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Abstract

We consider a network of agents that are cooperatively solving a global optimization problem, where the

objective function is the sum of privately known local objective functions of the agents and the decision variables

are coupled via linear constraints. Recent literature focused on special cases of this formulation and studied their

distributed solution through either subgradient based methods with O(1/
√
k) rate of convergence (where k is

the iteration number) or Alternating Direction Method of Multipliers (ADMM) based methods, which require

a synchronous implementation and a globally known order on the agents. In this paper, we present a novel

asynchronous ADMM based distributed method for the general formulation and show that it converges at the

rate O (1/k).

I. INTRODUCTION

We consider the following optimization problem with a separable objective function and linear

constraints:

min
xi∈Xi,z∈Z

N∑
i=1

fi(xi) (1)

s.t. Dx+Hz = 0.

Here each fi : Rn → R is a (possibly nonsmooth) convex function, Xi and Z are closed convex subsets

of Rn and RW , and D and H are matrices of dimensions W × nN and W ×W . The decision variable

x is given by the partition x = [x′1, . . . , x
′
N ]′ ∈ RnN , where the xi ∈ Rn are components (subvectors)
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of x. We denote by set X the product of sets Xi, hence the constraint on x can be written compactly

as x ∈ X .

Our focus on this formulation is motivated by distributed multi-agent optimization problems, which

attracted much recent attention in the optimization, control and signal processing communities. Such

problems involve resource allocation, information processing, and learning among a set {1, . . . , N} of

distributed agents connected through a network G = (V,E), where E denotes the set of M undirected

edges between the agents. In such applications, each agent has access to a privately known local objective

(or cost) function, which represents the negative utility or the loss agent i incurs at the decision variable

x. The goal is to collectively solve a global optimization problem1

min
N∑
i=1

fi(x) (2)

s.t. x ∈ X.

This problem can be reformulated in the general formulation of (1) by introducing a local copy xi of

the decision variable for each node i and imposing the constraint xi = xj for all agents i and j with

edge (i, j) ∈ E. Under the assumption that the underlying network is connected, this condition ensures

that each of the local copies are equal to each other. Using the edge-node incidence matrix of network

G, denoted by A ∈ RMn×Nn, the reformulated problem can be written compactly as2

min
xi∈X

N∑
i=1

fi(xi) (3)

s.t. Ax = 0,

where x is the vector [x1, x2, . . . , xN ]′. We will refer to this formulation as the edge-based reformulation

1The usefulness of formulation (2) can be illustrated by, among other things, machine learning problems described as follows:

min
x

N−1∑
i=1

l ([Wix− bi]) + π ||x||1 ,

where Wi corresponds to the input sample data (and functions thereof), bi represents the measured outputs, Wix − bi indicates the
prediction error and l is the loss function on the prediction error. Scalar π is nonnegative and it indicates the penalty parameter on
complexity of the model. The widely used Least Absolute Deviation (LAD) formulation, the Least-Absolute Shrinkage and Selection
Operator (Lasso) formulation and l1 regularized formulations can all be represented by the above formulation by varying loss function
l and penalty parameter π (see [3] for more details). The above formulation is a special case of the distributed multi-agent optimization
problem (2), where fi(x) = l (Wix− bi) for i = 1, . . . , N − 1 and fN = π2 ||x||1 . In applications where the data pairs

(
Wi, bi

)
are

collected and maintained by different sensors over a network, the functions fi are local to each agent and the need for a distributed
algorithm arises naturally.

2The edge-node incidence matrix of network G is defined as follows: Each n-row block of matrix A corresponds to an edge in the
graph and each n-column block represent a node. The n rows corresponding to the edge e = (i, j) has I(n × n) in the ith n-column
block, −I(n× n) in the jth n−column block and 0 in the other columns, where I(n× n) is the identity matrix of dimension n.
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of the multi-agent optimization problem. Note that this formulation is a special case of problem (1)

with D = A, H = 0 and Xi = X for all i. Since these problems often lack a centralized processing

unit, it is imperative that iterative solutions of problem (2) involve decentralized computations, meaning

that each node (processor) performs calculations independently and on the basis of local information

available to it and then communicates this information to its neighbors according to the underlying

network structure.

Though there have been many important advances in the design of decentralized optimization al-

gorithms for multi-agent optimization problems, several challenges still remain. First, many of these

algorithms are based on first-order subgradient methods, which have slow convergence rates (given by

O(1/
√
k) where k is the iteration number), making them impractical in many large scale applications.

Second, with the exception of a few recent contributions, existing algorithms are synchronous, meaning

that computations are simultaneously performed according to some global clock, but this often goes

against the highly decentralized nature of the problem, which precludes such global information being

available to all nodes.

In this paper, we focus on the more general formulation (1) and propose an asynchronous decentralized

algorithm based on the classical Alternating Direction Method of Multipliers (ADMM) (see [6], [12]

for comprehensive tutorials). We adopt the following asynchronous implementation for our algorithm:

at each iteration k, a random subset Ψk of the constraints are selected, which in turn selects the

components of x that appear in these constraints. We refer to the selected constraints as active constraints

and selected components as the active components (or agents). We design an ADMM-type primal-

dual algorithm which at each iteration updates the primal variables using partial information about

the problem data, in particular using cost functions corresponding to active components and active

constraints, and updates the dual variables corresponding to active constraints. In the context of the

edge-based reformulated multi-agent optimization problem (3), this corresponds to a fully decentralized

and asynchronous implementation in which a subset of the edges are randomly activated (for example

according to local clocks associated with those edges) and the agents incident to those edges perform

computations on the basis of their local objective functions followed by communication of updated

values with neighbors.

Under the assumption that each constraint has a positive probability of being selected and the

constraints have a decoupled structure (which is satisfied by reformulations of the distributed multi-agent

optimization problem), our first result shows that the (primal) asynchronous iterates generated by this

algorithm converge almost surely to an optimal solution. Our proof relies on relating the asynchronous

iterates to full-information iterates that would be generated by the algorithm that use full information
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about the cost functions and constraints at each iteration. In particular, we introduce a weighted norm

where the weights are given by the inverse of the probabilities with which the constraints are activated

and constructs a Lyapunov function for the asynchronous iterates using this weighted norm. Our second

result establishes a performance guarantee of O(1/k) for this algorithm under a compactness assumption

on the constraint sets X and Z, which to our knowledge is faster than the guarantees available in the

literature for this problem. More specifically, we show that the expected value of the difference of the

objective function value and the optimal value as well as the expected feasibility violation converges to

0 at rate O(1/k).

Our paper is related to a large recent literature on distributed optimization methods for solving the

multi-agent optimization problem. Most closely related is a recent stream which presented distributed

synchronous ADMM algorithms for solving problem (2) (or specialized versions of it) (see [32], [33],

[24], [43], [49]). These papers have demonstrated the excellent computational performance of ADMM

algorithms in the context of several signal processing applications. A closely related work in this stream

is our recent paper [46], where we considered problem (2) under the general assumption that the fi

are convex. In [46], we presented an ADMM based algorithm which operates by updating the decision

variable x in N steps in a synchronous manner using a deterministic cyclic order and showed that

it converges at the rate O(1/k). This algorithm however requires a synchronous implementation and

a globally known order on the set of agents. The algorithm presented here selects a subset of the

components of the decision variable x randomly and updates the variables (x, z) in two steps by first

updating the selected components of x and then updating the z variable.

Another strand of this literature uses first-order (sub)gradient methods for solving problem (2). Much

of this work builds on the seminal works [2] and [45], which proposed gradient methods that can

parallelize computations across multiple processors. The more recent paper [35] introduced a first-order

primal subgradient method for solving problem (2) over deterministically varying networks. This method

involves each agent maintaining and updating an estimate of the optimal solution by linearly combining

a subgradient step along its local cost function with averaging of estimates obtained from his neighbors

(also known as a single consensus step).3 Several follow-up papers considered variants of this method

for problems with local and global constraints [26], [36] randomly varying networks [29], [30], [31]

and random gradient errors [42], [34]. A different distributed algorithm that relies on Nesterov’s dual

averaging algorithm [37] for static networks has been proposed and analyzed in [11]. Such gradient

3This work is clearly also related to the extensive literature on consensus and cooperative control, where the goal is to design local
deterministic or random update rules to achieve global coordination (for deterministic update rules, see [4], [7], [15], [23], [27], [38],
[39], [40], [44]; for random update rules, see [1], [5], [9], [14]).
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methods typically have a convergence rate of O(1/
√
k). The more recent contribution [25] focuses

on a special case of (2) under smoothness assumptions on the cost functions and availability of global

information about some problem parameters, and provided gradient algorithms (with multiple consensus

steps) which converge at the faster rate of O(1/k2).

With the exception of [41] and [22], all algorithms provided in the literature are synchronous and

assume that computations at all nodes are performed simultaneously according to a global clock.

[41] provides an asynchronous subgradient method that uses gossip-type activation and communication

between pairs of nodes and shows (under a compactness assumption on the iterates) that the iterates

generated by this method converge almost surely to an optimal solution. The recent independent paper

[22] provides an asynchronous randomized ADMM algorithm for solving problem (2) and establishes

convergence of the iterates to an optimal solution by studying the convergence of randomized Gauss-

Seidel iterations on non-expansive operators. Our paper instead proposes an asynchronous ADMM

algorithm for the more general problem (1) and uses a Lyapunov function argument for establishing

O(1/k) rate of convergence.

Our algorithm and analysis also build on and combines ideas from several important contributions in

the study of ADMM algorithms. Earlier work in this area focuses on the case C = 2, where C refers

to the number of sequential primal updates at each iteration, and studies convergence in the context of

finding zeros of the sum of two maximal monotone operators (more specifically, the Douglas-Rachford

operator), see [10], [13], [28]. The recent contribution [20] considered solving problem (1) (with C = 2)

with ADMM and showed that the objective function values of the iterates converge at the rate O(1/k).

Other recent works analyzed the rate of convergence of ADMM and other related algorithms under

smoothness conditions on the objective function (see [8], [16], [17]). Another paper [19] considered

the case C ≥ 2 and showed that the resulting ADMM algorithm converges under the more restrictive

assumption that each fi is strongly convex. The recent paper [21] focused on the general case C ≥ 2 and

established a global linear convergence rate using an error bound condition that estimates the distance

from the dual optimal solution set in terms of norm of a proximal residual.

The paper is organized as follows: we start in Section II by highlighting the main ideas of the

standard ADMM algorithm. In Section III, we focus on the more general formulation (1), present the

asynchronous ADMM algorithm and apply this algorithm to solve problem (2) in a distributed way.

Section IV contains our convergence and rate of convergence analysis. Section V concludes with closing

remarks.

Basic Notation and Notions:

A vector is viewed as a column vector. For a matrix A, we write [A]i to denote the ith column of
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matrix A, and [A]j to denote the jth row of matrix A. For a vector x, xi denotes the ith component of

the vector. For a vector x in Rn and set S a subset of {1, . . . , n}, we denote by [x]S a vector in Rn,

which places zeros for all components of x outside set S, i.e.,

[[x]S]i =

 xi if i ∈ S,

0 otherwise.

We use x′ and A′ to denote the transpose of a vector x and a matrix A respectively. We use standard

Euclidean norm (i.e., 2-norm) unless otherwise noted, i.e., for a vector x in Rn, ||x|| = (
∑n

i=1 x
2
i )

1
2 .

II. PRELIMINARIES: STANDARD ADMM ALGORITHM

The standard ADMM algorithm solves a separable convex optimization problem where the decision

vector decomposes into two variables and the objective function is the sum of convex functions over

these variables that are coupled through a linear constraint:4

min
x∈X,z∈Z

Fs(x) +Gs(z) (4)

s.t. Dsx+Hsz = c,

where Fs : Rn → R and Gs : Rn → R are convex functions, X and Z are nonempty closed convex

subsets of Rn and Rm, and Ds and Hs are matrices of dimension w × n and w ×m.

We consider the augmented Lagrangian function of problem (4) obtained by adding a quadratic

penalty for feasibility violation to the Lagrangian function:

Lβ(x, z, p) = Fs(x) +Gs(z)− p′(Dsx+Hsz − c) +
β

2
||Dsx+Hsz − c||2 , (5)

where p in Rw is the Lagrange multiplier corresponding to the constraint Dsx + Hsz = c and β is a

positive penalty parameter.

The standard ADMM algorithm is an iterative primal-dual algorithm, which can be viewed as an

approximate version of the classical augmented Lagrangian method for solving problem (4). It proceeds

by approximately minimizing the augmented Lagrangian function through updating the primal variables

x and z sequentially within a single pass block coordinate descent (in a Gauss-Seidel manner) at

the current Lagrange multiplier (or the dual variable) followed by updating the dual variable through

a gradient ascent method (see [21] and [12]). More specifically, starting from some initial vector

4Interested readers can find more details in [6] and [12].
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(x0, z0, p0),5 at iteration k ≥ 0, the variables are updated as

xk+1 ∈ argmin
x∈X

Lβ(x, zk, pk), (6)

zk+1 ∈ argmin
z∈Z

Lβ(xk+1, z, pk), (7)

pk+1 = pk − β(Dsx
k+1 +Hsz

k+1 − c). (8)

We assume that the minimizers in steps (6) and (7) exist, however they need not be unique. Note that

the stepsize used in updating the dual variable is the same as the penalty parameter β.

The ADMM algorithm takes advantage of the separable structure of problem (4) and decouples

the minimization of functions Fs and Gs since the sequential minimization over x and z involves

(quadratic perturbations) these functions separately. This is particularly useful in applications where

the minimization over these component functions admit simple solutions and can be implemented in a

parallel or decentralized manner.

The analysis of the ADMM algorithm adopts the following standard assumption on problem (4).

Assumption 1: (Existence of a Saddle Point) The Lagrangian function of problem (4) given by

L(x, z, p) = Fs(x) +Gs(z)− p′(Dsx+Hsz),

has a saddle point, i.e., there exists a solution-multiplier pair (x∗, z∗, p∗) with

L(x∗, z∗, p) ≤ L(x∗, z∗, p∗) ≤ L(x, z, p∗),

for all x in Rn, z in Rm and p in Rw.

Note that the existence of a saddle point is equivalent to the existence of a primal dual optimal

solution pair. It is well-known that under the given assumptions, the objective function value of the

primal sequence {xk, zk} generated by (6)-(7) converges to the optimal value of problem (4) and the

dual sequence {pk} generated by (8) converges to a dual optimal solution (see Section 3.2 of [6]).

III. ASYNCHRONOUS ADMM ALGORITHM

Extending the standard ADMM, we present in this section an asynchronous distributed ADMM

algorithm. We present the problem formulation and assumptions in Section III-A. In Section III-B, we

discuss the asynchronous implementation considered in the rest of this paper that involves updating a

subset of components of the decision vector at each time using partial information about problem data

5We use superscripts to denote the iteration number.
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and without need for a global coordinator. Section III-C contains the details of the asynchronous ADMM

algorithm. In Section III-D, we apply the asynchronous ADMM algorithm to solve the distributed multi-

agent optimization problem (2).

A. Problem Formulation and Assumptions

We consider the optimization problem given in (1), which is restated here for convenience:

min
xi∈Xi,z∈Z

N∑
i=1

fi(xi)

s.t. Dx+Hz = 0.

This problem formulation arises in large-scale multi-agent (or processor) environments where problem

data is distributed across N agents, i.e., each agent has access only to the component function fi

and maintains the decision variable component xi. The constraints usually represent the coupling across

components of the decision variable imposed by the underlying connectivity among the agents. Motivated

by such applications, we will refer to each component function fi as the local objective function and

use the notation F : RnN → R to denote the global objective function given by their sum:

F (x) =
N∑
i=1

fi(xi). (9)

Similar to the standard ADMM formulation, we adopt the following assumption.

Assumption 2: (Existence of a Saddle Point) The Lagrangian function of problem (1),

L(x, z, p) = F (x)− p′(Dx+Hz), (10)

has a saddle point, i.e., there exists a solution-multiplier pair (x∗, z∗, p∗) with

L(x∗, z∗, p) ≤ L(x∗, z∗, p∗) ≤ L(x, z, p∗) (11)

for all x in X , z in Z and p in RW .

Moreover, we assume that the matrices have special structure that enables solving problem (1) in an

asynchronous manner:

Assumption 3: (Decoupled Constraints) Matrix H is diagonal and invertible. Each row of matrix D

has exactly one nonzero element and matrix D has no columns of all zeros.6

6We assume without loss of generality that each xi is involved at least in one of the constraints, otherwise, we could remove it from the
problem and optimize it separately. Similarly, the diagonal elements of matrix H are assumed to be non-zero, otherwise, that component
of variable z can be dropped from the optimization problem.
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The diagonal structure of matrix H implies that each component of vector z appears in exactly one

linear constraint. The conditions that each row of matrix D has only one nonzero element and matrix

D has no column of zeros guarantee the columns of matrix D are linearly independent and hence

matrix D′D is positive definite. The condition on matrix D implies that each row of the constraint

Dx+Hz = 0 involves exactly one xi. We will see in Section III-D that this assumption is satisfied by

the distributed multi-agent optimization problem that motivates this work.

B. Asynchronous Algorithm Implementation

In the large scale multi-agent applications descried above, it is essential that the iterative solution of

the problem involves computations performed by agents in a decentralized manner (with access to local

information) with as little coordination as possible. This necessitates an asynchronous implementation

in which some of the agents become active (randomly) in time and update the relevant components of

the decision variable using partial and local information about problem data while keeping the rest of

the components of the decision variable unchanged. This removes the need for a centralized coordinator

or global clock, which is an unrealistic requirement in such decentralized environments.

To describe the asynchronous algorithm implementation we consider in this paper more formally, we

first introduce some notation. We call a partition of the set {1, . . . ,W} a proper partition if it has the

property that if zi and zj are coupled in the constraint set Z, i.e., value of zi affects the constraint on zj

for any z in set Z, then i and j belong to the same partition, i.e., {i, j} ⊂ ψ for some ψ in the partition.

We let Π be a proper partition of the set {1, . . . ,W} , which forms a partition of the set of W rows of

the linear constraint Dx+Hz = 0. For each ψ in Π, we define Φ(ψ) to be the set of indices i, where

xi appears in the linear constraints in set ψ. Note that Φ(ψ) is an element of the power set 2{1,...,N}.

At each iteration of the asynchronous algorithm, two random variables Φk and Ψk are realized. While

the pair (Φk,Ψk) is correlated for each iteration k, these variables are assumed to be independent and

identically distributed across iterations. At each iteration k, first the random variable Ψk is realized.

The realized value, denoted by ψk, is an element of the proper partition Π and selects a subset of the

linear constraints Dx + Hz = 0. The random variable Φk then takes the realized value φk = Φ(ψk).

We can view this process as activating a subset of the coupling constraints and the components that are

involved in these constraints. If l ∈ ψk, we say constraint l as well as its associated dual variable pl is

active at iteration k. Moreover, if i ∈ Φ(ψk), we say that component i or agent i is active at iteration

k. We use the notation φ̄k to denote the complement of set φk in set {1, . . . , N} and similarly ψ̄k to

denote the complement of set ψk in set {1, . . . ,W}.

Our goal is to design an algorithm in which at each iteration k, only active components of the
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decision variable and active dual variables are updated using local cost functions of active agents and

active constraints. To that end, we define fk : RnN → R as the sum of the local objective functions

whose indices are in the subset φk:

fk(x) =
∑
i∈φk

fi(xi),

We denote by Di the matrix in RW×nN that picks up the columns corresponding to xi from matrix D

and has zeros elsewhere. Similarly, we denote by Hl the diagonal matrix in RW×W which picks up the

element in the lth diagonal position from matrix H and has zeros elsewhere. Using this notation, we

define the matrices

Dφk =
∑
i∈φk

Di, and Hψk =
∑
l∈ψk

Hl.

We impose the following condition on the asynchronous algorithm.

Assumption 4: (Infinitely Often Update) For all k and all ψ in the proper partition Π,

P(Ψk = ψ) > 0.

This assumption ensures that each element of the partition Π is active infinitely often with probability

1. Since matrix D has no columns of all zeros, each of the xi is involved in some constraints, and hence

∪ψ∈ΠΦ(ψ) = {1, . . . , N}. The preceding assumption therefore implies that each agent i belongs to at

least one set Φ(ψ) and therefore is active infinitely often with probability 1. From definition of the

partition Π, we have ∪ψ∈Πψ = {1, . . . ,W}. Thus, each constraint l is active infinitely often with

probability 1.

C. Asynchronous ADMM Algorithm

We next describe the asynchronous ADMM algorithm for solving problem (1).

I. Asynchronous ADMM algorithm:

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At iteration k, random variables Φk and Ψk takes realizations φk and ψk. Function fk and

matrices Dφk , Hψk are generated accordingly.

a The primal variable x is updated as

xk+1 ∈ argmin
x∈X

fk(x)− (pk)′Dφkx+
β

2

∣∣∣∣Dφkx+Hzk
∣∣∣∣2 . (12)
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with xk+1
i = xki , for i in φ̄k.

b The primal variable z is updated as

zk+1 ∈ argmin
z∈Z

−(pk)′Hψkz +
β

2

∣∣∣∣Hψkz +Dφkx
k+1
∣∣∣∣2 . (13)

with zk+1
i = zki , for i in ψ̄k.

c The dual variable p is updated as

pk+1 = pk − β[Dφkx
k+1 +Hψkz

k+1]ψk . (14)

We assume that the minimizers in updates (12) and (13) exist, but need not be unique.7 The term
β
2

∣∣∣∣Dφkx+Hzk
∣∣∣∣2 in the objective function of the minimization problem in update (12) can be written

as
β

2

∣∣∣∣Dφkx+Hzk
∣∣∣∣2 =

β

2

∣∣∣∣Dφkx
∣∣∣∣2 + β(Hzk)′Dφkx+

β

2

∣∣∣∣Hzk∣∣∣∣2 ,
where the last term is independent of the decision variable x and thus can be dropped from the objective

function. Therefore, the primal x update can be written as

xk+1 ∈ argmin
x∈X

fk(x)− (pk − βHzk)′Dφkx+
β

2

∣∣∣∣Dφkx
∣∣∣∣2 . (15)

Similarly, the term β
2

∣∣∣∣Hψkz +Dφkx
k+1
∣∣∣∣2 in update (13) can be expressed equivalently as

β

2

∣∣∣∣Hψkz +Dφkx
k+1
∣∣∣∣2 =

β

2

∣∣∣∣Hψkz
∣∣∣∣2 + β(Dφkx

k+1)′Hψkz +
β

2

∣∣∣∣Dφkx
k+1
∣∣∣∣2 .

We can drop the term β
2

∣∣∣∣Dφkx
k+1
∣∣∣∣2, which is constant in z, and write update (13) as

zk+1 ∈ argmin
z∈Z

−(pk − βDφkx
k+1)′Hψkz +

β

2

∣∣∣∣Hψkz
∣∣∣∣2 , (16)

The updates (15) and (16) make the dependence on the decision variables x and z more explicit and

therefore will be used in the convergence analysis. We refer to (15) and (16) as the primal x and z

update respectively, and (14) as the dual update.

7Note that the optimization in (12) and (13) are independent of components of x not in φk and components of z not in ψk and thus
the restriction of xk+1

i = xki , for i not in φk and zk+1
i = zki , for i not in ψk still preserves optimality of xk+1 and zk+1 with respect to

the optimization problems in update (12) and (13).
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D. Special Case: Distributed Multi-agent Optimization

We apply the asynchronous ADMM algorithm to the edge-based reformulation of the multi-agent

optimization problem (3).8 Note that each constraint of this problem takes the form xi = xj for agents

i and j with (i, j) ∈ E. Therefore, this formulation does not satisfy Assumption 3.

We next introduce another reformulation of this problem, used also in Example 4.4 of Section 3.4 in

[2], so that each each constraint only involves one component of the decision variable.9 More specifically,

we let N(e) denote the agents which are the endpoints of edge e and introduce a variable z = [zeq] e=1,...,M
q∈N(e)

of dimension 2M , one for each endpoint of each edge. Using this variable, we can write the constraint

xi = xj for each edge e = (i, j) as

xi = zei, −xj = zej, zei + zej = 0.

The variables zei can be viewed as an estimate of the component xj which is known by node i. The

transformed problem can be written compactly as

min
xi∈X,z∈Z

N∑
i=1

fi(xi) (17)

s.t. Aeixi = zei, e = 1, . . . ,M , i ∈ N (e),

where Z is the set {z ∈ R2M |
∑

q∈N (e) zeq = 0, e = 1, . . . ,M} and Aei denotes the entry in the eth

row and ith column of matrix A, which is either 1 or −1. This formulation is in the form of problem (1)

with matrix H = −I , where I is the identity matrix of dimension 2M ×2M . Matrix D is of dimension

2M ×N , where each row contains exactly one entry of 1 or −1. In view of the fact that each node is

incident to at least one edge, matrix D has no column of all zeros. Hence Assumption 3 is satisfied.

One natural implementation of the asynchronous algorithm is to associate with each edge an inde-

pendent Poisson clock with identical rates across the edges. At iteration k, if the clock corresponding

to edge (i, j) ticks, then φk = {i, j} and ψk picks the rows in the constraint associated with edge (i, j),

i.e., the constraints xi = zei and −xj = zej .10

We associate a dual variable pei in R to each of the constraint Aeixi = zei, and denote the vector of

dual variables by p. The primal z update and the dual update [Eqs. (13) and (14)] for this problem are

8For simplifying the exposition, we assume n = 1 and note that the results extend to n > 1.
9Note that this reformulation can be applied to any problem with a separable objective function and linear constraints to turn it into a

problem of form (1) that satisfies Assumption 3.
10Note that this selection is a proper partition of the constraints since the set Z couples only the variables zek for the endpoints of an

edge e.
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given by

zk+1
ei , zk+1

ej = argmin
zei,zej ,zei+zej=0

−(pkei)
′(Aeix

k+1
i − zei)− (pkej)

′(Aejx
k+1
j − zej) (18)

+
β

2

(∣∣∣∣Aeixk+1
i − zei

∣∣∣∣2 +
∣∣∣∣Aejxk+1

j − zej
∣∣∣∣2) ,

pk+1
eq = pkeq − β(Aeqx

k+1
q − zk+1

eq ) for q = i, j.

The primal z update involves a quadratic optimization problem with linear constraints which can be

solved in closed form. In particular, using first order optimality conditions, we conclude

zk+1
ei =

1

β
(−pkei − vk+1) + Aeix

k+1
i , zk+1

ej =
1

β
(−pkei − vk+1) + Aejx

k+1
j , (19)

where vk+1 is the Lagrange multiplier associated with the constraint zei + zej = 0 and is given by

vk+1 =
1

2
(−pkei − pkej) +

β

2
(Aeix

k+1
i + Aejx

k+1
j ). (20)

Combining these steps yields the following asynchronous algorithm for problem (3) which can be

implemented in a decentralized manner by each node i at each iteration k having access to only his

local objective function fi, adjacency matrix entries Aei, and his local variables xki , zkei, and pkei while

exchanging information with one of his neighbors.11

II. Asynchronous Edge Based ADMM algorithm:

A Initialization: choose some arbitrary x0
i in X and z0 in Z, which are not necessarily all equal.

Initialize p0
ei = 0 for all edges e and end points i.

B At time step k, the local clock associated with edge e = (i, j) ticks,

a Agents i and j update their estimates xki and xkj simultaneously as

xk+1
q = argmin

xq∈X
fq(xq)− (pkeq)

′Aeqxq +
β

2

∣∣∣∣Aeqxq − zkeq∣∣∣∣2
for q = i, j. The updated value of xk+1

i and xk+1
j are exchanged over the edge e.

b Agents i and j exchange their current dual variables pkei and pkej over the edge e. For q = i, j,

11The asynchronous ADMM algorithm can also be applied to a node-based reformulation of problem (2), where we impose the local
copy of each node to be equal to the average of that of its neighbors. This leads to another asynchronous distributed algorithm with a
different communication structure in which each node at each iteration broadcasts its local variables to all his neighbors, see [47] for
more details.
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agents i and j use the obtained values to compute the variable vk+1 as Eq. (20), i.e.,

vk+1 =
1

2
(−pkei − pkej) +

β

2
(Aeix

k+1
i + Aejx

k+1
i ).

and update their estimates zkei and zkej according to Eq. (19), i.e.,

zk+1
eq =

1

β
(−pkeq − vk+1) + Aeqx

k+1
q .

c Agents i and j update the dual variables pk+1
ei and pk+1

ej as

pk+1
eq = −vk+1 for q = i, j.

d All other agents keep the same variables as the previous time.

IV. CONVERGENCE ANALYSIS FOR ASYNCHRONOUS ADMM ALGORITHM

In this section, we study the convergence behavior of the asynchronous ADMM algorithm under

Assumptions 2-4. We show that the primal iterates {xk, zk} generated by (15) and (16) converge almost

surely to an optimal solution of problem (1). Under the additional assumption that the constraint sets

X and Z are compact, we further show that the corresponding objective function values converge to

the optimal value in expectation at rate O(1/k).

We first recall the relationship between the sets φk and ψk for a particular iteration k, which plays an

important role in the analysis. Since the set of active components at time k, φk, represents all components

of the decision variable that appear in the active constraints defined by the set ψk, we can write

[Dx]ψk = [Dφkx]ψk . (21)

We next consider a sequence {yk, vk, µk}, which is formed of iterates defined by a “full information”

version of the ADMM algorithm in which all constraints (and therefore all components) are active at

each iteration. We will show that under the Decoupled Constraints Assumption (cf. Assumption 3), the

iterates generated by the asynchronous algorithm (xk, zk, pk) take the values of (yk, vk, µk) over the sets

of active components and constraints and remain at their previous values otherwise. This association

enables us to perform the convergence analysis using the sequence {yk, vk, µk} and then translate the

results into bounds on the objective function value improvement along the sequence {xk, zk, pk}.
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More specifically, at iteration k, we define yk+1 by

yk+1 ∈ argmin
y∈X

F (y)− (pk − βHzk)′Dy +
β

2
||Dy||2 . (22)

Due to the fact that each row of matrix D has only one nonzero element [cf. Assumption 3], the

norm ||Dy||2 can be decomposed as
∑N

i=1 ||Diyi||2, where recall that Di is the matrix that picks up the

columns corresponding to component xi and is equal to zero otherwise. Thus, the preceding optimization

problem can be written as a separable optimization problem over the variables yi:

yk+1 ∈
N∑
i=1

argmin
yi∈Xi

fi(yi)− (pk − βHzk)′Diyi +
β

2
||Diyi||2 .

Since fk(x) =
∑

i∈φk fi(xi), and Dφk =
∑

i∈φk Di, the minimization problem that defines the iterate

xk+1 [cf. Eq. (15)] similarly decomposes over the variables xi for i ∈ Φk. Hence, the iterates xk+1 and

yk+1 are identical over the components in set φk, i.e., [xk+1]φk = [yk+1]φk . Using the definition of matrix

Dφk , i.e., Dφk =
∑

i∈φk Di, this implies the following relation:

Dφkx
k+1 = Dφky

k+1. (23)

The rest of the components of the iterate xk+1 by definition remain at their previous value, i.e., [xk+1]φ̄k =

[xk]φ̄k .

Similarly, we define vector vk+1 in Z by

vk+1 ∈ argmin
v∈Z

−(pk − βDyk+1)′Hv +
β

2
||Hv||2 . (24)

Using the diagonal structure of matrix H [cf. Assumption 3] and the fact that Π is a proper partition

of the constraint set [cf. Section III-B], this problem can also be decomposed in the following way:

vk+1 ∈ argmin
v,[v]ψ∈Zψ

∑
ψ∈Π

−(pk − βDyk+1)′Hψ[v]ψ +
β

2
||Hψ[v]ψ||2 ,

where Hψ is a diagonal matrix that contains the lth diagonal element of the diagonal matrix H for l

in set ψ (and has zeros elsewhere) and set Zψ is the projection of set Z on component [v]ψ. Since

the diagonal matrix Hψk has nonzero elements only on the lth element of the diagonal with l ∈ ψk,

the update of [v]ψ is independent of the other components, hence we can express the update on the

components of vk+1 in set ψk as

[vk+1]ψk ∈ argmin
v∈Z

−(pk − βDψkx
k+1)′Hψkz +

β

2

∣∣∣∣Hψkz
∣∣∣∣2 .
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By the primal z update [cf. Eq. (16)], this shows that [zk+1]ψk = [vk+1]ψk . By definition, the rest of the

components of zk+1 remain at their previous values, i.e., [zk+1]ψ̄k = [zk]ψ̄k .

Finally, we define vector µk+1 in RW by

µk+1 = pk − β(Dyk+1 +Hvk+1). (25)

We relate this vector to the dual variable pk+1 using the dual update [cf. Eq. (14)]. We also have

[Dφkx
k+1]ψk = [Dφky

k+1]ψk = [Dyk+1]ψk ,

where the first equality follows from Eq. (23) and second is derived from Eq. (21). Moreover, since H is

diagonal, we have [Hψkz
k+1]ψk = [Hvk+1]ψk . Thus, we obtain [pk+1]ψk = [µk+1]ψk and [pk+1]ψ̄k = [pk]ψ̄k .

A key term in our analysis will be the residual defined at a given primal vector (y, v) by

r = Dy +Hv. (26)

The residual term is important since its value at the primal vector (yk+1, vk+1) specifies the update

direction for the dual vector µk+1 [cf. Eq. (25)]. We will denote the residual at the primal vector

(yk+1, vk+1) by

rk+1 = Dyk+1 +Hvk+1. (27)

A. Preliminaries

We proceed to the convergence analysis of the asynchronous algorithm. We first present some pre-

liminary results which will be used later to establish convergence properties of asynchronous algorithm.

In particular, we provide bounds on the difference of the objective function value of the vector yk from

the optimal value, the distance between µk and an optimal dual solution and distance between vk and

an optimal solution z∗. We also provide a set of sufficient conditions for a limit point of the sequence

{xk, zk, pk} to be a saddle point of the Lagrangian function. The results of this section are independent

of the probability distributions of the random variables Φk and Ψk. Due to space constraints, the proofs

of the results of in this section are omitted. We refer the reader to [47] for the missing details.

The next lemma establishes primal feasibility (or zero residual property) of a saddle point of the

Lagrangian function of problem (1).

Lemma 4.1: Let (x∗, z∗, p∗) be a saddle point of the Lagrangian function defined as in Eq. (10) of

problem (1). Then

Dx∗ +Hz∗ = 0. (28)
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The next theorem provides bounds on two key quantities, F (yk+1)− µ′rk+1 and 1
2β

∣∣∣∣µk+1 − p∗
∣∣∣∣2 +

β
2

∣∣∣∣H(vk+1 − z∗)
∣∣∣∣2. These quantities will be related to the iterates generated by the asynchronous

ADMM algorithm via a weighted norm and a weighted Lagrangian function in Section IV-B. The

weighted version of the quantity 1
2β

∣∣∣∣µk+1 − p∗
∣∣∣∣2 + β

2

∣∣∣∣H(vk+1 − z∗)
∣∣∣∣2 is used to show almost sure

convergence of the algorithm and the quantity F (yk+1)−µ′rk+1 is used in the convergence rate analysis.

Theorem 4.2: Let {xk, zk, pk} be the sequence generated by the asynchronous ADMM algorithm

(12)-(14). Let {yk, vk, µk} be the sequence defined in Eqs. (22)-(25) and (x∗, z∗, p∗) be a saddle point

of the Lagrangian function of problem (1). The following hold at each iteration k:

F (x∗)− F (yk+1) + µ′rk+1 ≥ 1

2β

(∣∣∣∣µk+1 − µ
∣∣∣∣2 − ∣∣∣∣pk − µ∣∣∣∣2) (29)

+
β

2

(∣∣∣∣H(vk+1 − z∗)
∣∣∣∣2 − ∣∣∣∣H(zk − z∗)

∣∣∣∣2)+
β

2

∣∣∣∣rk+1
∣∣∣∣2 +

β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2 ,

for all µ in RW , and

0 ≥ 1

2β

(∣∣∣∣µk+1 − p∗
∣∣∣∣2 − ∣∣∣∣pk − p∗∣∣∣∣2)+

β

2

(∣∣∣∣H(vk+1 − z∗)
∣∣∣∣2 − ∣∣∣∣H(zk − z∗)

∣∣∣∣2) (30)

+
β

2

∣∣∣∣rk+1
∣∣∣∣2 +

β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2 .

The following lemma analyzes the limiting properties of the sequence {xk, zk, pk}. The results will

later be used in Lemma 4.5, which provides a set of sufficient conditions for a limit point of the

sequence {xk, zk, pk} to be a saddle point.

Lemma 4.3: Let {xk, zk, pk} be the sequence generated by the asynchronous ADMM algorithm (12)-

(14). Let {yk, vk, µk} be the sequence defined in Eqs. (22)-(25). Consider a sample path of Ψk and Φk

along which the sequence
{∣∣∣∣rk+1

∣∣∣∣2 +
∣∣∣∣H(vk+1 − zk)

∣∣∣∣2} converges to 0 and the sequence {zk, pk}

is bounded, where rk is the residual defined as in Eq. (27). Then, the sequence {xk, yk, zk} has a limit

point, which is a saddle point of the Lagrangian function of problem (1).

B. Convergence and Rate of Convergence

The results of the previous section did not rely on the probability distributions of random variables

Φk and Ψk. In this section, we will introduce a weighted norm and weighted Lagrangian function

where the weights are defined in terms of the probability distributions of random variables Ψk and

Φk representing the active constraints and components. We will use the weighted norm to construct a

nonnegative supermartingale along the sequence {xk, zk, pk} generated by the asynchronous ADMM

algorithm and use it to establish the almost sure convergence of this sequence to a saddle point of the

Lagrangian function of problem (1). By relating the iterates generated by the asynchronous ADMM
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algorithm to the variables (yk, vk, µk) through taking expectations of the weighted Lagrangian function

and using results from Theorem 4.2, we will show that under a compactness assumption on the constraint

sets X and Z, the asynchronous ADMM algorithm converges with rate O(1/k) in expectation in terms

of both objective function value and constraint violation.

We use the notation αi to denote the probability that component xi is active at one iteration, i.e.,

αi = P(i ∈ Φk), (31)

and the notation λl to denote the probability that constraint l is active at one iteration, i.e.,

λl = P(l ∈ Ψk). (32)

Note that, since the random variables Φk (and Ψk) are independent and identically distributed for all

k, these probabilities are the same across all iterations. We define a diagonal matrix Λ in RW×W with

elements λl on the diagonal, i.e.,

Λll = λl for each l ∈ {1, . . . ,W}.

Since each constraint is assumed to be active with strictly positive probability [cf. Assumption 4], matrix

Λ is positive definite. We write Λ̄ to indicate the inverse of matrix Λ. Matrix Λ̄ induces a weighted

vector norm for p in RW as

||p||2Λ̄ = p′Λ̄p.

We define a weighted Lagrangian function L̃(x, z, µ) : RnN × RW × RW → R as

L̃(x, z, µ) =
N∑
i=1

1

αi
fi(xi)− µ′

(
N∑
i=1

1

αi
Dix+

∑
l=1

1

λl
Hlz

)
. (33)

We use the symbol Jk to denote the filtration up to and include iteration k, which contains information

of random variables Φt and Ψt for t ≤ k. We have Jk ⊂ Jk+1 for all k ≥ 1.

The particular weights in Λ̄-norm and the weighted Lagrangian function are chosen to relate the expec-

tation of the norm 1
2β

∣∣∣∣pk+1 − µ
∣∣∣∣2

Λ̄
+β

2

∣∣∣∣H(zk+1 − v)
∣∣∣∣2

Λ̄
and function L̃(xk+1, zk+1, µ) to 1

2β

∣∣∣∣pk − µ∣∣∣∣2
Λ̄
+

β
2

∣∣∣∣H(zk − v)
∣∣∣∣2

Λ̄
and function L̃(xk, zk, µ), as we will show in the following lemma. This relation

will be used in Theorem 4.6 to show that the scalar sequence
{

1
2β

∣∣∣∣pk − µ∣∣∣∣2
Λ̄

+ β
2

∣∣∣∣H(zk − v)
∣∣∣∣2

Λ̄

}
is a nonnegative supermartingale, and establish almost sure convergence of the asynchronous ADMM

algorithm.

Lemma 4.4: Let {xk, zk, pk} be the sequence generated by the asynchronous ADMM algorithm (12)-
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(14). Let {yk, vk, µk} be the sequence defined in Eqs. (22)-(25). Then the following hold for each

iteration k:

E
(

1

2β

∣∣∣∣pk+1 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − v)
∣∣∣∣2

Λ̄

∣∣∣∣Jk) =
1

2β

∣∣∣∣µk+1 − µ
∣∣∣∣2 (34)

+
β

2

∣∣∣∣H(vk+1 − v)
∣∣∣∣2 +

1

2β

∣∣∣∣pk − µ∣∣∣∣2
Λ̄

+
β

2

∣∣∣∣H(zk − v)
∣∣∣∣2

Λ̄
− 1

2β

∣∣∣∣pk − µ∣∣∣∣2 − β

2

∣∣∣∣H(zk − v)
∣∣∣∣2 ,

for all µ in RW and v in Z, and

E
(
L̃(xk+1, zk+1, µ)

∣∣∣∣Jk)
=
(
F (yk+1)− µ′(Dyk+1 +Hvk+1)

)
+ L̃(xk, zk, µ)−

(
F (xk)− µ′(Dxk +Hzk)

)
, (35)

for all µ in RW .

Proof: By the definition of λl in Eq. (32), for each l, the element pk+1
l can be either updated

to µk+1
l with probability λl, or stay at previous value pkl with probability 1 − λl. Hence, we have the

following expected value

E
(

1

2β

∣∣∣∣pk+1 − µ
∣∣∣∣2

Λ̄

∣∣∣∣Jk) =
W∑
l=1

1

λl

[
λl

(
1

2β

∣∣∣∣µk+1
l − µl

∣∣∣∣2)+ (1− λl)
(

1

2β

∣∣∣∣pkl − µl∣∣∣∣2)]
=

1

2β

∣∣∣∣µk+1 − µ
∣∣∣∣2 +

1

2β

∣∣∣∣pk − µ∣∣∣∣2
Λ̄
− 1

2β

∣∣∣∣pk − µ∣∣∣∣2 ,
where the second equality follows from definition of ||·||Λ̄, and grouping the terms.

Similarly, zk+1
l is either equal to vk+1

l with probability λl or zkl with probability 1 − λl. Due to the

diagonal structure of the H matrix, the vector Hlz has only one non-zero element equal to [Hz]l at lth

position and zeros else where. Thus, we obtain

E
(
β

2

∣∣∣∣H(zk+1 − v)
∣∣∣∣2

Λ̄

∣∣∣∣Jk) =
W∑
l=1

1

λl

[
λl

(
β

2

∣∣∣∣Hl(v
k+1 − v)

∣∣∣∣)+ (1− λl)
(
β

2

∣∣∣∣Hl(z
k − v)

∣∣∣∣2)]
=
β

2

∣∣∣∣H(vk+1 − v)
∣∣∣∣2 +

β

2

∣∣∣∣H(zk − v)
∣∣∣∣2

Λ̄
− β

2

∣∣∣∣H(zk − v)
∣∣∣∣2 ,

where we used the definition of ||·||Λ̄ once again. By summing the above two equations and using

linearity of expectation operator, we obtain Eq. (34).

Using a similar line of argument, we observe that at iteration k, for each i, xk+1
i has the value of

yk+1
i with probability αi and its previous value xkl with probability 1− αi. The expectation of function
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L̃ therefore satisfies

E
(
L̃(xk+1, zk+1, µ)

∣∣∣∣Jk) =
N∑
i=1

1

αi

[
αi
(
fi(y

k+1
i )− µ′Diy

k+1
)

+ (1− αi)
(
fi(x

k
i )− µ′Dix

k
)]

+
W∑
l=1

1

λl
µ′
[
λlHlv

k+1 + (1− λl)Hlz
k
]

=

(
N∑
i=1

fi(y
k+1
i )− µ′(Dyk+1 +Hvk+1)

)
+ L̃(xk, zk, µ)−

(
N∑
i=1

fi(x
k
i )− µ′(Dxk +Hzk)

)
,

where we used the fact that D =
∑N

i=1 Di. Using the definition F (x) =
∑N

i=1 fi(x) [cf. Eq. (9)], this

shows Eq. (35).

The next lemma builds on Lemma 4.3 and establishes a sufficient condition for the sequence {xk, zk, pk}

to converge to a saddle point of the Lagrangian. Theorem 4.6 will then show that this sufficient condition

holds with probability 1 and thus the algorithm converges almost surely.

Lemma 4.5: Let (x∗, z∗, p∗) be any saddle point of the Lagrangian function of problem (1) and

{xk, zk, pk} be the sequence generated by the asynchronous ADMM algorithm (12)-(14). Along any

sample path of Φk and Ψk, if the scalar sequence 1
2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄
is convergent

and the scalar sequence β
2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2] converges to 0, then the sequence {xk, zk, pk}

converges to a saddle point of the Lagrangian function of problem (1).

Proof: Since the scalar sequence 1
2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄
converges, matrix Λ̄ is

positive definite, and matrix H is invertible [cf. Assumption 3], it follows that the sequences {pk} and

{zk} are bounded. Lemma 4.3 then implies that the sequence {xk, zk, pk} has a limit point.

We next show that the sequence {xk, zk, pk} has a unique limit point. Let (x̃, z̃, p̃) be a limit point

of the sequence {xk, zk, pk}, i.e., the limit of sequence {xk, zk, pk} along a subsequence κ. We first

show that the components z̃, p̃ are uniquely defined. By Lemma 4.3, the point (x̃, z̃, p̃) is a saddle point

of the Lagrangian function. Using the assumption of the lemma for (p∗, z∗) = (p̃, z̃), this shows that

the scalar sequence
{

1
2β

∣∣∣∣pk+1 − p̃
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(zk+1 − z̃)
∣∣∣∣2

Λ̄

}
is convergent. The limit of the sequence,

therefore, is the same as the limit along any subsequence, implying

lim
k→∞

1

2β

∣∣∣∣pk+1 − p̃
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − z̃)
∣∣∣∣2

Λ̄
= lim

k→∞,k∈κ

1

2β

∣∣∣∣pk+1 − p̃
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − z̃)
∣∣∣∣2

Λ̄

=
1

2β
||p̃− p̃||2Λ̄ +

β

2
||H(z̃ − z̃)||2Λ̄ = 0,

Since matrix Λ̃ is positive definite and matrix H is invertible, this shows that limk→∞ p
k = p̃ and

limk→∞ z
k = z̃.
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Next we prove that given (z̃, p̃), the x component of the saddle point is uniquely determined. By

Lemma 4.1, we have Dx̃+Hz̃ = 0. Since matrix D has full column rank [cf. Assumption 3], the vector

x̃ is uniquely determined by x̃ = −(D′D)−1D′Hz̃.

The next theorem establishes almost sure convergence of the asynchronous ADMM algorithm. Our

analysis uses results related to supermartingales (interested readers are referred to [18] and [48] for a

comprehensive treatment of the subject).

Theorem 4.6: Let {xk, zk, pk} be the sequence generated by the asynchronous ADMM algorithm (12)-

(14). The sequence {xk, zk, pk} converges almost surely to a saddle point of the Lagrangian function

of problem (1).

Proof: We will show that the conditions of Lemma 4.5 are satisfied almost surely. We will first focus

on the scalar sequence 1
2β

∣∣∣∣pk+1 − µ
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(zk+1 − v)
∣∣∣∣2

Λ̄
and show that it is a nonnegative super-

martingale. By martingale convergence theorem, this shows that it converges almost surely. We next es-

tablish that the scalar sequence β
2

∣∣∣∣rk+1 −H(vk+1 − zk)
∣∣∣∣2 converges to 0 almost surely by an argument

similar to the one used to establish Borel-Cantelli lemma. These two results imply that the set of events

where 1
2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄
is convergent and β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2]

converges to 0 has probability 1. Hence, by Lemma 4.5, we have the sequence {xk, zk, pk} converges

to a saddle point of the Lagrangian function almost surely.

We first show that the scalar sequence 1
2β

∣∣∣∣pk+1 − µ
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(zk+1 − v)
∣∣∣∣2

Λ̄
is a nonnegative su-

permartingale. Since it is a summation of two norms, it immediately follows that it is nonnegative. To

see it is a supermartingale, we let vectors yk+1, vk+1, µk+1 and rk+1 be those defined in Eqs. (22), (24),

(25) and (27). Recall that the symbol Jk denotes the filtration up to and including iteration k. From

Lemma 4.4, we have

E
(

1

2β

∣∣∣∣pk+1 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − v)
∣∣∣∣2

Λ̄

∣∣∣∣Jk)
=

1

2β

∣∣∣∣µk+1 − µ
∣∣∣∣2 +

β

2

∣∣∣∣H(vk+1 − v)
∣∣∣∣2 +

1

2β

∣∣∣∣pk − µ∣∣∣∣2
Λ̄

+
β

2

∣∣∣∣H(zk − v)
∣∣∣∣2

Λ̄

− 1

2β

∣∣∣∣pk − µ∣∣∣∣2 − β

2

∣∣∣∣H(zk − v)
∣∣∣∣2

Substituting µ = p∗ and v = z∗ in the above expectation calculation and combining with the following

inequality from Theorem 4.2,

0 ≥ 1

2β

(∣∣∣∣µk+1 − p∗
∣∣∣∣2 − ∣∣∣∣pk − p∗∣∣∣∣2)+

β

2

(∣∣∣∣H(vk+1 − z∗)
∣∣∣∣2 − ∣∣∣∣H(zk − z∗)

∣∣∣∣2)
+
β

2

∣∣∣∣rk+1
∣∣∣∣2 +

β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2 ,
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we obtain

E
(

1

2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄

∣∣∣∣Jk)
≤ 1

2β

∣∣∣∣pk − p∗∣∣∣∣2
Λ̄

+
β

2

∣∣∣∣H(zk − z∗)
∣∣∣∣2

Λ̄
− β

2

∣∣∣∣rk+1
∣∣∣∣2 − β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2 .

Hence, the sequence 1
2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄
is a nonnegative supermartingale in k and

by martingale convergence theorem, it converges almost surely.

We next establish that the scalar sequence
{
β
2

∣∣∣∣rk+1
∣∣∣∣2 + β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2} converges to 0 almost

surely. Rearranging the terms in the previous inequality and taking iterated expectation with respect to

the filtration Jk, we obtain for all T

T∑
k=1

E
(
β

2

∣∣∣∣rk+1
∣∣∣∣2 +

β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2) ≤ 1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄
(36)

− E
(

1

2β

∣∣∣∣pT+1 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zT+1 − z∗)
∣∣∣∣2

Λ̄

)
≤ 1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄
,

where the last inequality follows from relaxing the upper bound by dropping the non-positive expected

value term. Thus, the sequence
{
E
(
β
2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2])} is summable implying

lim
k→∞

∞∑
t=k

E
(
β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2]) = 0 (37)

By Markov inequality, we have

P
(
β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2] ≥ ε

)
≤ 1

ε
E
(
β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2]) ,

for any scalar ε > 0 for all iterations t. Therefore, we have

lim
k→∞

P
(

sup
t≥k

β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2] ≥ ε

)
= lim

k→∞
P

(
∞⋃
t=k

β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2] ≥ ε

)

≤ lim
k→∞

∞∑
t=k

P
(
β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2] ≥ ε

)

≤ lim
k→∞

1

ε

∞∑
t=k

E
(
β

2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2]) = 0,

July 31, 2013 DRAFT



23

where the first inequality follows from union bound on probability, the second inequality follows from

the preceding relation, and the last equality follows from Eq. (37). This proves that the sequence
β
2

[∣∣∣∣rk+1
∣∣∣∣2 +

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2] converges to 0 almost surely.

We next analyze convergence rate of the asynchronous ADMM algorithm. The rate analysis is done

with respect to the time ergodic averages defined as x̄(T ) in RnN , the time average of xk up to and

including iteration T , i.e.,

x̄i(T ) =

∑T
1=1 x

k
i

T
, (38)

for all i = 1, . . . , N ,12 and z̄(k) in RW as

z̄l(T ) =

∑T
k=1 z

k
l

T
, (39)

for all l = 1, . . . ,W .

We next introduce some scalars Q(µ), Q̄, θ̄ and L̃0, all of which will be used to provide an upper

bound on the constant term that appears in the rate analysis. Scalar Q(µ) is defined by

Q(µ) = max
x∈X,z∈Z

−L̃(x, z, µ), (40)

which implies Q(µ) ≥ −L̃(xk+1, zk+1, µ) for any realization of Ψk and Φk. For the rest of the section,

we adopt the following assumption, which will be used to guarantee that scalar Q(µ) is well defined

and finite:

Assumption 5: The sets X and Z are both compact.

Since the weighted Lagrangian function L̃ is continuous in x and z [cf. Eq. (33)], and all iterates

(xk, zk) are in the compact set X × Z, by Weierstrass theorem the maximization in the preceding

equality is attained and finite.

Since function L̃ is linear in µ, the function Q(µ) is the maximum of linear functions and is thus

convex and continuous in µ. We define scalar Q̄ as

Q̄ = max
µ=p∗−α,||α||≤1

Q(µ). (41)

The reason that such scalar Q̄ <∞ exists is once again by Weierstrass theorem (maximization over a

compact set).

12Here the notation x̄i(T ) denotes the vector of length n corresponding to agent i.
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We define vector θ̄ in RW as

θ̄ = p∗ − argmax
||u||≤1

∣∣∣∣p0 − (p∗ − u)
∣∣∣∣2

Λ̄
, (42)

such maximizer exists due to Weierstrass theorem and the fact that the set ||u|| ≤ 1 is compact and the

function ||p0 − (p∗ − u)||2Λ̄ is continuous. Scalar L̃0 is defined by

L̃0 = max
θ=p∗−α,||α||≤1

L̃(x0, z0, θ). (43)

This scalar is well defined because the constraint set is compact and the function L̃ is continuous in θ.

Theorem 4.7: Let {xk, zk, pk} be the sequence generated by the asynchronous ADMM algorithm

12)-(14) and (x∗, z∗, p∗) be a saddle point of the Lagrangian function of problem (1). Let the vectors

x̄(T ), z̄(T ) be defined as in Eqs. (38) and (39), the scalars Q̄, θ̄ and L̃0 be defined as in Eqs. (41),

(42) and (43) and the function L̃ be defined as in Eq. (33). Then the following relations hold:

||E(Dx̄(T ) +Hz̄(T ))|| ≤ 1

T

[
Q̄+ L̃0 +

1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
, (44)

and

||E(F (x̄(T )))− F (x∗)|| ≤ 1

T

[
Q̄+ L̃0 +

1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
(45)

+
||p∗||∞
T

[
Q(p∗) + L̃(x0, z0, p∗) +

1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
.

Proof: The proof of the theorem relies on Lemma 4.4 and Theorem 4.2. We combine these results

with law of iterated expectation, telescoping cancellation and convexity of the function F to establish

the bound

E [F (x̄(T )) −µ′(Dx̄(T ) +Hz̄(T ))]− F (x∗) (46)

≤ 1

T

[
Q(µ) + L̃(x0, z0, µ) +

1

2β

∣∣∣∣p0 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
,

for all µ in RW . Then by using different choices of the vector µ, we obtain the desired results.

We will first prove Eq. (46). Recall Eq. (35):

E
(
L̃(xk+1, zk+1, µ)

∣∣∣∣Jk)
=
(
F (yk+1)− µ′(Dyk+1 +Hvk+1)

)
+ L̃(xk, zk, µ)−

(
F (xk)− µ′(Dxk +Hzk)

)
,
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We rearrange Eq. (29) from Theorem 4.2, and obtain

F (yk+1)− µ′rk+1 ≤ F (x∗)− 1

2β

(∣∣∣∣µk+1 − µ
∣∣∣∣2 − ∣∣∣∣pk − µ∣∣∣∣2)

− β

2

(∣∣∣∣H(vk+1 − z∗)
∣∣∣∣2 − ∣∣∣∣H(zk − z∗)

∣∣∣∣2)− β

2

∣∣∣∣rk+1
∣∣∣∣2 − β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2 .

Since rk+1 = Dyk+1 +Hvk+1, we can apply this bound on the first term on the right-hand side of the

preceding relation which implies

E
(
L̃(xk+1, zk+1, µ)

∣∣∣∣Jk) ≤ F (x∗)− 1

2β

(∣∣∣∣µk+1 − µ
∣∣∣∣2 − ∣∣∣∣pk − µ∣∣∣∣2)

− β

2

(∣∣∣∣H(vk+1 − z∗)
∣∣∣∣2 − ∣∣∣∣H(zk − z∗)

∣∣∣∣2)− β

2

∣∣∣∣rk+1
∣∣∣∣2 − β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2

+ L̃(xk, zk, µ)−
(
F (xk)− µ′(Dxk +Hzk)

)
,

Combining the above inequality with Eq. (34) and using the linearity of expectation, we have

E
(
L̃(xk+1, zk+1, µ) +

1

2β

∣∣∣∣pk+1 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄

∣∣∣∣Jk)
≤F (x∗)− β

2

∣∣∣∣rk+1
∣∣∣∣2 − β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2 − (F (xk)− µ′(Dxk +Hzk)

)
+ L̃(xk, zk, µ) +

1

2β

∣∣∣∣pk − µ∣∣∣∣2
Λ̄

+
β

2

∣∣∣∣H(zk − z∗)
∣∣∣∣2

Λ̄

≤F (x∗)−
(
F (xk)− µ′(Dxk +Hzk)

)
+ L̃(xk, zk, µ) +

1

2β

∣∣∣∣pk − µ∣∣∣∣2
Λ̄

+
β

2

∣∣∣∣H(zk − z∗)
∣∣∣∣2

Λ̄
,

where the last inequality follows from relaxing the upper bound by dropping the non-positive term

−β
2

∣∣∣∣rk+1
∣∣∣∣2 − β

2

∣∣∣∣H(vk+1 − zk)
∣∣∣∣2.

This relation holds for k = 1, . . . , T and by the law of iterated expectation, the telescoping sum after

term cancellation satisfies

E
(
L̃(xT+1, zT+1, µ) +

1

2β

∣∣∣∣pT+1 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zT+1 − z∗)
∣∣∣∣2

Λ̄

)
≤ TF (x∗) (47)

− E

[
T∑
k=1

(
F (xk)− µ′(Dxk +Hzk)

)]
+ L̃(x0, z0, µ) +

1

2β

∣∣∣∣p0 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄
.

By convexity of the functions fi, we have

T∑
k=1

F (xk) =
T∑
k=1

N∑
i=1

fi(x
k
i ) ≥ T

N∑
i=1

fi(x̄i(T )) = TF (x̄(T )).

The same results hold after taking expectation on both sides. By linearity of matrix-vector multiplication,
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we have
∑T

k=1 Dx
k = TDx̄(T ),

∑T
k=1Hz

k = THz̄(T ). Relation (47) therefore implies that

TE [F (x̄(T ))− µ′(Dx̄(T ) +Hz̄(T ))]− TF (x∗)

≤E

[
T∑
k=1

(
F (xk)− µ′(Dxk +Hzk)

)]
− TF (x∗)

≤− E
(
L̃(xT+1, zT+1, µ) +

1

2β

∣∣∣∣pT+1 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zT+1 − z∗)
∣∣∣∣2

Λ̄

)
+ L̃(x0, z0, µ) +

1

2β

∣∣∣∣p0 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄
.

Using the definition of scalar Q(µ) [cf. Eq. (40)] and by dropping the non-positive norm terms from

the above upper bound, we obtain

TE [F (x̄(T )) −µ′(Dx̄(T ) +Hz̄(T ))]− TF (x∗)

≤ Q(µ) + L̃(x0, z0, µ) +
1

2β

∣∣∣∣p0 − µ
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄
.

We now divide both sides of the preceding inequality by T and obtain Eq. (46).

We now use Eq. (46) to first show that ||E(Dx̄(T ) +Hz̄(T ))|| converges to 0 with rate 1/T . For

each iteration T , we define a vector θ(T ) as θ(T ) = p∗ − E(Dx̄(T )+Hz̄(T ))
||E(Dx̄(T )+Hz̄(T ))|| . By substituting µ = θ(T )

in Eq. (46), we obtain for each T ,

E [F (x̄(T ))− (θ(T ))′(Dx̄(T ) +Hz̄(T ))]− F (x∗)

≤ 1

T

[
Q(θ(T )) + L̃(x0, z0, θ(T )) +

1

2β

∣∣∣∣p0 − θ(T )
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
,

Since the vectors E(Dx̄(T )+Hz̄(T ))
||E(Dx̄(T )+Hz̄(T ))|| all have norm 1 and hence θ(T ) is bounded within the unit sphere,

by using the definition of θ̄, we have ||p0 − θ(T )||2Λ̄ ≤
∣∣∣∣p0 − θ̄

∣∣∣∣2
Λ̄

. Eqs. (41) and (43) implies Q(θ(T )) ≤

Q̄ and L̃(x0, z0, θ(T )) ≤ L̃0 for all T . Thus the above inequality suggests that the following holds true

for all T ,

E(F (x̄(T ))− (θ(T ))′E(Dx̄(T ) +Hz̄(T ))− F (x∗) ≤ 1

T

[
Q̄+ L̃0 +

1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
.

From the definition of θ(T ), we have (θ(T ))′E(Dx̄(T ) + Hz̄(T )) = (p∗)′E(Dx̄(T ) + Hz̄(T )) −

||E(Dx̄(T ) +Hz̄(T ))||, and thus

E(F (x̄(T ))− (θ(T ))′E(Dx̄(T ) +Hz̄(T ))− F (x∗) =E(F (x̄(T )))− (p∗)′E [(Dx̄(T ) +Hz̄(T ))]

− F (x∗) + ||E(Dx̄(T ) +Hz̄(T ))|| .

July 31, 2013 DRAFT



27

Since the point (x∗, z∗, p∗) is a saddle point of the Lagrangian function, using Lemma 4.1, we have

0 ≤ EL((x̄(T )), z̄(T ), p∗)− L(x∗, z∗, p∗) = E(F (x̄(T )))− F (x∗)− (p∗)′E [(Dx̄(T ) +Hz̄(T ))] . (48)

The preceding three relations imply that

||E(Dx̄(T ) +Hz̄(T ))|| ≤ 1

T

[
Q̄+ L̃0 +

1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
,

which shows the first desired inequality.

To prove Eq. (45), we let µ = p∗ in Eq. (46) and obtain

E(F (x̄(T ))−(p∗)′E(Dx̄(T ) +Hz̄(T ))− F (x∗)

≤ 1

T

[
Q(p∗) + L̃(x0, z0, p∗) +

1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
.

This inequality together with Eq. (48) imply

||E(F (x̄(T )))− (p∗)′E(Dx̄(T ) +Hz̄(T ))− F (x∗)||

≤ 1

T

[
Q(p∗) + L̃(x0, z0, p∗) +

1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
.

By triangle inequality, we obtain

||E(F (x̄(T )))− F (x∗)|| ≤ 1

T

[
Q(p∗) + L̃(x0, z0, p∗) +

1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
(49)

+ ||E((p∗)′(Dx̄(T ) +Hz̄(T )))|| ,

Using definition of Euclidean and l∞ norms,13 the last term ||E((p∗)′(Dx̄(T ) +Hz̄(T )))|| satisfies

||E((p∗)′(Dx̄(T ) +Hz̄(T )))|| =

√√√√ W∑
l=1

(p∗l )
2[E(Dx̄(T ) +Hz̄(T ))]2l

≤

√√√√ W∑
l=1

||p∗||2∞ [E(Dx̄(T ) +Hz̄(T ))]2l = ||p∗||∞ ||E(Dx̄(T ) +Hz̄(T ))|| .

The above inequality combined with Eq. (44) yields

||E((p∗)′(Dx̄(T ) +Hz̄(T )))|| ≤ ||p
∗||∞
T

[
Q(p∗) + L̃(x0, z0, p∗) +

1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
.

13We use the standard notation that ||x||∞ = maxi |xi|.
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Hence, Eq. (49) implies

||E(F (x̄(T )))− F (x∗)|| ≤ 1

T

[
Q̄+ L̃0 +

1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
+
||p∗||∞
T

[
Q(p∗) + L̃(x0, z0, p∗) +

1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
.

Thus we have established the desired relation (45).

We remark that by Jensen’s inequality and convexity of the function F , we have F (E(x̄(T ))) ≤

E(F (x̄(T ))), and the preceding results also holds true when we replace E(F (x̄(T ))) by F (E(x̄(T ))).

V. CONCLUSIONS

We developed a fully asynchronous ADMM based algorithm for a convex optimization problem with

separable objective function and linear constraints. This problem is motivated by distributed multi-

agent optimization problems where a (static) network of agents each with access to a privately known

local objective function seek to optimize the sum of these functions using computations based on

local information and communication with neighbors. We show that this algorithm converges almost

surely to an optimal solution. Moreover, the rate of convergence of the objective function values and

feasibility violation is given by O(1/k). Future work includes investigating network effects (e.g., effects

of communication noise, quantization) and time-varying network topology on the performance of the

algorithm.
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