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Abstract— We construct a family of iterative discretization
algorithms for computing sequences of finitely-supported ε-
correlated equilibria of n-player games with polynomial utility
functions. These algorithms can be implemented efficiently
using semidefinite programming and sum of squares techniques.
They converge in the sense that they drive ε to zero in the limit
as points are added to the discretization. We show how a natural
discretization scheme proposed previously can be viewed as
a limiting case of this new family of algorithms. Finally we
provide a counterexample showing that this limiting case is
singular, i.e. ε need not converge to zero.

I. INTRODUCTION

This paper extends our previous work on computing cor-
related equilibria in games with polynomial utility functions
[12]. Most research on computing equilibria has focused on
games with finite strategy spaces. However many games of
practical importance have infinite strategy spaces. Our goal
is to make these games computationally tractable and hence
more viable as a modeling tool.

Research along these lines began in the 1950’s with a
series of publications by Dresher, Karlin, and Shapley in
which they examined structural properties of equilibria in
games with polynomial and polynomial-like utility functions
[1], [2], [4], [5]. Only ad hoc techniques of limited applica-
bility were known for computing equilibria of such games
until Parrilo showed that equilibria of two-player zero-sum
polynomial games could be computed using semidefinite
programming and sum of squares techniques [8]. These
methods have been extended to algorithmically approximate
Nash and correlated equilibria of nonzero-sum games [10],
[11], [12].

In this paper we provide an efficient method for computing
approximate correlated equilibria. In earlier work we have
shown that it is possible to compute a nested sequence
of outer approximations to the set of correlated equilibria
(when probability measures are described in terms of joint
moments) of a polynomial game which converge in a well-
defined sense to a description of this set of equilibria [12].
In the same paper we presented an adaptive discretization
method intended to iteratively compute a sample correlated
equilibrium as the limit of a sequence of finitely supported
ε-correlated equilibria. The algorithm is adaptive in the sense
that new points are added to the discretization (i.e. new
strategies are allowed to be chosen with positive probability)
according to a heuristic which seems to drive ε to zero
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quickly. This convergence behavior was conjectured to occur
in general based on empirical evidence.

Here we construct a parametrized family of related dis-
cretization algorithms and prove that under these procedures
ε goes to zero as the number of points in the discretization
increases. We show that it is possible to view the adaptive
discretization algorithm of [12] as a limiting case of certain
parameter choices for these new algorithms. Our convergence
proof does not go through in this limiting case and we
show that this is due to a fundamental flaw in the earlier
adaptive discretization algorithm. To do so we construct a
counterexample in which ε remains bounded away from zero,
refuting our conjecture in [12].

The remainder of this paper is organized as follows. We
define the class of games and equilibria we will study in
Section II. We present the main algorithm in Section III and
show how to implement it using semidefinite programs and
sum of squares techniques in Section IV. The counterexam-
ple showing that the earlier adaptive discretization algorithm
does not converge comprises Section V, after which we finish
with conclusions.

II. CONTINUOUS GAMES AND CORRELATED EQUILIBRIA

We begin by introducing the class of games we will
study and showing how to define correlated equilibria in this
setting. Some notational conventions used throughout are that
subscripts refer to players, while superscripts are frequently
used for other indices (it will be clear from context when
they represent exponents). If Sj are sets for j = 1, . . . , n
then S =

∏n
j=1 Sj and S−i =

∏
j 6=i Sj . The n-tuple s and

the (n−1)-tuple s−i are formed from the points sj similarly.
For simplicity we will write π(s) in place of π({s}) for
the probability mass assigned to a singleton {s} ⊆ S. All
polynomials will be assumed to have real coefficients.

Definition 2.1: A continuous game is a normal form
game with n players, each of whom has a pure strategy
space Ci which is a compact metric space and a continuous
utility function ui : C → R (C =

∏
Ci). A polynomial

game is a continuous game with Ci = [−1, 1] for all i
and polynomial utility functions. Given the other players’
strategy choices, each player seeks to maximize his own
utility.

The results below on polynomial games also apply to more
general semialgebraic strategy spaces (e.g. boxes or spheres
in place of intervals) and piecewise polynomial or piecewise
rational utilities, but for simplicity we will not consider such
cases here.



Since the strategy spaces are infinite, there is no known
way to express the entire set of correlated equilibria in terms
of finitely many parameters; this is generally handled by
means of infinite-dimensional families of departure functions
[3] or alternatively by our recent method of test functions
[12]. We will not need to consider these extra complications
here, because we will only be working with finitely sup-
ported probability distributions, i.e. those which assign all
probability mass to some finite set. In this case the correlated
equilibrium conditions can be written in a much simpler
equivalent form, as in the case of finite pure strategy spaces.
Nonetheless it is important to note that the definition below
excludes many ε-correlated equilibria which are not finitely
supported.

Definition 2.2: A probability measure π on C =
∏
Ci

with support contained in some finite set C̃ =
∏
C̃i is a

[finitely supported] ε-correlated equilibrium if∑
s−i∈C̃−i

π(s) [u(ti, s−i)− ui(s)] ≤ εi,si for all si ∈ C̃i,

all ti ∈ Ci, and all i∑
si∈C̃i

εi,si
≤ ε for all i.

If ε = 0 then we call π an [exact, finitely supported]
correlated equilibrium.

To interpret this definition suppose a random variable
R = (R1, . . . , Rn) were drawn according to the distribution
π which is known to all players. Suppose each player
i is given Ri as a “recommended” strategy but has no
knowledge of the other Rj aside from that which he can
infer from the value of Ri and π via Bayes’ rule. Then
the above definition states that if all players beside i play
according to their recommendations, player i cannot expect
to improve his payoff by more than ε by deviating from his
recommendation.

If the above definition is properly extended to arbitrary
probability distributions which are not necessarily finitely
supported, it can be shown that the set of ε-correlated
equilibria is compact with respect to the weak topology on
the space of probability distributions. We omit the precise
definitions and proofs here, but note this fact because it
has important implications for our algorithms. In particular
any sequence of εk-correlated equilibria with εk going to
zero as k goes to infinity (such as those produced by
the algorithms below) has a subsequence which converges
weakly to some probability distribution. Furthermore, any
such limiting probability distribution is an exact correlated
equilibrium.

III. A FAMILY OF CONVERGENT ADAPTIVE
DISCRETIZATION ALGORITHMS

Fix a continuous game. In this section we provide two
algorithms (the second is in fact a parametrized family of
algorithms which generalizes the first) to compute a sequence
of εk-correlated equilibria such that limk→∞ εk = 0. In
the following section we will show that for polynomial

games these algorithms can be implemented efficiently using
semidefinite programming.

Informally, these algorithms work as follows. Each itera-
tion k begins with a finite set C̃ki ⊆ Ci of strategies which
each player i is allowed to play with positive probability
in that iteration; the initial choice of this set at iteration
k = 0 is arbitrary. We then compute the “best” ε-correlated
equilibrium which uses only these allowed strategies, i.e.
the one which minimizes ε (subject to some extra technical
conditions needed to ensure convergence).

Given the optimal objective value εk and optimal probabil-
ity distribution πk, there is some player i who can improve
his payoff by εk if he switches from his recommended
strategies to certain other strategies. We interpret these other
strategies as good choices for that player to use to help
make εk smaller in later iterations k. Therefore we add these
strategies to C̃ki to get C̃k+1

i and repeat this process for
iteration k + 1.

Algorithm 3.1: Let k = 0 and for each player fix a finite
subset C̃0

i ⊆ Ci.
• Let πk be an εk-correlated equilibrium of the game

having minimal εk subject to two extra conditions.
First, πk must be supported on C̃k. Second, we require
that πk be an exact correlated equilibrium of the finite
game induced when deviations from the recommended
strategies are restricted to the set C̃k, i.e. when we
replace the condition ti ∈ Ci in Definition 2.1 with
ti ∈ C̃ki .
That is to say, let εk be the optimal value of the
following optimization problem, and πk be an optimal
assignment to the decision variables.

minimize ε
s.t.∑

s−i∈C̃k
−i

π(s) [ui(ti, s−i)− ui(s)] ≤ 0 for all i and

si, ti ∈ C̃ki∑
s−i∈C̃k

−i

π(s) [ui(ti, s−i)− ui(s)] ≤ εi,si for all i, si ∈ C̃ki

and ti ∈ Ci∑
si∈C̃k

i

εi,si
≤ ε for all i

π(s) ≥ 0 for all s ∈ C̃∑
s∈C̃k

π(s) = 1

• If εk = 0, terminate.
• For each player i for whom

∑
si∈C̃i

εi,si
= ε, form

C̃k+1
i from C̃ki by adding in at least one strategy

ti which makes
∑
s−i∈C̃−i

π(s) [ui(ti, s−i)− ui(s)] =
εi,si

for each si ∈ C̃ki such that εi,si
> 0.

• For all other players i, let C̃k+1
i = C̃ki .

• Let k = k + 1 and repeat.
Note that all steps of this algorithm are well-defined. First,

the optimization problem is feasible. To see this let πk be
any exact correlated equilibrium of the finite game with



strategy spaces C̃ki and utilities ui restricted to C̃k; such an
equilibrium exists because all finite games have correlated
equilibria [3]. The ui are bounded on C (being continuous
functions on a compact set), so by making ε and the εi,si

large, we see that πk is a feasible solution of the problem.
Second, the optimal objective value is achieved by some πk

because the space of probability measures on C̃k is compact
and ε is bounded below by zero. Third, the set of ti ∈ Ci
making the ε-correlated equilibrium constraints tight at the
optimum is nonempty by optimality of πk and continuity of
ui. This set consists only of strategies which are not in C̃ki
because we have the constraint that the deviations in utility
be nonpositive for ti ∈ C̃ki .

To show that Algorithm 3.1 converges, we will view it
as a member of the following family of algorithms with
the parameters set to α = 0 and β = 1. Varying these
parameters corresponds to adding some slack in the exact
correlated equilibrium constraints and allowing some degree
of suboptimality in the choice of strategies added to C̃ki to
form C̃k+1

i . Such changes make little conceptual difference,
but could be helpful in practice by making the optimization
problem strictly feasible and allowing it to be solved to
within a known fraction of the optimal objective value
rather than all the way to optimality. We will prove that
all algorithms in this family converge.

Algorithm 3.2: Fix parameters 0 ≤ α < β ≤ 1. Let k = 0
and for each player fix a finite subset C̃0

i ⊆ Ci.
• Choose εk to be the smallest number for which there

exists πk such that:
– πk is a probability distribution supported on C̃k,
– πk is an εk-correlated equilibrium of the game,
– πk is not an ε-correlated equilibrium for any ε <
εk,

– πk is an αεk-correlated equilibrium of the game
when strategy deviations are restricted to C̃k (i.e.
when the condition ti ∈ Ci is changed to ti ∈ C̃ki
in Definition 2.1).

• If εk = 0, terminate.
• For at least one value of i, form C̃k+1

i from C̃ki by
adding strategies ti,si

∈ Ci such that∑
s∈C̃k

πk(s) [ui(ti,si
, s−i)− ui(s)] ≥ βεk

• For all other values of i, let C̃k+1
i = C̃ki .

• Let k = k + 1 and repeat.
Theorem 3.3: Algorithms 3.1 and 3.2 converge in the

sense that εk → 0.
Proof: Suppose not, so there exists ε > 0 and

infinitely many values of k such that εk ≥ ε. For each
i let B1

i , . . . , B
li
i be a finite open cover of Ci such that

ui(si, s−i)−ui(ti, s−i) ≤ 1
2 (β−α)ε when si and ti belong

to the same set Bli and s−i ∈ C−i. Such a cover exists by the
compactness of the Ci and the continuity of the ui. There
are finitely many sets Bli in total, so there is some iteration
k, which we can take to satisfy εk ≥ ε, such that all the

sets Bli which will ever contain an element of C̃ki at some
iteration k already do.

Note that πk is an αεk-correlated equilibrium when strat-
egy choices are restricted to C̃ki , and εk > 0 so we have
βεk > αεk. By the minimality of εk, the set C̃k+1

i \ C̃ki
is nonempty for some player i (that is to say, it is always
possible to perform the third step of the algorithm). Choose
such an i and let ti,si ∈ C̃k+1

i satisfy∑
s∈C̃k

πk(s) [ui(ti,si
, s−i)− ui(s)] ≥ βεk.

By assumption, for any choice of ri,si ∈ C̃ki we have∑
s∈C̃k

πk(s) [ui(ri,si
, s−i)− ui(s)] ≤ αεk,

so ∑
s∈C̃k

πk(s) [ui(ti,si
, s−i)− ui(ri,si

, s−i)] ≥ (β − α)εk.

By construction of k, we can choose ri,si
∈ C̃ki to lie in the

same set Bli as ti,si for each si ∈ C̃ki . Thus

(β − α)ε ≤ (β − α)εk

≤

∣∣∣∣∣∣
∑
s∈C̃k

πk(s) [ui(ti,si
, s−i)− ui(ri,si

, s−i)]

∣∣∣∣∣∣
≤
∑
s∈C̃k

πk(s) |ui(ti,si
, s−i)− ui(ri,si

, s−i)|

≤
∑
s∈C̃k

πk(s)
(β − α)ε

2
=

(β − α)ε
2

,

a contradiction.

IV. IMPLEMENTING THESE ALGORITHMS WITH
SEMIDEFINITE PROGRAMS

To implement these algorithms for polynomial games, we
must be able to do two things. First, we need to solve
optimization problems with finitely many decision variables,
linear objective functions and two types of constraints:
nonnegativity constraints on linear functionals of the deci-
sion variables, and nonnegativity constraints on univariate
polynomials whose coefficients are linear functionals of the
decision variables. That is to say, we must be able to handle
constraints of the form p(t) ≥ 0 for all t ∈ [−1, 1], where
the coefficients of the polynomial p are linear in the decision
variables. Second, we need to extract values of t for which
such polynomial inequalities are tight at the optimum.

Both of these tasks can be done simultaneously by casting
the problem as a semidefinite program (SDP). An SDP is
an optimization problem in which there are finitely many real
decision variables, linear equality and inequality constraints,
positive semidefiniteness constraints on symmetric matrices
of decision variables, and a linear objective function. SDPs
can be solved efficiently by interior point methods [14].
Polynomial inequalities of the above type can be expressed
using semidefinite constraints via sum of squares techniques



[7]. We will summarize the necessary results, both of which
are classical.

Proposition 4.1 (Markov-Lukács [6]): A univariate poly-
nomial p(x) is nonnegative on the interval [−1, 1] if and only
if p(x) = s(x) + (1− x2)t(x) where s and t are both sums
of squares of polynomials.

Proof: Direct algebraic manipulations show that the set
of polynomials of the form s(x)+ (1−x2)t(x) where s and
t are sums of squares of polynomials in x is closed under
multiplication and contains all polynomials of the following
forms: a for a ≥ 0, (x − a)2 + b2 for a, b ∈ R, x − a for
a ≤ −1, and a − x for a ≥ 1. By assumption p(x) factors
as a product of terms of these types, because any real root
of p in the interval (−1, 1) must have even multiplicity.

Proposition 4.2: A univariate polynomial p(x) =∑2d
k=0 pkx

k of degree at most 2d is a sum of squares
of polynomials if and only if there exists a symmetric
positive semidefinite matrix Q ∈ R(d+1)×(d+1) such that
pk =

∑
i+j=kQij (numbering the rows and columns of Q

from 0 to d).
Proof: Relating the coefficients of p(x) to the entries

of Q in this way is the same as writing p(x) = xTQx where
x =

[
1 x x2 · · · xd

]T
. Thought of in this way, saying

that p(x) is a sum of squares is the same as saying that
Q =

∑
i qiq

T
i for some column vectors qi and in this case Q

is clearly positive semidefinite. Conversely, if Q is positive
semidefinite then there exists a matrix F such that Q =
FTF , so p(x) = xTQx =

∑
i [Fx]2i .

We can now express the optimization problem in Algo-
rithm 3.1 as an SDP. In this problem we have a finite number
of univariate polynomials in ti whose coefficients are linear
in the decision variables π(s) and εi,si

. We wish to con-
strain these coefficients to allow only polynomials which are
nonnegative for all ti ∈ [−1, 1]. By Propositions 4.1 and 4.2
this is the same as asking that these coefficients equal certain
linear functions of matrices (i.e. sums along antidiagonals)
which are constrained to be positive semidefinite.

As a special case of convex programs, semidefinite pro-
grams have a rich duality theory which is useful for theoret-
ical and computational purposes. In particular, SDP solvers
keep track of feasible primal and dual solutions in order
to determine when optimality is reached. It can be shown
that the dual data obtained by an SDP solver run on this
optimization problem will encode the values of ti making
the polynomial inequalities tight at the optimum [7].

The process of generating an SDP from the optimization
problem in the algorithms above, solving it, and extracting
an optimal solution along with ti values from the dual can
all be automated. We have done so using the SOSTOOLS
MATLAB toolbox for the pre- and post-processing and
SeDuMi for solving the semidefinite programs efficiently [9],
[13].

Example 4.3: Consider a polynomial game with three
players, choosing strategies x, y, and z ∈ [−1, 1]. Choose
the utilities to be polynomials with terms up to degree 4 in all
the variables with coefficients independently and identically
distributed according to a normal distribution with zero mean

k εk C̃kx \ C̃k−1
x C̃ky \ C̃k−1

y C̃kz \ C̃k−1
z

0 0.99 {0} {0} {0}
1 4.16 {0.89}
2 5.76 {−1}
3 0.57 {1}
4 0.28 {0.53} {0.50, 0.63}
5 0.16 {0.49, 0.70}
6 10−7 {−1, 0.60} {−0.60, 0.47}

Fig. 1. Output of Algorithm 3.1 on a three player polynomial game with
utilities of degree 4 and randomly chosen coefficients.

and unit variance. Under one instantiation of the utilities
Algorithm 3.1 proceeds as in Figure 4.3, which shows the
value of εk and the new strategies added on each iteration.
The terminal probability distribution π6 does not display any
obvious structure; in particular it is not a Nash equilibrium
(product distribution).

V. A NONCONVERGENT LIMITING CASE

Note that in the algorithms above the convergence of the
sequence εk is not necessarily monotone. If we were to let
α = β (which we did not allow above), the sequence would
become monotone nonincreasing, but the above convergence
proof would fail. This is not merely an artifact of the chosen
proof; in fact when α = β Algorithm 3.2 may not converge,
in the sense that εk may remain bounded away from zero. To
see this, consider the following version of this algorithm for
α = β = 1, which is exactly the procedure proposed in [12].
The only difference between this procedure and Algorithm
3.1 is that Algorithm 3.1 has additional control over the
change in utility due to deviations to strategies in C̃ki .

Algorithm 5.1 ([12]): Let k = 0 and for each player fix
a finite subset C̃0

i ⊆ Ci.
• Minimize εk subject to the condition that πk be an εk-

correlated equilibrium supported on C̃k. That is to say,
let εk be the optimal value of the following optimization
problem, and πk an optimal assignment to the decision
variables.

minimize ε
s.t.∑

s−i∈C̃k
−i

π(s) [ui(ti, s−i)− ui(s)] ≤ εi,si
for all i, si ∈ C̃ki

and ti ∈ Ci∑
si∈C̃k

i

εi,si ≤ ε for all i

π(s) ≥ 0 for all s ∈ C̃k∑
s∈C̃k

π(s) = 1

(1)
• If εk = 0, terminate.
• For each player i for whom the second constraint is

tight, let C̃k+1
i consist of all strategies in C̃ki along with

any strategies ti ∈ Ci such that the first inequality is
tight for some si satisfying εi,si

> 0.
• For all other players let C̃k+1

i = C̃ki .



• Let k = k + 1 and repeat.
It is worth noting that this procedure is still somewhat

underspecified; for example there is the possibility that (1)
may have multiple optima and we have not specified which
is to be chosen. Nonetheless we will show that this procedure
need not converge, even in games for which such subtleties
do not arise.

a b c
a 0 1 0
b 1 5 7
c 0 7 0

Fig. 2. A finite symmetric game with identical utilities for which Algorithm
5.1 does not converge when started with strategy sets C̃0

1 = C̃0
2 = {a}.

Example 5.2: Consider the game shown in Figure 2,
which is symmetric and has identical utilities for both
players. Let C̃0

1 = C̃0
2 = {a} and use Algorithm 5.1. The

only probability distribution supported on C̃0 is δ(a,a) which
has an objective value of ε0 = 1. It is easy to see that
C̃1
i is formed by simply adding each player’s best response

to a, so that C̃1
1 = C̃1

2 = {a, b}. We will argue that the
unique optimal solution to (1) for k = 1 is also δ(a,a), hence
C̃2
i = C̃1

i and the algorithm gets “stuck”, so that εk = ε0 = 1
for all k.

For a probability distribution π, let πT denote π with
the players interchanged. By symmetry and convexity, if
π is an optimal solution of (1) then so is π+πT

2 , which
is a symmetric probability distribution with respect to the
two players. Hence an optimal solution which is symmetric
always exists. We will parametrize such distributions by
π = pδ(a,a) + qδ(a,b) + qδ(b,a) + rδ(b,b), where p, q, r ≥ 0
and p + 2q + r = 1. Define a function ζ : C1 → C1 by
ζ(a) = b, ζ(b) = ζ(c) = c. Then for π to be an ε-correlated
equilibrium it must satisfy the following condition, obtained
by summing several of the inequalities in (1).

ε ≥
∑
s1∈C̃1

1

ε1,s1 ≥
∑
s∈C̃1

π(s)(u1(ζ(s1), s2)− u1(s1, s2))

= p+ 4q − q + 2r = 1 + q + r

We know we can achieve ε = 1 with p = 1 (i.e. π = π0 =
δ(a,a)), and this inequality shows that if p < 1 then ε > 1.
Therefore the minimal ε value in (1) is unity and is achieved
by π = δ(a,a). Furthermore we have shown that this is
the unique symmetric probability distribution which achieves
the minimal value of ε. Hence any other (not necessarily
symmetric) optimal solution π̂ satisfies π̂+π̂T

2 = δ(a,a). But
δ(a,a) is an extreme point of the convex set of probability
distributions on C̃1, so we must in fact have π̂ = δ(a,a).
Therefore π1 = π0 = δ(a,a) is the unique optimal solution
to (1) on iteration k = 1, so Algorithm 5.1 gets stuck as
claimed. That is, C̃ki = {a, b} and εk = 1 for all k ≥ 1.

The same behavior can occur in polynomial games, as
can be shown by “embedding” the above finite game in a
polynomial game. For example, we can take Cx = Cy =

k εk C̃kx \ C̃k−1
x C̃ky \ C̃k−1

y

0 2 {−1} {−1}
1 4 {0} {0}
2 0 {1} {1}

Fig. 3. Output of Algorithm 3.1 for a polynomial game on which Algorithm
5.1 does not converge.

[−1, 1] and

ux(x, y) = uy(x, y) = (1− x2)(3y2 + 6y + 5)

+ (1− y2)(3x2 + 6x+ 5).

Then if C̃0
x = C̃0

y = {−1} the same analysis as above shows
that C̃kx = C̃ky = {−1, 0} and εk = 2 for all k ≥ 1.

Example 5.3: If we run Algorithm 3.1 on this polynomial
game, the iterations proceed as in Figure 5.3. The correlated
equilibrium obtained in iteration 2 is

π2 = 0.4922δ(x = 0, y = 1) + 0.4922δ(x = 1, y = 0)
+ 0.0156δ(x = 1, y = 1),

i.e. a probability of 0.4922 is assigned to each of the out-
comes (x, y) = (0, 1) and (x, y) = (1, 0) and a probability
of 0.0156 is assigned to (x, y) = (1, 1).

VI. CONCLUSIONS

We have shown how to iteratively compute a sequence of
εk-correlated equilibria of a polynomial game such that εk

goes to zero. This leaves several open questions. First, in
practice the εk go to zero very quickly, with ε falling below
the numerical precision of the optimization solver within a
handful of iterations. It remains to support this observation
with theoretical performance guarantees. Second, the effect
of the parameters α and β on the performance of Algorithm
3.2 is unknown, experimentally or theoretically. Finally, since
the algorithms are already cast in an optimization framework,
there is hope that they could be modified to steer the
computation toward a correlated equilibrium which optimizes
some quantity (say, the sum the utilities), but we leave this
extension for future work.
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