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Motivation

e Increasing interest in distributed control and coordination of networks

consisting of multiple autonomous agents

e Motivated by many emerging networking applications, such as ad hoc wireless
communication networks and sensor networks, characterized by:

— Lack of centralized control and access to information

— Randomly varying connectivity

e Control algorithms for such networks should be:
— Completely distributed relying on local information

— Robust against changes in the network topology
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Multi-Agent Optimization Problem

Goal: Develop a general computational model
for cooperatively optimizing a global system ob-
jective through local interactions and computa- \ /

tions in a multi-agent system with randomly / \

varying connectivity
e Global objective is a combination of /
individual agent performance measures — \

Examples:

e Consensus problems: Alignment of estimates maintained by different agents

— Control of moving vehicles (UAVs), computing averages of initial values

e Parameter estimation in distributed sensor networks:

— Regression-based estimates using local sensor measurements
e Congestion control in data networks with heterogeneous users
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Related Literature

e Parallel and Distributed Algorithms:

— General computational model for distributed asynchronous optimization
x [sitsiklis 84, Bertsekas and Tsitsiklis 95

e Consensus and Cooperative Control:

— Analysis of group behavior (flocking) in dynamical-biological systems
x Vicsek 95, Reynolds 87, Toner and Tu 98

— Mathematical models of consensus and averaging
+ Jadbabaie et al. 03, Olfati-Saber and Murray 04, Olshevsky, Tsitsiklis 07

e Distributed Multi-agent Optimization:

— Distributed subgradient methods with local information and network effects
* Nedi¢ and Ozdaglar 07, Nedié, Olshevsky, Ozdaglar, Tsitsiklis 07,

Nedi¢, Ozdaglar, Parrilo 08
e Existing Work:
— Focus on deterministic models of network connectivity

— Worst-case assumptions about connectivity of agents (e.g. bounded

communication intervals between nodes)
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Random Network Models and Our Contribution

e Recent interest in random algorithms

— Randomized gossip algorithms for averaging or computation of separable

functions
x Boyd et al. 05, Mosk-Aoyama and Shah 07

— Consensus/agreement over random networks

x Availability of links between agents modeled probabilistically
* Hatano and Mesbahi 05, Wu 06, Tahbaz-Salehi and Jadbabaie 08
e QOur Contributions:
— General random network model

— Development of a distributed subgradient method for multi-agent

optimization over a random network

— Convergence analysis and performance bounds
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Model

e We consider a network of n agents with node set N' = {1,...,n}

— Agents want to cooperatively solve filzy, .. x)

e =
wfgﬁ%;ﬁ(x) $\

— Function f;(x) : R — R is a convex objec-

tive function known only by node ¢ fn(@ys - )

e Agents update and send their information at discrete times tg,t1,t2...
e We use x;(k) € R™ to denote the estimate of agent ¢ at time ¢y
Agent Update Rule:

e Agent ¢ updates his estimate according to:

k +1) Z aij(k)z;(k) — a(k)di(k)

o a;;(k): weight, a(k): stepsize, d;(k): subgradient of f;(x) at x = x;(k)

e The model includes consensus as a special case (f;(x) = 0 for all )
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Random Network Model

o Let 2'(k) denote the vector of the ' component of all agent estimates at time
k, ie., 2'(k) = (24 (k),...,zL (k) foralll =1,...,m

e Agent update rule implies that the component vectors of agent estimates evolve

according to
2k +1) = A(k)a! (k) — a(k)d'(k),

— d'(k) = (d\(k),...,d.(k)) is a vector of the [ component of the

subgradient vector of each agent
— A(k) is a matrix with components A(k) = [ai; (k)]i jen

e We assume that A(k) is a random matrix that describes the time-varying

connectivity of the network
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Assumptions

Assumption (Weights) Let F = (2, B, 1) be a probability space such that 2 is the
set of all n X n stochastic matrices, B is the Borel o-algebra on 2 and u is a

probability measure on B.
(a) There exists a scalar v with 0 < v < 1 such that A;; > ~ for all 7 and all A € Q).

(b) For all £ > 0, the matrix A(k) is drawn independently from probability space F.

Implications:

e Each agent takes convex combination of the information from his neighbors

e The induced graph, i.e., the graph (N, &4+ (k)), Ex(k) ={(J,7) | aij(k) > 0}, is
a random graph that is independent and identically distributed over time k

— This allows edges at any time k£ to be correlated
e Formally, we define a product probability space (2°°, 8%, 1) = [[.—, (2, B, ).

e The sequence A = {A(k)} is drawn from this product probability space.
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Connectivity

e Consider the expected value of the random

matrices A(k), /
A=E[A(k)] forallk>0. /

e Define the edge set induced by the positive

elements of the matrix A, / \ /

£ =1{(j,1) | Aij > 0}

~

Assumption (Connectivity) The mean connectivity graph (N, £) is strongly
connected.

e This assumption ensures that in expectation, the information of an agent ¢

reaches every other agent j through a directed path.

e Assume without loss of generality that the scalar v > 0 of part (a) of the
Weights Assumption satisfies
Ay
min >
(j.i)e€ 2
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Linear Dynamics and Transition Matrices

e We introduce the transition matrices
O(k,s) = A(s)A(s+1)--- A(k — 1)A(k) for all k > s
e We use these matrices to relate z'(k 4+ 1) to 27 (s) at time s < k:
k
i (k+1) Z[CD (k, 8))igzi(s)— ) (Z[CD (k,m)]sjo(r — 1)d; (r — 1)) —a(k)d; (k).
r=s+1 \j=1

e We analyze convergence properties of the distributed method by establishing:
— Convergence of (random) transition matrices ®(k, s) (consensus part)

— Convergence of an approximate subgradient method (effect of optimization)
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Properties of Transition Matrices

e We consider the edge set £(k) = {(4,7) | [A(k)]i; > 7}

e We construct a probabilistic event in which the edges of the graphs £(k) are
activated over time k in such a way that information propagates from every
agent to every other agent in the network.

e We fix a node w € N and consider two directed spanning trees in the mean
connectivity graph (N, g): an in-tree rooted at w, T3y, , and an out-tree rooted
at w, Tout,w

e We consider a specific ordering of the edges of these spanning trees:

Tz’n,w — {61762, .. -7€n—1}7 Tout,w — {fl,fQ, .. .,fn—l}

w w w
@

/\ O/% o L2 ijfs o
N4 A PN

O O @)
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Properties of Transition Matrices (Continued)

Given any time s > 0, we define the events:
Ci(s) ={A™ € Q™ | Ac,(s+1) >~} foralll=1,...,n—1,
Di(s) ={A” € Q> | Af,(s+ (n—1)+1) >~} foralll=1,...,n—1,
Gis)= () (C’l(s) N Dl(s)).

I=1,....n—1

e (G(s) denotes the event in which each edge in the spanning trees Tj,, ,, and

Tout,w are activated sequentially following time s in the given order

Lemma: Let Weights and Connectivity Assumptions hold. For any s > 0, let
A% € G(s). Then,

®(k,s)i; >~+" "t foralli,j,and all k > s+2(n—1) — 1.
J

Lemma: For any s > 0, the following hold:

(a) The events Ci(s) and D;(s) for alll =0,...,n—1 are mutually independent and

P(Ci(s)) >, and P(Di(s)) >~ forall[=0,...,n— 1.

(b) P(G(s)) > 7Y
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Geometric Decay

Assumption (Doubly Stochastic Weights) The matrices A(k) are doubly stochastic
with probability 1.

e \We introduce the metric

forall k >s>0

(,7)e{1,..., n}2
Lemma: Let Connectivity and Doubly Stochastic Weights assumptions hold. Then,
E[b(k,s)] < CB* ™ forall k> s,

where 3 and C' are given by

B 2) 74(77,—1) B 74(11—1)
C = (3+72(n_1)>exp{— 5 , B =exp _—4(n—1)
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Analysis of the Subgradient Method

e Recall the evolution of the estimates:

i (k+1) Z[cp (k, )iz (s Z (i (k,7)]ijo(r — 1)d; (r — 1)) —a(k)di (k).

r=s—+1

e \We introduce a related sequence: Let y(0) be given by y(0) = %Z?Zl x;(0) and

y(k+1) = —@

> d;(k)

n
j=1

or equivalently
n k n
1 1

e This iteration can be viewed as an approximate subgradient method for
minimizing f(x) = >_. f;j(), in which a subgradient at x = x; (k) is used
instead of a subgradient at x = y(k).
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Analysis of the Subgradient Method (Continued)

e \We assume that the subgradients of f; are uniformly bounded by a constant L, and

maxi<j<n [|2;(0)[] < L.

e \We consider (weighted) averaged-vectors z;(k) defined for all £ > 0 as

i (k (87 xz
)= Zs g o(s Z

t=1

Proposition: An upper bound on the objective value f(Z;(k)) for each i is given by

k

o’ (t)
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Main Convergence Result for Diminishing Stepsize Rule

We consider a diminishing stepsize rule: The stepsize ay is decreasing and is s.t.

> a(k) = oo and > a(k)’ =A< oo.

k=0

Proposition: Let Connectivity-Doubly Stochastic Weights assumptions hold. For all
i € N, we have

lim E[f(z:(k))] = f* and

k— oo

lik{n inf f(2;(k)) = f°  with probability 1.

Follows from the lemma:

Lemma: Let Connectivity-Doubly Stochastic Weights assumptions hold. We have

[t

k t—
lim B|———— " a(t)a(s — )bt —1,5)| =0  and

k— oo

liminf — ! Z Z a(t)a(s —1)b(t—1,5) =0 with probability 1.

koo 3 _1a(r) =1 =0
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Main Convergence Result for Constant Stepsize Rule
We consider a constant stepsize rule: The stepsize oy satisfies ax, = « for all £ and
for some scalar a > 0

Proposition: Let Connectivity-Doubly Stochastic Weights assumptions hold. For all
i € N, we have

limsup E[f(%:(k))] < f* + anL? ((1 +2n)C + 1) ,

where C and (3 are the constant governing the geometric decay, i.e.,
E[b(k,s)] < CB** for all k > s.

Conjecture: For all i € N, we have

limsup f(Z:(k)) < f* + anL”

k— oo

(1+2n)C 1 : -
( 1= 5 + 5 with probability 1.
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Conclusions

e We presented a distributed subgradient method for multi-agent optimization

with a random network model

e We analyzed the convergence of the algorithm under different stepsize rules

e Extensions:

Optimization algorithms for the case when probability of link failures depends

on the current information state of each node — state-dependent consensus

Asynchronous optimization algorithms: Analysis of delay effects on

performance
Nonconvex local objectives
Effects of constraints: distributed primal-dual approaches

Second-order distributed optimization algorithms
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