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Resource and Traffic Management in

Communication Networks

e Flow control and routing essential components of traffic

management.

e Traditional Network Optimization: Focus on a central objective,
devise synchronous/asynchronous, centralized /distributed

algorithms.

— Assumes all users are homogeneous with no self interest

e Today’s Large-scale Networks (eg. Internet):
— Decentralized operation
— Highly heterogeneous nature of users

— Interconnection of privately owned networks
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Emerging Paradigm for Distributed Control

e Analysis of resource allocation in the presence of decentralized
information, selfish users/administrative domains, and

profit-maximizing service providers.
e Instead of a central control objective, model as a multi-agent
decision problem.

— Some control functions delegated to agents with independent

objectives.

— Suggests using game theory and economic market mechanisms.
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e Flow (congestion) control by maximizing aggregate source utility

over transmission rates

— “Kelly mechanism”™: Decentralized incentive compatible resource
allocation [Kelly 97|, [Kelly, Maulloo, Tan 98]

— Primal /Dual methods, stability, relations to current congestion
control mechanisms [Low, Lapsley 02|, [Liu, Basar, Srikant 03]
e Selfish (user-directed) routing
— Transportation net. [Wardrop 52|,[Beckmann 56],[Patriksson 94]
— Communication networks [Orda, Rom, Shimkin 93], [Korilis,
Lazar, Orda 97|, [Roughgarden, Tardos 00|
e Efficiency

— “Price of Anarchy”: Ratio of performance of selfish to

performance of social [Koutsoupias, Papadimitriou 99|,
[Roughgarden, Tardos 00], [Correa, Schulz, Stier Moses 03],

K [Johari, Tsitsiklis 03] /
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Previous Work \

Existing literature focuses on:

— resource allocation among competing heterogeneous users
— social welfare (aggregate utility) maximization

Pricing used as a means of regulating selfish user behavior and
achieving social optimum in a distributed manner .
Commercial networks operated by for-profit service providers.

— Pricing used to make profits or provide service differentiation

among users.

— Combined study of pricing and resource allocation essential in

the design of networks.

With a few exceptions ([He, Walrand 03], [Mitra et al. 01], [Basar,
Srikant 02]), this game theoretic interaction neglected.

In [Acemoglu, Ozdaglar 04], we studied pricing with combined flow
control /routing for parallel link networks. /
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This Talk

Consider selfish flow choice and routing in a

where resources are owned by for-profit entities (focus on a

single service provider).

Each user pays a price proportional to the amount of bandwidth she

uses

Goal: Develop a framework and study the implications of pricing on

various performance results.

Two parts:
— Equilibrium and efficiency of combined flow control/routing

— Braess’ paradox under pricing

~
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Model for Decentralized System

Directed graph G = (V, ), m origin destination pairs
For each link e, [¢:]0,C¢ +— [0,00), where C*°

denotes the capacity of link e

— specifies the delay on the link given its congestion.
For each source destination pair k, Jx set of users, P set of paths

For each user j € Ji, uk,; : |0,00) — [0, 00)

— measure of benefits from data transmission.

Depending on application service requirements, utility takes
different forms [Shenker 95]:

real time voice, video (step utility function)

e-mail (increasing concave utility function)

Single service provider: charges ¢” per unit bw on path p.

~
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User Equilibrium - Wardrop Equilibrium

o Let f,f,j: flow of user ly_L)E Jr on path p.

'k = DT fr.js “flow rate of user j”
fP="seq It “flow on path p”
e =1f ..., f1e0, “vector of link loads”

e Let payoff function v; of user j be defined by
!
- X X o X
Vi (frgs [, q) = uk,;(Tr,j) — I°(f°) f]f,j - qpfif,j-

pEP e€p pEPy
e Definition: For a given price ¢ > 0, f™ is a if

fl:,j S arg max Uj(fkaj;f87Q)7 \V/] S Jk) \ k)

Jr,;20
PP P .

f — k ]Ejk: p|e€p7p€73k (f >k7j7 \V/ € E g

e Implicit Assumption: Users small relative to the network
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Single Service Provider

The SP sets prices per unit bandwidth for each path to maximize
profits.
Monopoly Problem:
o p P
maximize », 2" (q)
subject to g > 0,
where f?(q) is the flow on path p at the WE given price vector q.

This problem has an optimal solution ¢™.

We will refer to ¢* as the and (q*, f(q"

lor (¢", f7)] as the

~
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Elastic Traffic

The utility function uy ; is concave and nondecreasing.

~

ME price: Let (q, f) be an ME and let Jx = {j | j € Jx, T'x,; > 0}.

Then 1
’ | P
P 25 e\/ e e D p€75k fp
F= s + el
e€p JE€Tk u;:,j(l—‘k;,j)
Social Problem P P =

maximize jeg, k. (Tk,5) —

pPEPL ecp le(fe) fp

Equivalent characterization of social opt: (assuming I* is convex)
P

P / e e :
wej(Trg) = eep () = o, ) ()7 <0, i fy; =0,
=0, if fz ;> 0.

ME price= Marginal congestion cost 4+ Monopoly markup

For linear utility functions, path flows and flow rates of the ME and

the social optimum are the same.
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Performance of Monopoly Pricing

e Compare performance of monopoly pricing, WE(0), and social opt.

e Example: Consider the network below. Assume
ua(x) =up(z) = 200z, 0<a<l,
(z) = 2”, 8> 1.

® Une, Upe, Usoc: total system utility at the ME, WE(0), and social

optimum.
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Exploiting Convexity of Latency Functions

P
0.93 s B=1
7

LN
0921

0.91F SO -

I I I I I I ] I I I I I I I ]
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Unme /Uwe Ume/Usoc

e The more convex the latency function is, the better performance we

have under monopoly pricing.

e Concavity in utility introduces distortion wrt to the social optimum.
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control)

e The utility function u; is a step function.
U (x)

send t; units of traffic or do not send anything.

e Reasonable model of routing in the presence of service providers

— Otherwise, the monopolist will set the prices equal to oo.

\o Includes implicit admission control.

/ Inelastic Traffic - Routing (with participation \

e With this utility function, decisions of user j will be binary: either

/
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Analysis of Inelastic Traffic

e The u; are no longer concave or continuous, therefore calculus-based

analysis with fixed point theorems does not hold.

e WE can be defined equivalently in terms of flow variables and

binary participation variables:

C o >

(f,2;) € arg max zity—  (O(f7) +¢") f*
fjpzo, z;€{0,1}

P .
p_, . L —
p f‘7 —tJ, lf zj—l

e In view of the Wardrop assumption, this converts the problem into a
mixed integer-linear program and yields an equivalent

characterization of a WE:
— Positive flows on minimum effective cost paths

. P
—Ifz;=0—f7=0,Vpifz; =1— _f7=t;
— If min, {IP(fP)+¢°} <1 —2;, =1V .
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Example

There does not exist a WE at all price vectors p.

Example:
A _ A and B inelastic
. 10)=x/2 *  withtz1,t715
B

At price 0, there is no WE.
At price 0.5, there is a WE in which A sends his flow, B does not.
This is indeed the profit maximizing price.
Consider the social problem for this example:
maximizeg , »5 {ua(xa) +up(zp) —l(xa +z5)(xa +x8)}

— At the social optimum, A sends his flow, B does not.
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Our results

Consider a general topology network

Assume that [° is continuous and strictly increasing.

— For a given price g > 0, if there exists a WE, it is unique.

There exists a profit maximizing price at which there is a WE:

— There exists a monopoly equilibrium.
The flow allocation at the ME is identical to the social optimum.
Entire user surplus extracted (special feature of monopoly).

One interesting question is to look at the multiple provider case,

where user surplus is positive.

~
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e Idea: Addition of an intuitively helpful link negatively impacts users

of the network

1/2
1 unit of 1 unit of
tl’afﬂC:: :: traffic ::
1/2
Gq = V2 (V2+1) + U2 (U2+1) = 3/2 Gq=1+1=2
Cys = 3/2 Gys =3/2

e Introduced in transportation networks [Braess 68|, [Dafermos,
Nagurney 84]
— Studied in the context of communication networks, distributed

computing, queueing networks [Altman et al, 03]

e Motivated research in methods of upgrading networks without

degrading network performance
K — Leads to limited methods under various assumptions. /
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/ Generalized Braess Paradox \

e No prices: Addition/deletion of a link one form of traffic restriction

— [Hagstrom, Abrams 01] Let f be a WE. A Braess paradox occurs
if 3 another flow distribution ( ) f st

~

PH<rE).
P (f) <P (f), for some p’,
where [P (f) : latency cost of path p under flow f.

— If WE is a social optimum, then there is no Braess paradox.

— Braess distribution has lower total cost than WE.

e With prices:
— Both remarks are not true [WE does not equalize latency costs].

— Above condition need not always constitute a paradoxical
situation when you consider flows switching from one path to

another.

\ — Need a new definition of Braess paradox. /
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\ — ALI(f) : avg latency seen by redist. of flow on path p under f /

Braess Paradox with Prices \

Given a price ¢, let f be a WE, and I(f) = [I*(f),--- ,I"I(f)] be the
path latency vector.

Strong Braess Paradox: A BP occurs if 4 some other distribution of

flows, f, and a transformation A such that A - f = f, I'y; = s,
B(f) > 0(F), i Auy #0

(with strict inequality for some ¢, j), where A; ; is the (i, j) entry of

matrix A.
Remark: A; ;f7: amount of low moved from path j to path 4.

Weak Braess Paradox: A BP occurs if 3 some other distribution of
flows, f, and a transformation A such that A - f = f, I'y; = 'k,

(with strict inequality for some p), where A, is the pth column of A.

Remarks:

— A, fP : vector of redistribution of flow on path p.
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Strong and Weak Braess Paradox

4.5 units of ——
traffic

— 45 unitsof __,
traffic —

WE Braess distribution
e WE: [{®ct = 19; 104} = 10.75; [{eed} = 1525,
e Bd: lt*cr =18.75; (1»4 = 10; {+edh = 10.25
18.75 < 19; 10 < 10.75
0.5 x 18.75 + 0.5 x 10 = 14.375 < 15.2

e Weak Braess paradox occurs, Strong Braess paradox does not occur.
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Monopoly Pricing and Braess Paradox

e Checking whether Strong/Weak Braess paradox does not occur is

hard (need to consider all possible redistributions of flows)
e Proposition: Weak Braess paradox does not occur under monopoly
prices.

— Strong Braess paradox does not occur under monopoly prices.

e Intuition:

— The sp, by setting profit maximizing prices, extracts the user

surplus.

— If there were a Braess distribution (WE not pareto optimal), the

sp could extract the additional surplus and make more profit.

\_ /
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Extensions

Efficient computational methods for ME.

~

Multiple provider case — interesting efficiency results for the case of

competition in congested markets.

Different routing paradigms (selfish routing vs decentralized routing

for a systemwide objective).

Pricing for differentiated services.




