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Abstract

In recent work, Simsek-Ozdaglar-Acemoglu [5] prove a generalization of the
Poincare-Hopf Theorem and establish sufficient conditions for the uniqueness of
generalized critical points (generalized equilibria) under some regularity assump-
tions. In this paper, we restrict ourselves to functions on box-constrained regions
and establish the uniqueness of the generalized critical point with weaker regularity
assumptions than in [5]. We use our uniqueness result to show the uniqueness of
equilibrium in two recent network control models.

1 Introduction

Recent models of network control in both wireline and wireless networks lead to noncon-
vex optimization formulations mainly due to two reasons:

(a) Transmission medium characteristics result in nonlinear dependencies between con-
trol variables,

(b) Presence of multiple heterogeneous agents or interactions between multiple same/cross
layer protocols cannot be modeled as constrained optimization problems, but rather
as typically nonconvex equilibrium problems.

In recent work [5], we have used topological tools to analyze stationary points of non-
convex optimization and equilibrium problems. In particular, we proved a generalization
of the Poincare-Hopf Theorem and established sufficient conditions for the uniqueness of
generalized critical points under some regularity assumptions. In this paper, we present
further generalization and applications of our results in two recent network control mod-
els. We restrict ourselves to “box-constrained ” regions and establish uniqueness of the
generalized critical point under weaker regularity assumptions. As will be seen in Sections



3 and 4, relaxing the regularity assumptions allows us to avoid unnecessary restrictive
assumptions in establishing uniqueness of equilibrium and stationary points.

Regarding notation, for a given matrix A, Aij denotes its entry in ith row and jth

column. For an n × n matrix A and J ⊂ {1, 2, .., n}, let A|J denote the principal sub-
matrix of A which contains precisely the entries Aij where i, j ∈ J . When X is a finite
set, we use |X| to denote its cardinality. If a function f is differentiable at x, then
∇f(x) denotes the gradient of f . If f is twice differentiable at x, then Hf (x) denotes the
Hessian of f at x. We say that f is continuously differentiable at x if f is continuously
differentiable in an open set containing x.

Let Xmin
i , Xmax

i ∈ R be constants such that Xmin
i < Xmax

i for all i ∈ {1, 2, .., n}. Let
M ⊂ Rn be the compact region given by

M = {x ∈ Rn | Xmin
i ≤ x ≤ Xmax

i , ∀ i ∈ {1, 2, .., n}}. (1)

We refer to such a region as a box-constrained region. Given x ∈ M , denote the set of
components corresponding to the non-binding constraints at x with

INB(x) = {i ∈ {1, 2, .., n} | Xmin
i < xi < Xmax

i }.

Let U be an open set containing M , and F : U 7→ Rn be a function. Let Cr(F, M) denote
the set of generalized critical points of F over M (cf. [5]). For the box constrained regions,
a vector x ∈ Cr(F, M) iff

Fi(x) = 0, ∀ i ∈ INB(x) (2)

Fi(x) ≥ 0, ∀ i such that xi = Xmin
i (3)

Fi(x) ≤ 0, ∀ i such that xi = Xmax
i . (4)

We say that x ∈ M is a complementary critical point if the inequalities in (3) and (4) are
strict. When F is differentiable at x, we let

Γ(x) = ∇F (x)|INB(x).

We say that x ∈ Cr(F, M) is a non-degenerate critical point if F is continuously differ-
entiable at x and Γ(x) is non-singular.

The main result in Simsek-Acemoglu-Ozdaglar [5] corresponds to the following theo-
rem for the case when M is a box constrained region.

Theorem 1 Let M be a region given by (1). Let U be an open set containing M , and F :
U 7→ Rn be a continuous function. Assume that every x ∈ Cr(F, M) is complementary
and non-degenerate. Then, Cr(F, M) has finitely many elements and

∑

x∈Cr(F,M)

sign(det(Γ(x))) = 1.



2 A Uniqueness Result without the Complementar-

ity Condition

We introduce a stronger non-degeneracy condition to replace the complementarity con-
dition. We first define the notion of a P-matrix.

Definition 1 An n × n matrix A is a P-matrix if all the determinants of its principal
sub-matrices are positive, i.e. if det(A|J) > 0 for all J ⊂ {1, 2, .., n}.

Let
IF (x) = {i ∈ {1, 2, .., n} | Fi(x) = 0}.

Note that, if x ∈ Cr(F,M), IN(x) ⊂ IF (x) and if x is a complementary critical point,
IN(x) = IF (x). We say that x ∈ Cr(F,M) is a P-critical point if F is continuously
differentiable at x and ∇F (x)|IF (x) is a P-matrix. Note that every P-critical point is
non-degenerate but not vice versa. We have the following theorem which establishes
the uniqueness of the generalized critical point when the generalized critical point is not
necessarily complementary.

Theorem 2 Let M be a region given by (1). Let U be an open set containing M , and
F : U 7→ Rn be a continuously differentiable function. Assume that every x ∈ Cr(F, M)
is a P-critical point. Then, F has a unique generalized critical point over M .

For the proof, we need some preliminary results regarding the properties of P-matrices.
The proof of the following lemma could be found in Facchinei-Pang [1], Chapter 3.5.

Lemma 1 Let K be a box constrained region in Rn, U be an open set containing K,
and F : U 7→ Rn be a continuously differentiable function. Assume that the Jacobian
∇F (u) is a P-matrix for all u ∈ K. Then, for each x, z ∈ K such that x 6= z, there exists
a component j ∈ {1, 2, .., n} such that

(Fj(x)− Fj(z))(xj − zj) > 0.

We need the following lemma which is slightly stronger than Lemma 1.

Lemma 2 Let K be a box constrained region in Rn, U be an open set containing K,
and F : U 7→ Rn be a continuously differentiable function. Let J ⊂ {1, 2, .., n} be an
index set and assume that ∇F (u)|J is a P-matrix for all u ∈ K. Then, for each x, z ∈ K
such that x 6= z and xi = zi for all i /∈ J , there exists a component j ∈ J such that

(Fj(x)− Fj(z))(xj − zj) > 0.

Proof. Without loss of generality, assume that J = {1, 2, ..,m} for some m ≤ n. Given
A ⊂ Rn, let

A|J = {u ∈ Rm |(u1, .., um, xm+1, .., xn) ∈ A}.
Consider the continuously differentiable function g : U |J 7→ Rm given by

Gi(u) = Fi(u1, .., um, xm+1, .., xn)



for all i ∈ J and u ∈ U |J . Since zi = xi, for all i /∈ J , we have

(x1, .., xm) ∈ K|J , (z1, .., zm) ∈ K|J , K|J ⊂ U |J
and

Gk(x1, .., xm) = Fk(x), Gk(z1, .., zm) = Fk(z), for all k ∈ J. (5)

Moreover, it can be seen that

∇G(u) = ∇F (u1, .., um, x1, .., xm+1)|J ,

which implies that ∇G(u) is a P-matrix for all u ∈ K|J . Since K|J is a box constraint re-
gion in Rm, applying Lemma 1 for the function G and the vectors (x1, .., xm), (z1, .., zm) ∈
K|J , there exists j ∈ {1, 2, ..,m} such that

(xj − zj) (Gj(x1, .., xm)−Gj(z1, .., zm)) > 0.

Then, by Eq. (5), we have (xj − zj)(Fj(x)− Fj(z)) > 0 as desired.

We introduce the notion of an irregular pair to prove Theorem 2.

Definition 2 Let M be a region given by (1). Let U be an open set containing M ,
and F : U 7→ Rn be a continuous function. We say that (i, x) is an irregular pair if
x ∈ Cr(F, M), i ∈ IF (x)− IN(x), i.e. the inequality corresponding to i in either Eq. (3)
or Eq. (4) is not strict. We denote the set of irregular pairs of F over M by

A(F, M) = {(i, x) | x ∈ Cr(F,M), i ∈ IF (x)− IN(x)}.

We note that every x ∈ Cr(F,M) is a complementary critical point if A(F, M) = ∅.
We need the following lemma, which shows that we can recursively remove the irregular
pairs.

Lemma 3 Let M be a region given by (1). Let U be an open set containing M , and
F : U 7→ Rn be a continuous function. Assume that x ∈ Cr(F,M) is a P-critical point.
Then,
(i) There exists an open set Ux containing x such that Ux ∩Cr(F,M) = {x}, i.e. x is an
isolated critical point.
(ii) Assume that (k, x) ∈ A(F,M). Then, there exists a function F̃ : U 7→ Rn such that

(a) Cr(F̃ , M) = Cr(F,M).
(b) A(F̃ , M) = A(F,M)− {(k, x)}.
(c) x ∈ Cr(F̃ , M) is a P-critical point.

Proof. Since F is continuously differentiable at x, there exists an open set Sx ⊂ U
containing x over which F is continuously differentiable. The determinant of each prin-
cipal sub-matrix of ∇F |IF (x) can be viewed as a continuous function over Sx. Since there
are finitely many such functions each of which is positive at x, there exists an open set
Vx ⊂ Sx containing x such that the determinant of each sub-matrix of ∇F (u)|IF (x) is
positive for all u ∈ Vx, i.e. ∇F (u)|IF (x) is a P-matrix for all u ∈ Vx. Let Ux be an open
box constrained region which is a subset of Vx and which is so small that Fi(x) > 0,
[resp. Fi(x) < 0] [resp. Xmin

j < xj < Xmax
j ] implies Fi(u) > 0 [resp. Fi(u) < 0] [resp.

Xmin
j < uj < Xmax

j ] for all u ∈ Ux. We will show that Ux satisfies the claims of the
lemma.



(i) Assume, to get a contradiction, that y ∈ Ux is a critical point of F over M such that
y 6= x. Let J = {i | yi 6= xi} and consider i ∈ J . We first claim that i ∈ INB(y). If
i ∈ INB(x), by choice of Ux, i ∈ INB(y). Else if xi = Xmin

i or xi = Xmax
i , since yi 6= xi

and y ∈ M , we have Xmin
i < yi < Xmax

i , i.e. i ∈ INB(y), showing the claim. Since
y ∈ Cr(F, M), we further have i ∈ IF (y). Then, by choice of Ux, we also have i ∈ IF (x).
Thus, we have shown

J ⊂ IF (x), and J ⊂ IF (y). (6)

Then, for all u ∈ Ux, ∇F (u)|J is a principal sub-matrix of ∇F (u)|IF (x) and hence is a
P-matrix. Since xi = yi for all i /∈ J , by Lemma 2, there exists j ∈ J such that

(xj − yj)(Fj(x)− Fj(y)) > 0,

which yields a contradiction in view of Eq. (6).

(ii) Since k /∈ IN(x), we have either xk = Xmin
k or xk = Xmax

k . Assume xk = Xmin
k . Let

w : Rn 7→ R be a continuously differentiable weight function such that





w(x) = 1,

w(y) ≥ 0, if y ∈ Ux

w(y) = 0, if y /∈ Ux.

Let F̃ : U 7→ Rn be given by

{
F̃k(x) = Fk(x) + w(x), for all x ∈ U ,

F̃i(x) = Fi(x), for all i 6= k and x ∈ U .
(7)

We will show that the function F̃ satisfies the claims of the lemma. We have,

F̃k(x) > 0, and F̃i(x) = Fi(x) for i 6= k. (8)

Since x ∈ Cr(F, M), F̃ (x) satisfies (2), (3), (4) and thus x ∈ Cr(F̃ , M). We have

I F̃ (x) = IF (x)− {k}. (9)

By Eq. (9) and the definition in (7), we have

∇F̃ (x)|IF̃ (x) = ∇F (x)|IF̃ (x). (10)

Since x is a P-critical point, ∇F (x)|IF (x) is a P-matrix. Then, by equations (9) and

(10), ∇F̃ (x)|IF̃ (x) is a P-matrix. This shows that x ∈ Cr(F̃ , M) is a P-critical point,

completing the proof of part (ii)-(c) of the lemma.
We next claim that Cr(F̃ , M) ∩ Ux = {x}. Assume that there exists a critical point

y of F̃ in Ux such that y 6= x. Let J = {i | yi 6= xi}. As shown in the proof of part (i),

J ⊂ I F̃ (x) ⊂ IF (x), and J ⊂ I F̃ (y). (11)

Then, for u ∈ Ux, ∇F (u)|J is a principal sub-matrix of ∇F (u)|IF (x) and hence is a



P-matrix. Since xi = yi for all i /∈ J , by Lemma 2, there exists j ∈ J such that

(yj − xj)(Fj(y)− Fj(x)) > 0. (12)

If j 6= k, then, using Eq. (8) and Eq. (11),

Fj(y) = F̃j(y) = 0, and Fj(x) = 0,

which yields a contradiction. Else if j = k, then we have

0 = (y − x)jF̃j(y) = (y − x)jFj(y) + (y − x)jw(y).

We have (y − x)j > 0 since xk = Xmin
k , and w(y) ≥ 0 by definition. Then the preceding

equation implies
(y − x)jFj(y) ≤ 0, (13)

which, since Fj(x) = 0, yields a contradiction in view of Eq. (12). This completes the
proof of part (ii)-(a) of the lemma.

Since F̃k(x) = w(x) > 0, (k, x) /∈ A(F, M). Let (i, x) ∈ A(F,M) for some i 6= k.
Then, since F̃i = Fi, we have (i, x) ∈ A(F̃ ,M). Let (i, y) ∈ A(F, M) for some y ∈
Cr(F,M) such that y 6= x. Then by part (i) of this Lemma, y /∈ Ux and thus F (y) =
F̃ (y). This implies, (i, y) ∈ A(F̃ , M). We conclude that A(F̃ ,M) = A(F, M) − {k, x},
completing the proof of part (ii)-(b) of the lemma.

The proof for the case when k ∈ Imax(x) can be analogously given with the continu-
ously differentiable weight function chosen such that





w(x) = −1,

w(y) ≤ 0, if y ∈ Ux

w(y) = 0, if y /∈ Ux.

Q.E.D.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We first claim that Cr(F, M) is a compact set. Let

A1
i = {x ∈ M | Fi(x) = 0}, A2

i = {x ∈ M | Fi(x) ≥ 0 and xi = Xmin
i },

A3
i = {x ∈ M | Fi(x) ≤ 0 and xi = Xmax

i }.

Since each of A1
i , A

2
i , A

3
i is compact, so is Ai = A1

i ∪A2
i ∪A3

i . By equations (2), (3), and
(4), we have

Cr(F, M) =
⋂

i∈{1,2,..,n}
Ai.

Then, being the intersection of compact sets, Cr(F, M) is compact. We next claim that
Cr(F,M) has a finite number of elements. By part (i) of Lemma 3, for each x ∈ Cr(F, M),
there exists an open set Ux containing x such that Ux∩Cr(F, M) = {x}. Then, {Ux | x ∈
Cr(F,M)} is an open covering of the compact set Cr(F, M), which implies that it has a
finite sub-covering. This further implies that Cr(F,M) has a finite number of elements.

We finally claim that there exists a function G : U 7→ Rn such that Cr(G,M) =
Cr(F,M) and every x ∈ Cr(G,M) is complementary and non-degenerate. Let F 0 = F



and, for any j ≥ 0 such that A(F j,M) 6= ∅, define

F j+1 = F̃ j

where F̃ j is the modified function which satisfies the claim of part (ii) of Lemma 3 for
the function F j and an arbitrary (k, x) ∈ A(F j,M). By part (ii) of Lemma 3,

|A(F j+1,M)| = |A(F j,M)| − 1.

Since Cr(F, M) has finitely many elements, A(F, M) has finitely many elements, which
implies that there exists an integer m ≥ 0 such that A(Fm,M) = ∅. We let, G = Fm.
Since A(G,M) = ∅, every x ∈ Cr(G,M) is complementary and by part (iii) of Lemma
3, every x ∈ Cr(F, M) is a P-critical point, which implies that it is also non-degenerate.
Thus, G satisfies the claim. Since, every x ∈ Cr(G,M) is complementary and non-
degenerate, Theorem 1 applies to G and we have

∑

x∈Cr(F,M)

sign
(
det

(∇G(x)|IG(x)

))
= 1. (14)

For x ∈ Cr(G,M), we have det(∇G(x)|IG(x)) > 0 since x is a P-critical point of G. Then,
Cr(G,M) has a unique element in view of (14). Since Cr(F, M) = Cr(G, M), we conclude
that F has a unique generalized critical point over M as desired. Q.E.D.

We have the following corollary to Theorem 2 regarding non-convex optimization.

Corollary 1 Let M be a region given by (1). Let U be an open set containing M , and
f : U 7→ R be a twice continuously differentiable function. Let KKT(f,M) denote the
Karush-Kuhn-Tucker stationary points of f over the region M (cf. [5]) and assume that
for every x ∈ KKT(f, M), Hf (x)|I∇f (x) is a P-matrix. Then, KKT(f, M) has a unique
element which is also the unique local (global) minimum of f over M .

Proof. It was established in Simsek-Ozdaglar-Acemoglu [5] that

x ∈ KKT(f, M) ⇐⇒ x ∈ Cr(∇F, M).

Moreover, since ∇(∇f) = Hf , the assumption of the corollary is equivalent to the fact
that every x ∈ Cr(∇f, M) is a P-critical point. Then, by Theorem 2, Cr(∇f, M) has a
unique element, which further implies that KKT(f,M) has a unique element. Since M
is compact, f has a global (local) minimum of f over M . Since every local minimum of
f is a KKT point from first order conditions, we conclude that the unique element in
KKT(f, M) is also the unique local (global) minimum of f over M . Q.E.D.

3 Uniqueness for the Wireless Control Problem

One way to mitigate interference in a wireless network is to control the nodes’ transmit
powers. In an ad hoc wireless network, due to the lack of a central infrastructure, it is
essential to develop distributed algorithms for power control. A distributed algorithm
with provable convergence properties can be developed (by gradient descent methods) if
the optimum for the power control problem can be equivalently characterized by the first
order optimality conditions (as would be the case for a convex optimization problem).



The power optimization problem, however, is nonconvex due to the nature of the wireless
interference. An alternative approach is to show the uniqueness of stationary points,
which together with the existence of an optimal solution, would guarantee the sufficiency
of first order optimality conditions. In recent work, Huang-Berry-Honig [2] establish
the uniqueness of stationary points for the power optimization problem by transforming
the problem to a convex problem. They consequently develop a distributed algorithm
which converges to the unique optimum. In this section, we use Corollary 1 to provide
an alternative method for establishing the uniqueness of stationary points for the power
optimization problem.

Let L = {1, 2, ..., n} denote the set of nodes and

P =
∏
a∈L

[Pmin
i , Pmax

i ] ⊂ Rn

denote the set of power vectors p such that each node i ∈ L transmits at a power level
pi. Assume that 0 < Pmin

i < Pmax
i for each i ∈ L. For each node i, define the received

SINR (signal to noise ratio) to be the function γ : P 7→ R

γi(p) =
pihii

n0 +
∑

j 6=i pjhij

(15)

where n0, hji are positive constants. Assume that each node i has an increasing and
strictly concave utility function ui : R 7→ R, which is a function of the received SINR.
Let f : M 7→ R be given by

f(p) = −
∑

1≤i≤n

ui(γi(p)) (16)

Then, the wireless power control problem is to find a power vector p which solves the
following optimization problem.

min
p∈P

f(p). (17)

In general, the function f given by (15)-(16) is non-convex. Therefore, traditional strict
convexity arguments cannot be used to establish the uniqueness of solution for the prob-
lem given by (17).

Proposition 1 Let

γmin
i = min

p∈P
γi(p), γmax

i = max
p∈P

γi(p),

and assume that each utility function satisfies the following assumption regarding its
coefficient of relative risk aversion.

(A)− γiu
′′
i (γi)

u′i(γi)
∈ [1, 2], ∀ γi ∈ [γmin

i , γmax
i ].

Then, the function f given by (15)-(16) has a unique KKT stationary point and the
problem given by (17) has a unique solution.

Proof. Let Aij = (hijpj) / (hiipi). Then, we have

∑

j 6=i

γi(p)Aij < 1 (18)



It can be seen that

∇fi(p) = − 1

pi

(
u′iγi −

∑

j 6=i

Aiju
′
jγ

2
j

)
,

H ii
f (p) = − 1

p2
i

(
u′′i γ

2
i +

∑

j 6=i

γ2
j A

2
ij

(
u′′j γ

2
j + 2u′jγj

)
)

, ∀i ∈ {1, 2, .., n},

and

H il
f (p) =

1

pipl

(
Aliγi

(
u′′i γ

2
i + u′iγi

)
+ γlAil

(
u′′l γ

2
l + u′lγl

)−
∑

j 6=i,l

γ2
j AljAij

(
u′′j γ

2
j + 2u′jγj

)
)

,

for all i, l ∈ {1, 2, .., n} such that i 6= k.
We claim that Hf (p)|I∇f (p) is a P-matrix for all p ∈ M . Let

C = P∇F (p)P

where P is the n × n diagonal matrix with entries pi in the diagonal, and note that
∇F (p)|I∇f (p) is a P-matrix if and only if C|I∇f (p) is a P-matrix. We claim that C|I∇f (p)

is positive row diagonally dominant. Since ui satisfies (A), we have, for all i ∈ L,

u′′i γ
2
i + u′iγi ≤ 0 (19)

and
u′′i γ

2
i + 2u′iγi ≥ 0. (20)

Then, for i ∈ I∇f (p), using ∇fi(p) = 0, we have

C ii(p)−
∑

l 6=i

Cil(p) = (−u′′i γ
2
i − u′iγi)(1−

∑

l 6=i

Aliγi)−
∑

j 6=i

γjAij(
∑

l 6=j

γjAlj)
(
u′′j γ

2
j + 2u′jγj

)

+
∑

j 6=i

γjAij

(
u′′j γ

2
j + 2u′jγj

)

= (−u′′i γ
2
i − u′iγi)(1−

∑

l 6=i

Aliγi) +
∑

j 6=i

γjAij(1−
∑

l 6=j

Aljγj)
(
u′′j γ

2
j + 2u′jγj

)

> 0 (21)

where the inequality follows from Equations (18), (19), and (20). The inequality is strict
since since either Eq. (19) or Eq. (20) must be strict. Also by Equations (19) and (20),
C il(p) < 0 for all i 6= l. Then, Eq. (21) implies, for all i ∈ I∇f (p),

C ii(p)−
∑

l 6=i,l∈I∇f (p)

∣∣Cil(p)
∣∣ > 0

showing that C(p)|I∇f (p) is positive row diagonally dominant. Therefore, C(p)|I∇f (p), and
thus Hf (p)|I∇f (p), is a P-matrix for all p ∈ M . This implies, in particular, Hf (p)|I∇f (p) is
a P-matrix for all p ∈ KKT(f,M), and by Corollary 1, f has a unique KKT stationary
point and the wireless optimization problem given by (17) has a unique solution. Q.E.D.



4 Uniqueness for a Heterogenous Network Protocol

Model

In this section, we investigate the network model by Tang-Wang-Low-Chiang [7] in which
heterogenous congestion control protocols operate on shared links. When the sources
which share the links use a homogenous congestion control protocol which react to the
same pricing signals, then the resulting equilibrium is shown to be the solution to an
optimization problem that maximizes the sum of user utilities (cf. Kelly et al. [3],
Low [6]). When sources use heterogenous congestion control protocols as in Internet,
the equilibrium properties of the network are not as well understood. Tang-Wang-Low-
Chiang [7] is a first attempt to study the existence, uniqueness, and stability properties
of equilibria in network settings with heterogenous protocols. In this section, we use
Theorem 2 to prove the uniqueness of equilibrium under weaker requirements than in [7].

Consider a network consisting of a set of links L = {1, 2, .., n} with finite capacities cl.
Each link has a price pl as its congestion measure. Let the set J = {1, 2, .., |J |} denote
the set of protocols each of which react differently to the price of a link. The effective
price for protocol j on link l is denoted by a function mj

l (pl) of the price on the link. For
each protocol j, there are N j sources using protocol j. Each protocol j has an L × N j

routing matrix associated with it denoted by Rj. We have (Rj)ls = 1 if source s of type
j uses link l, and 0 otherwise. The effective price observed by a source s of type j is

qj
s(p) =

∑

l∈L

(Rj)lsmj
l (pl). (22)

Each source s of type j has a strictly increasing and differentiable utility function uj
s

associated with it and sends an amount of traffic given by

xj
s(p) = argmaxz≥0u

j
s(z)− zqj

s(p) =
[
(uj

s)
′−1

(qj
s(p))

]+

.

Then, the flow on a link l is given by

yl(p) =
∑
j∈J

∑

s∈Nj

(Rj)lsxj
s(p). (23)

Price p is a network equilibrium if the flow on each link is no more than the link capacity,
and is equal to the link capacity if the price on the link is strictly positive. Thus, the
equilibrium set is characterized by

E = {p ∈ Rn | p ≥ 0, pl(y
l(p)− cl) = 0 and yl(p) ≤ cl, ∀ l ∈ L = {1, 2, .., n}}. (24)

Tang-Wang-Low-Chiang show uniqueness properties for the equilibrium given by (22)-
(24) under the following assumptions.

(A1) Utility functions uj
s are strictly concave, increasing, and twice continuously differen-

tiable. Price mapping functions mj
l are continuously differentiable and strictly increasing

with mj
l (0) = 0.

(A2) For any ε > 0, there exists a scalar pε such that if pl > pε for link l, then xj
s(p) <

ε for all (j, s) with (Rj)ls = 1.



(A3) For every link l, there exists a source which sends flow only on link l and whose
utility function satisfies (uj

s)
′(cl) > 0.

Under (A3), it can be seen that for all equilibrium vectors p ∈ E, pl is strictly positive
for all l ∈ L, implying that all links operate at capacity. In this section, we relax the
restrictive assumption (A3) and extend the uniqueness results of [7] to allow for equilibria
in which some links in the network possibly operate below capacity.

Under (A1) and (A2), it can be seen that there exists a scalar pmax such that

yl(p) < cl (25)

for every l ∈ L and p such that pl ≥ pmax (cf. Lemma 1 in [7]). This shows, in particular,
that E ⊂ M where M is the box constrained region given by

M = {p ∈ Rn | 0 ≤ pl ≤ pmax, ∀ l ∈ L}.

Let F : U 7→ Rn be the function given by

Fl(p) = cl − yl(p).

We claim that, under (A1) and (A2),

E = Cr(F, M). (26)

First let p ∈ E. We have p ∈ M since E ⊂ M . Then, p ∈ Cr(F,M) in view of the
definitions given by (2)-(4) and (24). Conversely, let p ∈ Cr(F,M). By Eq. (25), Fl > 0
for all l such that pl = pmax. Then, for each l ∈ L, either Eq. (2) or Eq. (3) holds, showing
that p ∈ E in view of the definition in (24). Thus we have E = Cr(F, M) as claimed.
Given p ∈ M , let

INB(p) = {l ∈ L | 0 < pl < pmax} and IF (p) = {l ∈ L | Fl(p) = 0}.

It can be seen that the function F is continuously differentiable (cf. [7]). Given p ∈ E,
we define the index of the equilibrium p ∈ E to be

I(p) = sign
(
det

(∇F (p)|INB(p)

))
.

We introduce the following complementarity assumption.

(A4) For every p ∈ E and l ∈ L, Fl(p) = 0 only if pl > 0. In other words, for every
p ∈ E, INB(p) = IF (p).

Any network which satisfies (A3) also satisfies (A4) but not vice versa. The following
theorem, therefore, is a generalization of Theorem 4 in [7] in which (A3) is replaced by
(A4).

Theorem 3 Consider a network given by (22)-(24). Assume that the network is regular,
i.e. I(p) 6= 0 for all p ∈ E. Further, assume that the network satisfies the assumptions
(A1),(A2), and (A4). Then, E has a finite number of elements and

∑
p∈E

I(p) = 1.



Proof. Every p ∈ Cr(F, M) is non-degenerate since the network is regular and is com-
plementary by (A4). Then, the result follows from Theorem 1 since (A1) and (A2) imply
E = Cr(F, M) [cf. Eq. (26)].

The following uniqueness result follows from the preceding Theorem and generalizes
Theorem 6 in [7].

Theorem 4 Consider a network given by (22)-(24). Assume that the network is regular
and satisfies the assumptions (A1),(A2), and (A4). Further, assume that I(p) = 1 for all
p ∈ E. Then E has a unique element.

The following theorem follows from Theorem 2 and generalizes Theorem 4 by removing
(A4) which is difficult to establish algebraically.

Theorem 5 Consider a network given by (22)-(24). Assume that the network satisfies
assumptions (A1) and (A2). Further, assume that ∇F (p)|IF (p) is a P-matrix for every
p ∈ E. Then E has a unique element.

Using the above theorem, we can establish sufficient conditions on the fundamentals of
the network for the uniqueness of equilibrium. The following result generalizes Theorem
7 in [7] by relaxing assumption (A3).

Theorem 6 Consider a network given by (22)-(24). Assume that the network satisfies
assumptions (A1) and (A2). Denote the derivatives of the price mapping functions with

(mj
l )
′ =

∂mj
l (pl)

∂pl

.

E has a unique element if the functions (mj
l )
′ satisfy either one of the following conditions:

1. ∀l ∈ L, there exists some µl > 0 such that,

(mj
l )
′ ∈ [µl, 2

1/nµl], ∀ j ∈ J.

2. ∀j ∈ J , there exists some µj > 0 such that,

(mj
l )
′ ∈ [µl, 21/nµj], ∀ l ∈ L.

Proof. Assume that the (mj
l )
′ functions satisfy Condition 1. We claim that ∇F (p) is a

P-matrix for any p ∈ M . Tang-Wang-Low-Chiang [7] show that det(∇F (p)) > 0 for all
p (cf. Corollary 8 in [7]). Let K ⊂ L be any subset of the links, p ∈ M be a fixed price
vector and consider the principal sub-matrix S(p) = ∇F (p)|K . We claim that the same
proof in [7] shows det(S(p)) > 0. It can be seen that

∇F (p) =
∑
j∈J

BjM j.

where, M j denotes the n × n diagonal matrix with diagonal entries (mj
l )
′(pl) and Bj

denotes the n× n matrix with entries

(Bj)kl =
∑
s∈Nj

(Rj)ks(Rj)ls

(
−∂2uj

s (xj
s(p))

∂
(
xj

s

)2

)−1

.



Since M j is a diagonal matrix, we have

S(p) = ∇F (p)|K =
∑
j∈J

Bj|KM j|K .

In other words, S(p) has the same structure as the complete matrix ∇F (p), with only
the index set L replaced by the index set K ⊂ L. Then, the proof given in [7] shows that
det(S(p)) > 0 if the functions (mj

l )
′ satisfy

1̃. For any j ∈ J , there exists some µl > 0 such that

(mj
l )
′ ∈ [µl, 2

1/|K|µl].

|K| ≤ n implies 21/n ≤ 21/|K| and therefore Condition 1 implies Condition 1̃, showing
det(S(p)) > 0. Since determinants of arbitrary principal sub-matrices of ∇F (p) are
positive, ∇F (p) is a P-matrix for all p ∈ M . Then, ∇F (p)|IF (p) is also a P-matrix for
all p ∈ E, which, by Theorem 5, implies that E has a unique element. The proof for the
case when mj

l satisfy Condition 2 can likewise be given. Q.E.D.

References

[1] Facchinei, F., Pang , J.-S., Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems, Volume 1, Springer-Verlag, New York, 2003.

[2] Huang Jianwei, Berry Randall, Honig. Michael L., ”Distributed Interference Com-
pensation for Wireless Networks”, working paper.

[3] Kelly F., Maoulloo A., Tan D., “Rate control for communicatio7n networks: shadow
prices, proportional fairness and stability”, Journal of the Operational Research
Society, 49:237-252, 1998.

[4] Simsek A., Ozdaglar A., Acemoglu A., “Uniqueness of Generalized Equilibrium for
Box Constrained Problems and Applications”, LIDS working paper, July 2005.

[5] Simsek A., Ozdaglar A., Acemoglu A., “Generalized Poincare-Hopf Theorem for
Compact Nonsmooth Regions”, submitted for publication, June 2005.

[6] Low, S. H., “A duality model of TCP and queue management algorithms”,
IEEE/ACM Trans. on Networking, 7(6):861-874, December 1999.

[7] Tang A., Wang J., Low S. H., Chiang M., “Network Equilibrium of Heterogeneous
Congestion Control Protocols”, Journal Version, 2005.


