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Abstract

Most existing works use dual decomposition and first-order methods to solve Network
Utility Maximization (NUM) problems in a distributed manner, which suffer from slow
rate of convergence properties. This paper develops an alternative distributed Newton-
type fast converging algorithm for solving NUM problems. By using novel matrix splitting
techniques, both primal and dual updates for the Newton step can be computed using
iterative schemes in a decentralized manner. We propose a stepsize rule and provide a
distributed procedure to compute it in finitely many iterations. The key feature of our
direction and stepsize computation schemes is that both are implemented using the same
distributed information exchange mechanism employed by first order methods. We describe
the details of the inexact algorithm here and in part II of this paper [30], we show that under
some assumptions, even when the Newton direction and the stepsize in our method are
computed within some error (due to finite truncation of the iterative schemes), the resulting
objective function value still converges superlinearly in terms of primal iterations to an
explicitly characterized error neighborhood. Simulation results demonstrate significant
convergence rate improvement of our algorithm relative to the existing first-order methods
based on dual decomposition.

∗This work was supported by National Science Foundation under Career grant DMI-0545910, the DARPA
ITMANET program, ONR MURI N000140810747 and AFOSR Complex Networks Program.
†Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
‡Department of Electrical and Systems Engineering and GRASP Laboratory, University of Pennsylvania



1 Introduction

Most of today’s communication networks are large-scale and comprise of agents with heteroge-
neous preferences. Lack of access to centralized information in such networks necessitate design
of distributed control algorithms that can operate based on locally available information. Some
applications include routing and congestion control in the Internet, data collection and process-
ing in sensor networks, and cross-layer design in wireless networks. This work focuses on the
rate control problem in wireline networks, which can be formulated in the Network Utility Max-
imization (NUM) framework proposed in [17] (see also [19], [26], and [9]). NUM problems are
characterized by a fixed network and a set of sources, which send information over the network
along predetermined routes. Each source has a local utility function over the rate at which it
sends information. The goal is to determine the source rates that maximize the sum of utilities
subject to link capacity constraints. The standard approach for solving NUM problems relies
on using dual decomposition and subgradient (or first-order) methods, which through a price
feedback mechanism among the sources and the links yields algorithms that can operate on the
basis of local information [16], [19].1 One major shortcoming of this approach is the slow rate
of convergence.

In this paper, we propose a novel Newton-type second-order method for solving the NUM
problem in a distributed manner, which leads to significantly faster convergence. Our approach
involves transforming the inequality constrained NUM problem to an equality-constrained one
through introducing slack variables and logarithmic barrier functions, and using an equality-
constrained Newton method for the reformulated problem. There are two challenges in imple-
menting this method in a distributed manner. First challenge is the computation of the Newton
direction. This computation involves a matrix inversion, which is costly and requires global in-
formation. We solve this problem by using an iterative scheme based on a novel matrix splitting
technique. Since the objective function of the (equality-constrained) NUM problem is separable,
i.e., it is the sum of functions over each of the variables, this splitting enables computation of the
Newton direction using decentralized algorithms based on limited scalar information exchange
between sources and links, in a form similar to the feedback mechanism used by the subgradient
methods. This exchange involves destinations iteratively sending route prices (aggregated link
prices or dual variables along a route) to the sources, and sources sending the route price scaled
by the corresponding Hessian element to the links along its route.

The second challenge is related to the computation of a stepsize rule that can guarantee
local superlinear convergence of the primal iterations. Instead of the iterative backtracking rules
typically used with Newton methods, we propose a stepsize choice based on the rule proposed
in [23], which is inversely proportional to the inexact Newton decrement (where the inexactness
arises due to errors in the computation of the Newton direction) if this decrement is above a
certain threshold and takes the form of a pure Newton step otherwise. Computation of the
inexact Newton decrement involves aggregating local information from the sources and links
in the network. We propose a novel distributed procedure for computing the inexact Newton
decrement in finite number of steps using again the same information exchange mechanism
employed by first order methods. Therefore, our algorithm has comparable level of information
exchange with the first-order methods applied to the NUM problem.

Our work contributes to the growing literature on distributed optimization and control of
multi-agent networked systems. There are two standard approaches for designing distributed
algorithms for such problems. The first approach, as mentioned above, uses dual decomposition

1The price feedback mechanism involves destinations (end nodes of a route) sending route prices (aggregated
over the links along the route) to sources, sources updating their rates based on these prices and finally links
updating prices based on new rates sent over the network.

1



and subgradient methods, which for some problems including NUM problems lead to iterative
distributed algorithms (see [17], [19]). More recent work by Athuraliya and Low in [1] used
diagonally scaled subgradient methods for NUM problems to approximate Newton steps and
speed up the algorithm while maintaining their distributed nature. Despite improvements in
speed over the first-order methods, as we shall see in the simulation section, the performance of
this modified algorithm does not achieve the rate gains obtained by second-order methods.

The second approach involves considering consensus-based schemes, in which agents exchange
local estimates with their neighbors to enable decentralized information aggregation over an
exogenous (fixed or time-varying) network topology. It has been shown that under some mild
assumption on the connectivity of the graph and updating rules, the distance from the vector
formed by current estimates to consensus diminishes linearly. Consensus schemes can be used
to compute the average of local values or more generally as a building block for developing
first order distributed optimization algorithms (see [6], [27], [6], [22], [28], [13], [24], [14], [25]
and [21]). Consensus updates can also be used to implement various computations involved in
second order methods (e.g., stepsize calculation). However, we do not include such updates in
our algorithm, due to their potentially slow convergence rates.

Other than the papers cited above, our paper is also related to [3] and [18]. In [3], Bertsekas
and Gafni studied a projected Newton method for optimization problems with twice differen-
tiable objective functions and simplex constraints. They proposed finding the Newton direction
(exactly or approximately) using a conjugate gradient method. This work showed that when
applied to multi-commodity network flow problems, the conjugate gradient iterations can be
obtained using simple graph operations, however did not investigate distributed implementa-
tions. Similarly, in [18], Klincewicz proposed a Newton method for network flow problems that
computes the dual variables at each step using an iterative conjugate gradient algorithm. He
showed that conjugate gradient iterations can be implemented using a “distributed” scheme
that involves simple operations and information exchange along a spanning tree. Spanning tree
based computations involve passing all information to a centralized node and may therefore be
restrictive for NUM problems which are characterized by decentralized (potentially autonomous)
sources.

This paper contains the details of the inexact distributed Newton method and part II of
the paper [30] contains convergence analysis of the method. The rest of the paper is organized
as follows: Section 2 defines the problem formulation and related transformations. Section 3
describes the exact constrained primal-dual Newton method for this problem. Section 4 presents
a distributed iterative scheme for computing the dual Newton step and the overall distributed
inexact Newton-type algorithm. Section 5 presents simulation results to demonstrate conver-
gence speed improvement of our algorithm to the existing methods with linear convergence rates.
Section 6 contains our concluding remarks.

Basic Notation and Notions:
A vector is viewed as a column vector, unless clearly stated otherwise. We write R+ to

denote the set of nonnegative real numbers, i.e., R+ = [0,∞). We use subscripts to denote the
components of a vector and superscripts to index a sequence, i.e., xi is the ith component of
vector x and xk is the kth element of a sequence. When xi ≥ 0 for all components i of a vector
x, we write x ≥ 0.

For a matrix A, we write Aij to denote the matrix entry in the ith row and jth column, and
[A]i to denote the ith column of the matrix A, and [A]j to denote the jth row of the matrix A.
We write I(n) to denote the identity matrix of dimension n × n. We use x′ and A′ to denote
the transpose of a vector x and a matrix A respectively. For a real-valued function f : X → R,
where X is a subset of Rn, the gradient vector and the Hessian matrix of f at x in X are denoted
by ∇f(x) and ∇2f(x) respectively. We use the vector e to denote the vector of all ones.
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A real-valued convex function g : X → R, where X is a subset of R, is self-concordant
if it is three times continuously differentiable and |g′′′(x)| ≤ 2g′′(x)

3
2 for all x in its domain.2

For real-valued functions in Rn, a convex function g : X → R, where X is a subset of Rn, is
self-concordant if it is self-concordant along every direction in its domain, i.e., if the function
g̃(t) = g(x+ tv) is self-concordant in t for all x and v. Operations that preserve self-concordance
property include summing, scaling by a factor α ≥ 1, and composition with affine transformation
(see [7] Chapter 9 for more details).

2 Network Utility Maximization Problem

We consider a network represented by a set L = {1, ..., L} of (directed) links of finite nonzero
capacity given by c = [cl]l∈L with c > 0. The network is shared by a set S = {1, ..., S} of
sources, each of which transmits information along a predetermined route. For each link l, let
S(l) denote the set of sources use it. For each source i, let L(i) denote the set of links it uses.
We also denote the nonnegative source rate vector by s = [si]i∈S . The capacity constraint at the
links can be compactly expressed as

Rs ≤ c,

where R is the routing matrix 3 of dimension L× S, i.e.,

Rij =

{
1 if link i is on the route of source j,
0 otherwise.

(1)

We associate a utility function Ui : R+ → R with each source i, i.e., Ui(si) denotes the utility
of source i as a function of the source rate si. We assume the utility functions are additive,
such that the overall utility of the network is given by

∑S
i=1 Ui(si). Thus the Network Utility

Maximization(NUM) problem can be formulated as

maximize
S∑

i=1

Ui(si) (2)

subject to Rs ≤ c,

s ≥ 0.

We adopt the following assumptionwhich will be used in part II of this paper for convergence
analysis (see [30] for more details).

Assumption 1. The utility functions Ui : R+ → R are strictly concave, monotonically nonde-
creasing on (0,∞). The functions −Ui : R+ → R are self-concordant on (0,∞).

To facilitate the development of a distributed Newton-type method, we consider a related
equality-constrained problem by introducing nonnegative slack variables [yl]l∈L for the capacity
constraints, defined by

S∑

j=1

Rljsj + yl = cl for l = 1, 2 . . . L, (3)

2Self-concordant functions are defined through the following more general definition: a real-valued three times
continuously differentiable convex function g : X → R, where X is a subset of R, is self-concordant, if there exists
a constant a > 0, such that |g′′′(x)| ≤ 2a−

1
2 g′′(x)

3
2 for all x in its domain [23], [15]. Here we focus on the case

a = 1 for notational simplification in the analysis.
3This is also referred to as the link-source incidence matrix in the literature. Without loss of generality, we

assume that each source flow traverses at least one link, each link is used by at least one source and the links
form a connected graph.
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and logarithmic barrier functions for the nonnegativity constraints (which can be done since
the feasible set of (2) has a nonempty interior).4 We denote the new decision vector by x =
([si]

′
i∈S , [yl]

′
l∈L)′. This problem can be written as

minimize −
S∑

i=1

Ui(xi)− µ
S+L∑

i=1

log (xi) (4)

subject to Ax = c,

where A is the L× (S + L)-dimensional matrix given by

A = [R I(L)], (5)

and µ is a nonnegative barrier function coefficient. We use f(x) to denote the objective function
of problem (4), i.e., f(x) = −

∑S
i=1 Ui(xi)−µ

∑S+L
i=1 log (xi), and f ∗ to denote the optimal value

of this problem.
By Assumption 1, the function f(x) is separable, strictly convex, and has a positive definite

diagonal Hessian matrix on the positive orthant. Throughout the paper, we assume that µ ≥ 1,
which guarantees that f(x) is self-concordant, since both summing and scaling by a factor µ ≥ 1
preserve self-concordance property. This is without loss of generality since it was shown in [30]
that, under self-concordance assumptions, the problem with a general µ ≥ 0 can be addressed
by solving two instances of problem (4) with different coefficients µ ≥ 1.

3 Exact Newton Method

For each fixed µ ≥ 1, problem (4) is feasible5 and has a convex objective function, affine con-
straints, and a finite optimal value f ∗.6 Therefore, we can use a strong duality theorem to show
that, for problem (4), there is no duality gap and there exists a dual optimal solution (see [4]).
Moreover, since matrix A has full row rank, we can use a (feasible start) equality-constrained
Newton method to solve problem (4)(see [7] Chapter 10). In our iterative method, we use xk to
denote the primal vector at the kth iteration.

3.1 Feasible Initialization

We initialize the algorithm with some feasible and strictly positive vector x0. For example, one
such initial vector is given by

x0
i =

c

S + 1
for i = 1, 2 . . . S, (6)

x0
l+S = cl −

S∑

j=1

Rlj
c

S + 1
for l = 1, 2 . . . L,

where cl is the finite capacity for link l, c is the minimum (positive) link capacity, S is the total
number of sources in the network, and R is routing matrix [cf. Eq. (1)].

4We adopt the convention that log(x) = −∞ for x ≤ 0.
5There exists a feasible solution x with xi = c/(S + 1) for all i ∈ S with c = minl{cl}.
6This problem has a feasible solution, hence f∗ is upper bounded. Each of the variable xi is upper bounded by

c̄, where c̄ = maxl{cl}, hence by monotonicity of utility and logarithm functions, the optimal objective function
value is lower bounded. Note that in the optimal solution of problem (4) xi 6= 0 for all i, due to the logarithmic
barrier functions.
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3.2 Iterative Update Rule

Given an initial feasible vector x0, the algorithm generates the iterates by

xk+1 = xk + dk∆xk, (7)

where dk is a positive stepsize, ∆xk is the (primal) Newton direction given as the solution of the
following system of linear equations:7.

(
∇2f(xk) A′

A 0

)(
∆xk

wk

)
= −

(
∇f(xk)

0

)
. (8)

We will refer to xk as the primal vector and wk as the dual vector (and their components as
primal and dual variables respectively). We also refer to wk as the price vector since the dual
variables [wkl ]l∈L associated with the link capacity constraints can be viewed as prices for using
links. For notational convenience, we will use Hk = ∇2f(xk) to denote the Hessian matrix in
the rest of the paper.

Solving for ∆xk and wk in the preceding system yields

∆xk = −H−1
k (∇f(xk) + A′wk), (9)

(AH−1
k A′)wk = −AH−1

k ∇f(xk). (10)

This system has a unique solution for all k. To see this, note that the matrix Hk is a diagonal
matrix with entries

(Hk)ii =

{
−∂2Ui(x

k
i )

∂x2i
+ µ

(xki )2
1 ≤ i ≤ S,

µ
(xki )2

S + 1 ≤ i ≤ S + L.
(11)

By Assumption 1, the functions Ui are strictly concave, which implies
∂2Ui(x

k
i )

∂x2i
≤ 0. Moreover,

the primal vector xk is bounded (since the method maintains feasibility) and, as we shall see in
Section 4.5, can be guaranteed to remain strictly positive by proper choice of stepsize. Therefore,
the entries (Hk)ii > 0 and are well-defined for all i, implying that the Hessian matrix Hk is
invertible. Due to the structure of A [cf. Eq. (5)], the column span of A is the entire space RL,
and hence the matrix AH−1

k A′ is also invertible.8 This shows that the preceding system of linear
equations can be solved uniquely for all k.

The objective function f is separable in xi, therefore given the vector wkl for l in L(i), the
Newton direction ∆xki can be computed by each source i using local information available to
that source. However, the computation of the vector wk at a given primal solution xk cannot be
implemented in a decentralized manner since the evaluation of the matrix inverse (AH−1

k A′)−1

requires global information. The following section provides a distributed inexact Newton method,
based on computing the vector wk using a decentralized iterative scheme.

4 Distributed Inexact Newton Method

In Section 4.1, we describe some preliminaries on matrix splitting techniques. In Section 4.2,
we use ideas from matrix splitting to compute the dual vector wk at each k using a distributed

7This is a primal-dual method with the vectors ∆xk and wk acting as primal direction and dual variables
respectively

8If for some x ∈ RL, we have AH−1k A′x = 0, then x′AH−1k A′x =
∣∣∣
∣∣∣H−

1
2

k A′x
∣∣∣
∣∣∣
2

= 0, which implies ||A′x||2 = 0,

because the matrix H is invertible. The rows of the matrix A′ span RL, therefore we have x = 0. This shows
that the matrix AH−1k A′ is invertible.
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iterative scheme, which introduces inexactness in the dual variables due to finite termination.
In Section 4.3, we present the decentralized computation of the primal Newton direction given
the dual vector. We also impose some error tolerance levels on the resulting primal iterates,
which are necessary to establish quadratic rate of convergence in [30]. In Section 4.4, we develop
a distributed error checking procedure to guarantee the error tolerance levels are satisfied. In
Section 4.5, we propose a stepsize rule and provide a distributed procedure to compute it in
finitely many iterations. This particular stepsize choice can maintain feasibility (see Theorem
4.12) and achieve quadratic rate of convergence (see [30]).

4.1 Preliminaries on Matrix Splitting

Matrix splitting can be used to solve a system of linear equations given by

Gy = a,

where G is an n × n matrix and a is an n-dimensional vector. Suppose that the matrix G can
be expressed as the sum of an invertible matrix M and a matrix N , i.e.,

G = M +N. (12)

Let y0 be an arbitrary n-dimensional vector. A sequence {yk} can be generated by the following
iteration:

yk+1 = −M−1Nyk +M−1a. (13)

It can be seen that the sequence {yk} converges as k → ∞ if and only if the spectral radius of
the matrix M−1N is strictly bounded above by 1. When the sequence {yk} converges, its limit
y∗ solves the original linear system, i.e., Gy∗ = a (see [2] and [11] for more details). Hence, the
key to solving the linear equation via matrix splitting is the bound on the spectral radius of
the matrix M−1N . Such a bound can be obtained using the following result (see Theorem 2.5.3
from [11]).

Theorem 4.1. Let G be a real symmetric matrix. Let M and N be matrices such that G =
M + N and assume that M is invertible and both matrices M + N and M − N are positive
definite. Then the spectral radius of M−1N , denoted by ρ(M−1N), satisfies ρ(M−1N) < 1.

By the above theorem, if G is a real, symmetric, positive definite matrix and M is a nonsin-
gular matrix, then one sufficient condition for the iteration (13) to converge is that the matrix
M −N is positive definite. This can be guaranteed using Gershgorin Circle Theorem, which we
introduce next (see [29] for more details).

Theorem 4.2. (Gershgorin Circle Theorem) Let G be an n × n matrix, and define ri(G) =∑
j 6=i |Gij|. Then, each eigenvalue of G lies in one of the Gershgorin sets {Γi}, with Γi defined

as disks in the complex plane, i.e.,

Γi = {z ∈ C | |z −Gii| ≤ ri(G)}.

One corollary of the above theorem is that if a matrix G is strictly diagonally dominant,
i.e., |Gii| >

∑
j 6=i |Gij|, and Gii > 0 for all i, then the real parts of all the eigenvalues lie in the

positive half of the real line, and thus the matrix is positive definite. Hence a sufficient condition
for the matrix M −N to be positive definite is that M −N is strictly diagonally dominant with
strictly positive diagonal entries.
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4.2 Distributed Computation of the Dual Vector

We use the matrix splitting scheme introduced in the preceding section to compute the dual
vector wk in Eq. (10) in a distributed manner for each primal iteration k. For notational
convenience, we may suppress the explicit dependence of wk on k. Let Dk be a diagonal matrix,
with diagonal entries

(Dk)ll = (AH−1
k A′)ll, (14)

and matrix Bk be given by
Bk = AH−1

k A′ −Dk. (15)

Let matrix B̄k be a diagonal matrix, with diagonal entries

(B̄k)ii =
L∑

j=1

(Bk)ij. (16)

By splitting the matrix AH−1
k A′ as the sum of Dk + B̄k and Bk − B̄k, we obtain the following

result.

Theorem 4.3. For a given k > 0, let Dk, Bk, B̄k be the matrices defined in Eqs. (14), (15) and
(16). Let w(0) be an arbitrary initial vector and consider the sequence {w(t)} generated by the
iteration

w(t+ 1) = (Dk + B̄k)
−1(B̄k −Bk)w(t) + (Dk + B̄k)

−1(−AH−1
k ∇f(xk)), (17)

for all t ≥ 0. Then the spectral radius of the matrix (Dk + B̄k)
−1(Bk − B̄k) is strictly bounded

above by 1 and the sequence {w(t)} converges as t → ∞, and its limit is the solution to Eq.
(10).

Proof. We split the matrix AH−1
k A′ as

(AH−1
k A′) = (Dk + B̄k) + (Bk − B̄k) (18)

and use the iterative scheme presented in Eqs. (12) and (13) to solve Eq. (10). For all k, both the
real matrix Hk and its inverse, H−1

k , are positive definite and diagonal. The matrix A has full
row rank and is element-wise nonnegative. Therefore the product AH−1

k A′ is real, symmetric,
element-wise nonnegative and positive definite. We let

Qk = (Dk + B̄k)− (Bk − B̄k) = Dk + 2B̄k −Bk (19)

denote the difference matrix. By definition of B̄k [cf. Eq. (16)], the matrix 2B̄k−Bk is diagonally
dominant, with nonnegative diagonal entries. Moreover, due to strict positivity of the second
derivatives of the logarithmic barrier functions, we have (Dk)ii > 0 for all i. Therefore the
matrix Qk is strictly diagonally dominant. By Theorem 4.2, such matrices are positive definite.
Therefore, by Theorem 4.1, the spectral radius of the matrix (Dk + B̄k)

−1(Bk − B̄k) is strictly
bounded above by 1. Hence the splitting scheme (18) guarantees the sequence {w(t)} generated
by iteration (17) to converge to the solution of Eq. (10).

This provides an iterative scheme to compute the dual vector wk at each primal iteration k
using an iterative scheme. We will refer to the iterative scheme defined in Eq. (17) as the dual
iteration.

There are many ways to split the matrix AH−1
k A′. The particular one in Eq. (18) is chosen

here due to two desirable features. First it guarantees that the difference matrix Qk [cf. Eq. (19)]
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is strictly diagonally dominant, and hence ensures convergence of the sequence {w(t)}. Second,
with this splitting scheme, the matrix Dk + B̄k is diagonal, which eliminates the need for global
information when calculating its inverse.

We next rewrite iteration (17), analyze the information exchange required to implement it
and develop a distributed computation procedure to calculate the dual vector. For notational
convenience, we define the price of the route for source i, πi(t), as the sum of the dual vari-
ables associated with links used by source i at the tth dual iteration, i.e., πi(t) =

∑
l∈L(i) wl(t).

Similarly, we define the weighted price of the route for source i, Πi(t), as the price of the
route for source i weighted by the ith diagonal element of the inverse Hessian matrix, i.e.,
Πi(t) = (H−1

k )ii
∑

l∈L(i) wl(t).

Lemma 4.4. For each primal iteration k, the dual iteration (17) can be written as

wl(t+ 1) =
1

(Hk)
−1
(S+l)(S+l) +

∑
i∈S(l) Πi(0)

(( ∑

i∈S(l)

Πi(0)−
∑

i∈S(l)

(Hk)
−1
ii

)
wl(t)−

∑

i∈S(l)

Πi(t) (20)

+
∑

i∈S(l)

(Hk)
−1
ii wl(t)−

∑

i∈S(l)

(H−1
k )ii∇if(xk)− (H−1

k )(S+l)(S+l)∇S+lf(xk)
)
,

where Πi(0) is the weighted price of the route for source i when w(0) = [1, 1 . . . , 1]′.

Proof. Recall the definition of matrix A, i.e., Ali = 1 for i = 1, 2 . . . S if source i uses link l,
i.e., i ∈ S(l), and Ali = 0 otherwise. Therefore, we can write the price of the route for source
i as, πi(t) =

∑L
l=1Aliw(t)l = [A′]iw(t). Similarly, since the Hessian matrix Hk is diagonal, the

weighted price can be written as

Πi(t) = (Hk)
−1
ii [A′]iw(t) = [H−1

k A′]iw(t). (21)

On the other hand, since A = [R I(L)], where R is the routing matrix, we have

(AH−1
k A′w(t))l =

S∑

i=1

([A]i[H
−1
k A′]iw(t))l + (H−1

k )(S+l)(S+l)wl(t)

=
S∑

i=1

Ali([H
−1
k A′]iw(t)) + (H−1

k )(S+l)(S+l)wl(t).

Using the definition of the matrix A one more time, this implies

(AH−1
k A′w(t))l =

∑

i∈S(l)

[H−1
k A′]iw(t) + (H−1

k )(S+l)(S+l)wl(t) (22)

=
∑

i∈S(l)

Πi(t) + (H−1
k )(S+l)(S+l)wl(t),

where the last equality follows from Eq. (21).
Using Eq. (15), the above relation implies that ((Bk +Dk)w(t))l =

∑
i∈S(l) Πi(t)+(H−1

k )(S+l)(S+l)wl(t).

We next rewrite (B̄k)ll. Using the fact that w(0) = [1, 1 . . . , 1]′, we have

(AH−1
k A′w(0))l = ((Bk +Dk)w(0))l =

L∑

j=1

(Bk)lj + (Dk)ll.
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Using the definition of B̄k [cf. Eq. (16)], this implies

(B̄k)ll =
L∑

j=1

(Bk)lj = (AH−1
k A′w(0))l − (Dk)ll =

∑

i∈S(l)

Πi(0) + (H−1
k )(S+l)(S+l) − (Dk)ll.

This calculation can further be simplified using

(Dk)ll = (AH−1
k A′)ll =

∑

i∈S(l)

(Hk)
−1
ii + (Hk)

−1
(S+l)(S+l), (23)

[cf. Eq. (14)], yielding

(B̄k)ll =
∑

i∈S(l)

Πi(0)−
∑

i∈S(l)

(Hk)
−1
ii . (24)

Following the same argument, the value (Bkw(t))l for all t can be written as

(Bkw(t))l = (AH−1
k A′w(t))l − (Dkw(t))l

=
S∑

i=1

Πi(t) + (H−1
k )(S+l)(S+l)wl(t)− (Dk)llwl(t)

=
S∑

i=1

Πi(t)−
∑

i∈S(l)

(Hk)
−1
ii wl(t),

where the first equality follows from Eq. (16), the second equality follows from Eq. (22), and the
last equality follows from Eq. (23).

Finally, we can write (AH−1
k ∇f(xk))l as

(AH−1
k ∇f(xk))l =

∑

i∈S(l)

(H−1
k )ii∇if(xk) + (H−1

k )(S+l)(S+l)∇S+lf(xk).

Substituting the preceding into (17), we obtain the desired iteration (20).

We next analyze the information exchange required to implement iteration (20) among
sources and links in the network. We first observe the local information available to sources
and links. Each source i knows the ith diagonal entry of the Hessian (Hk)ii and the ith compo-
nent of the gradient ∇if(xk). Similarly, each link l knows the (S + l)th diagonal entry of the
Hessian (Hk)S+l,S+l and the (S + l)th component of the gradient ∇S+lf(xk). In addition to the
locally available information, each link l, when executing iteration (20), needs to compute the
terms: ∑

i∈S(l)

(Hk)
−1
ii ,

∑

i∈S(l)

(H−1
k )ii∇if(xk),

∑

i∈S(l)

Πi(0),
∑

i∈S(l)

Πi(t).

The first two terms can be computed by link l if each source sends its local information to the
links along its route “once” in primal iteration k. Similarly, the third term can be computed
by link l once for every k if the route price πi(0) =

∑
l∈L(i) 1 (aggregated along the links of a

route when link prices are all equal to 1) are sent by the destination to source i, which then
evaluates and sends the weighted price Πi(0) to the links along its route. The fourth term can
be computed with a similar feedback mechanism, however the computation of this term needs
to be repeated for every dual iteration t.

The preceding information exchange suggests the following distributed implementation of
(20) (at each primal iteration k) among the sources and the links, where each source or link is
viewed as a processor, information available at source i can be passed to the links it traverses,
i.e., l ∈ L(i), and information about the links along a route can be aggregated and sent back to
the corresponding source using a feedback mechanism:

9



Si

Sj

Figure 1: Direction of information flow for the
steps 1.a, 1.c and 2.b, from sources to the links
they use.

Si

Sj

Figure 2: Direction of flow for the steps 1.b and
2.a, from links to the sources using them.

1. Initialization.

1.a Each source i sends its local information (Hk)ii and ∇if(xk) to the links along its
route, l ∈ L(i). Each link l computes (Hk)

−1
(S+l)(S+l),

∑
i∈S(l)(Hk)

−1
ii , (H−1

k )(S+l)(S+l)∇S+lf(xk)

and
∑

i∈S(l)(H
−1
k )ii∇if(xk).

1.b Each link l starts with price wl(0) = 1. The link prices wl(0) are aggregated along
route i to compute π(0) =

∑
l∈L(i) wl(0) at the destination. This information is sent

back to source i.

1.c Each source computes the weighted price Πi(0) = (H−1
k )ii

∑
l∈L(i) wl(0) and sends it

to the links along its route, l ∈ L(i).

1.d Each link l then initializes with arbitrary price wl(1).

2. Dual Iteration.

2.a The link prices wl(t) are updated using (20) and aggregated along route i to compute
π(t) at the destination. This information is sent back to source i.

2.b Each source computes the weighted price Πi(t) and sends it to the links along its
route, l ∈ L(i).

The direction of information flow can be seen in Figures 1 and 2. Note that the sources need
to send their Hessian and gradient information once per primal iteration since these values do
not change in the dual iterations. Moreover, this algorithm has comparable level of information
exchange with the subgradient based algorithms applied to the NUM problem (2) (see [1], [16],
[19], [20] for more details). In both types of algorithms, only the sum of prices of links along
a route is fed back to the source, and the links update prices based on scalar information sent
from sources using that link.

4.3 Distributed Computation of the Primal Newton Direction

Given the dual vector wk(t) obtained from the dual iteration (17) in finitely many steps, the
primal Newton direction can be computed according to Eq. (9) as

(∆xk)i = −(Hk)
−1
ii (∇if(xk) + (A′wk(t))i) = −(Hk)

−1
ii ∇if(xk) + Πi(t), (25)

where Πi(t) is the weighted price of the route for source i computed at termination of the dual
iteration. Hence, the primal Newton direction can be computed using local information by each
source. However, because the dual variable computation involves an iterative scheme, the exact
value for wk is not available. Therefore, the direction ∆xk computed using Eq. (25) may violate

10



the equality constraints in problems (4). To maintain feasibility of the generated primal vectors,
the calculation of the inexact Newton direction at a primal vector xk, which we denote by ∆x̃k,
is separated into two stages.

In the first stage, the first S components of ∆x̃k, denoted by ∆s̃k, is computed via Eq. (25)
using the dual variables obtained via the iterative scheme, i.e.,

∆s̃ki = −(Hk)
−1
ii (∇if(xk) + [R′]iwk(t). (26)

In the second stage, the last L components of ∆x̃k (corresponding to the slack variables, cf. Eq.
(3)) are computed to ensure that the condition A∆x̃k = 0 is satisfied, i.e.

∆x̃k =

(
∆s̃k

−R∆s̃k

)
, (27)

which implies ∆x̃kl+S = −
∑

i∈S(l) ∆s̃ki for each link l. This calculation at each link l involves

computing the slack introduced by the components of ∆s̃k corresponding to the sources using
link l, and hence can be computed in a distributed way.

The algorithm presented generates the primal vectors as follows: Let x0 be an initial strictly
positive feasible primal vector (see Eq. (6) for one possible choice). For any k ≥ 0, we have

xk+1 = xk + dk∆x̃k, (28)

where dk is a positive stepsize and ∆x̃k is the inexact Newton direction at primal vector xk

(obtained through an iterative dual variable computation scheme and a two-stage primal direc-
tion computation that maintains feasibility). We will refer to this algorithm as the (distributed)
inexact Newton method.

The method is inexact due to the iterative computation of the dual vector wk and the
modification we use to maintain feasibility. As shown in [30], if the following bounds on the
errors are satisfied, the objective function value generated by the inexact Newton algorithm
(with selection of proper stepsize) converges quadratically in terms of primal iterations to an
error neighborhood of the optimal value, where the neighborhood can be characterized explicitly
using the parameters of the algorithm and the error bounds.

Assumption 2. Let {xk} denote the sequence of primal vectors generated by the distributed
inexact Newton method. Let ∆xk and ∆x̃k denote the exact and inexact Newton directions at
xk, and γk denote the error in the Newton direction computation, i.e.,

∆xk = ∆x̃k + γk. (29)

For all k, γk satisfies

|(γk)′∇2f(xk)γk| ≤ p2(∆x̃k)′∇2f(xk)∆x̃k + ε. (30)

for some positive scalars p < 1 and ε.

This assumption imposes a bound on the weighted norm of the Newton direction error γk

as a function of the weighted norm of ∆x̃k and a constant ε. Note that without the constant
ε, we would require this error to vanish when xk is close to the optimal solution, i.e., when
∆x̃k is small, which is impractical for implementation purposes. Given p and ε, one can use the
distributed scheme presented in the following section to guarantee the preceding assumption is
satisfied.

11



4.4 Distributed Error Checking

In this section, we present a distributed error checking method to determine when to terminate
the dual computation procedure to meet the error tolerance level in Assumption 2 at a fixed
primal iteration k. The method involves two stages: in the first stage, the links and sources
execute a predetermined number of dual iterations. In the second stage, if the error tolerance
level has yet not been satisfied, the links and sources implement dual iterations until some
distributed termination criteria is met. For the rest of this section, we once again suppress the
dependence of the dual vector on the primal iteration index k for notational convenience and we
adopt the following assumption on the information available to each node and link.

Assumption 3. There exists a positive scalar F < 1 such that the spectral radius of the matrix
M = (Dk + B̄k)

−1(B̄k − Bk) satisfies ρ(M) ≤ F . Each source and link knows the scalar F and
the total number of sources and links in the graph, denoted by S and L respectively.

The value F can vary across different primal iterations. As observed in [30], the bound
F coincides with a bound on a largest eigenvalue of a Laplacian matrix of a graph related to
the network topology. These bounds can be obtained based on the known results from graph
theory [10], [5]. In this assumption, we only require availability of some aggregate information,
and hence the distributed nature of the algorithm is preserved. Before we introduce the details
of the distributed error checking method, we establish a relation between ||w∗ − w(t)||∞ and
||w(t+ 1)− w(t)||∞, which is essential in developing the method.

Lemma 4.5. Let the matrix M be M = (Dk + B̄k)
−1(B̄k − Bk). Let w(t) denote the dual

variable generated by iteration (17), and w∗ be the fixed point of the iteration. Let F and L be
the positive scalar defined in Assumption 3. Then the following relation holds,

||w∗ − w(t)||∞ ≤
√
L

1− F
||w(t+ 1)− w(t)||∞ . (31)

Proof. Iteration (17) implies that the fixed point w∗ satisfies the following relation,

w∗ = Mw∗ + (Dk + B̄k)
−1(−AH−1

k ∇f(xk)),

and the iterates w(t) satisfy,

w(t+ 1) = Mw(t) + (Dk + B̄k)
−1(−AH−1

k ∇f(xk)).

By combining the above two relations, we obtain,

w(t+ 1)− w(t) = (I −M)(w∗ − w(t)).

Hence, by the definition of matrix infinity norm, we have

||w∗ − w(t)||∞ ≤
∣∣∣∣(1−M)−1

∣∣∣∣
∞ ||w(t+ 1)− w(t)||∞ .

Using norm equivalence for finite dimensional Euclidean space and theories of linear algebra, we

obtain ||(I −M)−1||∞ ≤
√
L ||(I −M)−1||2 ≤

√
L

1−||M ||2
[12], [2]. For the symmetric real matrix

M we have ρ(M) = ||M ||2, and hence we obtain the desired relation.

We next use the above lemma to develop two theorems, each of which corresponds to one
stage of the distributed error checking method.
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Theorem 4.6. Let {xk} be the primal sequence generated by the inexact Newton method (28)
and Hk be the corresponding Hessian matrix at the kth iteration. Let w(t) be the inexact dual
variable obtained after t dual iterations (17) and w∗ be the exact solution to (10), i.e. the limit
of the sequence {w(t)} as t → ∞. Let vectors ∆xk and ∆x̃k be the exact and inexact Newton
directions obtained using w∗ and w(t) [cf. Eqs. (26)-(27)], and vector γk be the error in the
Newton direction computation at xk , defined by γk = ∆xk −∆x̃k. For some positive scalar p,
let

ρi =

∣∣∣∣∣

√
L(H−1

k )ii|L(i)| ||w(t+ 1)− w(t)||∞
(1− F )(H−1

k )ii[R′]iw(t)

∣∣∣∣∣ (32)

for each source i, and

ρl =

∣∣∣∣∣

√
L
∑

i∈S(l)(H
−1
k )ii|L(i)| ||w(t+ 1)− w(t)||∞

(1− F )
∑

i∈S(l)(H
−1
k )ii[R′]iw(t)

∣∣∣∣∣ (33)

for each link l. Define a nonnegative scalar βk as

βk =

(
max

{
max
i∈S

ρi
p
,max
l∈L

ρl
p

})−2

. (34)

Then we have
βk(γk)′Hkγ

k ≤ p2(∆x̃k)′Hk(∆x̃
k). (35)

Proof. For notational convenience, we let matrix Pk denote the S×S principal submatrix of Hk,
i.e. (Pk)ii = (Hk)ii for i ≤ S, vector ∆s̃ in RS denote the first S components of the vector ∆x̃k,
vector ∆ỹl in RL denote the last L components of the vector ∆x̃k. Similarly, we denote by ∆s
and ∆y the first S and last L components of the exact Newton direction ∆x respectively. From
Eq. (26), we have for each i ∈ S,

∣∣∣∣
∆si −∆s̃i

∆s̃i

∣∣∣∣ =

∣∣∣∣
(H−1

k )ii[R
′]i(w∗ − w(t))

(H−1
k )ii[R′]iw(t)

∣∣∣∣

≤
∣∣∣∣
(H−1

k )ii[R
′]ie ||w∗ − w(t)||∞

(H−1
k )ii[R′]iw(t)

∣∣∣∣

≤

∣∣∣∣∣

√
L(H−1

k )ii|L(i)| ||w(t+ 1)− w(t)||∞
(1− F )(H−1

k )ii[R′]iw(t)

∣∣∣∣∣ = ρi,

where the first inequality follows from the element-wise nonnegativity of matrices Hk and R,
and the second inequality follows from relation (31).

Similarly for each link l ∈ L, by relations (26) and (27) we obtain
∣∣∣∣
∆yl −∆ỹl

∆ỹl

∣∣∣∣ =

∣∣∣∣
[R]lP−1

k R′(w∗ − w(t))

[R]lP−1
k R′w(t)

∣∣∣∣

≤

∣∣∣∣∣

∑
i∈S(l)(P

−1
k )iiR

′e ||w∗ − w(t)||∞∑
i∈S(l)(P

−1
k )ii[R′]iw(t)

∣∣∣∣∣

≤

∣∣∣∣∣

√
L
∑

i∈S(l)(H
−1
k )ii|L(i)| ||w(t+ 1)− w(t)||∞

(1− F )
∑

i∈S(l)(H
−1
k )ii[R′]iw(t)

∣∣∣∣∣ = ρl,

where the first inequality follows from the structure of the matrix R and the element-wise
nonnegativity of matrices Hk and R, and the second inequality follows from relation (31) and
the definition for matrix Pk.
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The definition for βk [cf. Eq. (34)] implies that

p√
βk

= max

{
max
i∈S

ρi,max
l∈L

ρl

}
.

Therefore the preceding relations imply that
∣∣∣∆si−∆s̃i

∆s̃i

∣∣∣ ≤ p√
βk

and
∣∣∣∆yl−∆ỹl

∆ỹl

∣∣∣ ≤ p√
βk

, i.e.,

√
βk
∣∣γki
∣∣ ≤ p|∆x̃i|,

which implies the desired relation.

Theorem 4.7. Let {xk} be the primal sequence generated by the inexact Newton method (28)
and Hk be the corresponding Hessian matrix at kth iteration. Let w(t) be the inexact dual
variable obtained after t dual iterations (17) and w∗ be the exact solution to (10), i.e. the limit
of the sequence {w(t)} as t → ∞. Let vectors ∆xk and ∆x̃k be the exact and inexact Newton
directions obtained using w∗ and w(t) [cf. Eqs. (26)-(27)] respectively, and vector γk be the error
in the Newton direction computation at xk , defined by γk = ∆xk−∆x̃k. For some scalar β and
ε where 0 < βk < 1 and ε > 0, let

hi =

√
ε

(1− βk)(L+ S)L

1− F

|L(i)|(H−
1
2

k )ii
(36)

for each source i, and

hl =

√
ε

(1− βk)(L+ S)L

1− F

(H
1
2
k )(S+l)(S+l)

∑
i∈S(L) |L(i)|(Hk)

−1
ii

(37)

for each link l. Define a nonnegative scalar h as

h =

(
min

{
min
i∈S

hi,min
l∈L

hl

})
. (38)

Then the condition
||w(t+ 1)− w(t)||∞ ≤ h (39)

implies

(γk)′Hkγ
k ≤ ε

1− βk
, (40)

for ∆x̃k obtained according to (27) using w(t).

Proof. We let matrix Pk denote the S × S principal submatrix of Hk, i.e. (Pk)ii = (Hk)ii for
i ≤ S, for notational convenience. The definition of h [cf. Eq. (38)] and relation (39) implies

||w(t+ 1)− w(t)||∞ ≤ hi,∈ S,

and
||w(t+ 1)− w(t)||∞ ≤ hl, for l ∈ L,

Using relation (31) and the definition of hi and hl [cf. Eqs. (36) and (37)], the above two relations
implies respectively that

||w∗ − w(t)||∞ ≤
√

ε

(1− βk)(L+ S)

1

|L(i)|(H−
1
2

k )ii
, for i ∈ S, (41)
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and

||w∗ − w(t)||∞ ≤
√

ε

(1− βk)(L+ S)

1

(H
1
2
k )(S+l)(S+l)

∑
i∈S(L) |L(i)|(Hk)

−1
ii

, for l ∈ L. (42)

By using the element-wise nonnegativity of matrices H and A, we have for each source i,
∣∣∣(H−

1
2

k )ii[R
′]i(w∗ − w(t))

∣∣∣ ≤ (H
− 1

2
k )ii[R

′]ie ||w∗ − w(t)||∞ = |L(i)|(H−
1
2

k )ii ||w∗ − w(t)||∞ ,

where the last equality follows from the fact that [R′]ie = |L(i)| for each source i.
The above inequality and relation (41) imply

∣∣∣(H−
1
2

k )ii[R
′]i(w∗ − w(t))

∣∣∣ ≤
√

ε

(1− βk)(L+ S)
. (43)

By the definition of matrices Pk and R, we have for each link l,

| (H
1
2
k )(S+l)(S+l) ( RP−1

k R′(w∗−w(t)) )l | ≤ (H
1
2
k )(S+l)(S+l)[R]lP−1

k R′e ||w∗ − w(t)||∞
= (H

1
2
k )(S+l)(S+l)

∑

i∈S(l)

|L(i)|(H−1
k )ii ||w∗ − w(t)||∞ .

When combined with relation (42), the preceding relation yields

∣∣∣(H
1
2
k )(S+l)(S+l)

(
RP−1

k R′(w∗ − w(t))
)l∣∣∣ ≤

√
ε

(1− βk)(L+ S)
. (44)

From Eqs. (26)-(27) and the definition of γ, we have

γki = −
(

P−1
k R′(w∗ − w(t))

RP−1
k R′(w∗ − w(t))

)
,

which implies that

(γk)′Hkγ
k =

∑

i∈S

(
(H
− 1

2
k )ii[R

′]i(w∗ − w(t))
)2

+
∑

l∈L

(
(H

1
2
k )(S+l)(S+l)

(
RP−1

k R′(w∗ − w(t))
)l)2

≤ ε

1− βk
,

where the inequality follows from (43), (44), which establishes the desired relation.

We develop the distributed error checking method based on the preceding two theorems:

• Stage 1: The links and sources implement T iterations of (17), where T is a predetermined
globally known constant. The links and sources then use Theorem 4.6 with t = T − 1 and
p as the desired relative error tolerance level defined in Assumption 2 to obtain a value βk.
If βk ≥ 1, then the dual iteration terminates.

• Stage 2: The links and sources use Theorem 4.7 with βk obtained in the first stage and ε
defined in Assumption 2 to obtain value h. Then they perform more iterations of the form
(17) until the criterion (39) is satisfied.9

9The error tolerance level will terminate after finite number of iterations for any h > 0, due to the convergence
of the sequence w(t) established in Theorem 4.3 .
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Stage 1 corresponds to checking the term p2(∆x̃k)′Hk(∆x̃
k), while Stage 2 corresponds to

the term ε in the error tolerance level. If the method terminates the dual iterations in Stage 1,
then Theorem 4.6 suggests that Assumption 2 is satisfied for any ε > 0; otherwise, by combining
relations (35) and (40), we have

(γk)′Hkγ
k = (βk + (1− βk))(γk)′Hkγ

k ≤ p2(∆x̃k)′Hk(∆x̃
k) + ε,

which shows that the error tolerance level in Assumption 2 is satisfied.
To show that the above method can be implemented in a distributed way, we first rewrite

the terms ρi, ρl, hi and hl and analyze the information required to compute them in a de-
centralized way. We use the definition of the weighted price of the route Πi(t) and obtain
Πi(t) = (H−1

k )ii
∑

l∈L(i) w(t) = (H−1
k )ii[R

′]iw(t) and Πi(0) = (H−1
k )ii|L(i)|, where wl(0) = 1 for

all links l. Therefore relations (32) and (33) can be rewritten as

ρi =

∣∣∣∣∣

√
LΠi(0) ||w(t+ 1)− w(t)||∞

(1− F )Πi(t)

∣∣∣∣∣ ,

ρl =

∣∣∣∣∣

√
L
∑

i∈S(l) Πi(0) ||w(t+ 1)− w(t)||∞
(1− F )

∑
i∈S(l) Πi(t)

∣∣∣∣∣ .

Similarly, relations (36) and (37) can be transformed into

hi =

√
ε

(1− βk)(L+ S)L

1− F

πi(0)(H
− 1

2
k )ii

,

hl =

√
ε

(1− βk)(L+ S)L

1− F

(H
1
2
k )(S+l)(S+l)

∑
i∈S(L) Πi(0)

.

In our dual variable computation procedure, the values πi(0), Πi(0) and Πi(t) are readily available
to all the links l ∈ L(i) through the feedback mechanism described in Section 4.2. Each source
and link knows its local Hessian, i.e., (Hk)ii for source i and (Hk)(S+l)(S+l) for link l. The value
βk is only used in Stage 2 and it is available from the previous stage. Therefore in the above four
expressions, the only not immediately available information is ||w(t+ 1)− w(t)||∞, which can
be obtained using a maximum consensus algorithm.10 Based on these four terms, the values of
βk and h can be obtained using once again maximum consensus and hence all the components
necessary for the error checking method can be computed in a distributed way.

We observe that in the first T iterations, i.e., Stage 1, only two executions of maximum
consensus algorithms is required, where one is used to compute ||w(t+ 1)− w(t)||∞ and the
other for βk. On the other hand, even though the computation of the value h in Stage 2 needs
only one execution of the maximum consensus algorithm, the term ||w(t+ 1)− w(t)||∞ needs to
be computed at each dual iteration t. Therefore the error checking in Stage 1 can be completed
much more efficiently than in Stage 2. Hence, when we design values p and ε in Assumption 2,
we should choose p to be relatively large whenever possible, which results in an error checking
method that does not enter Stage 2 frequently, and is hence faster. Other than the distributed

10In a maximum consensus algorithm, each link/source starts with some state. In each update, the source
sends its current value to the links on its route, and each link keeps the only the maximum value among all
the values received (including the previous value it holds), each source then updates by aggregating maximum
information along its route. Therefore after one round of algorithm, the sources sharing link(s) with the route
that contains the maximum value now has the maximum value. Since the links form a connected graph, after
at most S iterations, the entire network reaches a consensus on the maximum state value and the algorithm
terminates.
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error checking method presented here, in [31] we also proposed a distributed scheme to explicitly
compute at each primal iteration a bound on the number of dual steps that can satisfy the error
level.

4.5 Stepsize Rule

Based on the preceding two sections, we can compute the inexact Newton direction ∆x̃k in a
distributed way, the only other unknown term in the update equation (28) is the stepsize dk. In
this section, we describe a stepsize rule that can achieve local superlinear convergence rate (to an
error neighborhood) for the primal iterations (see [30] for more details). Section 4.5.1 presents
a distributed procedure to compute the stepsize. Section 4.5.2 shows that with this stepsize
rule, the primal vectors xk generated by the algorithm remain strictly positive for all k, hence
ensuring that the Hessian matrix and therefore the (inexact) Newton direction are well-defined
at all iterates (see Eq. (11)).

Our stepsize rule will be based on an inexact version of the Newton decrement. At a given
primal vector xk (with Hessian matrix Hk), we define the exact Newton direction, denoted by
∆xk, as the exact solution of the system of equations (8). The exact Newton decrement λ(xk)
is defined as

λ(xk) =
√

(∆xk)′Hk∆xk. (45)

Similarly, the inexact Newton decrement λ̃(xk) is given by

λ̃(xk) =
√

(∆x̃k)′Hk∆x̃k, (46)

where ∆x̃k is the inexact Newton direction at primal vector xk. Note that both λ(xk) and
λ̃(xk) are nonnegative and well-defined due to the fact that the matrix Hk = ∇2f(xk) is positive
definite.

Given the scalar λ̃(xk), at each iteration k, we choose the stepsize dk as follows: Let V be
some positive scalar with 0 < V < 0.267. We have

dk =

{
1

λ̃(xk)+1
if λ̃(xk) ≥ V for all previous k,

1 otherwise.
(47)

The upper bound on V guarantees local quadratic convergence of our algorithm [30]. The fact
that V < 1 also ensures starting with a strictly positive feasible solution, the primal vectors xk

generated by our algorithm remain strictly positive for all k (see Section 4.5.2).

4.5.1 Distributed Inexact Newton Decrement Computation

We first note that in Eq. (47), the only unknown term is the inexact Newton decrement λ̃(xk).
In order to compute the value of λ̃(xk), we rewrite the inexact Newton decrement as λ̃(xk) =√∑

i∈S(∆x̃ki )
2(Hk)ii +

∑
l∈L(∆x̃kl+S)2(Hk)(l+S)(l+S), or equivalently,

(
λ̃(xk)

)2

=
∑

i∈S

(∆x̃ki )
2(Hk)ii +

∑

l∈L

(∆x̃kl+S)2(Hk)(l+S)(l+S). (48)

In the sequel of this section, we develop a distributed summation procedure to compute this
quantity by aggregating the local information available on sources and links. A key feature
of this procedure is that it respects the simple information exchange mechanism used by first
order methods applied to the NUM problem: information about the links along the routes is
aggregated and sent back to the sources using a feedback mechanism. Over-counting is avoided
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using a novel off-line construction, which forms an (undirected) auxiliary graph that contains
information on sources sharing common links.

Given a network with source set S = {1, 2, . . . , S} (each associated with a predetermined
route) and link set L = {1, 2, . . . , L}, we define the set of nodes in the auxiliary graph as the set
S, i.e., each node corresponds to a source (or equivalently, a flow) in the original network. The
edges are formed between sources that share common links according to the following iterative
construction. In this construction, each source is equipped with a state (or color) and each link
is equipped with a set (a subset of sources), which are updated using signals sent by the sources
along their routes.
Auxiliary Graph Construction:

• Initialization: Each link l is associated with a set Θl = ∅. One arbitrarily chosen source is
marked as grey, and the rest are marked as white. The grey source sends a signal {label,
i} to its route. Each link l receiving the signal, i.e., l ∈ L(i), adds i to Θl.

• Iteration: In each iteration, first the sources update their states and send out signals
according to step (A). Each link l then receives signals sent in step (A) from the sources
i ∈ S(l) and updates the set Θl according to step (B).

(A) Each source i:

(A.a) If it is white, it sums up |Θl| along its route, using the value |Θl| from the previous
time.

(A.a.1) If
∑

l∈L(i) |Θl| > 0, then the source i is marked grey and it sends two signals

{neighbor, i} and {label, i} to its route.

(A.a.2) Else, i.e.,
∑

l∈L(i) |Θl| = 0, source i does nothing for this iteration.

(A.a) Otherwise, i.e., it is grey, source i does nothing.

(B) Each link l:

(B.a) If Θl = ∅:
(B.a.1) If it experiences signal {label, i} passing through it, it adds i to Θl. When

there are more than one such signals during the same iteration, only the
smallest i is added. The signal keeps traversing the rest of its route.

(B.a.2) Otherwise link l simply carries the signal(s) passing through it, if any, to the
next link or node.

(B.b) Else, i.e., Θl 6= ∅:
(B.b.1) If it experiences signal {neighbor, i} passing through it, an edge (i, j) with

label Ll is added to the auxiliary graph for all j ∈ Θl, and then i is added to
the set Θl. If there are more than one such signals during the same iteration,
the sources are added sequentially, and the resulting nodes in the set Θl form
a clique in the auxiliary graph. Link l then stops the signal, i.e., it does not
pass the signals to the next link or node.

(B.b.2) Otherwise link l simply carries the signal(s) passing through it, if any, to the
next link or node.

• Termination: Terminate after S − 1 number of iterations.

The auxiliary graph construction process for the sample network in Figure 3 is illustrated
in Figure 4, where the left column reflects the color of the nodes in the original network and
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S1

S2

S3

D1

S4

D2

D3

D4

L1 : x1

L2 : x2

L3 : x3

L4 : x1, x2, x3

L7 : x4

L5 : x2, x3, x4

L8 : x2

L9 : x3

L10 : x4

L6 : x1

Figure 3: A sample network with four sources and ten links. Each link shows the flows (or
sources) using that link. This example will be used to illustrate different parts of the distributed
stepsize computation in this section.

the elements of the set Θl (labeled on each link l), while the right column corresponds to the
auxiliary graph constructed after each iteration.11

We next investigate some properties of the auxiliary graph, which will be used in proving
that our distributed summation procedure yields the corrects values.

Lemma 4.8. Consider a network and its auxiliary graph with sets {Θl}l∈L. The following
statements hold:

(1) For each link l, Θl ⊂ S(l).

(2) Source nodes i, j are connected in the auxiliary graph if and only if there exists a link l,
such that {i, j} ⊂ Θl.

(3) The auxiliary graph does not contain multiple edges, i.e., there exists at most one edge
between any pair of nodes.

(4) The auxiliary graph is connected.

(5) For each link l, Θl 6= ∅.

(6) There is no simple cycle in the auxiliary graph other than that formed by only the edges
with the same label.

Proof. We prove the above statements in the order they are stated.

(1) Part (1) follows immediately from our auxiliary graph construction, because each source
only sends signals to links on its own route and the links only update their set Θl when
they experience some signals passing through them.

(2) In the auxiliary graph construction, a link is added to the auxiliary graph only in step
(B.b.1), where part (2) clearly holds.

(3) From the first two parts, there is an edge between source nodes i, j, i.e., {i, j} ⊂ Θl for
some l, only if i and j share link l in the original network. From the auxiliary graph
construction, if sources i and j share link l then an edge with label Ll between i and j is
formed at some iteration if and only if one of the following three cases holds:

11Note that depending on construction, a network may have different auxiliary graphs associated with it. Any
of these graphs can be used in the distributed summation procedure.
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(c) State of the network t = 1
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(d) State of the aux-
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(e) State of the network t = 2
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(f) State of the aux-
iliary graph t = 2

S1
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D1
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D3

D4

S1
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(g) State of the network t = 3

S3

S1

S4

S2

L4

L4

L4 L5

(h) State of the aux-
iliary graph t = 3

Figure 4: Steps of the construction of the auxiliary graph corresponding to the network in Figure
3. The elements of Θl are labeled on link l. A link is drawn bold in the original graph if Θl 6= ∅.
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I In the beginning of the previous iteration Θl = ∅ and sources i, j are both white.
During the previous iteration, source i becomes grey and sends out the signal {label,i}
to link l, hence Θl = {i}. In the current iteration, source j with

∑
m∈L(j) |Θm| ≥

|Θl| > 0 becomes grey and sends out signal {neighbor, j} to link l;

II The symmetric case of I, where first source j becomes grey and one iteration later
source i becomes grey.

III In the beginning of the previous iteration Θl = ∅ and sources i, j are both white.
During the previous iteration, some other source t with l ∈ L(t) becomes grey and
sends out the signal {label,t} to link l, hence Θl = {t}. In the current iteration, both
source i and j with

∑
m∈L(i) |Θm| ≥ |Θl| > 0 and

∑
m∈L(j) |Θm| ≥ |Θl| > 0 become

grey and send out signals {neighbor, i} and {neighbor, j} to link l.

Hence if an edge connecting nodes i and j exists in the auxiliary graph, then in the
beginning of the iteration when the edge is formed at least one of the nodes is white, and
by the end of the iteration both nodes are colored grey and stay grey. Therefore the edges
between i and j in the auxiliary graph can only be formed during exactly one iteration.

We next show that only one such edge can be formed in one iteration. The first two cases
are symmetric, and without loss of generality we only consider cases I and III. In both
of these cases, an edge between i and j is formed with label Ll only if link l receives the
signal {neighbor, j} and Θl 6= ∅. In step (B.b.1) of the auxiliary graph construction, the
first link with Θl 6= ∅ stops the signal from passing to the rest of its route, hence at most
one edge between i and j can be generated. Hence part (3) holds.

(4) By using a similar analysis as above, it is straightforward to see that if at one iteration
source i from the original network becomes grey, then in the next iteration all the sources
which share link with i become grey and are connected to i in the auxiliary graph. By
induction, we conclude that all the nodes in the auxiliary graph corresponding to sources
colored grey in the original network are connected to the source node marked grey in the
initialization step, and hence these nodes form a connected component.

We next show that all nodes are colored grey when the auxiliary graph construction proce-
dure terminates. We first argue that at least one node is marked grey from white at each
iteration before all nodes are marked grey. Assume the contrary is true, that is at some
iteration no more nodes are marked grey and there exists a set of white nodes S∗. This
implies that the nodes in S∗ do not share any links with the nodes in S\S∗ and thus there
is no path from any source in the set S\S∗ to any source in S∗ using the links (including
the feedback mechanisms) in the original network. However, this contradicts the fact that
all links form a strongly connected graph. Therefore after S− 1 iterations all nodes in the
original graph are colored grey and therefore we have the desired statement hold.

(5) Analysis for part (3) suggests that all the connected nodes in the auxiliary graph are
colored grey. In view of the part (4), all the sources are colored grey when the auxiliary
graph construction procedure terminates. Step (B.a.1) implies that a link has Θl = ∅ if all
sources i ∈ S(l) are white. Since each link is used by at least one source, and all sources
are grey, part (5) holds.

(6) We prove part (6) by showing the auxiliary graph, when the cycles formed by the edges
of the same label are removed, is acyclic. For each link l, let i∗l denote the first element
added to the set Θl in the auxiliary graph construction process, which is uniquely defined
for each link l by Step (B.a.1). In the set S for each link l, we define an equivalence class
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by i ∼ j if {i, j} ⊂ Θl\{i∗l }, which implies if and only if i and j are connected in the
auxiliary graph and i ∼ j, this link is formed by scenario III as defined above in the proof
of part (3).

The nodes in each equivalence class are connected by edges with the same label, which
form the undesired cycles. We remove these cycles by merging each equivalence class
into one representative node, which inherits all the edges going between the nodes in the
equivalence class and S\Θl in the auxiliary graph, and is connected to i∗l via one edge.
Note the resulting graph is connected, since the auxiliary graph is by part (4) and all the
remaining edges are generated under scenarios I and II as defined in the proof of part (3).

We now show that the resulting graph contains no cycle. From cases I and II, it follows
immediately that an edge is generated when one more source becomes grey. Therefore if
number of noes is N , we have N − 1 edges. In a connected graph, this implies we have a
tree, i.e. acyclic, and hence part (6) holds.

We denote the set of links inducing edges in the auxiliary graph as L∗ = {l | |Θl| > 1} and for
each source i the set of links which induce edges in the auxiliary graph as L∗(i) = {l | i ∈ Θl, l ∈
L∗} ⊂ L(i) for notational convenience. Each link can identify if it is in L∗ by the cardinality of
the set Θl. Each source i can obtain |L∗(i)| along the links on its route. The auxiliary graph
remains the same throughout the distributed inexact Newton algorithm and only depends on
the structure of the network (independent of the utility functions and link capacities), therefore
given a network, the above construction only needs to be preformed once prior to execution of
the distributed Newton algorithm.

We next present a distributed procedure to compute the sum in Eq. (48) and show that the
sets Θl constructed using the above procedure avoids over-counting and enables computation of
the correct values.12

Distributed Summation Procedure:

• Initialization: Each link l initializes to zl(0) = 0. Each source i computes y∗i = (∆x̃ki )
2(Hk)ii

and each link l computes z∗l = 1
|S(l)|(∆x̃

k
l+S)2(Hk)(l+S)(l+S). Each source i aggregates the

sum
yi(0) = y∗i +

∑

l∈L(i)

z∗l (49)

along its route.

• Iteration for t = 1, 2, . . . , S. The following 3 steps are completed in the order they are
presented.

a. Each source i sends its current value yi(t) to its route.

b. Each link l uses the yi(t) received and computes

zl(t) =
∑

i∈Θl

yi(t− 1)− (|Θl| − 1) zl(t− 1). (50)

c. Each source i aggregates information along its route from the links l ∈ L∗(i) and
computes

yi(t) =
∑

l∈L∗(i)

zl(t)− (|L∗(i)| − 1) yi(t− 1). (51)

12Note that the execution of the procedure only uses the sets Θl, L
∗, and L∗(i). We will use the structure of

the auxiliary graph in proving the correctness of the procedure.
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• Termination: Terminate after S number of iterations.

By the diagonal structure of the Hessian matrix Hk, the scalars (∆x̃ki )
2(Hk)ii and

(∆x̃kl+S)2(Hk)(l+S)(l+S) are available to the corresponding source i and link l respectively, hence
z∗l and y∗i can be computed using local information. In the above process, each source only uses
aggregate information along its route L∗(i) ⊂ L(i) and each link l only uses information from
sources i ∈ Θl ⊂ S(l). The evolution of the distributed summation procedure for the sample
network in Figure 3 is shown in Figures 5 and 6.

We next establish two lemmas, which quantifies the expansion of the t-hop neighborhood in
the auxiliary graph for the links and sources. This will be key in showing that the aforementioned
summation procedure yields the correct values at the sources and the links. For each source i,
we use the notation Ni(t) to denote the set of nodes that are connected to node i by a path of
length at most t in the auxiliary graph. Note that Ni(0) = {i}. We say that node i is t-hops
away from node j is the length of the shortest path between nodes i and j is t.

Lemma 4.9. Consider a network and its auxiliary graph with sets {Θl}l∈L. For any link l and
all t ≥ 1, we have,

Ni(t) ∩Nj(t) = ∪m∈Θl
Nm(t− 1) for i, j ∈ Θl with i 6= j. (52)

Proof. Since the source nodes i, j ∈ Θl, by part (2) of Lemma 4.8, they are 1-hop away from all
other nodes in Θl. Hence if a source node n is in Nm(t− 1) for m ∈ Θl, then n is at most t-hops
away from i or j. This yields

∪m∈Θl
Nm(t− 1) ⊂ Ni(t) ∩Nj(t). (53)

On the other hand, if n ∈ Ni(t) ∩ Nj(t), then we have either n ∈ Ni(t − 1) and hence
n ∈ ∪m∈Θl

Nm(t− 1) or
n ∈ (Ni(t)\Ni(t− 1)) ∩Nj(t).

Let P (a, b) denote an ordered set of nodes on the path between nodes a and b including b but
not a for notational convenience. Then the above relation implies there exists a path with
|P (i, n)| = t and |P (j, n)| ≤ t. Let n∗ ∈ P (i, n) ∩ P (j, n) and P (j, n∗) ∩ P (j, n∗) = ∅. The
node n∗ exists, because the two paths both end at n. If n∗ 6∈ Θl, then we have a cycle of
{P (i, n∗), P (n∗, j), P (j, i)}, which includes an edge with label Ll between i and j and other
edges. In view of part (6) of Lemma 4.8, this leads to a contradiction. Therefore we obtain
n∗ ∈ Θl, implying P (i, n) = {P (i, n∗), P (n∗, n)}. Since i is connected to all nodes in Θl,
|P (i, n∗)| = 1 and hence |P (n∗, n)| = t − 1, which implies n ∈ Nn∗(t − 1) ⊂ ∪m∈Θl

Nm(t − 1).
Therefore the above analysis yields

Ni(t) ∩Nj(t) ⊂ ∪m∈Θl
Nm(t− 1).

With relation (53), this establishes the desired equality.

Lemma 4.10. Consider a network and its auxiliary graph with sets {Θl}l∈L. For any source i,
and all t ≥ 1, we have,

(∪j∈Θl
Nj(t)) ∩ (∪j∈ΘmNj(t)) = Ni(t) for l,m ∈ L∗(i) with l 6= m. (54)

Proof. Since l,m ∈ L∗(i), we have i ∈ Θl and i ∈ Θm, this yields,

Ni(t) ⊂ (∪j∈Θl
Nj(t)) ∩ (∪j∈ΘmNj(t)) .
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Figure 5: Evolution of distributed summation process, where ρi = yi(0) and destination node is
indicated using a dot with the same color as its corresponding source.
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Figure 6: Evolution of distributed summation process continued, where ρi = yi(0) and destina-
tion node is indicated using a dot with the same color as its corresponding source.

On the other hand, assume there exists a node n with n ∈ (∪j∈Θl
Nj(t))∩ (∪j∈ΘmNj(t)), and

n 6∈ Ni(t). Then there exists a node p ∈ Θl with p 6= i and n ∈ Np(t). Similarly there exists a
node q ∈ Θm with q 6= i and n ∈ Nq(t). Let P (a, b) denote an ordered set nodes on the path
between nodes a and b including b but not a for notational convenience. Let n∗ ∈ P (p, n)∩P (q, n)
and P (p, n∗) ∩ P (q, n∗) = ∅. The node n∗ exists, because the two paths both end at n. Since
nodes i, p are connected via an edge with label Ll and i, q are connected via an edge with label
Lm, we have a cycle of {P (i, p), P (p, n), P (n, q), P (q, i)}, which contradicts part (6) in Lemma
4.8 and we have

(∪j∈Θl
Nj(t)) ∩ (∪j∈ΘmNj(t)) ⊂ Ni(t).

The preceding two relations establish the desired equivalence.

Equipped with the preceding lemma, we can now show that upon termination of the sum-
mation procedure, each source i and link l have yi(S) = zl(S − 1) = (λ̃(xk))2 [cf. Eq. (48)].

Theorem 4.11. Consider a network and its auxiliary graph with sets {Θl}l∈L. Let Ω denote
the set of all subsets of S and define the function σ : Ω→ R as

σ(K) =
∑

l∈∪i∈KL(i)

z∗l
∑

i∈K

I{l∈L(i)} +
∑

i∈K

y∗i ,

where y∗i = (∆x̃ki )
2(Hk)ii, z

∗
l = 1

|S(l)|(∆x̃
k
l+S)2(Hk)(l+S)(l+S) and I{l∈L(i)} is the indicator func-

tion for the event {l ∈ L(i)}. Let yi(t) and zl(t) be the iterates generated by the distributed
summation procedure described above. Then for all t ∈ {1, . . . , S}, the value zl(t) at each link
satisfies

zl(t) = σ(∪i∈Θl
Ni(t− 1)), (55)

and the value yi(t) at each source node satisfies

yi(t) = σ(Ni(t)). (56)

Proof. We use induction to prove the theorem.
Base case: t = 1.
Since zl(0) = 0 for all links, Eq. (50) for t = 1 is

zl(1) =
∑

i∈Θl

yi(0) =
∑

i∈Θl

(y∗i +
∑

l∈L(i)

z∗l ) = σ(Θl),

where we use the definition of y(0) [cf. Eq. (49)] and the function σ(·). Since Ni(0) = i, the
above relation implies Eq. (55) holds.
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For source i, from update relation (51), we have

yi(1) =
∑

l∈L∗(i)

σ(Θl)− (|L∗(i)| − 1) yi(0).

Lemma 4.10 and inclusion-exclusion principle imply
∑

l∈L∗(i)

σ(Θl) = σ(∪l∈L∗(i)Θl) + (|L∗(i)| − 1)σ(i).

Since yi(0) = σ(i) based on the definition of yi(0) [cf. Eq. (49)], by rearranging the preceding
two relations, we obtain

yi(1) = σ(∪l∈L∗(i)Θl) = σ(Ni(1)),

which shows Eq. (56) holds for t = 1.
Inductive step for t = T ≥ 2.
Assume for t = T − 1, Eqs. (56) and (55) hold, we first show that Eq. (55) hold. When t = T ,
by update equation (50), we obtain for link l

zl(T ) =
∑

i∈Θl

yi(T − 1)− (|Θl| − 1) zl(T − 1)

=
∑

i∈Θl

σ(Ni(T − 1))− (|Θl| − 1) zl(T − 1),

where the second equality follows from Eq. (56) for t = T − 1.
If |Θl| = 1, then we have zl(T ) = σ(Ni(T − 1)), for i ∈ Θl, therefore Eq. (55) is satisfied.
For |Θl| > 1, using Lemma 4.9 for t = T and by inclusion-exclusion principle, we obtain

∑

i∈Θl

σ(Ni(T − 1)) = σ (∪i∈Θl
Ni(T − 1)) + (|Θl| − 1)σ(∪m∈Θl

Nm(T − 2)).

Eq. (55) for t = T −1 yields zl(T −1) = σ(∪m∈Θl
Nm(T −2)). By using this fact and rearranging

the preceding two relations, we have Eq. (55) holds for t = T , i.e.,

zl(T ) = σ (∪i∈Θl
Ni(T − 1)) .

We next establish Eq. (56). From update equation (51), using the preceding relation, we
have

yi(T ) =
∑

l∈L∗(i)

zl(T )− (|L∗(i)| − 1) yi(T − 1)

=
∑

l∈L∗(i)

σ (∪i∈Θl
Ni(T − 1))− (|L∗(i)| − 1) yi(T − 1).

Lemma 4.10 and inclusion-exclusion principle imply
∑

l∈L∗(i)

σ (∪i∈Θl
Ni(T − 1)) = σ(∪l∈L∗(i) ∪i∈Θl

Ni(T − 1)) + (|L∗(i)| − 1)σ(Ni(T − 1)).

By definition of Ni(·), we have ∪l∈L∗(i)∪i∈Θl
Ni(T −1) = Ni(T ). By using Eq. (56) for t = T −1,

i.e., yi(T − 1) = σ(Ni(T − 1)) and rearranging the above two equations, we obtain

y(T ) = σ(Ni(T )),

which completes the inductive step.
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Using definition of the function σ(·), we have (λ̃(xk))2 = σ(S). By the above theorem, we
conclude that after S iterations,

yi(S) = σ(Ni(S)) = σ(S) = (λ̃(xk))2.

By observing that ∪i∈Θl
Ni(S − 1) = S, we also have

zi(S − 1) = σ (∪i∈Θl
Ni(S − 1)) = σ(S)) = (λ̃(xk))2,

where we used part (5) of Lemma 4.8. This shows that the value λ̃(xk)2 is available to all sources
and links after S − 1 iterations.

Note that the number S is an upper bound on the number of iterations required in the
distributed summation process to obtain the correct value at the links and sources in the original
graph. If the value of the diameter of the auxiliary graph (or an upper bound on it) is known,
then the process would terminate in number of steps equal to this value plus 1. For instance,
when all the sources share one common link, then the auxiliary graph is a complete graph,
and only 2 iterations is required. On the other hand, when the auxiliary graph is a line, the
summation procedure would take S iterations.

We finally contrast our distributed summation procedure with spanning tree computations,
which were used widely in 1970s and 1980s for performing information exchange among different
processors in network flow problems. In spanning tree based approaches, information from all
processors is passed along the edges of a spanning tree, and stored at and broadcast by a desig-
nated central root node (see [18] and [8]). In contrast, our summation procedure involves (scalar)
information aggregated along the routes and fed back independently to different sources, which
is a more natural exchange mechanism in an environment with decentralized sources. Moreover,
processors in the system (i.e., sources and links) do not need to maintain predecessor/successor
information (as required by spanning tree methods). The only network-related information is
the sets θl for l ∈ L kept at the individual links and obtained from the auxiliary graph, which is
itself constructed using the feedback mechanism described above.

4.5.2 Strict Feasibility of Primal Iterates

We next establish that starting with a strictly positive primal vector x0, by using the stepsize
given in (47), all the primal iterates generated by the inexact Newton algorithm remain strictly
positivity. This is necessary to ensure that the algorithm is well defined. By using the slack
variable definitions, this also implies the source rates generated by the inexact Newton algorithm
(i.e., the first S components of xk) do not violate capacity constraints throughout the algorithm.

Theorem 4.12. Given a strictly positive feasible primal vector x0, let {xk} be the sequence
generated by the inexact distributed Newton method (28) for problem (4) with µ ≥ 1. Assume
that the stepsize dk is selected according to Eq. (47) for some positive scalar V with 0 < V <
0.267. Then, the primal vector xk is strictly positive, i.e., xk > 0, for all k.

Proof. We will prove this claim by induction. The base case of x0 > 0 holds by the assumption
of the theorem. Since the Ui are strictly concave [cf. Assumption 1], for any xk, we have

−∂2Ui

∂x2i
(xki ) ≥ 0. Given the form of the Hessian matrix [cf. Eq. (11)], this implies (Hk)ii ≥ µ

(xki )2

for all i, and therefore

λ̃(xk) =

(
S+L∑

i=1

(∆x̃ki )
2(Hk)ii

) 1
2

≥

(
S+L∑

i=1

µ

(
∆x̃ki
xki

)2
) 1

2

≥ maxi

∣∣∣∣
√
µ∆x̃ki
xki

∣∣∣∣ ,
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where the last inequality follows from the nonnegativity of the terms µ
(

∆x̃ki
xki

)2

. By taking the

reciprocal on both sides, the above relation implies

1

λ̃(xk)
≤ 1

maxi

∣∣∣
√
µ∆x̃ki
xki

∣∣∣
=

1
√
µ

mini

∣∣∣∣
xki

∆x̃ki

∣∣∣∣ ≤ mini

∣∣∣∣
xki

∆x̃ki

∣∣∣∣ , (57)

where the last inequality follows from the fact that µ ≥ 1.
We show the inductive step by considering two cases.

• Case i: λ̃(xk) ≥ V
The stepsize choice dk [cf. Eq. (47)] satisfies

dk = 1/(1 + λ̃(xk)) < 1/λ̃(xk).

Using Eq. (57), this implies dk < mini

∣∣∣ x
k
i

∆x̃ki

∣∣∣. Hence if xk > 0, then xk+1 = xk+dk∆x̃k > 0.

• Case ii: λ̃(xk) < V
Since 0 < V < 0.267, we have λ̃(xk) < V ≤ 1. Hence we obtain

dk = 1 <
1

λ̃(xk)
≤ mini

∣∣∣∣
xki

∆x̃ki

∣∣∣∣ ,

where the last inequality follows from Eq. (57). Once again, if xk > 0, then xk+1 =
xk + dk∆x̃k > 0.

In both cases we have xk+1 = xk + dk∆x̃k > 0, which completes the induction proof.

Hence the distributed inexact Newton update is well defined throughout the algorithm and as
we show in [30], the algorithm achieves superlinear convergence rate in terms of primal iterations
to an error neighborhood with sufficiently small error parameters p and ε.

5 Simulation Results

Our simulation results demonstrate that the decentralized Newton method significantly outper-
forms the existing methods in terms of number of iterations. For our distributed inexact Newton
method, we used the following error tolerance levels: p = 10−3, ε = 10−4 [cf. Assumption 2], and
when λ̃(xk̄) < V = 0.12 we switch stepsize choice to be dk = 1 for all k ≥ k̄. With these error
tolerance levels, all the conditions necessary for achieving local quadratic rate of convergence can
be satisfied. We implemented the distributed inexact Newton method twice with different barrier
coefficients; it is shown in [30] that a proper selection of the barrier coefficient (together with a
scaling of objective function) guarantees the resulting objective function value to be within 1%
of the optimal value of problem (2). For a comprehensive comparison, we count both the primal
and dual iterations implemented through distributed error checking method described in 4.4.13

In particular, in what follows, the number of iterations of our method refers to the sum of dual
iterations at each of the generated primal iterate. In the simulation results, we compare our
distributed inexact Newton method performance against both the subgradient method used in
[19] and the Newton-type diagonal scaling dual method developed in [1]. Both of these methods
were implemented using a constant stepsize that can guarantee convergence as shown in [19] and
[1].
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Figure 7: One sample objective function value of distributed inexact Newton method against
number of iterations. The dotted black lines denote ±5% interval of the optimal objective
function value.

S1

S2

D1

D2

L1 : x1

L2 : x2

L3 : x1, x2

L4 : x1

L5 : x2

Figure 8: A sample network. Each source-destination pair is displayed with the same color. We
use xi to denote the flow corresponding to the ith source-destination pair and Li to denote the
ith link.
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Figure 9: One sample objective function value of all three methods against log scaled iteration
count. The dotted black lines denote ±5% interval of the optimal objective function value.
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Figure 10: Sample minimal slack in link capacity of all three methods against log scaled iteration
count. Negative slack means violating capacity constraint. The dotted black line denotes 0.
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Figure 11: Log scaled iteration count for the 3 methods implemented over 50 randomly generated
networks.

Figure 7 presents a sample evolution of the objective function value when the distributed
inexact Newton method is applied to a simple network shown in Figure 8. The horizontal line
segments correspond to the dual iterations, where the primal vector stays constant, and each
jump in the figure is a primal Newton update. The spike close to the end is a result of rescal-
ing and using a new barrier coefficient in the second round of the distributed inexact Newton
algorithm (see [30] for more details regarding implementing two inexact Newton algorithms to
obtain a good approximation of the optimal function value). The black dotted lines indicate
±5% interval around the optimal objective function value.

The other two algorithms were implemented for the same problem, and the objective function
values are plotted in Figure 9, with logarithmic scaled iteration count on the x-axis. We use
black dotted lines to indicate ±5% interval around the optimal objective function value. While
the subgradient and diagonal scaling methods have similar convergence behavior, the distributed
inexact Newton method significantly outperforms the two.

One of the important features of the distributed inexact Newton method is that, unlike
the other two algorithms, the generated primal iterates satisfy the link capacity constraint
throughout the algorithm. This observation is confirmed by Figure 10, where the minimal slacks
in links are shown for all three algorithms. The black dotted line is the zero line and a negative
slack means violating the capacity constraint. The slacks that our distributed inexact Newton
method yields always stays above the zero line, while the other two only becomes feasible in the
end.

To test the performances of the methods over general networks, we generated 50 random
networks, with number of links L = 15 and number of sources S = 8. Each routing matrix

13In these simulations we did not include the number of steps required to compute the stepsize (distributed
summation with finite termination) and to implement distributed error checking (maximum consensus) to allow

the possibilities that other methods can be used to compute these. Note that the number of iterations required
by both of these computation is upper bounded by the number of sources, which is a small constant (5 and 8 for
example) in our simulations.
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consists of L×R Bernoulli random variables.14 All three methods are implemented over the 50
networks. We record the number of iterations upon termination for all 3 methods, and results
are shown in Figure 11 on a log scale. The mean number of iterations to convergence from the
50 trials is 924 for distributed inexact Newton method, 20286 for Newton-type diagonal scaling
and 29315 for subgradient method.

6 Conclusions

This paper develops a distributed inexact Newton-type second order algorithm for Network Util-
ity Maximization problems, which can achieve superlinear convergence rate (in primal iterates)
to some error neighborhood. We show that the computation of the dual variables can be imple-
mented in a decentralized manner using a matrix splitting scheme. We also presented a stepsize
rule based on the inexact Newton decrement and a distributed scheme for its computation. The
implementation of both the matrix splitting and stepsize computation schemes use an informa-
tion exchange mechanism similar to that involved in first order methods applied to this problem.
Simulation results also indicate significant improvement over traditional distributed algorithms
for NUM problems. Possible future directions include investigation of the network effects on the
speed of convergence and analysis of the convergence properties for a fixed finite truncation of
dual iterations.
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