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Motivation

• Increasing interest in distributed control and coordination of networks

consisting of multiple autonomous agents

• Motivated by many emerging networking applications, such as ad hoc wireless

communication networks and sensor networks, characterized by:

– Lack of centralized control and access to information

– Randomly varying connectivity

• Control algorithms for such networks should be:

– Completely distributed relying on local information

– Robust against changes in the network topology
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Multi-Agent Optimization Problem

Goal: Develop a general computational model

for cooperatively optimizing a global system ob-

jective through local interactions and computa-

tions in a multi-agent system with randomly

varying connectivity

• Global objective is a combination of

individual agent performance measures

Examples:

• Consensus problems: Alignment of estimates maintained by different agents

– Control of moving vehicles (UAVs), computing averages of initial values

• Parameter estimation in distributed sensor networks:

– Regression-based estimates using local sensor measurements

• Congestion control in data networks with heterogeneous users
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Related Literature

• Parallel and Distributed Algorithms:

– General computational model for distributed asynchronous optimization

∗ Tsitsiklis 84, Bertsekas and Tsitsiklis 95

• Consensus and Cooperative Control:

– Analysis of group behavior (flocking) in dynamical-biological systems

∗ Vicsek 95, Reynolds 87, Toner and Tu 98

– Mathematical models of consensus and averaging

∗ Jadbabaie et al. 03, Olfati-Saber and Murray 04, Olshevsky, Tsitsiklis 07

• Distributed Multi-agent Optimization:

– Distributed subgradient methods with local information and network effects

∗ Nedić and Ozdaglar 07, Nedić, Olshevsky, Ozdaglar, Tsitsiklis 07,

Nedić, Ozdaglar, Parrilo 08

• Existing Work:

– Focus on deterministic models of network connectivity

– Worst-case assumptions about connectivity of agents (e.g. bounded

communication intervals between nodes)
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Random Network Models and Our Contribution

• Recent interest in random algorithms

– Randomized gossip algorithms for averaging or computation of separable

functions

∗ Boyd et al. 05, Mosk-Aoyama and Shah 07

– Consensus/agreement over random networks

∗ Availability of links between agents modeled probabilistically

∗ Hatano and Mesbahi 05, Wu 06, Tahbaz-Salehi and Jadbabaie 08

• Our Contributions:

– General random network model

– Development of a distributed subgradient method for multi-agent

optimization over a random network

– Convergence analysis and performance bounds
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Model

• We consider a network of n agents with node set N = {1, . . . , n}
– Agents want to cooperatively solve

min
x∈Rm

n∑
i=1

fi(x)

– Function fi(x) : Rn → R is a convex objec-

tive function known only by node i

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

• Agents update and send their information at discrete times t0, t1, t2 . . .

• We use xi(k) ∈ Rm to denote the estimate of agent i at time tk

Agent Update Rule:

• Agent i updates his estimate according to:

xi(k + 1) =

n∑
j=1

aij(k)xj(k)− α(k)di(k)

• aij(k): weight, α(k): stepsize, di(k): subgradient of fi(x) at x = xi(k)

• The model includes consensus as a special case (fi(x) = 0 for all i)
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Random Network Model

• Let xl(k) denote the vector of the lth component of all agent estimates at time

k, i.e., xl(k) = (xl
1(k), . . . , xl

n(k)) for all l = 1, . . . , m

• Agent update rule implies that the component vectors of agent estimates evolve

according to

xl(k + 1) = A(k)xl(k)− α(k)dl(k),

– dl(k) = (dl
1(k), . . . , dl

n(k)) is a vector of the lth component of the

subgradient vector of each agent

– A(k) is a matrix with components A(k) = [aij(k)]i,j∈N

• We assume that A(k) is a random matrix that describes the time-varying

connectivity of the network
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Assumptions

Assumption (Weights) Let F = (Ω,B, µ) be a probability space such that Ω is the

set of all n× n stochastic matrices, B is the Borel σ-algebra on Ω and µ is a

probability measure on B.

(a) There exists a scalar γ with 0 < γ < 1 such that Aii ≥ γ for all i and all A ∈ Ω.

(b) For all k ≥ 0, the matrix A(k) is drawn independently from probability space F .

Implications:

• Each agent takes convex combination of the information from his neighbors

• The induced graph, i.e., the graph (N , E+(k)), E+(k) = {(j, i) | aij(k) > 0}, is

a random graph that is independent and identically distributed over time k

– This allows edges at any time k to be correlated

• Formally, we define a product probability space (Ω∞,B∞, µ∞) =
∏∞

k=1(Ω,B, µ).

• The sequence A∞ = {A(k)} is drawn from this product probability space.
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Connectivity

• Consider the expected value of the random

matrices A(k),

Ã = E[A(k)] for all k ≥ 0.

• Define the edge set induced by the positive

elements of the matrix Ã,

Ẽ = {(j, i) | Ãij > 0}

Assumption (Connectivity) The mean connectivity graph (N , Ẽ) is strongly

connected.

• This assumption ensures that in expectation, the information of an agent i

reaches every other agent j through a directed path.

• Assume without loss of generality that the scalar γ > 0 of part (a) of the

Weights Assumption satisfies

min
(j,i)∈Ẽ

Ãij

2
≥ γ.
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Linear Dynamics and Transition Matrices

• We introduce the transition matrices

Φ(k, s) = A(s)A(s + 1) · · ·A(k − 1)A(k) for all k ≥ s

• We use these matrices to relate xi(k + 1) to xj(s) at time s ≤ k:

xi(k+1) =

n∑
j=1

[Φ(k, s)]ijxj(s)−
k∑

r=s+1

(
m∑

j=1

[Φ(k, r)]ijα(r − 1)dj(r − 1)

)
−α(k)di(k).

• We analyze convergence properties of the distributed method by establishing:

– Convergence of (random) transition matrices Φ(k, s) (consensus part)

– Convergence of an approximate subgradient method (effect of optimization)
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Properties of Transition Matrices

• We consider the edge set E(k) = {(j, i) | [A(k)]ij ≥ γ}
• We construct a probabilistic event in which the edges of the graphs E(k) are

activated over time k in such a way that information propagates from every

agent to every other agent in the network.

• We fix a node w ∈ N and consider two directed spanning trees in the mean

connectivity graph (N , Ẽ): an in-tree rooted at w, Tin,w, and an out-tree rooted

at w, Tout,w

• We consider a specific ordering of the edges of these spanning trees:

Tin,w = {e1, e2, . . . , en−1}, Tout,w = {f1, f2, . . . , fn−1}
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Properties of Transition Matrices (Continued)

Given any time s ≥ 0, we define the events:

Cl(s) = {A∞ ∈ Ω∞ | Ael(s + l) ≥ γ} for all l = 1, . . . , n− 1,

Dl(s) = {A∞ ∈ Ω∞ | Afl(s + (n− 1) + l) ≥ γ} for all l = 1, . . . , n− 1,

G(s) =
⋂

l=1,...,n−1

(
Cl(s) ∩Dl(s)

)
.

• G(s) denotes the event in which each edge in the spanning trees Tin,w and

Tout,w are activated sequentially following time s in the given order

Lemma: Let Weights and Connectivity Assumptions hold. For any s ≥ 0, let

A∞ ∈ G(s). Then,

[Φ(k, s)]ij ≥ γk−s+1 for all i, j, and all k ≥ s + 2(n− 1)− 1.

Lemma: For any s ≥ 0, the following hold:

(a) The events Cl(s) and Dl(s) for all l = 0, . . . , n− 1 are mutually independent and

P (Cl(s)) ≥ γ, and P (Dl(s)) ≥ γ for all l = 0, . . . , n− 1.

(b) P (G(s)) ≥ γ2(n−1).
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Geometric Decay

Assumption (Doubly Stochastic Weights) The matrices A(k) are doubly stochastic

with probability 1.

• We introduce the metric

b(k, s) = max
(i,j)∈{1,...,n}2

∣∣∣∣[Φ(k, s)]ji −
1

n

∣∣∣∣ for all k ≥ s ≥ 0

Lemma: Let Connectivity and Doubly Stochastic Weights assumptions hold. Then,

E[b(k, s)] ≤ Cβk−s for all k ≥ s,

where β and C are given by

C =

(
3 +

2

γ2(n−1)

)
exp

{
−γ4(n−1)

2

}
, β = exp

{
− γ4(n−1)

4(n− 1)

}
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Analysis of the Subgradient Method

• Recall the evolution of the estimates:

xi(k+1) =

n∑
j=1

[Φ(k, s)]ijxj(s)−
k∑

r=s+1

(
m∑

j=1

[Φ(k, r)]ijα(r − 1)dj(r − 1)

)
−α(k)di(k).

• We introduce a related sequence: Let y(0) be given by y(0) = 1
n

∑n
j=1 xj(0) and

y(k + 1) = y(k)− α(k)

n

n∑
j=1

dj(k),

or equivalently

y(k) =
1

n

n∑
j=1

xj(0)− 1

n

k∑
s=1

α(s)

n∑
j=1

dj(s− 1).

• This iteration can be viewed as an approximate subgradient method for

minimizing f(x) =
∑

j fj(x), in which a subgradient at x = xj(k) is used

instead of a subgradient at x = y(k).
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Analysis of the Subgradient Method (Continued)

• We assume that the subgradients of fi are uniformly bounded by a constant L, and

max1≤j≤n ‖xj(0)‖ ≤ L.

• We consider (weighted) averaged-vectors x̃i(k) defined for all k ≥ 0 as

x̃i(k) =
1∑k

s=1 α(s)

k∑
t=1

α(t)xi(t)

Proposition: An upper bound on the objective value f(x̃i(k)) for each i is given by

f(x̃i(k)) ≤ f∗ +
n

2
∑k

r=1 α(r)
dist2(y(0), X∗) +

nL2

2
∑k

r=1 α(r)

k∑
t=1

α2(t)

+
3nL2

∑k
r=1 α(r)

k∑
t=1

α(t)
[
n

t−1∑
s=0

α(s− 1)b(t− 1, s) + 2α(t− 1)
]
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Main Convergence Result for Diminishing Stepsize Rule

We consider a diminishing stepsize rule: The stepsize αk is decreasing and is s.t.

∞∑

k=0

α(k) = ∞ and
∞∑

k=0

α(k)2 = A < ∞.

Proposition: Let Connectivity-Doubly Stochastic Weights assumptions hold. For all

i ∈ N , we have

lim
k→∞

E[f(x̃i(k))] = f∗ and

lim inf
k→∞

f(x̃i(k)) = f∗ with probability 1.

Follows from the lemma:

Lemma: Let Connectivity-Doubly Stochastic Weights assumptions hold. We have

lim
k→∞

E

[
1∑k

r=1 α(r)

k∑
t=1

t−1∑
s=0

α(t)α(s− 1)b(t− 1, s)

]
= 0 and

lim inf
k→∞

1∑k
r=1 α(r)

k∑
t=1

t−1∑
s=0

α(t)α(s− 1)b(t− 1, s) = 0 with probability 1.
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Main Convergence Result for Constant Stepsize Rule

We consider a constant stepsize rule: The stepsize αk satisfies αk = α for all k and

for some scalar α > 0

Proposition: Let Connectivity-Doubly Stochastic Weights assumptions hold. For all

i ∈ N , we have

lim sup
k→∞

E[f(x̃i(k))] ≤ f∗ + αnL2

(
(1 + 2n)C

1− β
+

1

2

)
,

where C and β are the constant governing the geometric decay, i.e.,

E[b(k, s)] ≤ Cβk−s for all k ≥ s.

Conjecture: For all i ∈ N , we have

lim sup
k→∞

f(x̃i(k)) ≤ f∗ + αnL2

(
(1 + 2n)C

1− β
+

1

2

)
with probability 1.
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Conclusions

• We presented a distributed subgradient method for multi-agent optimization

with a random network model

• We analyzed the convergence of the algorithm under different stepsize rules

• Extensions:

– Optimization algorithms for the case when probability of link failures depends

on the current information state of each node – state-dependent consensus

– Asynchronous optimization algorithms: Analysis of delay effects on

performance

– Nonconvex local objectives

– Effects of constraints: distributed primal-dual approaches

– Second-order distributed optimization algorithms
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