(p̄, ⇡̂, p̂
E

, q̂
E

) satisfies all constraints

of DLP2, but p + ✓⇤p̄ � 0. It can be seen that the latter constraint also holds since by definition

✓⇤  ✓2. Thus, (p,⇡, pE , qE)+✓⇤(p̄, ⇡̂, p̂
E

, q̂
E

) is feasible in DLP2. Since the set of feasible solutions

is convex, this also implies that for any ✏ 2 [0, ✓⇤], (p,⇡, p
E

, q
E

) + ✏(p̄, ⇡̂, p̂
E

, q̂
E

) is feasible in this

optimization problem. Note that by definition of p̄ we also have �1  p̄  1. On the other hand,

the feasible set of RD is equivalent to the set of feasible update directions (associated with the

original solution of DLP2) for which �1  p̄  1. These observations imply that (p̄, ⇡̂, p̂
E

, q̂
E

) is a

feasible solution of RD.

Since (p,⇡, p
E

, q
E

) is an acceptable solution, it follows that there exists a feasible solution

to LP2 that satisfies the constraints Cm, Fm associated with this solution. On the other hand, as

explained in the first part of the proof, Cm also coincides with the CS conditions in a formulation of

LP�Dm/DLP�Dm at price vector p. Thus, it follows that (⇡m, pm
E

, qm
E

) is a solution ofDLP�Dm

at price vector p. Since the optimal objective of this problem (and the associated primal problem

LP �Dm) corresponds to the surplus bidder m has at price p, we conclude that
P

i

⇡m

i

+
P

ij

pm
ij

gives bidder m’s surplus at price p. Similarly, the construction of (⇡̃, p̃
E

, q̃
E

) implies that at price

vector p+✓⇤p̄, the quantity
P

i

⇡̃m

i

+
P

ij

p̃m
ij

captures the surplus of bidderm. Thus, the definition of

(⇡̂, p̂
E

, q̂
E

) implies that ✓⇤(
P

i

⇡̄m

i

+
P

ij

p̄m
ij

) corresponds to the total change in bidderm’s surplus as

prices are updated from p to p+✓⇤p̄. Moreover, since (p,⇡, p
E

, q
E

)+ ✏(p̄, ⇡̂, p̂
E

, q̂
E

) is feasible for all

✏ 2 [0, ✓⇤], and for each bidder one of the bundles demanded at price p remain demanded until p+✓⇤p̄

(by definition of ✓⇤), the objective value of DLP2 corresponding to (p,⇡, p
E

, q
E

) + ✏(p̄, ⇡̂, p̂
E

, q̂
E

)

captures the sum of the prices and bidders’ surplus at price p+ ✏p̂.

Consider feasible solutions of DLP2 at price vector p + ✏p̄ for su�ciently small ✏ > 0. The

structure of DLP2 and DLP � Dm suggest that the feasible solution with the lowest objective

value can be obtained by solving DLP �Dm at price vector p + ✏p̄ for all m, and combining the
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corresponding optimal solutions to construct a solution to DLP2. Thus, the corresponding objective

value of this solution is equal to the sum of the prices p + ✏p̄, and surpluses of all bidders m at

these prices. Hence, the objective value of (p,⇡, p
E

, q
E

) + ✏(p̄, ⇡̄, p̄
E

, q̄
E

) is lower bounded by this

quantity as well. On the other hand, this lower bound is achieved by updating the original dual

solution in the (p̄, ⇡̂, p̂
E

, q̂
E

) direction. Since (p̄, ⇡̄, p̄
E

, q̄
E

) is an optimal solution of RD (hence the

dual update direction that leads to the best improvement in the objective of DLP2), it follows that

(p̄, ⇡̂, p̂
E

, q̂
E

) (which leads to a weakly better improvement) is also optimal in RD.

(iii) As established in part (ii), (p,⇡, p
E

, q
E

) + ✏(p̄, ⇡̂, p̂
E

, q̂
E

) is feasible in DLP2 for any ✏ 2
[0, ✓⇤]. Assume that a stepsize ✓̄ > ✓⇤ = ✓1 is chosen. To prove the claim it su�ces to show that

(p,⇡, p
E

, q
E

) + ✓̄(p̄, ⇡̂, p̂
E

, q̂
E

) is not feasible in DLP2.

Observe that the bundles that are demanded can be found through integral optimal solutions

of LP �Dm. Complementary slackness between DLP �Dm and LP �Dm suggests that if a new

set S enters the demand set, it should be the case that in optimal solutions of DLP �Dm (at price

vector p + ✓p̄), a constraint that was not active for ✓ < ✓⇤ starts to become active after ✓ = ✓⇤.

On the other hand, this implies that for the given update direction and ✓ > ✓⇤, the aforementioned

constraint is violated. Since DLP �Dm and DLP2 share the same constraints, we conclude that

(p,⇡, p
E

, q
E

) + ✓(p̄, ⇡̂, p̂
E

, q̂
E

) is not feasible in DLP2 for ✓ > ✓⇤. Thus, ✓⇤ is the largest stepsize

that preserves feasibility, and the claim follows.

(iv) By construction, for all m 2 M, (⇡m, pm
E

, qm
E

)+✓⇤(⇡̂m, p̂m
E

, q̂m
E

) = (⇡̃m, p̃m
E

, q̃m
E

) is an optimal

solution of DLP �Dm associated with the price vector p+ ✓⇤p̂. Complementary slackness implies

that LP �Dm has a corresponding optimal solution for which the conditions Cm, Fm (formulated

at p + ✓⇤p̂) hold (where Cm corresponds to the CS conditions in LP �Dm/DLP �Dm, and Fm

corresponds to the feasibility constraints in LP �Dm). Since this is true for all m, it follows that

the collection of such solutions of LP �Dm for all m 2 M satisfies Property 4.1. Hence, the claim

follows.

Next consider the case ✓⇤ = ✓2, and use the same construction for (⇡̂, p̂
E

, q̂
E

). Observe that

the proof of (ii) and (iv) given above did not make use of the exact value of ✓⇤, hence imply

the claim in this case as well. In order to complete the proof it su�ces to prove (iii). Since by

construction (p,⇡, p
E

, q
E

) + ✓⇤(p̄, ⇡̂, p̂
E

, q̂
E

) is feasible in DLP2, it su�ces to show that for ✓ > ✓⇤,

(p,⇡, p
E

, q
E

)+ ✓(p̄, ⇡̂, p̂
E

, q̂
E

) is infeasible in this optimization problem. However, this immediately

follows since ✓⇤ = ✓2, and the definition of ✓2 suggests that for ✓ > ✓⇤ we have (p + ✓p̄)
i

< 0 for

some i. Thus, we conclude that ✓⇤ = ✓2 is equal to the stepsize the primal-dual algorithm associates

with the given improvement direction, hence (ii) also follows in this case.

Proof of Lemma 4.4. (i) First assume that S1 = S2 = S. Observe that in this case, the change in

the surplus of the bidder can be simply expressed as ⇡2 � ⇡1 = �
P

i2S ✓p̄
i

. On the other hand,

substituting S1 = S2 = S it follows that the right hand side of the expression in the claim is also

given by
P

i2S p
i

� (
P

i2S(pi+ ✓p̄
i

))�b
P

i2S(pi+ ✓p̄
i

)�
P

i2S(pi+ ✓p̄
i

)c = �
P

i2S ✓p̄
i

. Hence, the

claim follows.

Next assume that S1 6= S2. In this case, bundle S1 is demanded before the price update, S2 is
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demanded afterwards, and these bundles are not jointly demanded. This suggests that vm(S1) �P
i2S1

p
i

> vm(S2) �
P

i2S2
p
i

, and vm(S2) �
P

i2S2
(p

i

+ ✓p̄
i

) > vm(S1) �
P

i2S1
(p

i

+ ✓p̄
i

). Note

that since |p̄
i

|  1 and ✓  1/N , these inequalities imply that

1 >

0

@vm(S2)�
X

i2S2

(p
i

+ ✓p̄
i

)

1

A�

0

@vm(S1)�
X

i2S1

(p
i

+ ✓p̄
i

)

1

A > 0. (15)

Observe that for any real number a 2 (0, 1), we have a = a�bac. Using this identity, and canceling

out integral terms, the quantity in the middle in (15) (or the di↵erence between the surpluses of

bundles S1, S2 at price vector p+ ✓p̄), can equivalently be expressed as

0

@vm(S2)�
X

i2S2

(p
i

+ ✓p̄
i

)

1

A�

0

@vm(S1)�
X

i2S1

(p
i

+ ✓p̄
i

)

1

A

=
X

i2S1

(p
i

+ ✓p̄
i

)�
X

i2S2

(p
i

+ ✓p̄
i

)� b
X

i2S1

(p
i

+ ✓p̄
i

)�
X

i2S2

(p
i

+ ✓p̄
i

)c.
(16)

On the other hand, ⇡2 � ⇡1 can be expressed as the sum of the di↵erence between the surpluses of

bundles S1, S2 at price vector p+✓p̄, and the change in the surplus of bundle S1 between prices p and

p+ ✓p̄. Since the first term is as given in (16), and the second one can be expressed as �✓
P

i2S1
p̄
i

,

it follows that ⇡2 � ⇡1 =
P

i2S1
p
i

�
P

i2S2
(p

i

+ ✓p̄
i

)� b
P

i2S1
(p

i

+ ✓p̄
i

)�
P

i2S2
(p

i

+ ✓p̄
i

)c. Hence,

the claim follows.

(ii) We start by showing that two of the termination conditions of the subroutine never hold:

(a) in Step S1c the condition ✓2 = 1 and S \ I = ; for all m, S 2 D̂m, and (b) in Step S2

the condition ✓  0. We then show that the remaining termination conditions ensure that if the

subroutine terminates, it does so with ✓⇤. Finally, we complete the proof by establishing that finite

termination occurs.

Assume by contradiction that the aforementioned condition in Step S1c holds, i.e., for some

✓ � 0 the conditions in S1a and S1b do not hold, ✓2 = 1 and, we have S\I = ; for all m, S 2 D̂m.

From the definition of ✓2 it follows that p̄ � 0 (as otherwise ✓2 < 1). Together with S \ I = ; this

implies that if ✓ is further increased, bidders’ demand sets do not change. Moreover, since bidders’

surplus for any bundle is linear in the prices and the condition of S1b does not hold (i.e., no new

bundle is demanded) at ✓, for any ✏ such that ✓ � ✏ > 0, bidders demand set is a superset of D̂m.

Together these facts imply that no new bundle is demanded for any ✏ > 0 at price vector p + ✏p̄.

Since ✓2 = 1, this implies that ✓⇤ = 1, contradicting Lemma 4.2 (i) (note that in the first part

of this lemma Property 4.1 is assumed only to guarantee that RP is feasible, which trivially holds

here as an optimal solution of RP is given). Thus, we conclude that the aforementioned condition

in S1c cannot hold.

We next establish that the termination condition ✓  0 of Step S2 never holds. Consider the

first iteration t⇤ at which the condition of S1a holds for some bidder m, and S2 is reached. Let ✓(t)

denote the value of ✓ at iteration t, and D̂m denote the set of bundles demanded by bidder m at
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price vector p+✓(t⇤)p̄. At Step S2, in determining ✓̂ two sets are constructed: S1, S2. S1 2 Dm is a

bundle that was demanded at price vector p, and whose surplus vm(S)�
P

i2S(pi + ✓p̄
i

) decreases

the slowest when the prices are updated in the p̄ direction. On the other hand, S2 is a bundle that

is demanded at D̂m, and whose surplus increases the slowest when the same price update direction

is used. Note that these definitions guarantee that for ✓ 2 [0, ✓(t⇤)], at prices p + ✓p̄, the surplus

of S1 (S2) is weakly larger than the surplus of any bundle in Dm (D̂m). Since S1a does not hold

prior to t⇤ this implies that S1 is demanded at price vector p+ ✓(t⇤ � 1)p̄

Observe that since at t⇤ S1a holds, for optimal solutions of RD |p̄
i

|  1, and prior to t⇤ ✓ is

updated with a stepsize bounded by 1/N (as determined by Step S1 of the subroutine), it follows

that S1 and S2 satisfy the assumptions of part (i) for prices p+ ✓(t⇤� 1) and p+ ✓(t⇤) respectively.

This implies that di↵erence of the maximum surplus before and after the price updates is given by

�
vm(S2)�

X

i2S2

(p
i

+ ✓(t⇤)p̄
i

)
�
�

�
vm(S1)�

X

i2S1

(p
i

+ ✓(t⇤ � 1)p̄
i

)
�

=
� X

i2S1

(p
i

+ ✓(t⇤ � 1)p̄
i

)�
X

i2S2

(p
i

+ ✓(t⇤)p̄
i

)
�
�

⌅ X

i2S1

(p
i

+ ✓(t⇤)p̄
i

)�
X

i2S2

(p
i

+ ✓(t⇤)p̄
i

)
⇧
.

Rearranging terms, this implies that

�
vm(S2)�

X

i2S2

(p
i

+ ✓(t⇤)p̄
i

)
�
�
�
vm(S1)�

X

i2S1

(p
i

+ ✓(t⇤)p̄
i

)
�

=
� X

i2S1

(p
i

+ ✓(t⇤)p̄
i

)�
X

i2S2

(p
i

+ ✓(t⇤)p̄
i

)
�
�
⌅ X

i2S1

(p
i

+ ✓(t⇤)p̄
i

)�
X

i2S2

(p
i

+ ✓(t⇤)p̄
i

)
⇧
.

On the other hand, by changing prices in the �p̄ direction (or stepping back) the di↵erence

between the surpluses of S1 and S2 decreases at a rate of � = (
P

i2S1
p̄
i

�
P

i2S2
p̄
i

). Thus, at

the price vector p+ (✓(t⇤)� ✓̂)p̄ (where ✓̂ is as specified in the subroutine), bidder m is indi↵erent

between bundles S1 2 Dm and S2 2 D̂m. It can be seen that the same argument also holds for

subsequent time instants where the condition of Step S1a holds and Step S2 is reached, i.e., price

updates make bidder m indi↵erent between S1 and S2. This implies that the updated value of ✓ at

Step S2 is between the value at time instant t⇤ (where S2 is demanded but S1 is not), and t⇤ � 1

(where S1 is demanded). Hence, it is larger than the value of ✓ at t⇤ � 1. Since this is true for all

stages and after the first price update of the subroutine ✓ > 0, it follows that the condition ✓  0

of Step S2 can never hold.

These observations imply that for the subroutine to terminate the condition of S1b or the

condition ✓ = ✓2 in S1c needs to hold. In both cases (a) S1a does not hold, and hence at price

vector p + ✓p̄ all bidders demand a bundle that they demanded at the original price vector p, (b)

p+ ✓p̄ � 0 as ✓  ✓2. Additionally, the condition S1b suggests that at price vector p+ ✓p̄ a bidder

demands a bundle that was not demanded at price vector p. Thus, Lemma 4.2 implies that when

S1b holds ✓ is equal to the primal-dual stepsize ✓⇤ associated with the given update direction. On

the other hand, if S1c holds, then ✓ = ✓2, and hence the price of an item decreases to zero, but no

bidder demands a new bundle (since S1b does not hold). It follows from Lemma 4.2 that in this
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case ✓ = ✓⇤ as well. Thus, to complete the proof, it su�ces to show that the subroutine terminates

in finite time.

We prove the claim by contradiction. Assume that the subroutine does not terminate in finite

time. Then, the conditions in S1b and S1c cannot hold. If S1a also does not hold, then a bundle

S 2 Dm is demanded after every price update, and prices continue to be updated in the p̄ direction

indefinitely with a stepsize of 1/N . On the other hand, Lemma 4.2 implies that ✓⇤ < 1, i.e., after

finitely many such steps either a new bundle enters the demand set of a bidder, or the price of an

item decreases to zero. This implies that S1b or S1c eventually holds, and we obtain a contradiction.

Hence, it follows that the condition of S1a eventually holds.

Let ✓̄ denote the value of the ✓ parameter at the first iteration S1a holds, and S1 2 Dm and

S2 2 D̂m be defined as in Step S2 of the subroutine. Recall that for ✓ 2 [0, ✓̄] at prices p + ✓p̄,

the surplus of S1 is weakly larger than the surplus of any bundle in Dm. Thus, if a bundle in

Dm is demanded, S1 should be demanded as well. Note that at price vector p + (✓̄ � ✓̂)p̄ if for

all m a bundle S 2 Dm is demanded, then in the next iteration the condition of Step S1b holds

(since at least one bidder is indi↵erent between S1 2 Dm and S2, hence demands a new bundle

S2 /2 Dm) and Step S3 is reached. In this case, we reach a contradiction. If this is not the case,

in the next iteration for at least one bidder, none of the bundles in Dm is demanded. Hence, once

more Step S2 is reached, and additional correction is necessary for the prices. Note that after

each price correction a bundle that has higher surplus than all elements of Dm (S2 in our original

construction) is guaranteed to have weakly lower surplus than some elements of Dm. Since, the

prices continue to be updated in �p̄ direction as long as Step S2 is reached, and there are finitely

many bundles, this implies that after finitely many corrections, every bidder m demands a bundle

that also belongs to the original demand set Dm. Note that this implies that after finitely many

corrections step S2 (and hence S1a) cannot be reached. However, as explained earlier, in this case

S1b is reached, and we obtain a contradiction. Thus, we conclude that this subroutine terminates

after finitely many iterations.

Proof of Theorem 4.1. Given prices p, consider an optimal solution (⇡m, pm
E

, qm
E

) of DLP � Dm.

Since DLP2 and DLP �Dm share identical constraints, it follows that (p,⇡, p
E

, q
E

) constitutes a

feasible solution of DLP2 (where ⇡ = {⇡m}, p
E

= {pm
E

}, q
E

= {qm
E

}). Moreover, this dual solutions

satisfies Property 4.1. This can be seen noting that the optimal solution of DLP � Dm satisfies

complementary slackness conditions with an optimal solution of LP � Dm (which correspond to

Cm in RP), and feasibility of this optimal solution in LP �Dm also guarantees that Fm constraints

are satisfied. Thus the collection of such optimal solutions for all m satisfies the conditions given

in Property 4.1.

At each step of the algorithm, with a given price vector p we associate a dual feasible solution

of DLP2, obtained by the solution of DLP � Dm as described above. Observe that the compact

demand reports at Step S1 reveal the active constraints of DLP2 corresponding to this solution.

Thus, Lemma 4.1 implies that RP/RD can be used to check the CS condition associated with this

solution, and obtain an improvement direction, if they have nonzero objective value.
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Assume that the algorithm terminates, i.e., Step S3 is reached. This implies that in Step

S1, RP/RD has objective value zero. Hence, Lemma 4.1 implies that the dual solution of DLP2

described above is optimal, and the optimal solution of RP gives an optimal solution of LP2.

Moreover, for sign-consistent tree valuations, RP and LP2 have integral optimal solutions as well

(Theorem 3.1 and Lemma 4.1). Theorem 3.2 implies that the prices at the optimal solution of

DLP2, and the allocation suggested by the integral optimal solution of LP2 (or RP) constitute

a Walrasian equilibrium. Thus, it follows that if the algorithm terminates, then a Walrasian

equilibrium is reached. To complete the proof it su�ces to show that the algorithm terminates in

finitely many iterations.

Assume that for a price vector p, the associated dual solution of DLP2 is such that RP/RD

has nonzero objective value, and hence Step S1 is followed by Step S2. In this case, Lemma 4.1

implies that (p̄, ⇡̄, p̄
E

, q̄
E

) of Step S1 is an improvement direction corresponding to this dual solution.

Lemma 4.4, on the other hand, suggests that ✓⇤ identified in Step S2 corresponds to the primal-dual

stepsize given in Lemma 4.2. Observe that Lemma 4.2 suggests that ✓⇤ and a dual optimal solution

of RD constitute a valid primal-dual stepsize and an improvement direction. Moreover, updating

the dual solution according to this stepsize and improvement direction corresponds to setting prices

to p+ ✓⇤p̄, and constructing (⇡m, pm
E

, qm
E

) according to an optimal solution of DLP �Dm. That is,

the dual updates suggested by Lemma 4.2 are identical to the dual feasible solution our algorithm

associates with the updated price vector p+ ✓⇤p̄. Since, these updates are identical to those in an

application of the primal-dual algorithm to LP2/DLP2, it follows that they converge to an optimal

solution of DLP2 in finite time (Proposition 4.1). In such a solution, RP/RD has objective value

zero. Thus, it follows that after finitely many iterations, Step S1 of Algorithm 2 leads to Step S3,

and the algorithm terminates. Hence, the claim follows.

D Proofs of Section 5

Proof of Theorem 5.1. (i) Let S denote the set of M � 1 bidder markets (potentially equal to ;)
that are not cleared by H

t

. We first show that the stepsize computation subroutine terminates in

finite time provided that bidders bid truthfully after H
t

. Then, we show that the price updates

obtained using the subroutine coincide with those in the primal-dual algorithm (Algorithm 1) for

some market E 2 S [ {E;}, and lead to finite convergence.

We start by showing that ✓ cannot decrease/increase unboundedly in the subroutine. It im-

mediately follows from Step S2 (i.e., the only step where ✓ can be decreased) of the subroutine

that ✓ � 0, and hence cannot decrease unboundedly. Assume by contradiction that ✓ increases

unboundedly. In this case, the subroutine needs to reach S1d (the step which leads to an increase

in ✓) infinitely often. If ✓2 < 1, or if ✓2 = 1, and S \ I = ; for all S 2 D̂m, S1c implies that

the subroutine eventually terminates, and S1d is not reached. Thus, due to our assumption, these

cannot hold, i.e., ✓2 = 1, and S \ I 6= ; for some S 2 D̂m. Together with the definition of ✓2 and

I these imply that p̄ � 0, and p̄
i

> 0 for some i 2 S. Hence, when ✓ increases the price of bundle
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S increases. On the other hand, such a bundle cannot stay demanded as ✓ increases unboundedly.

Thus, eventually S /2 D̂m, the termination condition in S1c holds, and the subroutine terminates.

Hence, we obtain a contradiction, and ✓ cannot increase unboundedly.

Thus, to prove that the subroutine terminates in finite time, it su�ces to show that ✓ cannot

increase after decreasing. Observe that for ✓ to decrease the condition in Step S1a of the subroutine

needs to hold, i.e., D̂m \Dm = ; for some m. On the other hand, if ✓ starts increasing following a

decrease, then S1a cannot hold, i.e., some bundle S 2 Dm enters the demand set D̂m as a result of

decreasing this parameter. Moreover, this implies that Dm \ D̂m 6= ;, and D̂m �Dm 6= ; after the

last step where ✓ is decreased (since as shown in Lemma 4.4 decreasing ✓ in Step S2 makes bidder

m indi↵erent between a bundle in Dm and one that belongs to D̂m before the price decrease).

However, S1b implies that the subroutine terminates in this case. Hence, we conclude that the

subroutine terminates in finite time (after any history) provided that bidders truthfully reveal their

demand.

We next show that in Algorithm 3 the price updates obtained from the subroutine lead to finite

convergence. Steps S1 and S2 of Algorithm 3 imply that the price updates are identical to those in

Algorithm 2 for a market E
m

⇤ identified in Step S1b. On the other hand, by construction the prices

that appear in Algorithm 2 (after each run of the subroutine) coincide with those in Algorithm 1

(see Theorem 4.1 and Section 4.3.3). Since the latter is a primal-dual algorithm, it follows that

from time instant t + 1 onwards the prices that are obtained coincide with an application of the

primal-dual algorithm to solution of LP2 associated with the market E that is closest to getting

cleared. In primal-dual algorithms the optimal objective of the restricted primal (weakly) decreases

at each update, and a di↵erent extreme point of the polytope (obtained by replacing the equality

constraints in the restricted primal with inequality constraints) is visited (see Proposition 4.1 and

Section 4.1). These facts suggest that provided that an optimal solution is not achieved, the optimal

objective value of the restricted primal decreases strictly after finitely many updates. This implies

that in our auction the objective value of the restricted primal associated with the market that is

closest to getting cleared decreases strictly after finitely many updates (since otherwise the updates

are made with respect to the same market, and decrease in finitely many iterations is guaranteed

for primal-dual algorithms). Additionally, since there are finitely many extreme points of the

aforementioned polytopes, there are finitely many di↵erent values the optimal objective values of

restricted primals can take. Hence, it follows that all markets in S clear after finitely many runs

of the subroutine. Since this subroutine terminates in finitely many steps (when bidders truthfully

reveal their demand), it follows that all such markets clear in finite time. In addition, the same

argument can be repeated for the market that consists of all bidders in M (following Step S3

in Algorithm 3), suggesting that all markets clear in finite time. The e�ciency of the associated

allocations follows from the fact that market clearance points/Walrasian equilibria (associated with

subsets of bidders) are e�cient (see Section 2.2).

(ii) Part (i) implies that when bidders bid truthfully the auction terminates. Observe that until

termination q captures the sum of the payments of any given bidder. On the other hand, Algorithm
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3 suggests that when the auction terminates, bidder m receives a rebate of q � zm. This implies

that zm is the total payment of bidder m at the end of the auction.

Algorithm 3 sets zm = 0 until market E
m

clears. Let t1 denote the time at which this market

clears. Step S1 implies that at t1, zm is set equal to
P

i

p
i

(t1), where pi(t) denotes the price of item i

at time t. Moreover, after E
m

clears, at each price update until termination, zm is updated following

Step S2, i.e., zm := zm �
P

k 6=m

�⇡k(t), where �⇡k(t) denotes �⇡k (see Step S2) at stage t of the

auction. Note that these updates cease after market E; clears (step S3). Denote this time instant

by t2. After the update at t2 (see Step S2) zm is given by zm =
P

i

p
i

(t1) �
P

t2�1
t=t1

P
k 6=m

�⇡k(t).

Finally, after Step S3 is complete, zm is updated to zm := zm �
P

i/2Sm p
i

. This implies that at

termination we have zm =
P

i

p
i

(t1)�
P

t2�1
t=t1

P
k 6=m

�⇡k(t)�
P

i/2Sm p
i

. Observe that since at time

t1 and t2, markets E
m

and E; clear respectively, it follows that
P

i

p
i

(t1) =
P

k 6=m

P
i2Sk

1
p
i

(t1)

and
P

i/2Sm p
i

(t2) =
P

k 6=m

P
i2Sk p

i

(t2), where {Sk

1}k 6=m

and {Sm} denote the market clearing

allocations associated with t1 and t2. This suggests that zm can be rewritten as

zm =
X

k 6=m

X

i2Sk
1

p
i

(t1)�
t2�1X

t=t1

X

k 6=m

�⇡k(t)�
X

k 6=m

X

i2Sk

p
i

(t2). (17)

When bidders truthfully reveal their demand, �⇡k(t) = ⇡k(t + 1) � ⇡k(t), where ⇡k(t) denotes

the maximum surplus of bidder k at stage t. Thus, Lemma 5.1 implies that zm is equal to bidder

m’s VCG payment associated with bundle Sm. Observe that by construction q is larger than
P

i2Sm p
i

(t) for all m, t. This implies that at termination q is larger than the Walrasian equilibrium

payments. On the other hand, it is known that the Walrasian equilibrium payments are larger than

the VCG payments (Gul and Stacchetti, 1999). Thus, the claim follows, and each bidder has a

nonnegative rebate.

(iii) Consider a history H
t

⇤ . Assume that after this history, all agents other than m truthfully

reveal their demand at each stage of the auction. We next show that bidder m maximizes her payo↵

by truthfully revealing her demand after H
t

⇤ . There are two cases to consider (a) the market for

M� {m} did not clear by time t⇤, (b) it did. If after t⇤ bidder m bids in a way that prevents the

termination of the auction, then due to the payments in Step S2, bidders receive arbitrarily low

payo↵s. Hence, it follows that in both cases bidder m improves her payo↵ by following a strategy

that leads to termination of the auction (existence of such strategies follows from part (i)).

First consider case (a). Part (i) implies that if bidder m bids truthfully, all the remaining

markets clear and the auction terminates. Moreover, as established in part (ii) the total payment

of bidder m is given by zm, and since bidders k 6= m bid truthfully this quantity can be expressed as

in (17). Lemma 5.1 implies that this payment is equal to her VCG payment, and the corresponding

payo↵ is given by
P

k

vk(Sk

⇤ ) � max{Zk}|Zk\Zl=;
P

k 6=m

vk(Zk) � 0, where {Sk

⇤} is the e�cient

allocation.

Assume that bidder m does not bid truthfully and the auction terminates with some allocation

{Ŝk}. Since the remaining bidders bid truthfully Lemma 5.1 implies that in this case bidder m’s

64

Page 64 of 65Operations Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

total payment is equal to max{Zk}|Zk\Zl=;
P

k 6=m

vk(Zk)�
P

k 6=m

vk(Ŝk). Thus, her payo↵ is given

by
P

k

vk(Ŝk) �max{Zk}|Zk\Zl=;
P

k 6=m

vk(Zk) 
P

k

vk(Sk

⇤ ) �max{Zk}|Zk\Zl=;
P

k 6=m

vk(Zk). It

follows that bidder m’s payo↵ is weakly lower than the payo↵ she obtains by bidding truthfully.

Hence, she cannot deviate from truthful bidding after history H
t

and improve her payo↵.

Consider case (b). Let t1, t⇤, t2 respectively denote the time instant at which the market

E
m

clears, bidders k 6= m start bidding truthfully, and market E; clears. Also define Q
m

,
P

k 6=m

P
t⇤�1
t=t1

��⇡k(t) +
P

i

p
i

(t1), where �⇡k(t) denotes the value of �⇡k (see Step S2) at stage

t of the auction. Assume that the auction terminates with a final allocation {Ŝm} determined in

Step S3 of Algorithm 3. In this case, the final payment zm of bidder m is given by (17), and leads

to a payo↵ of:

vm(Ŝm)� zm = vm(Ŝm)�

0

@
t2�1X

t=t1

X

k 6=m

��⇡k(t)�
X

i/2Ŝk

p
i

(t2) +
X

i

p
i

(t1)

1

A

= vm(Ŝm)�

0

@
t

⇤�1X

t=t1

X

k 6=m

��⇡k(t) +
t2�1X

t=t

⇤

X

k 6=m

⇡k(t)� ⇡k(t+ 1)�
X

i/2Ŝk

p
i

(t2) +
X

i

p
i

(t1)

1

A

= vm(Ŝm)�

0

@Q
m

+
X

k 6=m

⇡k(t⇤)�
X

k 6=m

⇡k(t2)�
X

i/2Ŝk

p
i

(t2)

1

A ,

(18)

where the second equation follows since bidders other than m bid truthfully after t⇤ and hence

�⇡k(t) = ⇡k(t+1)�⇡k(t) (the true change in the surplus of agent k). The definition of market clear-

ance suggests that bidder k demands bundle Ŝk at time t2. This implies that ⇡k(t2)+
P

i2Sk
⇤
p
i

(t2) =

vk(Ŝk). Thus, (18) can alternatively be expressed as

vm(Ŝm)�zm = vm(Ŝm)�

0

@Q
m

+
X

k 6=m

⇡k(t⇤)�
X

k 6=m

vk(Ŝk)

1

A =
X

k

vk(Ŝk)�Q
m

�
X

k 6=m

⇡k(t⇤). (19)

On the other hand, if bidderm truthfully bids after t⇤, by (i) the final allocation {Sm

⇤ } is e�cient.

Thus, in this case (19) suggests that her payo↵ is given by vm(Sm

⇤ ) � zm =
P

k

vk(Sk

⇤ ) � Q
m

�
P

k 6=m

⇡k(t⇤). Since {Sm

⇤ } is the e�cient allocation, it follows that
P

k

vk(Sk

⇤ )�Q
m

�
P

k 6=m

⇡k(t⇤) �
P

k

vk(Ŝk)�Q
m

�
P

k 6=m

⇡k(t⇤). This implies that bidder m receives a (weakly) higher payo↵ when

she bids truthfully. Thus, we conclude that after history H
t

the bidder has no incentive to deviate

from truthful bidding. Since this is true for any history H
t

, and bidder m, it follows that truthful

bidding is an ex-post perfect equilibrium.

Finally, part (i) suggests that at this equilibrium the final allocation is achieved in finite time,

and the final allocation (which is the market clearing allocation for market E;) is e�cient. In

addition, part (ii) implies that the final payments are the VCG payments, and the claim follows.
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