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Abstract

We provide a simple unifying framework for the visualization and analysis of convex pro-

gramming duality and minimax (saddle point) theory. In particular, we introduce two geometrical

problems that are dual to each other: the min common point problem and the max crossing point

problem. Within the simple geometry of these problems, the fundamental constraint qualifica-

tions needed for strong duality are quite apparent, and admit straightforward proofs. We develop

the relevant theorems, and we then obtain as special cases the major results of Lagrangian duality

theory for constrained optimization and of convex/concave minimax theory.
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1. INTRODUCTION

Duality in optimization is often considered to be a manifestation of a fundamental dual description

of a closed convex set:

(a) As the closure of the union of all line segments connecting the points of the set.

(b) As the intersection of all closed halfspaces containing the set.

This is largely true but it is also somewhat misleading, because the strongest duality theorems in

optimization require assumptions such as the Slater condition and other constraint qualifications,

whose connection to the dual description of closed convex sets given above is not readily apparent.

As a result, one often observes a dichotomy in various developments of optimization duality theory

found in the literature: some suggestive geometrical insight may be given, but the main proof

lines are not clearly connected with the fundamental underlying geometry (except perhaps in the

eyes of a skilled mathematician). For example, the proof of the main duality theorem of linear

programming is often developed based on Farkas’ lemma whose relation with the preceding dual

closed convex set description is not readily apparent, and in other cases it is developed based on

the termination properties of the simplex method, with hardly any geometrical insight resulting.

In this paper, we aim to capture the most essential optimization-related aspect of the pre-

ceding dual characterization of closed convex sets in two easily visualized geometrical optimization

problems that are defined in terms of a nonempty subset M of <n+1.

(a) Min Common Point Problem: Among all points that are common to both M and the

(n + 1)st axis, we want to find one whose (n + 1)st component is minimum.

(b) Max Crossing Point Problem: Consider nonvertical hyperplanes that contain M in their

corresponding “upper” closed halfspace [the halfspace that contains the vertical halfline
{

(0, w) | w ≥ 0
}

in its recession cone, see Fig. 1.1]. We want to find the maximum crossing

point of the (n + 1)st axis with such a hyperplane.

Figure 1.1 suggests that the optimal value of the max crossing problem is no larger than the

optimal value of the min common problem; we refer to this relation as weak duality . Furthermore,

under favorable circumstances the two optimal values are equal; we refer to this relation as

strong duality . Our objective is to establish conditions for strong duality, and to characterize

circumstances under which the max crossing problem has an optimal solution.

There are many works that treat duality, including the textbooks by Rockafellar [Roc70],
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Figure 1.1. Illustration of the optimal values w∗ and q∗ of the min common and max

crossing problems. In (a), the two optimal values are not equal. In (b), when M is “extended

upwards” along the (n + 1)st axis it yields the set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

,

which is convex and admits a nonvertical supporting hyperplane passing through (0, w∗).

As a result, the two optimal values are equal. In (c), the set M is convex but not closed,

and there are points (0, w) on the vertical axis with w < w∗ that lie in the closure of M .

Here, q∗ is equal to the minimum such value of w, and we have q∗ < w∗.

Stoer and Witzgall [StW70], Ekeland and Temam [EkT76], Rockafellar [Roc84], Hiriart-Urruty

and Lemarechal [HiL93], Rockafellar and Wets [RoW98], Bertsekas [Ber99], Bonnans and Shapiro

[BoS00], and Borwein and Lewis [BoL00]. The constructions involved in the min common and

max crossing problems are implicit in these duality analyses, and in fact have been used earlier

for visualization purposes (see Bertsekas [Ber99], Ch. 5). However, the two problems have never

been explicitly analyzed, to our knowledge, nor have they been used as a unifying theoretical

framework for analysis of important special cases arising in constrained optimization duality,

saddle-point theory, or other contexts. There is an important benefit from the analysis of these

problems: within their simple geometry, the fundamental constraint qualifications needed for

strong duality are quite apparent, and admit straightforward proofs. This allows us to develop

essentially all of duality theory within the simple min common/max crossing framework, and

then to apply it to optimization (Lagrangian) duality and obtain (as special cases) all of the

major strong duality theorems. Note that while we focus on the Lagrangian duality framework

(see Section 4), our analysis also applies to the Fenchel duality framework, which is equivalent to

the Lagrangian framework (see e.g., Bertsekas [Ber99], Section 5.4). Thus, the standard Fenchel

duality results can also be recovered as special cases of the min common/max crossing results.

There is also another important unification benefit from our min common/max crossing

framework. The duality theorems that we prove within this framework can be used not only

to develop optimization duality, but also to develop saddle point and minimax theory (under

convexity/concavity assumptions), including the fundamental von Neuman Theorem of zero sum

game theory [Neu28]. Our min common/max crossing line of development is related to the

approach of Rockafellar [Roc70] (Section 33), which is based on convex bifunctions and conjugate
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saddle functions. Pedagogically, however, it appears desirable to develop minimax theory without

resort to this complicated machinery, as we have done.

It is well known that saddle point theory and optimization duality are strongly connected;

for example, they have both been treated within the unifying framework of convex bifunctions

([Roc70], Section 33). In principle, optimization duality can be viewed as a special case of saddle

point/minimax theory. On the other hand, it is not always convenient or possible to use minimax

results to prove optimization duality results. In our approach, rather than trying to build a closer

connection between duality and saddle point theory, we show, with quite elementary proofs, how

they both stem from a common geometrical root: the min common/max crossing duality, which is

in turn transparently connected to the dual characterization of a closed convex set as the closure

of the union of line segments and as an intersection of closed halfspaces.

The paper is organized as follows. In Section 2, we provide some terminology and back-

ground on supporting and separating hyperplane theory, and we develop some preliminary results

on the existence of nonvertical supporting hyperplanes of convex sets. In Section 3, we analyze

the min common and max crossing problems, and we develop several conditions that guarantee

the equality of their optimal values and/or the existence of their optimal solutions. In Section

4, we apply the results of Section 3 to minimax and saddle point theory, we recover a number

of known results, including a version of the classical von Neuman Theorem. The proofs of sev-

eral of our results, however, are considerably simpler than the ones found in the literature, and

also admit insightful visualization. In Section 5, we apply the results of Sections 3 and 4 to the

Lagrangian duality framework for constrained optimization. We recover, as special cases of the

min common/max crossing results, the major strong duality theorems.

Regarding notation, all of the vectors are column vectors and a prime denotes transposition.

We write x ≥ 0 or x > 0 when a vector x has nonnegative or positive components, respectively.

Similarly, we write x ≤ 0 or x < 0 when a vector x has nonpositive or negative components,

respectively. We use throughout the paper the standard Euclidean norm in <n, ‖x‖ = (x′x)1/2,

where x′y denotes the inner product of any x, y ∈ <n. We denote by cl(C) and int(C) the closure

and the interior of a set C, respectively. We also use some of the standard notions of convex

analysis. In particular, for a convex set C, we denote by aff(C) the affine hull of C, i.e., the

smallest affine set containing C, and by ri(C) the relative interior of C, i.e., its interior relative

to aff(C). The epigraph
{

(x, w) | f(x) ≤ w, x ∈ X, w ∈ <
}

of an extended real-valued function

f : X 7→ [−∞,∞] is denoted by epi(f). Following Rockafellar [Roc70], the function f is said

to be convex or closed if epi(f) is convex or closed, respectively. It is said to be proper, if its

epigraph is nonempty and does not contain a vertical line, i.e., if f(x) > −∞ for all x ∈ X and
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f(x) < ∞ for al least one x ∈ X.

2. NONVERTICAL HYPERPLANES

We recall that a hyperplane in <n is a set of the form {x | a′x = b}, where a ∈ <n, a 6= 0, and

b ∈ <. The sets

{x | a′x ≥ b}, {x | a′x ≤ b},

are called the closed halfspaces associated with the hyperplane (also referred to as the positive

and negative closed halfspaces, respectively). For the purpose of easy reference, we list some of

the separating and supporting hyperplane results that we will use in our analysis. The first four

propositions can be found in many textbooks, including Rockafellar [Roc70], Section 11, and our

recent book [BNO03].

Proposition 2.1: (Supporting Hyperplane Theorem) Let C be a nonempty convex

subset of <n and let x be a vector in <n. If either C has empty interior or, more generally, if

x is not an interior point of C, there exists a hyperplane that passes through x and contains

C in one of its closed halfspaces, i.e., there exists a vector a 6= 0 such that

a′x ≤ a′x, ∀ x ∈ C. (2.1)

If the vector x in the above proposition belongs to the closure of the set C, the corresponding

hyperplane is said to be supporting C at x.

Proposition 2.2: (Strict Separation Theorem) Let C1 and C2 be nonempty dis-

joint convex subsets of <n such that C1 is closed and C2 is compact. Then, there exists a

hyperplane that strictly separates them, i.e., a vector a ∈ <n and a scalar b such that

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2. (2.2)
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Proposition 2.3: (Proper Separation Theorem) Let C1 and C2 be nonempty convex

subsets of <n such that

ri(C1) ∩ ri(C2) = ∅.

Then there exists a hyperplane that properly separates C1 from C2, i.e., a vector a such that

sup
x∈C2

a′x ≤ inf
x∈C1

a′x, inf
x∈C2

a′x < sup
x∈C1

a′x.

Proposition 2.4: A closed and convex set is the intersection of the closed halfspaces that

contain it.

The next proposition is important in the context of duality when polyhedral sets are in-

volved. It is given as Theorem 20.2 of Rockafellar [Roc70].

Proposition 2.5: (Polyhedral Proper Separation Theorem) Let C1 and C2 be

nonempty convex subsets of <n such that C2 is polyhedral and

ri(C1) ∩ C2 = ∅.

Then there exists a hyperplane that properly separates them and does not contain C1, i.e.,

a vector a such that

sup
x∈C2

a′x ≤ inf
x∈C1

a′x, inf
x∈C1

a′x < sup
x∈C1

a′x.

We now discuss hyperplanes in a special context that involves among others, the epigraph

epi(f) of a convex function f : <n 7→ [−∞,∞], i.e., the subset of <n+1 defined by

epi(f) =
{

(u, w) | f(u) ≤ w
}

.

We will represent the normal vector of a hyperplane in <n+1 as a nonzero vector of the form

(µ, β), where µ ∈ <n and β ∈ <. We say that the hyperplane is horizontal if µ = 0 and we say

that it is vertical if β = 0.

Note that if a hyperplane with normal (µ, β) is nonvertical (i.e., β 6= 0), then it crosses

the (n + 1)st axis (the axis associated with w) at a unique point. If (u, w) is any vector on the
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hyperplane, the crossing point has the form (0, ξ), where

ξ =
µ′

β
u + w, (2.3)

since from the hyperplane equation, we have (0, ξ)′(µ, β) = (u, w)′(µ, β). On the other hand, it

can be seen that if the hyperplane is vertical, it either contains the entire (n + 1)st axis, or else

it does not cross it at all; see Fig. 2.1.

Figure 2.1. Illustration of vertical and nonvertical hyperplanes in <n+1. A hyperplane

with normal (µ, β) is nonvertical if β 6= 0, or equivalently, if it intersects the (n + 1)st axis

at the unique point ξ = (µ/β)′u + w, where (u, w) is any vector on the hyperplane.

Vertical lines in <n+1 are sets of the form {(u, w) | w ∈ <}, where u is a fixed vector in

<n. It can be seen that vertical hyperplanes, as well as their corresponding closed halfspaces,

consist of the union of the vertical lines that pass through their points. If f(u) > −∞ for all u,

then epi(f) cannot contain a vertical line, and it appears plausible that epi(f) is contained in

some closed halfspace corresponding to a nonvertical hyperplane. We prove this fact in greater

generality in the following proposition, which will also be useful as a first step in the subsequent

development.

Proposition 2.6: Let C be a nonempty convex subset of <n+1 that contains no vertical

lines. Let the vectors in <n+1 be denoted by (u, w), where u ∈ <n and w ∈ <. Then:

(a) C is contained in a closed halfspace corresponding to a nonvertical hyperplane, i.e.,

there exist a vector µ ∈ <n, a scalar β with β 6= 0, and a scalar γ such that

µ′u + βw ≥ γ, ∀ (u, w) ∈ C.

(b) If (u, w) does not belong to cl(C), there exists a nonvertical hyperplane strictly sepa-

rating (u, w) from C.

Proof: We first note that if C contains no vertical lines, then ri(C) contains no vertical lines,

which implies that cl(C) contains no vertical lines, since the recession cones of cl(C) and ri(C)
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coincide (cf. Rockafellar [Roc70], Cor. 8.3.1). Thus, if we prove the result assuming that C is

closed, the proof for the case where C is not closed will readily follow by replacing C with cl(C).

Hence, we may assume without loss of generality that C is closed.

(a) By Prop. 2.4, C is the intersection of all closed halfspaces that contain it. If every hyperplane

containing C in one of its closed halfspaces is vertical, we must have

C = ∩i∈I

{

(u, w) | µ′
iu ≥ γi

}

for a collection of nonzero vectors µi, i ∈ I, and scalars γi, i ∈ I. Then, for every (u, w) ∈ C,

the vertical line
{

(u, w) | w ∈ <
}

also belongs to C, a contradiction. It follows that if no vertical

line belongs to C, there exists a nonvertical hyperplane containing C.

(b) If (u, w) /∈ C, then since C is assumed to be closed, there exists a hyperplane strictly

separating (u, w) from C (cf. Prop. 2.2). If this hyperplane is nonvertical, we are done, so assume

otherwise. Then, we have a nonzero vector µ and a scalar γ such that

µ′u > γ > µ′ u, ∀ (u, w) ∈ C.

Consider a nonvertical hyperplane containing C in one of its subspaces [which exists by part (a)],

so that for some (µ, β) and γ, with β 6= 0, we have

µ′u + βw ≥ γ, ∀ (u, w) ∈ C.

By multiplying this relation with any ε > 0 and adding it to the preceding relation, we obtain

(µ + εµ)′u + εβw > γ + εγ, ∀ (u, w) ∈ C.

Since γ > µ′ u, there is a small enough ε such that

γ + εγ > (µ + εµ)′u + εβw.

From the above two relations, we obtain

(µ + εµ)′u + εβw > (µ + εµ)′u + εβw, ∀ (u, w) ∈ C,

implying that there is a nonvertical hyperplane with normal (µ + εµ, εβ) that strictly separates

(u, w) from C. Q.E.D.
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3. MIN COMMON/MAX CROSSING DUALITY

We now consider the min common and max crossing problems introduced in Section 1. Let M

be a nonempty subset of <n+1. The min common problem is

minimize w

subject to (0, w) ∈ M,
(3.1)

and its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

Given a nonvertical hyperplane in <n+1, multiplication of its normal vector (µ, β) by a

nonzero scalar produces a vector that is also normal to the same hyperplane. Hence, the set of

nonvertical hyperplanes, where β 6= 0, can be equivalently described as the set of all hyperplanes

with normals of the form (µ, 1). A hyperplane of this type crosses the (n + 1)st axis at some

vector (0, ξ) and is of the form

Hµ,ξ =
{

(u, w) | w + µ′u = ξ
}

.

In order for M to be contained in the closed halfspace that corresponds to the hyperplane Hµ,ξ

and contains the vertical halfline
{

(0, w) | w ≥ 0
}

in its recession cone, we must have

ξ ≤ w + µ′u, ∀ (u, w) ∈ M.

The maximum crossing level ξ over all hyperplanes Hµ,ξ with the same normal (µ, 1) is given by

q(µ) = inf
(u,w)∈M

{w + µ′u}; (3.2)

(see Fig. 3.1). The problem of maximizing the crossing level over all nonvertical hyperplanes is

to maximize over all µ ∈ <n the maximum crossing level corresponding to µ, i.e.,

maximize q(µ)

subject to µ ∈ <n.
(3.3)

Note that q is concave and upper semicontinuous over <n, since it is defined as the infimum of a

collection of affine functions. We denote by q∗ the corresponding optimal value,

q∗ = sup
µ∈<n

q(µ).
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q(µ) =  inf    {w + µ u}
(u,w)∈M  

q*

Figure 3.1. Mathematical specification of the max crossing problem. For each

µ ∈ <n, we consider q(µ), the highest crossing level over hyperplanes, which have

normal (µ, 1) and are such that M is contained in their positive halfspace [the

one that contains the vertical halfline
{

(0, w) | w ≥ 0
}

in its recession cone]. The

max crossing point q∗ is the supremum over µ ∈ <n of the crossing levels q(µ).

Note that for every (u, w) ∈ M and every µ ∈ <n, we have

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ inf
(0,w)∈M

w = w∗,

so by taking the supremum of the left-hand side over µ ∈ <n, we obtain

q∗ ≤ w∗, (3.4)

i.e., the max crossing point is no higher than the min common point, as suggested by Fig. 1.1.

We will refer to relation (3.4) as weak duality.

We now turn to establishing conditions under which we have q∗ = w∗, in which case

we say that strong duality holds or that there is no duality gap. To avoid degenerate cases,

we will generally exclude the case w∗ = ∞, when the min common problem is infeasible, i.e.,
{

w | (0, w) ∈ M
}

= ∅.

An important point, around which much of our analysis revolves, is that when w∗ is a scalar,

the vector (0, w∗) is a closure point of the set M , so if we assume that M is convex and closed,

and admits a nonvertical supporting hyperplane at (0, w∗), then we have q∗ = w∗ and the optimal

values q∗ and w∗ are attained . Between the “unfavorable” case where q∗ < w∗, and the “most

favorable” case where q∗ = w∗ while the optimal values q∗ and w∗ are attained, there are several

intermediate cases. The following proposition provides a necessary and sufficient condition for

q∗ = w∗, but does not address the attainment of the optimal values.
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Proposition 3.1 (Min Common/Max Crossing Theorem I): Consider the min

common and max crossing problems, and assume the following:

(1) w∗ < ∞.

(2) The set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

is convex.

Then, we have q∗ = w∗ if and only if for every sequence
{

(uk, wk)
}

⊂ M with uk → 0, there

holds w∗ ≤ lim infk→∞ wk.

Proof: If w∗ = −∞, by weak duality, we also have q∗ = −∞ and q(µ) = −∞ for all µ ∈ <n, so

the conclusion trivially follows. We thus focus on the case where w∗ is a real number. Assume

that for every sequence
{

(uk, wk)
}

⊂ M with uk → 0, there holds w∗ ≤ lim infk→∞ wk. We first

note that (0, w∗) is a closure point of M , since by the definition of w∗, there exists a sequence
{

(0, wk)
}

that belongs to M , and hence also to M , and is such that wk → w∗.

We next show by contradiction that M does not contain any vertical lines. If this were not

so, by convexity of M , the direction (0,−1) would be a direction of recession of cl(M) (although

not necessarily a direction of recession of M), and hence also a direction of recession of ri(M)

[cf. [BNO03], Prop. 1.5.1(d)]. Because (0, w∗) is a closure point of M , it is also a closure point

of ri(M) [cf. [BNO03], Prop. 1.4.3(a)], and therefore, there exists a sequence
{

(uk, wk)
}

⊂ ri(M)

converging to (0, w∗). Since (0,−1) is a direction of recession of ri(M), the sequence
{

(uk, wk−1)
}

belongs to ri(M) and consequently,
{

(uk, wk − 1)
}

⊂ M . In view of the definition of M , there is

a sequence
{

(uk, wk)
}

⊂ M with wk ≤ wk − 1 for all k, so that lim infk→∞ wk ≤ w∗ − 1. This

contradicts the assumption w∗ ≤ lim infk→∞ wk, since uk → 0.

We now prove that the vector (0, w∗ − ε) does not belong to cl(M) for any ε > 0. To arrive

at a contradiction, suppose that (0, w∗ − ε) is a closure point of M for some ε > 0, so that there

exists a sequence
{

(uk, wk)
}

⊂ M converging to (0, w∗ − ε). In view of the definition of M , this

implies the existence of another sequence
{

(uk, wk)
}

⊂ M with uk → 0 and wk ≤ wk for all k,

and we have that lim infk→∞ wk ≤ w∗−ε, which contradicts the assumption w∗ ≤ lim infk→∞ wk.

Since, as shown above, M does not contain any vertical lines and the vector (0, w∗ − ε)

does not belong to cl(M) for any ε > 0, by Prop. 2.6(b), it follows that there exists a nonvertical

hyperplane strictly separating (0, w∗ − ε) and M . This hyperplane crosses the (n + 1)st axis at

a unique vector (0, ξ), which must lie between (0, w∗ − ε) and (0, w∗), i.e., w∗ − ε ≤ ξ ≤ w∗.
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Furthermore, ξ cannot exceed the optimal value q∗ of the max crossing problem, which, together

with weak duality (q∗ ≤ w∗), implies that w∗ − ε ≤ q∗ ≤ w∗. Since ε can be arbitrarily small, it

follows that q∗ = w∗.

Conversely, assume that q∗ = w∗. Let
{

(uk, wk)
}

be any sequence in M , which is such that

uk → 0. Then,

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ wk + µ′uk, ∀ k, ∀ µ ∈ <n.

Taking the limit as k → ∞, we obtain

q(µ) ≤ lim inf
k→∞

wk, ∀ µ ∈ <n,

implying that

w∗ = q∗ = sup
µ∈<n

q(µ) ≤ lim inf
k→∞

wk.

Q.E.D.

We now provide another version of the Min Common/Max Crossing Theorem, which in

addition to the equality q∗ = w∗, guarantees the attainment of the maximum crossing point by a

nonvertical hyperplane under an additional relative interior assumption [see condition (3) of the

proposition].
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Proposition 3.2 (Min Common/Max Crossing Theorem II): Consider the min

common and max crossing problems, and assume the following:

(1) −∞ < w∗.

(2) The set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

is convex.

(3) The set

D =
{

u | there exists w ∈ < with (u, w) ∈ M}

contains the origin in its relative interior.

Then q∗ = w∗ and the optimal solution set of the max crossing problem, Q∗ =
{

µ | q(µ) =

q∗
}

, has the form

Q∗ =
(

aff(D)
)⊥

+ Q̃,

where Q̃ is a nonempty, convex, and compact set, and
(

aff(D)
)⊥

is the orthogonal comple-

ment of aff(D) [which is a subspace by assumption (3)]. Furthermore, Q∗ is nonempty and

compact if and only if D contains the origin in its interior.

Proof: We first show that q∗ = w∗ and that Q∗ is nonempty. We note that condition (3)

implies that w∗ < ∞, so in view of condition (1), w∗ is a real number. Since w∗ is the optimal

min common value and the line
{

(0, w) | w ∈ <
}

is contained in the affine hull of M , it follows

that (0, w∗) is not a relative interior point of M . Therefore, by the Proper Separation Theorem

(cf. Prop. 2.3), there exists a hyperplane that passes through (0, w∗), contains M in one of its

closed halfspaces, but does not fully contain M , i.e., there exists a vector (µ, β) such that

βw∗ ≤ µ′u + βw, ∀ (u, w) ∈ M, (3.5)

βw∗ < sup
(u,w)∈M

{µ′u + βw}. (3.6)

Since for any (u, w) ∈ M , the set M contains the halfline
{

(u, w) | w ≤ w
}

, it follows from Eq.

(3.5) that β ≥ 0. If β = 0, then from Eq. (3.5), we have

0 ≤ µ′u, ∀ u ∈ D.

Thus, the linear function µ′u attains its minimum over the set D at 0, which is a relative interior

point of D by condition (3). Since D is convex, being the projection on the space of u of the set
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M , which is convex by assumption (2), it follows that µ′u is constant over D, i.e.,

µ′u = 0, ∀ u ∈ D,

(see [BNO03], Prop. 1.4.2). This, however, contradicts Eq. (3.6). Therefore, we must have β > 0,

and by appropriate normalization if necessary, we can assume that β = 1. From Eq. (3.5), we

then obtain

w∗ ≤ inf
(u,w)∈M

{µ′u + w} ≤ inf
(u,w)∈M

{µ′u + w} = q(µ) ≤ q∗.

Since the inequality q∗ ≤ w∗ holds always [cf. Eq. (3.4)], equality holds throughout in the above

relation, and we must have q(µ) = q∗ = w∗. Thus Q∗ is nonempty, and since Q∗ =
{

µ | q(µ) ≥

q∗
}

and q is concave and upper semicontinuous, it follows that Q∗ is also convex and closed.

We next show that Q∗ =
(

aff(D)
)⊥

+ Q̃. We first prove that the recession cone RQ∗ and

the lineality space LQ∗ of Q∗ are both equal to
(

aff(D)
)⊥

. The proof of this is based on the

generic relation LQ∗ ⊂ RQ∗ and the following two relations

(

aff(D)
)⊥

⊂ LQ∗ , RQ∗ ⊂
(

aff(D)
)⊥

,

which we show next.

Let y be a vector in
(

aff(D)
)⊥

, so that y′u = 0 for all u ∈ D. For any vector µ ∈ Q∗ and

any scalar α, we then have

q(µ + αy) = inf
(u,w)∈M

{

(µ + αy)′u + w
}

= inf
(u,w)∈M

{µ′u + w} = q(µ),

implying that µ + αy is in Q∗. Hence y ∈ LQ∗ , and it follows that
(

aff(D)
)⊥

⊂ LQ∗ .

Let y be a vector in RQ∗ , so that for any µ ∈ Q∗ and α ≥ 0,

q(µ + αy) = inf
(u,w)∈M

{

(µ + αy)′u + w
}

= q∗.

Since 0 ∈ ri(D), for any u ∈ aff(D), there exists a positive scalar γ such that the vectors γu and

−γu are in D. By the definition of D, there exist scalars w+ and w− such that the pairs (γu, w+)

and (−γu, w−) are in M . Using the preceding equation, it follows that for any µ ∈ Q∗, we have

(µ + αy)′(γu) + w+ ≥ q∗, ∀ α ≥ 0,

(µ + αy)′(−γu) + w− ≥ q∗, ∀ α ≥ 0.

If y′u 6= 0, then for sufficiently large α ≥ 0, one of the preceding two relations will be violated.

Thus we must have y′u = 0, showing that y ∈
(

aff(D)
)⊥

and implying that

RQ∗ ⊂
(

aff(D)
)⊥

.
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This relation, together with the generic relation LQ∗ ⊂ RQ∗ and the relation
(

aff(D)
)⊥

⊂ LQ∗

shown earlier, shows that

(

aff(D)
)⊥

⊂ LQ∗ ⊂ RQ∗ ⊂
(

aff(D)
)⊥

.

Therefore

LQ∗ = RQ∗ =
(

aff(D)
)⊥

.

We decompose the convex set Q∗ along its lineality space and its orthogonal complement

as

Q∗ = LQ∗ + (Q∗ ∩ L⊥
Q∗),

(see [BNO03], Prop. 1.5.4). Since LQ∗ =
(

aff(D)
)⊥

, we obtain

Q∗ =
(

aff(D)
)⊥

+ Q̃,

where Q̃ = Q∗ ∩ aff(D). Furthermore, we have

RQ̃ = RQ∗ ∩ Raff(D).

Since RQ∗ =
(

aff(D)
)⊥

, as shown earlier, and Raff(D) = aff(D), the recession cone RQ̃ consists

of the zero vector only, implying that the set Q̃ is compact.

Finally, to show the last statement in the proposition, we note that 0 is an interior point of

D if and only if aff(D) = <n, which in turn is equivalent to Q∗ being equal to the compact set

Q̃. Q.E.D.

We next provide a min common/max crossing duality theorem, which involves polyhedral

convexity assumptions. In particular, the definition of the set M will involve a linear mapping

and a polyhedral cone of <r, i.e., a set of the form

P = {y | Ey ≤ 0},

where E is a matrix with r columns. Note that the polar cone of P , denoted P ∗, is given by

P ∗ = {z | z′y ≤ 0, ∀ y ∈ P} = {z | z = E′ζ, ζ ≥ 0}.

The theorem is new in the form given here, although its assumptions are related to constructions

that are implicit in classical duality analyses under polyhedral convexity assumptions.

15



Proposition 3.3 (Min Common/Max Crossing Theorem III): Consider the min

common and max crossing problems, and assume the following:

(1) The set M is defined in terms of a convex set V ⊂ <m+1, an r ×m matrix A, an r × n

matrix B, a vector b in <r, and a polyhedral cone P ⊂ <r as follows:

M =
{

(u, w) | u ∈ <n, and there is a vector (x, w) ∈ V

such that Ax − b − Bu ∈ P
}

.

(2) There exists a vector (x,w) in the relative interior of V such that Ax − b ∈ P .

Then q∗ = w∗ and there exists a vector µ in the polar cone P ∗ such that q(B′µ) = q∗.

Proof: If w∗ = −∞, then the conclusion holds since, by weak duality, we have q∗ ≤ w∗, so that

q∗ = w∗ = −∞, and q(B′µ) = q∗ for all µ, including the vector µ = 0, which belongs to P ∗. We

may thus assume that −∞ < w∗, which also implies w∗ is finite, since the min common problem

has a feasible solution in view of the assumptions (1) and (2). Consider the convex subsets of

<m+1 defined by

C1 =
{

(x, v) | there is a vector (x, w) ∈ V such that v > w
}

,

C2 =
{

(x, w∗) | Ax − b ∈ P
}

(cf. Fig. 3.2). The set C1 is nonempty since (x, v) ∈ C1 for all v > w, while the set C2 is nonempty

since (x, w∗) ∈ C2. Finally, C1 and C2 are disjoint. To see this, note that

w∗ = inf
(x,w)∈V, Ax−b∈P

w, (3.7)

and if (x, w∗) ∈ C1∩C2, by the definition of C2, we must have Ax−b ∈ P , while by the definition

of C1, we must have w∗ > w for some w with (x, w) ∈ V , contradicting Eq. (3.7).

Figure 3.2. Illustration of the sets C1 and C2, and the hyperplane separating them in

the proof of Prop. 3.3. Note that since (x, w) is a relative interior point of V , all the vectors

(x, v) with v > w belong to the relative interior of C1.
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Since C1 ∩ C2 = ∅ and C2 is polyhedral, by Prop. 2.5, there exists a hyperplane that

separates C1 and C2, and does not contain C1, i.e., a vector (ξ, β) such that

βw∗ + ξ′z ≤ βv + ξ′x, ∀ (x, v) ∈ C1, ∀ z such that Az − b ∈ P, (3.8)

inf
(x,v)∈C1

{

βv + ξ′x
}

< sup
(x,v)∈C1

{

βv + ξ′x
}

. (3.9)

If β = 0, then from Eq. (3.8), we have

ξ′x ≤ sup
Az−b∈P

ξ′z ≤ inf
(x,v)∈C1

ξ′x ≤ ξ′x.

Thus, equality holds throughout in the preceding relation, implying that all the vectors (x, v)

with v > w minimize the linear function (ξ, 0)′(x, v) over the set C1. Since (x,w) is a relative

interior point of V , all these vectors are relative interior points of C1 (cf. Fig. 3.2). It follows that

the linear function (ξ, 0)′(x, v) is constant over C1 (see [BNO03], Prop. 1.4.2). This, however,

contradicts Eq. (3.9). Therefore, we must have β 6= 0.

By using Eq. (3.8) with z = x and v > w, we obtain βw∗ + ξ′x ≤ βv + ξ′x, or βw∗ ≤ βv.

Since w∗ ≤ w < v and β 6= 0, it follows that β > 0, and by normalizing (ξ, β) if necessary, we

may assume that β = 1. Thus, from Eq. (3.8) and the definition of C1, we have

sup
Az−b∈P

{

w∗ + ξ′z
}

≤ inf
(x,w)∈V

{

w + ξ′x
}

. (3.10)

Let {y | Dy ≤ 0} be a representation of the polyhedral cone P in terms of a matrix D.

Then the maximization problem on the left-hand side of Eq. (3.10) involves the linear program

maximize ξ′z

subject to DAz − Db ≤ 0.
(3.11)

Since the minimization problem in the right-hand side of Eq. (3.10) is feasible by assumption,

the linear program (3.11) is bounded (as well as feasible) and therefore has an optimal solution,

which is denoted by z∗ (see [BNO03], Prop. 2.3.4). Let c′j be the rows of DA, let (Db)j denote

the corresponding components of Db, and let

J =
{

j | c′jz
∗ = (Db)j

}

.

If J = ∅, then z∗ lies in the interior of the constraint set of problem (3.11), so we must have

ξ = 0. If J 6= ∅ and y is such that c′jy ≤ 0 for all j ∈ J , then there is a small enough ε > 0 such

that A(z∗ + εy) − b ∈ P , and the optimality of z∗ implies that ξ′(z∗ + εy) ≤ ξ′z∗ or ξ′y ≤ 0.

Hence, by Farkas’ Lemma, there exist scalars ζj ≥ 0, j ∈ J , such that

ξ =
∑

j∈J

ζjcj .
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Thus, by defining ζj = 0 for j /∈ J , we see that for the vector ζ, we have

ξ = A′D′ζ, ζ ′(DAz∗ − Db) = 0.

Let µ = D′ζ, and note that since ζ ≥ 0, by Farkas’ Lemma, we have µ ∈ P ∗. Furthermore, the

preceding relations can be written as

ξ = A′µ, µ′(Az∗ − b) = 0,

from which we obtain

ξ′z∗ = µ′Az∗ = µ′b.

Thus, from Eq. (3.10) and the equalities ξ = A′µ and ξ′z∗ = µ′b, we have w∗ + µ′b ≤

inf(x,w)∈V

{

w + µ′Ax
}

or equivalently,

w∗ ≤ inf
(x,w)∈V

{

w + µ′(Ax − b)
}

.

Since µ ∈ P ∗, we have µ′(Ax − b) ≤ µ′Bu for all (x, u) such that u ∈ <n and Ax − b − Bu ∈ P ,

so that
inf

(x,w)∈V

{

w + µ′(Ax − b)
}

≤ inf
(x,w)∈V, u∈<n

Ax−b−Bu∈P

{

w + µ′(Ax − b)
}

≤ inf
(x,w)∈V, u∈<n

Ax−b−Bu∈P

{w + µ′Bu}

= inf
(u,w)∈M

{w + µ′Bu}

= q(B′µ)

≤ q∗.

By combining the preceding relations, we obtain w∗ ≤ q(B′µ) ≤ q∗. On the other hand, by the

weak duality relation, we have q∗ ≤ w∗, so that q(B′µ) = q∗ = w∗. Q.E.D.

4. MINIMAX AND SADDLE POINT THEOREMS

Suppose that we are given a function φ : X × Z 7→ <, where X ⊂ <n, Z ⊂ <m, and we want to

either
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X
(4.1)

or
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.
(4.2)
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We want to derive conditions guaranteeing that the optimal values of these two problems are

equal, i.e.,

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z), (4.3)

and that a saddle point of φ exists, i.e., a pair of vectors (x∗, z∗) exists such that x∗ ∈ X and

z∗ ∈ Z, and

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z.

It is well known that saddle points are related to optimal solutions of problems (4.1) and

(4.2) as in the following proposition.

Proposition 4.1: A pair (x∗, z∗) is a saddle point of φ if and only if x∗ and z∗ are optimal

solutions of problems (4.1) and (4.2), respectively, and the minimax equality (4.3) holds.

In the following analysis, a critical role is played by the min common/max crossing frame-

work of Section 3 and by the function p : <m 7→ [−∞,∞] given by

p(u) = inf
x∈X

sup
z∈Z

{

φ(x, z) − u′z
}

, ∀ u ∈ <m. (4.4)

This function, whose significance is well understood in both minimax theory and Lagrangian

duality (see e.g., Rockafellar [Roc70], Borwein and Lewis [BoL00]), defines how the “infsup” of

the function φ changes when the linear perturbation term u′z is subtracted from φ. It turns out

that if p changes in a “regular” manner to be specified shortly, the minimax equality (4.3) is

guaranteed.

In the subsequent applications of the min common/max crossing framework, the set M will

be taken to be the epigraph of p,

M = epi(p),

so that the min common value w∗ will be equal to p(0), which by the definition of p, is also equal

to the “infsup” value

w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z). (4.5)

Under some convexity assumptions with respect to x (see the subsequent Lemma 4.1), we will

show that p is convex, so that M is convex, which satisfies a major assumption for the application

of the min common/max crossing theorems of the preceding section (with M equal to an epigraph

of a function, the sets M and M appearing in the min common/max crossing theorems coincide).

The corresponding max crossing problem is [cf. Eqs. (3.3) and (3.2)]

maximize q(µ)

subject to µ ∈ <n,
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where

q(µ) = inf
(u,w)∈epi(p)

{w + µ′u} = inf
{(u,w)|p(u)≤w}

{w + µ′u} = inf
u∈<m

{

p(u) + µ′u
}

.

By using this relation and the definition of p, we obtain

q(µ) = inf
u∈<m

inf
x∈X

sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

.

For every µ ∈ Z, by setting z = µ in the right-hand side above, we obtain

inf
x∈X

φ(x, µ) ≤ q(µ), ∀ µ ∈ Z.

Thus, using also Eq. (4.5) and the weak duality relation q∗ ≤ w∗, we have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
µ∈<m

q(µ) = q∗ ≤ w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z). (4.6)

This inequality indicates a generic connection of the minimax and the min common/max crossing

frameworks. In particular, if the minimax equality

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z)

holds, then q∗ = w∗, i.e., that the optimal values of the min common and max crossing problems

are equal.

Figure 4.1. Min common/max crossing framework for minimax theory. The

set M will be taken to be the epigraph of the function

p(u) = inf
x∈X

sup
z∈Z

{φ(x, z) − u′z}.

Under suitable assumptions, the “infsup” and “supinf” values of φ will turn out to

be equal to the min common value w∗ and the max crossing value q∗, respectively.

Figures (a) and (b) illustrate the cases where the minimax equality (4.3) holds

and does not hold, respectively.

An even stronger connection between the minimax and the min common/max crossing

frameworks holds under some convexity and semicontinuity assumptions, as shown in the follow-

ing two lemmas. Loosely phrased, these lemmas assert that:
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(a) Convexity with respect to x [convexity of X and φ(·, z) for all z ∈ Z] guarantees that epi(p)

is a convex set, thereby allowing the use of the two Min Common/Max Crossing Theorems

of the preceding section (Props. 3.1 and 3.2).

(b) Concavity and semicontinuity with respect to z [convexity of Z, and concavity and upper

semicontinuity of φ(x, ·) for all x ∈ X] guarantee that

q(µ) = inf
x∈X

φ(x, µ), q∗ = sup
z∈Z

inf
x∈X

φ(x, z),

as indicated in Fig. 4.1. Thus, under these conditions, the minimax equality (4.3) is equiv-

alent to the equality q∗ = w∗ in the corresponding min common/max crossing framework.

Thus, if φ is convex with respect to x, and concave and upper semicontinuous with respect to z,

as specified in the following two lemmas, the min common/max crossing framework applies in its

most powerful form and provides the answers to the most critical questions within the minimax

framework.

Lemma 4.1: Let X be a nonempty convex subset of <n, let Z be a nonempty subset

of <m, and let φ : X × Z 7→ < be a function. Assume that for each z ∈ Z, the function

φ(·, z) : X 7→ < is convex. Then the function p of Eq. (4.4) is convex.

Proof: Let u and v be such that p(u) < ∞ and p(v) < ∞. Rewriting p(u) as

p(u) = inf
x∈X

l(x, u),

where l(x, u) = supz∈Z

{

φ(x, z) − u′z
}

, we have that there exist sequences {xk} and {yk} in X

such that

l(xk, u) → p(u), l(yk, v) → p(v).

By convexity of X, we have αxk + (1−α)yk ∈ X for all α ∈ [0, 1] and all k. Using the convexity

of φ(·, z) for each z ∈ Z, we obtain

p
(

αu + (1 − α)v
)

≤ l
(

αxk + (1 − α)yk, αu + (1 − α)v
)

= sup
z∈Z

{

φ
(

αxk + (1 − α)yk, z
)

−
(

αu + (1 − α)v
)′

z
}

≤ sup
z∈Z

{

αφ(xk, z) + (1 − α)φ(yk, z) −
(

αu + (1 − α)v
)′

z
}

≤ α sup
z∈Z

{

φ(xk, z) − u′z
}

+ (1 − α) sup
z∈Z

{

φ(yk, z) − v′z
}

= αl(xk, u) + (1 − α)l(yk, v).

Since

αl(xk, u) + (1 − α)l(yk, v) → αp(u) + (1 − α)p(v),
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it follows that

p
(

αu + (1 − α)v
)

≤ αp(u) + (1 − α)p(v),

implying that p is convex. Q.E.D.

The following lemma shows that under some convexity and semicontinuity assumptions, p

defines not only the “infsup” of the function φ [cf. Eq. (4.5)], but through its epigraph, it also

defines the “supinf” (cf. Fig. 4.1).

Lemma 4.2: Let X be a nonempty subset of <n, let Z be a nonempty convex subset

of <m, and let φ : X × Z 7→ < be a function. Assume that for each x ∈ X, the function

−φ(x, ·) : Z 7→ < is closed and convex. Then the function q : <m 7→ [−∞,∞] given by

q(µ) = inf
(u,w)∈epi(p)

{

w + u′µ
}

, µ ∈ <m,

where p is given by Eq. (4.4), satisfies

q(µ) =

{

infx∈X φ(x, µ) if µ ∈ Z,

−∞ if µ /∈ Z.
(4.7)

Furthermore, we have q∗ = w∗ if and only if the minimax equality (4.3) holds.

Proof: For every µ ∈ <m, we have

q(µ) = inf
(u,w)∈epi(p)

{w + µ′u} = inf
{(u,w)|p(u)≤w}

{w + µ′u} = inf
u∈<m

{

p(u) + µ′u
}

.

By using this relation and the definition of p, we obtain for every µ ∈ <m,

q(µ) = inf
u∈<m

{

p(u) + u′µ
}

= inf
u∈<m

inf
x∈X

sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

= inf
x∈X

inf
u∈<m

sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

.

(4.8)

For µ ∈ Z, we have

sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

≥ φ(x, µ), ∀ x ∈ X, ∀ u ∈ <m,

implying that

q(µ) ≥ inf
x∈X

φ(x, µ), ∀ µ ∈ Z.

Thus, to prove Eq. (4.7), we must show that

q(µ) ≤ inf
x∈X

φ(x, µ), ∀ µ ∈ Z, (4.9)
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and

q(µ) = −∞, ∀ µ /∈ Z.

For all x ∈ X and z ∈ Z, denote

rx(z) = −φ(x, z),

so that the function rx : Z 7→ < is closed and convex by assumption. We will consider separately

the two cases where µ ∈ Z and µ /∈ Z. We first assume that µ ∈ Z. We fix an arbitrary x ∈ X,

and we note that by assumption, epi
(

rx

)

is a closed convex set. Since µ ∈ Z, the point
(

µ, rx(µ)
)

belongs to epi(rx). For some ε > 0, we consider the point
(

µ, rx(µ)−ε
)

, which does not belong to

epi(rx). By the definition of rx, rx(z) is finite for all z ∈ Z, Z is nonempty, and epi(rx) is closed,

so that epi(rx) does not contain any vertical lines. Therefore, by Prop. 2.6(b), there exists a

nonvertical hyperplane that strictly separates the point
(

µ, rx(µ)− ε
)

from epi(rx), i.e., a vector

(u, ζ) with ζ 6= 0, and a scalar c such that

u′µ + ζ
(

rx(µ) − ε
)

< c < u′z + ζw, ∀ (z, w) ∈ epi(rx).

Since w can be made arbitrarily large, we have ζ > 0, and without loss of generality, we can take

ζ = 1. In particular for w = rx(z), with z ∈ Z, we have

u′µ +
(

rx(µ) − ε
)

< u′z + rx(z), ∀ z ∈ Z,

or equivalently,

φ(x, z) + u′(µ − z) < φ(x, µ) + ε, ∀ z ∈ Z.

Letting ε ↓ 0, we obtain for all x ∈ X

inf
u∈<m

sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

≤ sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

≤ φ(x, µ).

By taking the infimum over x ∈ X in the above relation, and by using Eq. (4.8), we see that Eq.

(4.9) holds.

We now assume that µ /∈ Z. We consider a sequence {wk} with wk → ∞ and we fix an

arbitrary x ∈ X. Since µ /∈ Z, the sequence
{

(µ, wk)
}

does not belong to epi(rx). Therefore,

similar to the argument above, there exists a sequence of nonvertical hyperplanes with normals

(uk, 1) such that

wk + u′
kµ < −φ(x, z) + u′

kz, ∀ z ∈ Z, ∀ k,

implying that

φ(x, z) + u′
k(µ − z) < −wk, ∀ z ∈ Z, ∀ k.
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Thus, we have

inf
u∈<m

sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

≤ sup
z∈Z

{

φ(x, z) + u′
k(µ − z)

}

≤ −wk, ∀ k,

and by taking the limit in the preceding inequality as k → ∞, we obtain

inf
u∈<m

sup
z∈Z

{

φ(x, z) + u′(µ − z)
}

= −∞, ∀ x ∈ X.

Using Eq. (4.8), we see that q(µ) = −∞. Thus, q(µ) has the form given in Eq. (4.7). The equality

q∗ = w∗ and the minimax equality are equivalent in view of the discussion following Eq. (4.6).

Q.E.D.

The assumption that −φ(x, ·) is closed and convex in Lemma 4.2 is essential for Eq. (4.7)

to hold. This can be seen by considering the special case where φ is independent of x, and by

noting that q is concave and upper semicontinuous.

We now use the preceding two lemmas and the Min Common/Max Crossing Theorem I (cf.

Prop. 3.1) to prove the following proposition.

Proposition 4.2: (Minimax Theorem I) Let X and Z be nonempty convex subsets of

<n and <m, respectively, and let φ : X ×Z 7→ < be a function. Assume that for each z ∈ Z,

the function φ(·, z) : X 7→ < is convex, and for each x ∈ X, the function −φ(x, ·) : Z 7→ < is

closed and convex. Assume further that

inf
x∈X

sup
z∈Z

φ(x, z) < ∞.

Then, the minimax equality holds, i.e.,

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z),

if and only if the function p of Eq. (4.4) is lower semicontinuous at u = 0, i.e., p(0) ≤

lim infk→∞ p(uk) for all sequences {uk} with uk → 0.

Proof: The proof consists of showing that with an appropriate selection of the set M , the

assumptions of the proposition are essentially equivalent to the corresponding assumptions of the

Min Common/Max Crossing Theorem I.

We choose the set M (as well as the set M) in the Min Common/Max Crossing Theorem I

to be the epigraph of p,

M = M =
{

(u, w) | u ∈ <m, p(u) ≤ w
}

,
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which is convex in view of the assumed convexity of φ(·, z) and Lemma 4.1. Thus, assumption

(2) of the Min Common/Max Crossing Theorem I is satisfied.

From the definition of p, we have

w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z).

It follows that the assumption

inf
x∈X

sup
z∈Z

φ(x, z) < ∞

is equivalent to the assumption w∗ < ∞ of the Min Common/Max Crossing Theorem I.

Finally, the condition

p(0) ≤ lim inf
k→∞

p(uk)

for all sequences {uk} with uk → 0 is equivalent to the condition of the Min Common/Max

Crossing Theorem I that for every sequence
{

(uk, wk)
}

⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. Thus, by the conclusion of that theorem, the condition p(0) ≤ lim infk→∞ p(uk)

holds if and only if q∗ = w∗, which in turn holds if and only if the minimax equality holds

[cf. Lemma 4.2, which applies because of the assumed closedness and convexity of −φ(x, ·)].

Q.E.D.

The assumptions of Prop. 4.2 are satisfied under some easily verified conditions, as shown

in the following proposition, which is related to results due to Rockafellar that were developed

using considerably more complicated mathematical machinery (see [Roc70], Theorems 37.3 and

37.6). Our line of analysis is related to the one of Borwein and Lewis [BoL00], p. 96.
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Proposition 4.3: Let X be a nonempty convex subset of <n, let Z be a nonempty convex

subset of <m, and let φ : X×Z 7→ < be a function. Assume that for each z ∈ Z, the function

tz : <n 7→ (−∞,∞] defined by

tz(x) =

{

φ(x, z), if x ∈ X,

∞, if x /∈ X,

is closed and convex, and that for each x ∈ X, the function rx : <m 7→ (−∞,∞] defined by

rx(z) =

{

−φ(x, z) if z ∈ Z,

∞ otherwise,

is closed and convex. Assume further that

inf
x∈X

sup
z∈Z

φ(x, z) < ∞

and that the set of common directions of recession of all the functions tz, z ∈ Z, consists of

the zero vector only. Then, the minimax equality holds, i.e.,

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z),

and the infimum over X in the right-hand side above is finite and is attained at a set of

points that is nonempty and compact. Furthermore, the function p of Eq. (4.4) is closed,

proper, and convex.

Proof: Consider the function t : <n 7→ (−∞,∞] defined by

t(x) = sup
z∈Z

tz(x),

which is closed and convex since all the functions tz, z ∈ Z, are closed and convex, and has

some nonempty level sets because of the assumption infx∈X supz∈Z φ(x, z) < ∞, which can be

written as infx∈X t(x) < ∞. A nonempty level set
{

x | t(x) ≤ γ
}

, where γ ∈ <, is equal to the

intersection of the level sets
{

x | tz(x) ≤ γ
}

, z ∈ Z. Since the latter level sets are closed (in view

of the closedness of tz), the recession cone of their intersection, is equal to the intersection of

their recession cones ([Roc70], Cor. 8.3.2), which consists of just the zero vector by assumption.

Hence the recession cone of a nonempty level set of t consists of the zero vector only. It follows

that the level sets of t are compact and by Weierstrass’ Theorem, its set of minimizing points is

nonempty and compact. In particular, p(0) is finite.
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We will prove that the epigraph of p,

epi(p) =
{

(u, w) | p(u) ≤ w
}

,

is a closed set in <m+1. This will imply that the assumptions of Prop. 4.2 are satisfied, thereby

showing the desired assertions, except for the properness of p (the convexity of p follows from

Lemma 4.1).

Let
{

(uk, wk)
}

be a sequence in epi(p) that converges to some (u, w) ∈ <m+1. Since
{

(uk, wk)
}

is in epi(p), we have

p(uk) = inf
x∈X

sup
z∈Z

{

φ(x, z) − u′
kz

}

≤ wk, ∀ k.

Let ε be any positive scalar. Then, from the preceding relation we see that for each k, there

exists a vector xk ∈ X such that

sup
z∈Z

{

φ(xk, z) − u′
kz

}

≤ wk + ε,

implying that

φ(xk, z) ≤ u′
kz + wk + ε, ∀ k, ∀ z ∈ Z. (4.10)

Therefore,

φ(xk, z) ≤ γz, ∀ k, ∀ z ∈ Z, (4.11)

where the scalar γz defined by

γz = sup
k
{u′

kz + wk + ε}

is finite, because (uk, wk) → (u, w). In view of Eq. (4.11), it follows that the sequence {xk} is

contained in

∩z∈Z

{

x | tz(x) ≤ γz

}

. (4.12)

By repeating the argument given in the beginning of the proof, we see that this set is compact.

Hence the sequence {xk} belongs to the compact set (4.12), and all its limit points belong to this

set and therefore also to X.

Let x ∈ X be a limit point of {xk}, and without loss of generality assume that xk → x.

Taking the limit as k → ∞ in Eq. (4.10), and using the fact (uk, wk) → (u, w) and the closedness

of tz for each z ∈ Z [which implies lower semicontinuity of φ(·, z)], we obtain

φ(x, z) ≤ lim inf
k→∞

φ(xk, z) ≤ u′z + w + ε, ∀ z ∈ Z.

This relation implies that

p(u) = inf
x∈X

sup
z∈Z

{

φ(x, z) − u′z
}

≤ sup
z∈Z

{

φ(x, z) − u′z
}

≤ w + ε.
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Letting ε ↓ 0, we have p(u) ≤ w, showing that (u, w) ∈ epi(p) and that epi(p) is closed.

Finally, to show that p is proper, i.e., −∞ < p(u) for all u ∈ <n, we argue by contradiction.

If p(u) = −∞ for some u ∈ <m, then by the finiteness of p(0) and the convexity of p (cf. Lemma

4.1), we must have p(αu) ≤ αp(u) + (1 − α)p(0) = −∞ for all α ∈ (0, 1]. This contradicts the

condition p(0) ≤ lim infk→∞ p(uk) for all sequences {uk} with uk → 0, which was implied by the

fact shown earlier that p is closed. Q.E.D.

The assumption of Prop. 4.3 that there is no nonzero common direction of recession of all

the functions tz, z ∈ Z, is satisfied under any one of the following conditions:

(1) The set X is compact.

(2) There exists a vector z ∈ Z such that all the sets
{

x ∈ X | φ(x, z) ≤ γ
}

, γ ∈ <, are

compact.

The conclusions of Prop. 4.3 using condition (2) in place of our directions of recession assumption

have been given by Borwein and Lewis [BoL00], p. 96.

As a corollary of the preceding proposition, we have the following result, which contains as

special cases the classical saddle point theorems of von Neumann [Neu28] and Kakutani [Kak41].
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Proposition 4.4: (Saddle Point Theorem) Let X be a nonempty convex subset of

<n, let Z be a nonempty convex subset of <m, and let φ : X × Z 7→ < be a function such

that either

−∞ < sup
z∈Z

inf
x∈X

φ(x, z),

or

inf
x∈X

sup
z∈Z

φ(x, z) < ∞.

Assume that for each z ∈ Z, the function tz : <n 7→ (−∞,∞] defined by

tz(x) =

{

φ(x, z), if x ∈ X,

∞, if x /∈ X,

is closed and convex, and that for each x ∈ X, the function rx : <m 7→ (−∞,∞] defined by

rx(z) =

{

−φ(x, z) if z ∈ Z,

∞ otherwise,

is closed and convex. Assume further that the set of common directions of recession of all the

functions tz, z ∈ Z, consists of the zero vector only, and that the set of common directions

of recession of all the functions rx, x ∈ X, consists of the zero vector only. Then, the set of

saddle points of φ is nonempty and compact.

Proof: If infx∈X supz∈Z φ(x, z) < ∞, we apply Prop. 4.3 to show that the minimax equality

holds and that the infimum over X is attained at a nonempty and compact set. We then reverse

the roles of x and z and the sign of φ, and apply Prop. 4.3 again to show that the supremum

over Z is attained.

If infx∈X supz∈Z φ(x, z) = ∞, we have −∞ < supz∈Z infx∈X φ(x, z) by condition (1). We

then reverse the roles of x and z and the sign of φ, and apply the preceding argument in con-

junction with Prop. 4.3. Q.E.D.

Note that the assumptions of Prop. 4.4, which relate to directions of recession of tz and rx,

as well as the condition that either −∞ < supz∈Z infx∈X φ(x, z), or infx∈X supz∈Z φ(x, z) < ∞,

are satisfied under any one of the following four conditions:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z ∈ Z such that all the sets
{

x ∈ X | φ(x, z) ≤ γ
}

,
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γ ∈ <, are compact.

(3) X is compact and there exists a vector x ∈ X such that all the sets
{

z ∈ Z | φ(x, z) ≥ γ
}

,

γ ∈ <, are compact.

(4) There exist vectors x ∈ X and z ∈ Z such that all the level sets
{

x ∈ X | φ(x, z) ≤ γ
}

,

γ ∈ <, and all the level sets
{

z ∈ Z | φ(x, z) ≥ γ
}

, γ ∈ <, are compact.

A proof of the saddle-point theorem under each of the above four conditions (and somewhat

stronger assumptions on φ) is given by Hiriart-Urruty and Lemarechal [HiL93]. Their line of

proof involves a complex argument, which is fundamentally different than ours.

Propositions 4.3 and 4.4 constitute variations of the corresponding minimax theorems of

Rockafellar [Roc70] (Theorems 37.3 and 37.6), where instead of assuming that there is no nonzero

common direction of recession of all the functions tz, z ∈ Z (and/or rx, x ∈ X), a stronger

condition is assumed, namely that there is no nonzero common direction of recession of all the

functions tz, z ∈ ri(Z) [and/or rx, x ∈ ri(X), respectively], but some of the other assumptions of

Props. 4.3 and 4.4 are not made.

The proof of the Minimax Theorem I (Prop. 4.2) can be easily modified to use the Min

Common/Max Crossing Theorem II [cf. Prop. 3.2 and Eq. (4.7)]. What is needed is an assumption

that p(0) is finite and that 0 lies in the relative interior of the effective domain of p. We then

obtain the following result, which asserts that the supremum in the minimax equality is attained

[this follows from the corresponding attainment assertion of the Min Common/Max Crossing

Theorem II and Eq. (4.7)].
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Proposition 4.5: (Minimax Theorem II) Let X and Z be nonempty convex subsets of

<n and <m, respectively, and let φ : X ×Z 7→ < be a function. Assume that for each z ∈ Z,

the function φ(·, z) : X 7→ < is convex, and for each x ∈ X, the function −φ(x, ·) : Z 7→ < is

closed and convex. Assume further that

−∞ < inf
x∈X

sup
z∈Z

φ(x, z),

and that 0 lies in the relative interior of the effective domain of the function p of Eq. (4.4).

Then, the minimax equality holds, i.e.,

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z),

and the supremum over Z in the left-hand side is finite and is attained. Furthermore, the

set of z ∈ Z attaining this supremum is compact if and only if 0 lies in the interior of the

effective domain of p.

By using instead the Min Common/Max Crossing Theorem III (cf. Prop. 3.3), we obtain

the following minimax theorem, which relates to problems where x and z are linearly coupled.
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Proposition 4.6: (Minimax Theorem III) Let φ : X × Z 7→ < be a function of the

form

φ(x, z) = f(x) + z′Qx − h(z),

where X and Z are convex subsets of <n and <m, respectively, Q is an m × n matrix,

f : X 7→ < is a convex function, and h : Z 7→ < is a closed convex function. Consider the

function

h∗(ζ) = sup
z∈Z

{

z′ζ − h(z)
}

, ζ ∈ <m

and assume the following:

(1) X is the intersection of a polyhedron P1 and a convex set C1, and f can be extended to

a real-valued convex function over C1 [i.e., there exists a convex function f : C1 7→ <

such that f(x) = f(x) for all x ∈ X].

(2) dom(h∗) is the intersection of a polyhedron P2 and a convex set C2, and h∗ can be

extended to a real-valued convex function over C2 [i.e., there exists a convex function

h
∗

: C2 7→ < such that h∗(ζ) = h
∗
(ζ) for all ζ ∈ dom(h∗)].

(3) The sets Q ·
(

X ∩ ri(C1)
)

and dom(h∗) ∩ ri(C2) have nonempty intersection.

Then the minimax equality holds, i.e.,

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z),

and the supremum over Z in the left-hand side above is attained by some vector z ∈ Z.

Proof: The function p(u) = infx∈X supz∈Z

{

φ(x, z) − u′z
}

is given by

p(u) = inf
x∈X

sup
z∈Z

{

f(x) + z′Qx − h(z) − u′z
}

= inf
x∈X

{

f(x) + sup
z∈Z

{

z′(Qx − u) − h(z)
}

}

= inf
x∈X, (Qx−u)∈dom(h∗)

{

f(x) + h∗(Qx − u)
}

.

(4.13)

Because f is convex, and h is convex and closed, Lemmas 4.1 and 4.2, which connect the min

common/max crossing framework with minimax problems apply. Thus, if we can use the Min

Common/Max Crossing Theorem III in conjunction with the set

M = epi(p),

the minimax equality will be proved, and the supremum over z ∈ Z will be attained. We will
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thus show that the assumptions of the Min Common/Max Crossing Theorem III are satisfied

under the assumptions of the present proposition.

Let P1 and P2 be represented in terms of linear inequalities as

P1 = {x | a′
jx − bj ≤ 0, j = 1, . . . , r1},

and

P2 = {ζ | c′kζ − dk ≤ 0, k = 1, . . . , r2}.

We have from the preceding expressions

p(u) = inf
x∈C1, ζ∈C2

A(x,ζ)−b−Bu≤0

{

f(x) + h∗(ζ)
}

,

where A(x, ζ) − b − Bu ≤ 0 is a matrix representation of the inequalities

a′
jx − bj ≤ 0, j = 1, . . . , r1, c′kζ − dk ≤ 0, k = 1, . . . , r2,

ζ − Qx + u = 0,

for suitable matrices A and B, and vector b. Consider the convex set

V =
{

(x, ζ, w) | x ∈ C1, ζ ∈ C2, w ∈ <, f(x) + h
∗
(ζ) ≤ w

}

,

where f and h
∗

are real-valued convex functions, which are the extended versions of f and h∗

over C1 and C2, respectively [cf. conditions (1) and (2)]. Thus, the epigraph of p has the form

epi(p) =
{

(u, w) | there is a vector (x, ζ, w) such that

x ∈ C1, ζ ∈ C2, A(x, ζ) − b − Bu ≤ 0, f(x) + h
∗
(ζ) ≤ w

}

,

so it can be written as

epi(p) =
{

(u, w) | there is a vector (x, ζ, w) ∈ V

such that A(x, ζ) − b − Bu ≤ 0
}

.

Therefore, epi(p) has the appropriate form for the application of the Min Common/Max Crossing

Theorem III with the polyhedral cone P being the nonpositive orthant.

Finally, consider condition (3), which in conjunction with conditions (1) and (2), says that

there exists a vector x ∈ P1 ∩ ri(C1) such that Qx ∈ P2 ∩ ri(C2). By letting ζ = Qx, this holds if

and only if there exist x ∈ ri(C1) and ζ ∈ ri(C2) such that

x ∈ P1, ζ ∈ P2, ζ = Qx,
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or, in view of the definition of A and b,

A(x, ζ) − b ≤ 0.

Thus, given conditions (1) and (2), condition (3) is equivalent to the existence of x ∈ ri(C1) and

ζ ∈ ri(C2) such that A(x, ζ) − b ≤ 0.

On the other hand, since V is the epigraph of the function f(x) + h
∗
(ζ), whose domain is

C1 × C2, we have

ri(V ) =
{

(x, ζ, w) | x ∈ ri(C1), ζ ∈ ri(C2), w ∈ <, f(x) + h
∗
(ζ) < w

}

.

Therefore, condition (3) is equivalent to the second assumption of the Min Common/Max Cross-

ing Theorem III, i.e., that there exists a vector of the form (x, ζ, w) in ri(V ) such that A(x, ζ)−b ≤

0. Thus, all the assumptions needed for application of the Min Common/Max Crossing Theorem

III are satisfied, and the proof is complete. Q.E.D.

We note some special cases of the above proposition. Its assumptions are satisfied if one of

the following two conditions holds:

(a) There exists a vector x ∈ ri
(

X
)

such that Qx ∈ dom(h∗), and the function h∗ is polyhedral.

[Take C1 = X, C2 = <m, and P1 = <n, P2 = dom(h∗) in Prop. 4.6.]

(b) There exists a vector x ∈ ri
(

X
)

such that Qx ∈ ri
(

dom(h∗)
)

. [Take C1 = X, C2 = dom(h∗),

and P1 = <n, P2 = <m in Prop. 4.6.]

Note that a minimax problem involving a function φ of the form

φ(x, z) = f(x) + z′Qx − h(z)

is closely related to Fenchel duality (see e.g., Rockafellar [Roc70], Bertsekas [Ber99]). Indeed,

from Eq. (4.13), we have

p(0) = inf
x∈X, Qx∈dom(h∗)

{

f(x) + h∗(Qx)
}

,

which is the standard problem arising within the Fenchel framework. In fact the conditions (1)

and (2) of Prop. 4.6 guaranteeing that the minimax equality holds are typical of the conditions

used to guarantee that there is no duality gap in the Fenchel duality context.

5. LAGRANGIAN DUALITY
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We now consider the constrained minimization problem

minimize f(x)

subject to x ∈ X, h(x) = 0, g(x) ≤ 0,
(P)

where X is a subset of <n, f : <n 7→ <, hi : <n 7→ <, i = 1, . . . , m, and gj : <n 7→ <, j = 1, . . . , r,

are functions, and we use the notation

h(x) =
(

h1(x), . . . , hm(x)
)

, g(x) =
(

g1(x), . . . , gr(x)
)

.

We refer to this as the primal problem and we denote by f∗ its optimal value, i.e.,

f∗ = inf
x∈X

h(x)=0, g(x)≤0

f(x).

Let L : <n+m+r 7→ < be the Lagrangian function

L(x, λ, µ) = f(x) + λ′h(x) + µ′g(x).

Following Rockafellar [Roc70], we use the following definition of a multiplier vector.

Definition 5.1: A vector (λ∗, µ∗) ∈ <m+r is said to be a geometric multiplier for the

primal problem (P) if µ∗ ≥ 0 and

f∗ = inf
x∈X

L(x, λ∗, µ∗).

We consider the dual function q defined for (λ, µ) ∈ <m+r by

q(λ, µ) = inf
x∈X

L(x, λ, µ).

The dual problem is
maximize q(λ, µ)

subject to λ ∈ <m, µ ≥ 0.
(D)

It is well-known that the effective domain of q, i.e., the set

{

(λ, µ) | q(λ, µ) > −∞
}

,

is convex and that q is concave over its effective domain. It is also well known that q∗ ≤ f∗. This

is the Weak Duality Theorem. If q∗ = f∗ we say that there is no duality gap and if q∗ < f∗ we

say that there is a duality gap. Existence of a geometric multiplier guarantees that there is no

duality gap, as asserted in the following proposition (see e.g., Bertsekas [Ber99], Prop. 5.1.4).
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Proposition 5.1:

(a) If there is no duality gap, the set of geometric multipliers is equal to the set of optimal

solutions of the dual problem.

(b) If there is a duality gap, the set of geometric multipliers is empty.

Duality theory is intimately connected with the minimax theory of the preceding section.

In particular, suppose we identify z with the multiplier vector (λ, µ) and we choose φ to be the

Lagrangian function

L(x, λ, µ) = f(x) + λ′h(x) + µ′g(x).

Then, we have

sup
λ∈<m, µ≥0

L(x, λ, µ) =

{

f(x) if h(x) = 0 and g(x) ≤ 0,

∞ otherwise,

so the primal problem (P) is equivalent to the problem

minimize sup
λ∈<m, µ≥0

L(x, λ, µ)

subject to x ∈ X.

Furthermore, by the definition of the dual function, we have

q(λ, µ) = inf
x∈X

L(x, λ, µ),

so the dual problem (D) is equivalent to the problem

maximize inf
x∈X

L(x, λ, µ)

subject to λ ∈ <m, µ ≥ 0.

Thus, with the preceding identifications, the presence of no duality gap between the primal and

dual problems is equivalent to the minimax equality when φ is the Lagrangian function as per the

preceding identifications. Moreover, we have the following well-known proposition, which shows

that a saddle point of the Lagrangian function is an optimal solution-geometric multiplier pair

of problem (P) (see e.g., Bertsekas [Ber99], Ch. 5).

Proposition 5.2: (Lagrangian Saddle Point Theorem) The vector (x∗, λ∗, µ∗) is

an optimal solution-geometric multiplier pair of problem (P) if and only if (x∗, λ∗, µ∗) is a

saddle point of the Lagrangian in the sense that x∗ ∈ X, µ∗ ≥ 0, and

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗), ∀ x ∈ X, λ ∈ <m, µ ≥ 0.
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The classical von Neumann result of Prop. 4.4, which guarantees the minimax equality (4.3),

as well as the attainment of the inf and sup, assuming convexity/concavity assumptions on φ, and

compactness assumptions on X and Z, is not adequate for the development of duality theory. The

reason is that compactness of Z and, to some extent, compactness of X are restrictive assumptions

[in particular, Z corresponds to the constraint set
{

(λ, µ) | λ ∈ <m, µ ≥ 0, q(λ, µ) > −∞
}

of the dual problem, which is not necessarily compact]. However, the other propositions of

Section 4 are more relevant to duality theory and give conditions guaranteeing that there is no

duality gap, although they need not always guarantee the attainment of the infimum and the

supremum. Similar duality and multiplier existence results have been known for a long time, but

our objective here is to show how they can be proved as special cases of our min common/max

crossing framework.

Conditions for no Duality Gap

We first derive conditions under which there is no duality gap. As mentioned earlier, we can

analyze this question by applying the minimax theorems of Section 4, with the function φ equal

to the Lagrangian function. For simplicity, we consider problem (P) in the absence of the equality

constraint h(x) = 0. We introduce the family of problems

minimize f(x)

subject to x ∈ X, gj(x) ≤ uj , j = 1, . . . , r,
(5.1)

parameterized by u = (u1, . . . , ur), and we let p(u) denote the corresponding optimal value, i.e.,

p(u) = inf
x∈X

gj(x)≤uj, j=1,...,r

f(x). (5.2)

The function p is known as the primal function of the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r.
(5.3)

We now note that

sup
µ≥0

{

L(x, µ) − u′µ
}

=

{

f(x) if gj(x) ≤ uj , j = 1, . . . , r,

∞ otherwise,

so that the primal function of Eq. (5.2) coincides with the function p of Eq. (4.4),

p(u) = inf
x∈X

sup
µ≥0

{

L(x, µ) − u′µ
}

, u ∈ <m,
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where Z is the nonnegative orthant, i.e., Z = {µ | µ ≥ 0}, and φ(x, µ) is the Lagrangian function

L(x, µ). Thus, the Minimax Theorem I of Section 4 applies, and we obtain the following well-

known proposition.

Proposition 5.3: Let X be convex, let f and the gj be convex over X, and assume that

−∞ < p(0) < ∞. Then there is no duality gap if and only if p is lower semicontinuous at 0.

To guarantee the lower semicontinuity of p at 0, we may use Prop. 4.3. Thus, if we assume

that the problem is feasible, that X is convex and compact, and that the functions f and gj are

convex over <n (and are therefore continuous), then using Props. 4.2 and 4.3, we have that there

is no duality gap and the primal problem (P) has at least one optimal solution.

Conditions for Existence of a Geometric Multiplier

It is possible to analyze the question of existence of a geometric multiplier in the context of the

minimax theory of the preceding section. In particular, a geometric multiplier exists if and only if

there is no duality gap and the supremum of infx∈X L(x, µ) [which is q(µ)] over µ ≥ 0 is attained.

Thus, the Minimax Theorems II and III of the preceding section can be applied.

We will follow an alternative and more direct approach. In particular, we will use the

min common/max crossing duality framework to prove the following nonlinear version of Farkas’

Lemma (if C = <n and the functions f and gj are linear in the statement below, we obtain

the classical Farkas’ Lemma). Versions of this lemma are available in the literature, dating to

Fan, Glicksberg, and Hoffman [FGH57], and including Berge and Ghouila-Houri [BeG62], and

Rockafellar [Roc70]. From this lemma, the existence of a geometric multiplier vector under

various constraint qualifications follows easily.

Note that the conditions (a) of the following lemma correspond to the relative interior

conditions of the Min Common/Max Crossing Theorem II and the Minimax Theorem II. The

conditions (b) of the lemma correspond to the alternative polyhedral/relative interior conditions

of the Min Common/Max Crossing Theorem III and the Minimax Theorem III.

38



Proposition 5.4: (Nonlinear Farkas’ Lemma) Let C be a nonempty convex subset

of <n, and let f : C 7→ < and gj : C 7→ <, j = 1, . . . , r, be convex functions. Consider the

set F given by

F =
{

x ∈ C | g(x) ≤ 0
}

,

where g(x) =
(

g1(x), . . . , gr(x)
)

, and assume that

f(x) ≥ 0, ∀ x ∈ F. (5.4)

Consider the subset Q∗ of <r given by

Q∗ =
{

µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ C
}

.

Then:

(a) Q∗ is nonempty and compact if and only if there exists a vector x ∈ C such that

gj(x) < 0, ∀ j = 1, . . . , r.

(b) Q∗ is nonempty if the functions gj , j = 1, . . . , r, are affine, and F contains a relative

interior point of C.

Proof: (a) Assume that there exists a vector x ∈ C such that g(x) < 0. We will apply the Min

Common/Max Crossing Theorem II (Prop. 3.2) to the subset of <r+1 given by

M =
{

(u, w) | there exists x ∈ C such that g(x) ≤ u, f(x) ≤ w
}

(cf. Fig. 5.1). To this end, we verify that the assumptions of the theorem are satisfied for the

above choice of M .

In particular, we will show that:

(i) The optimal value w∗ of the corresponding min common problem,

w∗ = inf
{

w | (0, w) ∈ M
}

,

is such that −∞ < w∗.

(ii) The set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

,

is convex. (Note here that M = M .)
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Figure 5.1. Illustration of the sets

M = M =
{

(u, w) | there exists x ∈ C such that g(x) ≤ u, f(x) ≤ w
}

and

D =
{

u | g(x) ≤ u for some x ∈ C
}

=
{

u | (u, w) ∈ M for some w ∈ <
}

that are used in the proof of Prop. 5.4. Note that if there exists x ∈ C such that gj(x) < 0

for all j = 1, . . . , r, then 0 is an interior point of D.

(iii) The set

D =
{

u | there exists w ∈ < such that (u, w) ∈ M
}

contains the origin in its interior.

To show (i), note that since f(x) ≥ 0 for all x ∈ F , we have w ≥ 0 for all (0, w) ∈ M , so

that w∗ ≥ 0.

To show (iii), note that the set D can also be written as

D =
{

u | there exists x ∈ C such that g(x) ≤ u
}

.

If g(x) < 0 for some x ∈ C, then since D contains the set g(x)+ {u | u ≥ 0}, we have 0 ∈ int(D).

There remains to show (ii), i.e., that the set M is convex. Since M = M , we will prove that

M is convex. To this end, we consider vectors (u, w) ∈ M and (ũ, w̃) ∈ M , and we show that

their convex combinations lie in M . By the definition of M , for some x ∈ C and x̃ ∈ C, we have

f(x) ≤ w, gj(x) ≤ uj , ∀ j = 1, . . . , r,

f(x̃) ≤ w̃, gj(x̃) ≤ ũj , ∀ j = 1, . . . , r.

For any α ∈ [0, 1], we multiply these relations with α and 1− α, respectively, and add them. By

using the convexity of f and gj for all j, we obtain

f
(

αx + (1 − α)x̃
)

≤ αf(x) + (1 − α)f(x̃) ≤ αw + (1 − α)w̃,

gj

(

αx + (1 − α)x̃
)

≤ αgj(x) + (1 − α)gj(x̃) ≤ αuj + (1 − α)ũj , ∀ j = 1, . . . , r.
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By convexity of C, we have αx+(1−α)x̃ ∈ C for all α ∈ [0, 1], so the preceding inequalities imply

that the convex combination α(u, w) + (1 − α)(ũ, w̃) belongs to M , showing that M is convex.

Thus all the assumptions of the Min Common/Max Crossing Theorem II hold, and by the

conclusions of the theorem, we have w∗ = supµ q(µ), where

q(µ) = inf
(u,w)∈M

{w + µ′u}.

Furthermore, the optimal solution set Q̃ =
{

µ | q(µ) ≥ w∗
}

is nonempty and compact. Using

the definition of M , it can be seen that

q(µ) =

{

infx∈C

{

f(x) + µ′g(x)
}

if µ ≥ 0,

−∞ otherwise.

From the definition of Q∗, we have

Q∗ =
{

µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ C
}

=
{

µ | q(µ) ≥ 0
}

,

so Q∗ and Q̃ are level sets of the proper convex function −q, which is closed. Therefore, since Q̃

is nonempty and compact, Q∗ is compact. Furthermore, Q∗ is nonempty since Q∗ ⊃ Q̃.

Conversely, assuming that Q∗ is nonempty and compact, we will show that there exists a

vector x ∈ C such that g(x) < 0. Indeed, if this were not so, then 0 would not be an interior point

of the set D. Since D is convex, there exists a hyperplane that passes through 0 and contains D

in its positive halfspace, i.e., there is a nonzero vector ν ∈ <r such that ν′u ≥ 0 for all u ∈ D.

From the definition of D, it follows that ν ≥ 0. Since g(x) ∈ D for all x ∈ C, we obtain

ν′g(x) ≥ 0, ∀ x ∈ C.

Thus, for any µ ∈ Q∗, we have

f(x) + (µ + γν)′g(x) ≥ 0, ∀ x ∈ C, ∀ γ ≥ 0.

Since we also have ν ≥ 0, it follows that (µ + γν) ∈ Q∗ for all γ ≥ 0, which contradicts the

boundedness of Q∗.

(b) We apply the Min Common/Max Crossing Theorem III (cf. Prop. 3.3), with the polyhedral

cone P in that theorem being equal to the nonpositive orthant, i.e., P = {u | u ≤ 0}, and with

the matrix B being the identity matrix. The assumptions of the theorem for this choice of P and

B are:

(i) The subset M of <r+1 is defined in terms of a convex set V of <n+1, an r × n matrix A,

and a vector b in <r as follows:

M =
{

(u, w) | there is a vector (x, w) ∈ V such that Ax − b ≤ u
}

.
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(ii) There exists a vector (x,w) in the relative interior of V such that Ax − b ≤ 0.

Let the affine functions gj have the form

gj(x) = a′
jx − bj ,

where aj are some vectors in <n and bj are some scalars. We choose the matrix A to have as

rows the vectors a′
j , and the vector b to be equal to (b1, . . . , br)′. We also choose the convex set

V to be

V =
{

(x, w) | x ∈ C, f(x) ≤ w
}

.

To prove that (ii) holds, note that by our assumptions, there exists a vector x in F ∩ ri(C),

i.e., x ∈ ri(C) and Ax − b ≤ 0. Then, the vector (x,w) with w > f(x) belongs to ri(V ). Hence,

all the assumptions of the Min Common/Max Crossing Theorem III are satisfied, and by using

this theorem, similar to the proof of part (a), we have

inf
x∈C

{

f(x) + µ∗′g(x)
}

= q(µ∗) = q∗ = w∗

for some µ∗ ≥ 0. Since w∗ ≥ 0, it follows that f(x) + µ∗′g(x) ≥ 0 for all x ∈ C. Q.E.D.

The existence of a vector x ∈ C such that g(x) < 0 [part (a) of the lemma] is known as

the Slater condition, and will be reencountered in the next section. We now use the preceding

Nonlinear Farkas’ Lemma to assert the existence of geometric multipliers under some specific

assumptions.

Convex Constraints

We now consider the nonlinearly constrained problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(5.5)

under the following assumption.

Assumption 5.1: (Slater Condition) The optimal value f∗ of problem (5.5) is finite, X

is convex, and the functions f : <n 7→ < and gj : <n 7→ < are convex over X. Furthermore,

there exists a vector x ∈ X such that gj(x) < 0 for all j = 1, . . . , r.

We have the following proposition.
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Proposition 5.5: (Strong Duality Theorem - Nonlinear Constraints) Let As-

sumption 5.1 hold for problem (5.5). Then, there is no duality gap, and the set of geometric

multipliers is nonempty and compact.

Proof: The result follows by applying the Nonlinear Farkas’ Lemma [Prop. 5.4, condition (a)]

with C = X and assuming that f∗ = 0 [otherwise, we replace f(x) by f(x) − f∗]. In particular,

the set
{

u | g(x) ≤ u
}

is a subset of the set

D =
{

u | there exists x ∈ X with g(x) ≤ u
}

,

and contains 0 in its interior. Hence, D also contains 0 in its interior, and condition (a) of the

Nonlinear Farkas’ Lemma is satisfied. By weak duality, it can be seen that the set of nonempty and

compact vectors µ∗, whose existence is asserted by the lemma, is the set of geometric multipliers.

Q.E.D.

Linear Constraints

We first consider the linearly constrained problem

minimize f(x)

subject to x ∈ X, e′ix − di = 0, i = 1, . . . , m, a′
jx − bj ≤ 0, j = 1, . . . , r,

(5.6)

where f : <n 7→ < is a convex function and X is the intersection of a polyhedral set with some

other convex set. An important special case is when X itself is a polyhedral set.

Assumption 5.2: (Linear Constraints) The optimal value f∗ of problem (5.6) is finite,

and the following hold:

(1) The set X is the intersection of a polyhedral set P and a convex set C.

(2) The cost function f : <n 7→ < is convex over C.

(3) There exists a feasible solution of the problem that lies in the relative interior of C.

Proposition 5.6: (Strong Duality Theorem - Linear Constraints) Let Assumption

5.2 hold for problem (5.6). Then, there is no duality gap and there exists at least one

geometric multiplier.
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Proof: The proof is based on the Nonlinear Farkas’ Lemma [Prop. 5.4, condition (b)]. Without

loss of generality, we can assume that there are no equality constraints, so we are dealing with

the problem
minimize f(x)

subject to x ∈ X, a′
jx − bj ≤ 0, j = 1, . . . , r,

(each equality constraint can be converted into two inequality constraints). Also without loss of

generality, we can assume that f∗ = 0 [otherwise, we replace f(x) by f(x) − f∗].

We have X = P ∩ C, where P is a polyhedral set that can be expressed in terms of linear

inequalities as

P = {x | a′
jx − bj ≤ 0, j = r + 1, . . . , p},

where p is an integer with p > r. By applying the Nonlinear Farkas’ Lemma [Prop. 5.4, condition

(b)] with F being the set

{x ∈ C | a′
jx − bj ≤ 0, j = 1, . . . , p},

we see that there exist nonnegative µ∗
1, . . . , µ

∗
p such that

f(x) +

p
∑

j=1

µ∗
j (a

′
jx − bj) ≥ 0, ∀ x ∈ C.

Since for x ∈ P , we have µ∗
j (a

′
jx − bj) ≤ 0 for all j = r + 1, . . . , p, the above equation yields

f(x) +

r
∑

j=1

µ∗
j (a

′
jx − bj) ≥ 0, ∀ x ∈ P ∩ C = X,

implying that

inf
x∈X

L(x, µ∗) = q(µ∗) ≥ 0 = f∗.

By weak duality, we have q(µ∗) ≤ q∗ ≤ f∗, so it follows that q∗ = f∗ and that µ∗ is a geometric

multiplier. Q.E.D.

Convex and Linear Constraints

We finally consider a generalization of problems (5.6) and (5.5), where there are linear equality

and inequality constraints, as well as convex inequality constraints:

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

e′ix − di = 0, i = 1, . . . , m, a′
jx − bj ≤ 0, j = r + 1, . . . , r.

(5.7)
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To cover this case, we suitably modify Assumptions 5.2 and 5.1.

Assumption 5.3: (For Linear and Nonlinear Constraints) The optimal value f∗ of

problem (5.7) is finite, and the following hold:

(1) X is the intersection of a polyhedral set P and a convex set C.

(2) The functions f : <n 7→ < and gj : <n 7→ < are convex over C.

(3) There exists a feasible vector x̄ such that gj(x̄) < 0 for all j = 1, . . . , r.

(4) There exists a vector that satisfies the linear constraints [but not necessarily the con-

straints gj(x) ≤ 0, j = 1, . . . , r] and belongs to X and to the relative interior of C.

Note that part (4) of the preceding assumption is slightly weaker than the corresponding

assumption of Th. 28.2 of Rockafellar [Roc70], which requires that the relative interior point of

C must satisfy the nonlinear as well as the linear constraints.

Proposition 5.7: (Strong Duality Theorem - Linear and Nonlinear Constraints)

Let Assumption 5.3 hold for problem (5.7). Then, there is no duality gap and there exists

at least one geometric multiplier.

Proof: Using Prop. 5.5, we argue that there exist µ∗
j ≥ 0, j = 1, . . . , r, such that

f∗ = inf
x∈X, a′

j
x−bj≤0, j=r+1,...,r

e′
i
x−di=0, i=1,...,m







f(x) +
r

∑

j=1

µ∗
jgj(x)







.

Then, we apply Prop. 5.6 to the minimization problem in the right-hand side of the above equation

to show that there exist λ∗
i , i = 1, . . . , m, and µ∗

j ≥ 0, j = r + 1, . . . , r, such that

f∗ = inf
x∈X







f(x) +

m
∑

i=1

λ∗
i (e

′
ix − di) +

r
∑

j=r+1

µ∗
j (a

′
jx − bj) +

r
∑

j=1

µ∗
jgj(x)







.

Q.E.D.

Let us finally note that one can extend some of the analysis of this section to the more

general constrained optimization problem

minimize f(x)

subject to x ∈ X, h(x) = 0, g(x) ∈ C,
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where X is a subset of <n, f : <n 7→ <, hi : <n 7→ <, i = 1, . . . , m, and gj : <n 7→ <, j = 1, . . . , r,

are functions, and C is a polyhedral cone in <r. When C is the nonpositive orthant, this problem

reduces to problem (P). We can modify the definitions of geometric multiplier and the dual

problem, and adapt the analysis of this section to cover the general optimization problem above.

In particular, we can use the Min Common/Max Crossing Theorem III to analyze the case where

the functions h and g are linear.

6. CONCLUSIONS

The simple duality framework of this paper provides an intuitive intermediate step between the

fundamental dual characterization of closed convex sets, and the constraint qualifications and

related assumptions needed to prove minimax and strong duality theorems. We have shown that

the major minimax and Lagrangian duality results (under convexity assumptions) are special

cases of three theorems related to our min common and max crossing problems. Because of its

geometric and fundamental character, our framework may prove useful in contexts beyond the

ones discussed in this paper.
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