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Resource and Traffic Management in

Communication Networks

• Flow control and routing essential components of traffic

management.

• Traditional Network Optimization: Focus on a central objective,

devise synchronous/asynchronous, centralized/distributed

algorithms.

– Assumes all users are homogeneous with no self interest

• Today’s Large-scale Networks (eg. Internet):

– Decentralized operation

– Highly heterogeneous nature of users

– Interconnection of privately owned networks
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Emerging Paradigm for Distributed Control

• Analysis of resource allocation in the presence of decentralized

information, selfish users/administrative domains, and

profit-maximizing service providers.

• Instead of a central control objective, model as a multi-agent

decision problem.

– Some control functions delegated to agents with independent

objectives.

– Suggests using game theory and economic market mechanisms.
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Recent Literature

• Flow (congestion) control by maximizing aggregate source utility

over transmission rates

– “Kelly mechanism”: Decentralized incentive compatible resource

allocation [Kelly 97], [Kelly, Maulloo, Tan 98]

– Primal/Dual methods, stability, relations to current congestion

control mechanisms [Low, Lapsley 02], [Liu, Basar, Srikant 03]

• Selfish (user-directed) routing

– Transportation net. [Wardrop 52],[Beckmann 56],[Patriksson 94]

– Communication networks [Orda, Rom, Shimkin 93], [Korilis,

Lazar, Orda 97], [Roughgarden, Tardos 00]

• Efficiency

– “Price of Anarchy”: Ratio of performance of selfish to

performance of social [Koutsoupias, Papadimitriou 99],

[Roughgarden, Tardos 00], [Correa, Schulz, Stier Moses 03],

[Johari, Tsitsiklis 03]
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Previous Work

• Existing literature focuses on:

– resource allocation among competing heterogeneous users

– social welfare (aggregate utility) maximization

• Pricing used as a means of regulating selfish user behavior and

achieving social optimum in a distributed manner .

• Commercial networks operated by for-profit service providers.

– Pricing used to make profits or provide service differentiation

among users.

– Combined study of pricing and resource allocation essential in

the design of networks.

• With a few exceptions ([He, Walrand 03], [Mitra et al. 01], [Basar,

Srikant 02]), this game theoretic interaction neglected.

• In [Acemoglu, Ozdaglar 04], we studied pricing with combined flow

control/routing for parallel link networks.
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This Talk

• Consider selfish flow choice and routing in a general topology

network where resources are owned by for-profit entities (focus on a

single service provider).

• Each user pays a price proportional to the amount of bandwidth she

uses (usage-based, linear pricing).

• Goal: Develop a framework and study the implications of pricing on

various performance results.

• Two parts:

– Equilibrium and efficiency of combined flow control/routing

– Braess’ paradox under pricing
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Model for Decentralized System

• Directed graph G = (V, E), m origin destination pairs

• For each link e, a latency function le : [0, Ce] 7→ [0,∞), where Ce

denotes the capacity of link e

– specifies the delay on the link given its congestion.

• For each source destination pair k, Jk set of users, Pk set of paths

• For each user j ∈ Jk, a utility function uk,j : [0,∞) 7→ [0,∞)

– measure of benefits from data transmission.

• Depending on application service requirements, utility takes

different forms [Shenker 95]:

– Inelastic applic: real time voice, video (step utility function)

– Elastic applic: e-mail (increasing concave utility function)

• Single service provider: charges qp per unit bw on path p.
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User Equilibrium - Wardrop Equilibrium

• Let fp
k,j : flow of user j ∈ Jk on path p.

Γk,j =
P

p∈Pk
fp

k,j , “ flow rate of user j”

fp =
P

j∈Jk
fp

k,j , “flow on path p”

fE = [f1, . . . , f |E|], “vector of link loads”

• Let payoff function vj of user j be defined by

vj(fk,j ; f
E , q) = uk,j(Γk,j)−

X
p∈Pk

 X
e∈p

le(fe)

!
fp

k,j −
X

p∈Pk

qpfp
k,j .

• Definition: For a given price q ≥ 0, f∗ is a Wardrop Equilibrium if

f∗k,j ∈ arg max
fk,j≥0

vj(fk,j ; f
E , q), ∀ j ∈ Jk, ∀ k,

fe =
P

k

P
j∈Jk

P
p|e∈p,p∈Pk

(f∗)p
k,j , ∀ e ∈ E .

• Implicit Assumption: Users small relative to the network
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Single Service Provider

• The SP sets prices per unit bandwidth for each path to maximize

profits.

• Monopoly Problem:

maximize
P

p qpfp(q)

subject to q ≥ 0,

where fp(q) is the flow on path p at the WE given price vector q.

• This problem has an optimal solution q∗.

• We will refer to q∗ as the monopoly equilibrium price and (q∗, f(q∗))

[or (q∗, f∗)] as the monopoly equilibrium (ME).
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Elastic Traffic

• The utility function uk,j is concave and nondecreasing.

• ME price: Let (q, f) be an ME and let J̄k = {j | j ∈ Jk, Γk,j > 0}.
Then,

qp =

 X
e∈p

(le)′(fe)fe

!
+

P
p∈P̄k

fp

−Pj∈J̄k

1

u
′′
k,j

(Γk,j)

.

• Social Problem

maximize
P

j∈Jk
uk,j(Γk,j)−

P
p∈Pk

�P
e∈p le(fe)

�
fp

• Equivalent characterization of social opt: (assuming li is convex)

u′k,j(Γk,j)−
P

e∈p le(fe)−Pe∈p(le)′(fe)fe ≤ 0, if fp
k,j = 0,

= 0, if fp
k,j > 0.

• ME price= Marginal congestion cost + Monopoly markup

• For linear utility functions, path flows and flow rates of the ME and

the social optimum are the same.
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Performance of Monopoly Pricing

• Compare performance of monopoly pricing, WE(0), and social opt.

• Example: Consider the network below. Assume

uA(x) = uB(x) = 200xα, 0 < α ≤ 1,

l(x) = xβ , β ≥ 1.
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• Ume, Uwe, Usoc: total system utility at the ME, WE(0), and social

optimum.
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Exploiting Convexity of Latency Functions
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• The more convex the latency function is, the better performance we

have under monopoly pricing.

• Concavity in utility introduces distortion wrt to the social optimum.
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Inelastic Traffic - Routing (with participation

control)

• The utility function uj is a step function.

x

j

t j

u (x)

t

j

• With this utility function, decisions of user j will be binary: either

send tj units of traffic or do not send anything.

– Routing with participation control

• Reasonable model of routing in the presence of service providers

– Otherwise, the monopolist will set the prices equal to ∞.

• Includes implicit admission control.
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Analysis of Inelastic Traffic

• The uj are no longer concave or continuous, therefore calculus-based

analysis with fixed point theorems does not hold.

• WE can be defined equivalently in terms of flow variables and

binary participation variables:

(f∗j , z∗j ) ∈ arg max
f

p
j
≥0, zj∈{0,1}

P
p f

p
j

=tj , if zj=1

(
zjtj −

X
p

(lp(fp) + qp) fp

)

• In view of the Wardrop assumption, this converts the problem into a

mixed integer-linear program and yields an equivalent

characterization of a WE:

– Positive flows on minimum effective cost paths

– If zj = 0 → fp
j = 0, ∀ p; if zj = 1 →P

p fp
j = tj .

– If minp {lp(fp) + qp} < 1 → zj = 1 ∀ j.
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Example

• There does not exist a WE at all price vectors p.

Example:

B

A l(x)=x/2 A and B inelastic 
with t =1, t =1.5A B

• At price 0, there is no WE.

• At price 0.5, there is a WE in which A sends his flow, B does not.

• This is indeed the profit maximizing price.

• Consider the social problem for this example:

maximizexA,xB {uA(xA) + uB(xB)− l(xA + xB)(xA + xB)}

– At the social optimum, A sends his flow, B does not.
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Our results

• Consider a general topology network

• Assume that le is continuous and strictly increasing.

– For a given price q ≥ 0, if there exists a WE, it is unique.

• There exists a profit maximizing price at which there is a WE:

– There exists a monopoly equilibrium.

• The flow allocation at the ME is identical to the social optimum.

• Entire user surplus extracted (special feature of monopoly).

• One interesting question is to look at the multiple provider case,

where user surplus is positive.
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Braess Paradox

• Idea: Addition of an intuitively helpful link negatively impacts users

of the network

x
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1/2

1/2

1

1 x

x

1 unit of

eq
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C   = 1/2 (1/2+1) + 1/2 (1/2+1) = 3/2

1

x

eqC   = 1 + 1 = 2

sysC    = 3/2

0
1 unit of
   traffic

1
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• Introduced in transportation networks [Braess 68], [Dafermos,

Nagurney 84]

– Studied in the context of communication networks, distributed

computing, queueing networks [Altman et al, 03]

• Motivated research in methods of upgrading networks without

degrading network performance

– Leads to limited methods under various assumptions.
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Generalized Braess Paradox

• No prices: Addition/deletion of a link one form of traffic restriction

– [Hagstrom, Abrams 01] Let f be a WE. A Braess paradox occurs

if ∃ another flow distribution (“Braess distribution”) f̃ st

lp(f̃) ≤ lp(f), ∀ p,

lp
′
(f̃) < lp

′
(f), for some p′,

where lp(f) : latency cost of path p under flow f .

– If WE is a social optimum, then there is no Braess paradox.

– Braess distribution has lower total cost than WE.

• With prices:

– Both remarks are not true [WE does not equalize latency costs].

– Above condition need not always constitute a paradoxical

situation when you consider flows switching from one path to

another.

– Need a new definition of Braess paradox.
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Braess Paradox with Prices

• Given a price q, let f be a WE, and l(f) = [l1(f), · · · , l|P|(f)] be the

path latency vector.

• Strong Braess Paradox: A BP occurs if ∃ some other distribution of

flows, f , and a transformation ∆ such that ∆ · f = f , Γk,j = Γk,j ,

lj(f) ≥ li(f), if ∆i,j 6= 0

(with strict inequality for some i, j), where ∆i,j is the (i, j) entry of

matrix ∆.

• Remark: ∆i,jf
j : amount of flow moved from path j to path i.

• Weak Braess Paradox: A BP occurs if ∃ some other distribution of

flows, f , and a transformation ∆ such that ∆ · f = f , Γk,j = Γk,j ,

lp(f) ≥ ∆′
p · l(f), ∀ p,

(with strict inequality for some p̃), where ∆p is the pth column of ∆.

• Remarks:

– ∆pfp : vector of redistribution of flow on path p.

– ∆′
pl(f̄) : avg latency seen by redist. of flow on path p under f̄ .
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Strong and Weak Braess Paradox

4.5 units of 
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• WE: l{a,c} = 19; l{b,d} = 10.75; l{a,e,d} = 15.25,

• Bd: l{a,c} = 18.75; l{b,d} = 10; l{a,e,d} = 10.25

18.75 < 19; 10 < 10.75

0.5× 18.75 + 0.5× 10 = 14.375 < 15.2

• Weak Braess paradox occurs, Strong Braess paradox does not occur.
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Monopoly Pricing and Braess Paradox

• Checking whether Strong/Weak Braess paradox does not occur is

hard (need to consider all possible redistributions of flows)

• Proposition: Weak Braess paradox does not occur under monopoly

prices.

→ Strong Braess paradox does not occur under monopoly prices.

• Intuition:

– The sp, by setting profit maximizing prices, extracts the user

surplus.

– If there were a Braess distribution (WE not pareto optimal), the

sp could extract the additional surplus and make more profit.
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Extensions

• Efficient computational methods for ME.

• Multiple provider case → interesting efficiency results for the case of

competition in congested markets.

• Different routing paradigms (selfish routing vs decentralized routing

for a systemwide objective).

• Pricing for differentiated services.


