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Introduction

Introduction

Game-theoretic analysis has been used extensively in the study of
networks for two major reasons:

Game-theoretic tools enable a flexible control paradigm where agents
autonomously control their resource usage to optimize their own selfish
objectives.
Even when selfish incentives are not present, game-theoretic models
and tools provide potentially tractable decentralized algorithms for
network control.

Important reality check: Do game-theoretic models make
approximately accurate predictions about behavior?
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Introduction

Game-Theoretic Predictions in the k-Beauty Game

Consider the following game, often called the k- beauty game.

Each of the n-players will pick an integer between 0 and 100.

The person who is closest to k times the average of the group will
win a prize, where 0 < k < 1.

The unique Nash equilibrium of this game is (0, . . . , 0) (in fact, this is
the unique iteratively strict dominance solvable strategy profile).

How do intelligent people actually play this game? (e.g. MIT
students)

First time play: Nobody is close to 0. When k = 2/3, winning bids
are around 20-25.
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Introduction

Game-Theoretic Predictions in the k-Beauty Game

Why? If you ask the students, they are “rational” in that they bid k
times their expectation of the average, but they are not “accurate” in
their assessment of what that average is.

If the same group of people play this game a few more times, almost
everybody bids zero; i.e., their expectations become accurate and
they “learn” the Nash equilibrium.

This is in fact the most common justification of Nash equilibrium
predictions. But this type of convergence to a Nash equilibrium is not
a general result in all games.

In fact, examples of nonconvergence or convergence to non-Nash
equilibrium play (in mixed strategies) easy to construct.
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Introduction

Potential Games

Potential games are games that admit a “potential function” (as in
physical systems) such that maximization with respect to
subcomponents coincide with the maximization problem of each
player.

Nice features of potential games:

A pure strategy Nash equilibrium always exists.
Natural learning dynamics converge to a pure Nash equilibrium.

Only a few games in economics, social sciences, or networks are
potential games.
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Introduction

Motivation of Our Research

Even if a game is not a potential game, it may be “close” to a
potential game. If so, it may inherit some of the nice properties in an
approximate sense.

How do we determine whether a game is “close” to a potential game?

What is the topology of the space of preferences?

Are there “natural” decompositions of games?

Can certain games be perturbed slightly to turn them into potential
games?
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Introduction

Main Contributions

Analysis of the global structure of preferences

Representation of finite games as flows on graphs

Canonical decomposition: potential, harmonic, and nonstrategic
components

Projection schemes to find the components.

Closed form solutions to the projection problem.

Characterization of approximate equilibria of a game using equilibria
of its potential component.

Analysis of dynamics in a game using the convergence properties of
the dynamics in its potential component

Applications in a wireless power control problem.
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Potential Games Definition and Properties

Potential Games

We consider finite games in strategic form,
G = 〈M, {Em}m∈M, {um}m∈M〉.
G is an exact potential game if there exists a function Φ : E → R,
where E = Πm∈MEm, such that

Φ(xm, x−m)− Φ(ym, x−m) = um(xm, x−m)− um(ym, x−m),

for all m ∈M, xm, ym ∈ Em, and x−m ∈ E−m (E−m = Πk 6=mE k).

Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.

Potential Φ aggregates and explains incentives of all players.

Examples: congestion games, etc.
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Potential Games Definition and Properties

Potential Games and Nash Equilibrium

A strategy profile x is a Nash equilibrium if

um(xm, x−m) ≥ um(qm, x−m) for all m ∈M, qm ∈ Em.

A global maximum of an ordinal potential game is a pure Nash
equilibrium.

Every finite potential game has a pure equilibrium.

Many learning dynamics (such as better-reply dynamics, fictitious
play, spatial adaptive play) “converge” to a pure Nash equilibrium in
finite games. [Monderer and Shapley 96], [Young 98], [Marden,
Arslan, Shamma 06, 07].

When is a given game a potential game?

More importantly, what are the obstructions, and what is the
underlying structure?
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Potential Games Characterization

Existence of Exact Potential

A path is a collection of strategy profiles γ = (x0, . . . , xN) such that xi and
xi+1 differ in the strategy of exactly one player where xi ∈ E for
i ∈ {0, 1, . . .N}. For any path γ, let

I (γ) =
N∑

i=1

umi (xi )− umi (xi−1),

where mi denotes the player changing its strategy in the ith step of the
path. A path γ = (x0, . . . , xN) is closed if x0 = xN .

Theorem ([Monderer and Shapley 96])

A game G is an exact potential game if and only if for all closed paths, γ,
I (γ) = 0. Moreover, it is sufficient to check closed paths of length 4.
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Potential Games Characterization

Existence of Exact Potential

Let I (γ) 6= 0, if potential existed then it would increase when the
cycle is completed.

The condition for existence of exact potential is linear. The set of
exact potential games is a subspace of the space of games.

The set of exact potential games is “small”.

Theorem

Consider games with set of players M, and joint strategy space
E =

∏
m∈M Em.

1 The dimension of the space of games is |M|
∏

m∈M |Em|.
2 The dimension of the subspace of exact potential games is∏

m∈M
|Em|+

∑
m∈M

∏
k∈M,k 6=m

|E k | − 1.
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Potential Games Characterization

Existence of Ordinal Potential

A weak improvement cycle is a cycle for which at each step, the
utility of the player whose strategy is modified is nondecreasing (and
at least at one step the change is strictly positive).

A game is an ordinal potential game if and only if it contains no weak
improvement cycles [Voorneveld and Norde 97].
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Potential Games Characterization

Game Flows: 3-Player Example

1

2 3

Em = {0, 1} for all m ∈M, and payoff of player i be −1 if its
strategy is the same with its successor, 0 otherwise.
This game is neither an exact nor an ordinal potential game.

(1, 1, 0) (1, 1, 1)

(1, 0, 0) (1, 0, 1)

(0, 1, 0) (0, 1, 1)

(0, 0, 0) (0, 0, 1)
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Global Structure of Preferences

Global Structure of Preferences

What is the global structure of these cycles?

Equivalently, topological structure of aggregated preferences.

Conceptually similar to structure of (continuous) vector fields.

A well-developed theory from algebraic topology, we need the
combinatorial analogue for flows on graphs.
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Global Structure of Preferences Helmholtz Decomposition

Decomposition of Flows on Graphs

Consider an undirected graph G = (E ,A).

We define the set of edge flows as functions X : E × E → R such that
X (p,q) = −X (q,p) if (p,q) ∈ A, and 0 otherwise.

Let C0 denote the set of real-valued functions on the set of nodes, E , and
C1 denote the set of edge flows.

We define the combinatorial gradient operator δ0 : C0 → C1 as

(δ0φ)(p,q) = W (p,q)(φ(q)− φ(p)), p,q ∈ E ,

where W is an indicator function for the edges of the graph, i.e.,
W (x , y) = 1 if (x , y) ∈ A, and 0 otherwise.

We define the curl operator δ1 as

(δ1X )(p,q, r) =

{
X (p,q) + X (q, r) + X (r,p) if (p,q, r) ∈ T ,

0 otherwise,

where T is the set of 3-cliques of the graph G (i.e.,
T = {(p,q, r) | (p,q), (q, r), (p, r) ∈ A}).
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Global Structure of Preferences Helmholtz Decomposition

Helmholtz (Hodge) Decomposition

The Helmholtz Decomposition allows an orthogonal decomposition of the
space of edge flows C1 into three vector fields:

Gradient flow: globally consistent component

An edge flow X is globally consistent if it is the gradient of some
f ∈ C0, i.e., X = δ0f .

Harmonic flow: locally consistent, but globally inconsistent
component

An edge flow X is locally consistent if
(δ1X )(p,q, r) = X (p,q) + X (q, r) + X (r,p) = 0 for all (p,q, r) ∈ T .

Curl flow: locally inconsistent component
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Global Structure of Preferences Helmholtz Decomposition

Helmholtz decomposition (a cartoon)

Globally consistent Globally inconsistent

Locally consistent Locally inconsistent

Gradient flow Harmonic flow Curl flow
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Global Structure of Preferences Helmholtz Decomposition

Flow Representations of Games

A pair of strategy profiles that differ only in the strategy of player m
are referred to as m-comparable strategy profiles.

The set of comparable strategy profiles is the set of all such pairs (for
all m ∈M).

Notation:

The set of strategy profiles E =
∏

m∈M Em.
Set of pairs of m-comparable strategy profiles Am ⊂ E × E .
Set of pairs of comparable strategy profiles A = ∪mAm ⊂ E × E .

The game graph is defined as the undirected graph G = (E ,A), with
set of nodes E and set of links A.
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Global Structure of Preferences Helmholtz Decomposition

Flow Representations of Games – Continued

For all m ∈M, let W m : E × E → R satisfy

W m(p,q) =

{
1 if p,q ∈ Am

0 otherwise.

For all m ∈M, we define a difference operator Dm such that,

(Dmφ)(p,q) = W m(p,q) (φ(q)− φ(p)) .

where p,q ∈ E and φ : E → R.

The flow generated by a game is given by X =
∑

m∈MDmum.
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Global Structure of Preferences Helmholtz Decomposition

Strategically Equivalent Games

Consider the following two games: Battle of the Sexes game and a
slightly modified version.

O F

O 3, 2 0, 0

F 0, 0 2, 3

O F

O 4, 2 0, 0

F 1, 0 2, 3

These games have the same “pairwise-comparisons”, and therefore
yield the same flows.
To fix a representative for strategically equivalent games, we define
the notion of games without any nonstrategic information.

Definition

We say that a game with utility functions {um}m∈M does not contain any
nonstrategic information if∑

pm

um(pm,p−m) = 0 for all p−m ∈ E−m, m ∈M.
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Global Structure of Preferences Potential and Harmonic games

Decomposition: Potential, Harmonic, and Nonstrategic

Decomposition of the game flows induces a similar partition of the space
of games:

When going from utilities to flows, the nonstrategic component is
removed.

Since we start from utilities (not preferences), always locally
consistent.

Therefore, two flow components: potential and harmonic

Thus, the space of games has a canonical direct sum decomposition:

G = Gpotential ⊕ Gharmonic ⊕ Gnonstrategic,

where the components are orthogonal subspaces.
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Global Structure of Preferences Potential and Harmonic games

Bimatrix games

For two-player games, simple explicit formulas.
Assume the game is given by matrices (A,B), and (for simplicity), the
non-strategic component is zero (i.e., 1T A = 0,B1 = 0). Define

S :=
1

2
(A + B), D :=

1

2
(A− B), Γ :=

1

2n
(A11T − 11T B).

Potential component:
(S + Γ, S − Γ)

Harmonic component:

(D − Γ, −D + Γ)

Notice that the harmonic component is zero sum.
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Projections to Potential Games

Projection on the Set of Exact Potential Games

We solve,

d2(G) = min
φ∈C0

||δ0φ−
∑

m∈M
Dmum||22,

to find a potential function that best represents a given collection of
utilities (recall C0 is the space of real valued functions defined on E ) .

The utilities that represent the potential and that are close to initial
utilities can be constructed by solving an additional optimization
problem (for a fixed φ, and for all m ∈M ):

ûm = arg min
ūm

||um − ūm||22
s.t. Dmūm = Dmφ

ūm ∈ C0.
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Projections to Potential Games

Projection on the Set of Exact Potential Games

Theorem

If all players have same number of strategies, the optimal projection is
given in closed form by

φ =

(∑
m∈M

Πm

)† ∑
m∈M

Πmum,

and

ûm = (I − Πm)um + Πm

(∑
k∈M

Πk

)† ∑
k∈M

Πkuk .

Here Πm = D∗mDm is the projection operator to the orthogonal
complement of the kernel of Dm (∗ denotes the adjoint of an operator).
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Projections to Potential Games

Projection on the Set of Exact Potential Games

The form of the potential function follows from the closed-form
solution of a least-squares problem (i.e., the normal equation).

For any m ∈M, Πmum and (I −Πm)um are respectively the strategic
and nonstrategic components of the utility of player m.

φ solves, ∑
m∈M

Πmφ =
∑

m∈M
Πmum.

Hence, optimal φ is a function which represents the sum of strategic
parts of utilities of different users.

ûm is the sum of the nonstrategic part of um and the strategic part of
the potential φ.
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Projections to Potential Games

Wrapping Up

Nice canonical decomposition:

Provides classes of games with simpler structures, for which stronger
results can be proved.

Yields a natural mechanism for approximation, for both static and
dynamical properties.
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Projections to Potential Games Equilibria

Equilibria of a Game and its Projection

Theorem

Let G be a game and Ĝ be its projection. Any equilibrium of Ĝ is an
ε-equilibrium of G and any equilibrium of G is an ε-equilibrium of Ĝ for
ε ≤
√

2 · d(G).

Provided that the projection distance is small, equilibria of the
projected game are close to the equilibria of the initial game.

The projection framework can also be used to study convergence of
dynamics in arbitrary games.

Will illustrate through a wireless power control application.
General result in the paper.
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Projections to Potential Games Equilibria

Simulation example

Consider an average opinion game on a graph.
Payoff of each player satisfies,

um(p) = 2M̂ − (M̂m − pm)2,

where M̂m is the median of pk , k ∈ N(m).

1

2

3

5

4

This game is not an exact (or ordinal) potential game.
With small perturbation in the payoffs, it can be projected to the set of
potential games.
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Projections to Potential Games Equilibria
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Application: Wireless Power Control Model

Wireless Power Control Application

A set of mobiles (users) M = {1, . . . ,M} share the same wireless spectrum
(single channel).

We denote by p = (p1, . . . , pM) the power allocation (vector) of the mobiles.

Power constraints: Pm = {pm | Pm ≤ pm ≤ P̄m}, with Pm > 0.

Upper bound represents a constraint on the maximum power usage
Lower bound represents a minimum QoS constraint for the mobile

The rate (throughput) of user m is given by

rm(p) = log (1 + γ · SINRm(p)) ,

where, γ > 0 is the spreading gain of the CDMA system and

SINRm(p) =
hmmpm

N0 +
∑

k 6=m hkmpk
.

Here, hkm is the channel gain between user k ’s transmitter and user m’s
receiver.
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Application: Wireless Power Control Model

User Utilities and Equilibrium

Each user is interested in maximizing a net rate-utility, which captures a
tradeoff between the obtained rate and power cost:

um(p) = rm(p)− λmpm,

where λm is a user-specific price per unit power.

We refer to the induced game among the users as the power game and
denote it by G.

Existence of a pure Nash equilibrium follows because the underlying game is
a concave game.

We are also interested in “approximate equilibria” of the power game, for
which we use the concept of ε-(Nash) equilibria.

For a given ε, we denote by Iε the set of ε-equilibria of the power game
G, i.e.,

Iε = {p | um(pm,p−m) ≥ um(qm,p−m)−ε, for all m ∈M, qm ∈ Pm}
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Application: Wireless Power Control Model

System Utility

Assume that a central planner wishes to impose a general performance
objective over the network formulated as

max
p∈P

U0(p),

where P = P1 × · · · × Pm is the joint feasible power set.

We refer to U0(·) as the system utility-function.

We denote the optimal solution of this system optimization problem by p∗

and refer to it as the desired operating point.

Our goal is to set the prices such that the equilibrium of the power game
can approximate the desired operating point p∗.
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Application: Wireless Power Control Approximation and Analysis

Potential Game Approximation

We approximate the power game with a potential game.

We consider a slightly modified game with player utility functions given by

ũm(p) = r̃m(p)− λmpm

where r̃m(p) = log (γSINRm(p)).

We refer to this game as the potentialized game and denote it by
G̃ = 〈M, {ũm}, {Pm}〉.

For high-SINR regime (γ satisfies γ � 1 or hmm � hkm for all k 6= m),the
modified rate formula r̃m(p) ≈ rm(p) serves as a good approximation for the
true rate, and thus ũm(p) ≈ um(p).
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Application: Wireless Power Control Approximation and Analysis

Pricing in the Modified Game

Theorem

The modified game G̃ is a potential game. The corresponding potential function
is given by

φ(p) =
∑
m

log(pm)− λmpm.

G̃ has a unique equilibrium.

The potential function suggests a simple linear pricing scheme.

Theorem

Let p∗ be the desired operating point. Assume that the prices λ∗ are given by

λ∗m =
1

p∗m
, for all m ∈M.

Then the unique equilibrium of the potentialized game coincides with p∗.
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Application: Wireless Power Control Approximation and Analysis

Near-Optimal Dynamics

We will study the dynamic properties of the power game G when the prices
are set equal to λ∗.

A natural class of dynamics is the best-response dynamics, in which each
user updates his strategy to maximize its utility, given the strategies of other
users.

Let βm : P−m → Pm denote the best-response mapping of user m, i.e.,

βm(p−m) = arg max
pm∈Pm

um(pm,p−m).

Discrete time BR dynamics:

pm ← pm + α (βm(p−m)− pm) for all m ∈M,

Continuous time BR dynamics:

ṗm = βm(p−m)− pm for all m ∈M.

The continuous-time BR dynamics is similar to continuous time fictitious
play dynamics and gradient-play dynamics [Flam, 2002], [Shamma and
Arslan, 2005], [Fudenberg and Levine, 1998].
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Application: Wireless Power Control Approximation and Analysis

Convergence Analysis – 1

If users use BR dynamics in the potentialized game G̃, their strategies
converge to the desired operating point p∗.

This can be shown through a Lyapunov analysis using the potential
function of G̃, [Hofbauer and Sandholm, 2000]
Our interest is in studying the convergence properties of BR dynamics
when used in the power game G.

Idea: Use perturbation analysis from system theory

The difference between the utilities of the original and the potentialized
game can be viewed as a perturbation.
Lyapunov function of the potentialized game can be used to
characterize the set to which the BR dynamics for the original power
game converges.
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Application: Wireless Power Control Approximation and Analysis

Convergence Analysis – 2

Our first result shows BR dynamics applied to game G converges to the set
of ε-equilibria of the potentialized game G̃, denoted by Ĩε.
We define the minimum SINR:

SINRm =
Pmhmm

N0 +
∑

k 6=m hkmPk

We say that the dynamics converges uniformly to a set S if there exists
some T ∈ (0,∞) such that pt ∈ S for every t ≥ T and any initial operating
point p0 ∈ P.

Lemma

The BR dynamics applied to the original power game Gconverges uniformly to the
set Ĩε, where ε satisfies

ε ≤ 1

γ

∑
m∈M

1

SINRm

.

The error bound provides the explicit dependence on γ and SINRm.
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Application: Wireless Power Control Approximation and Analysis

Convergence Analysis – 3

We next establish how “far” the power allocations in Ĩε can be from the
desired operating point p∗.

Theorem

For all ε, p ∈ Ĩε satisfies

|p̃m − p∗m| ≤ Pm

√
2ε for every p̃ ∈ Ĩε and every m ∈M

Idea: Using the strict concavity and the additively separable structure of the
potential function, we characterize Ĩε.
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Application: Wireless Power Control Approximation and Analysis

Convergence and the System Utility

Under some smoothness assumptions, the error bound enables us to
characterize the performance loss in terms of system utility.

Theorem

Let ε > 0 be given. (i) Assume that U0 is a Lipschitz continuous function, with a
Lipschitz constant given by L. Then

|U0(p∗)− U0(p̃)| ≤
√

2εL

√∑
m∈M

P
2

m, for every p̃ ∈ Ĩε.

(ii) Assume that U0 is a continuously differentiable function so that | ∂U0

∂pm
| ≤ Lm,

m ∈M. Then

|U0(p∗)− U0(p̃)| ≤
√

2ε
∑

m∈M
PmLm, for every p̃ ∈ Ĩε.
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Application: Wireless Power Control Approximation and Analysis

Numerical Example

Consider a system with 3 users and let the desired operating point be given
by p∗ = [5, 5, 5].

We choose the prices as λ∗m = 1
p∗m

and pick the channel gain coefficients

uniformly at random.

We consider three different values of γ ∈ {5, 10, 50}.

(a) The evolution of the power levels
under best response dynamics.

(b) The distance ||pt−p∗|| between
the current and desired power allo-
cations.
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Summary

Summary

Analysis of the global structure of preferences

Decomposition into potential and harmonic components

Projection to “closest” potential game

Preserves ε-approximate equilibria and dynamics

Enables extension of many tools to non-potential games
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